智能制造总结

2022-11-02 版权声明 我要投稿

时间过得很快,四季轮回的过程中,一年忙碌的工作时间结束。在这一年的工作中,大家通过工作,可学到更多方面的工作知识,也留下了众多的学习回忆。为记录这一年的成长,可编写一份年终总结。以下是小编精心整理的《智能制造总结》相关资料,欢迎阅读!

第1篇:智能制造总结

中国制造2025,主攻智能制造

在全面推进实施制造强国战略的征途中迈出了关键性一步,中国制造也再次站到了转型升级、创新驱动的风口上

制造业是国民经济的主体,是立国之本、兴国之器、强国之基。5月19日,备受瞩目的《中国制造2025》正式对外公布,标志着我国在全面推进实施制造强国战略的征途中迈出了关键性一步,中国制造也再次站到了转型升级、创新驱动的风口上。

国家统计局数据显示,2005年~2013年,我国制造业总产值年均增长20%左右,2012年我国制造业增加值为2.08 万亿美元,在全球制造业占比约20%,成为世界上名副其实的“制造大国”。

我国工业如今在全球竞争中的优势更多地体现为拥有完整的产业链条。根据联合国工业发展组织数据,我国是世界上唯一拥有联合国产业分类中全部工业门类(39个工业大类、191个中类、525个小类)的国家,形成了“门类齐全、独立完整”的工业体系。同样是来自于联合国工业发展组织数据,目前,中国工业竞争力指数在136个国家中排名第七位,制造业净出口居世界第一位。

按照国际标准工业分类,在22个大类中,中国在7个大类中名列第一,钢铁、水泥、汽车等220多种工业品产量居世界第一位。2013年,我国装备制造业产值规模突破20万亿元,占全球比重超过1/3;2013年,发电设备产量达1.2亿千瓦,约占全球总量的60%;造船完工量达4534万载重吨,占全球比重的41%;汽车产量达2211.7万辆,占全球比重的25%;机床产量达95.9万台,占全球比重的38%,我国制造业占世界的1/3强。

当前,我国经济发展进入新常态,制造业面临产能过剩、大而不强的困局,转型升级犹如逆水行舟,不进则退。可以说,现在我国比以往任何时候都更需要强大的制造强国战略。因为“中国制造”在世界上成了“低端廉价”的代名词,技术含量较低,加上中国的人口红利优势即将消失,现在制造企业的利润率普遍只有10%左右,有的甚至更低,大量中小制造企业苦苦挣扎在死亡线上。

5月13日,在中国工程院、工信部和中科院主办的“2015智能制造国际会议”上,原全国人大常委会副委员长、两院院士、中国机械工程学会荣誉理事长路甬祥在主旨报告中称,2014年中国装备制造产值占全球比重1/3,机电产品进出口额2.16万亿美元,占进出口总额55.7%,已成为全球制造大国。整体而言,发展主要依靠要素投入和低成本优势,付出了沉重的资源与环境代价,仍处于价值链的低中段,还不是制造强国。

的确,中国制造业与先进国家相比还有较大差距。主要表现在:自主创新能力弱,关键核心技术与高端装备对外依存度高,以企业为主体的制造业创新体系不完善;产品档次不高,缺乏世界知名品牌;资源能源利用效率低,环境污染问题较为突出;产业结构不合理,高端装备制造业和生产性服务业发展滞后;信息化水平不高,与工业化融合深度不够;产业国际化程度不高,企业全球化经营能力不足。

2008年国际金融危机之后,面对新一轮科技革命和产业变革,发达国家纷纷实施“再工业化”战略,重塑制造业竞争新优势,加速推进新一轮全球贸易投资新格局。一些发展中国家也在加快谋划和布局,积极参与全球产业再分工,承接产业及资本转移,拓展国际市场空间。“前有堵截,后有追兵”,我国制造业面临发达国家和其他发展中国家“双向挤压”的严峻挑战。

没有强大的制造业,我国很难突破“中等收入陷阱”,也无法从大国走向强国。建设制造强国,必须紧紧抓住战略机遇,积极应对挑战,加强统筹规划,突出创新驱动,制定特殊政策,发挥制度优势,以我为主,跨越发展。

《中国制造2025》是中国第一次从国家战略层面描绘建设制造强国的宏伟蓝图,确立了发展世界制造业强国的战略目标,同时提出两个实施阶段、三步走战略目标、五项重大工程、九大战略任务和十个重点领域。

中德制造业战略殊途同归

“中国制造2025”和“德国工业4.0”都是在新一轮科技革命和产业变革背景下,针对制造业发展提出的重要战略举措,具有相同的战略使命和核心理念。战略使命方面,两国新战略都是为了应对新一轮科技革命和产业变革。

在理念层面,两国新战略都是推进信息技术与制造技术的深度融合。德国工业4.0着眼于高端装备,提出建设信息物理系统,并积极布局智能工厂,推进智能生产。《中国制造2025》提出以加快新一代信息技术与制造业深度融合为主线,以推进智能制造为主攻方向,构建信息化条件下的产业生态体系和新型制造模式。

从不同点来看,中德两国新战略无论是发展基础、产业阶段还是战略任务都具有各自特点。在发展基础方面,德国制造业具有强大的技术基础,在两化(工业化和信息化)融合、“互联网+”方面都具有优势,而且德国是世界制造业强国和领先的工业制成品出口大国,制造业研发投入强度超过美国和日本 ,树立了德国制造的品牌形象。中国是制造大国,但还不是制造强国,依然处于产业链“微笑曲线”的中间,核心技术和品牌价值薄弱。

在产业阶段方面,德国工业4.0是在顺利完成工业1.0、工业2.0,基本完成工业3.0之后,提出的发展战略,是自然的串联式发展。中国制造业尚处于工业2.0和工业3.0并行发展的阶段,必须走工业2.0补课、工业3.0普及、工业4.0示范的并联式发展道路,不仅要兼顾自己传统产业的转型升级,同时还要实现在高端领域的跨越式发展,所以我国的任务就比德国实现工业4.0更加复杂、更加艰巨。

在战略任务方面,德国工业4.0就是瞄准新一轮科技革命制定的措施,主要聚焦制造业的高端产业和高端环节。《中国制造2025》不是专门为应对新一轮科技革命制定的规划,是对制造业转型升级的整体谋划,不仅要提出培育发展新兴产业的路径和措施,还要加大对量大面广的传统产业的改造升级力度,同时还要解决制造业创新能力、产品质量、工业基础、节能环保等一系列阶段性的突出矛盾和问题。

所以在未来的《中国制造2025》“1+X”的规划体系里,将专门制定一个跟“德国工业4.0”相类似的规划,比如说智能制造的规划、或者两化融合的规划等。

据工信部副部长苏波今年3月在国新办举行的发布会上介绍说,中德两国政府在加强“工业4.0”领域合作已经形成了六点共识:一是建立合作机制,在中德两国政府间要建立“工业4.0”的对话机制,落实中德合作行动纲领;二是联合开展基础性、前瞻性的研究;三是“工业4.0”很重要的一点,就是标准的制定,会合作制定一些新的标准;四是加强工业设计领域的合作;五是加强智能制造、试点示范的合作;六是大力开展人才交流方面的培训和合作。苏波指出,中德在“中国制造2025”和“工业4.0”方面的合作是双赢的,将会取得很好的成果。

九大任务和十个重点领域

《中国制造2025》提出了通过“三步走”实现制造强国的战略目标,并明确了九项战略任务和十大重点领域。

“三步走”的第一步,到2025年,迈入制造强国行列;第二步,到2035年,我国制造业整体达到世界制造强国阵营中等水平;第三步,到新中国成立一百年时,我制造业大国地位更加巩固,综合实力进入世界制造强国前列。

九大战略任务分别是,提高国家制造业创新能力、推进信息化与工业化深度融合、强化工业基础能力、加强质量品牌建设、全面推行绿色制造、大力推动重点领域突破发展、深入推进制造业结构调整、积极发展服务型制造和生产性服务业、提高制造业国际化发展水平。

从具体行业来看,《中国制造》2025推动十大重点领域突破发展:新一代信息技术产业、高档数控机床和机器人、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车、电力装备、农机装备、新材料、生物医药及高性能医疗器械。

落实《中国制造2025》要实施五大工程,包括制造业创新中心建设工程、智能制造工程、工业强基工程、绿色制造工程、高端装备创新工程。建设制造业创新中心主要是指,围绕重点行业转型升级和新一代信息技术、智能制造、增材制造、新材料、生物医药等领域创新发展的重大共性需求,形成一批制造业创新中心(工业技术研究基地),重点开展行业基础和共性关键技术研发、成果产业化、人才培训等工作。到2020年,重点形成15家左右制造业创新中心(工业技术研究基地),力争到2025年形成40家左右制造业创新中心(工业技术研究基地)。

智能制造工程是指,紧密围绕重点制造领域关键环节,开展新一代信息技术与制造装备融合的集成创新和工程应用。支持政产学研用联合攻关,开发智能产品和自主可控的智能装置并实现产业化。依托优势企业,紧扣关键工序智能化、关键岗位机器人替代、生产过程智能优化控制、供应链优化,建设重点领域智能工厂/数字化车间。在基础条件好、需求迫切的重点地区、行业和企业中,分类实施流程制造、离散制造、智能装备和产品、新业态新模式、智能化管理、智能化服务等试点示范及应用推广。建立智能制造标准体系和信息安全保障系统,搭建智能制造网络系统平台。

到2020年,制造业重点领域智能化水平显著提升,试点示范项目运营成本降低30%,产品生产周期缩短30%,不良品率降低30%。到2025年,制造业重点领域全面实现智能化,试点示范项目运营成本降低50%,产品生产周期缩短50%,不良品率降低50%。

工业强基就是要支持核心基础零部件(元器件)、先进基础工艺、关键基础材料的首批次或跨领域应用。组织重点突破,针对重大工程和重点装备的关键技术和产品急需,支持优势企业开展政产学研用联合攻关,突破关键基础材料、核心基础零部件的工程化、产业化瓶颈。强化平台支撑,布局和组建一批"四基"研究中心,创建一批公共服务平台,完善重点产业技术基础体系。

到2020年,40%的核心基础零部件、关键基础材料实现自主保障,受制于人的局面逐步缓解,航天装备、通信装备、发电与输变电设备、工程机械、轨道交通装备、家用电器等产业急需的核心基础零部件(元器件)和关键基础材料的先进制造工艺得到推广应用。到2025年,70%的核心基础零部件、关键基础材料实现自主保障,80种标志性先进工艺得到推广应用,部分达到国际领先水平,建成较为完善的产业技术基础服务体系,逐步形成整机牵引和基础支撑协调互动的产业创新发展格局。

绿色制造是指,组织实施传统制造业能效提升、清洁生产、节水治污、循环利用等专项技术改造。开展重大节能环保、资源综合利用、再制造、低碳技术产业化示范。实施重点区域、流域、行业清洁生产水平提升计划,扎实推进大气、水、土壤污染源头防治专项。制定绿色产品、绿色工厂、绿色园区、绿色企业标准体系,开展绿色评价。

到2020年,建成千家绿色示范工厂和百家绿色示范园区,部分重化工行业能源资源消耗出现拐点,重点行业主要污染物排放强度下降20%。到2025年,制造业绿色发展和主要产品单耗达到世界先进水平,绿色制造体系基本建立。

高端装备创新就是要组织实施大型飞机、航空发动机及燃气轮机、民用航天、智能绿色列车、节能与新能源汽车、海洋工程装备及高技术船舶、智能电网成套装备、高档数控机床、核电装备、高端诊疗设备等一批创新和产业化专项、重大工程。开发一批标志性、带动性强的重点产品和重大装备,提升自主设计水平和系统集成能力,突破共性关键技术与工程化、产业化瓶颈,组织开展应用试点和示范,提高创新发展能力和国际竞争力,抢占竞争制高点。

到2020年,上述领域实现自主研制及应用。到2025年,自主知识产权高端装备市场占有率大幅提升,核心技术对外依存度明显下降,基础配套能力显著增强,重要领域装备达到国际领先水平。

智能制造是主攻方向

目前中国企业智能化水平参差不齐,仅有10%左右的大企业智能制造水平较高。工信部部长苗圩在今年两会期间公开的数据表明,智能制造应用在企业研发设计、生产线上比重较大。近五年,中国工业企业在研发设计方面应用数字化工具普及率已经达到54%,在规模以上的工业企业中,生产线上数控装备比重达到30%,上述两个领域智能化应用年均增长4个百分点。

根据德勤与中国机械工业联合会2013年调研200家制造企业所发布的首份中国智造现状及前景报告显示,中国智能制造处于初级发展阶段,同样也是大部分处于研发阶段,仅16%的企业进入智能制造应用阶段;从智能制造的经济效益来看,52%的企业其智能制造收入贡献率低于10%,60%的企业其智能制造利润贡献低于10%。

而90%的中小企业智能制造实现程度较低的原因在于,智能化升级成本抑制了企业需求,其中缺乏融资渠道影响最大。德勤的调研显示,年收入小于5亿元人民币的企业中,50%的企业在智能化升级过程中采用自有资金,25%为政府补贴,银行贷款和资本市场融资各占11%。而企业收入规模大于50亿元人民币的企业,其智能化升级资金来源中自有资金占67%,银行贷款占比25%。整体而言,中小微型企业的银行贷款比例低于大中型企业,占企业数量绝大多数的中小企业只能依靠自有资金进行智能化改造。

所以,《中国制造2025》明确把智能制造作为两化深度融合的主攻方向,并在保障措施中提出要完善金融扶持政策和中小微企业政策,加大财税政策支持力度,包括运用政府和社会资本合作(PPP)模式,引导社会资本参与制造业重大项目建设、企业技术改造和关键基础设施建设;加快设立国家中小企业发展基金等。

智能制造是基于新一代信息技术,贯穿设计、生产、管理、服务等制造活动各个环节,具有信息深度自感知、智慧优化自决策、精准控制自执行等功能的先进制造过程、系统与模式的总称。具有以智能工厂为载体,以关键制造环节智能化为核心,以端到端数据流为基础、以网络互联为支撑等特征,可有效缩短产品研制周期、降低运营成本、提高生产效率、提升产品质量、降低资源能源消耗。

智能制造需要顺应“互联网+”的发展趋势,促进移动互联网、工业互联网、云计算、大数据在企业全流程和全产业链的综合集成应用,改造提升中国制造业。

中国社科院信息化研究中心秘书长姜奇平认为,《中国制造2025》对经济向“双中高”(中高速增长、向中高端水平)迈进具有重要意义,互联网将帮助中国推进智能制造,提高工艺水平和产品质量,促进生产性服务业与制造业融合发展,提升制造业层次和核心竞争力。

4月23日,由浪潮联合20多家机构发起的“中国智能制造信息化推进联盟”在北京成立。该联盟致力于打造协同创新平台与成果转化应用推广联合体,共同推动国家智能制造产业相关标准制定和推广工作。联盟首批成员包括中国航天科技集团、大连船舶重工集团、江南造船、山东常林、北京神舟航天软件等20多家机构,其中也包括天职国际会计师事务所、赛迪顾问等咨询机构。

浪潮集团执行总裁王兴山在会上表示,传统制造业与互联网的融合正在加快,智能制造成为当前热点,这也是中国从制造大国通往制造强国的必由之路。

为推进智能制造发展,2015年3月9日,工业和信息化部印发了《关于开展2015年智能制造试点示范专项行动的通知》,并下发了《2015年智能制造试点示范专项行动实施方案》(下称《实施方案》),决定自2015年启动实施智能制造试点示范专项行动,以促进工业转型升级,加快制造强国建设进程。

根据《实施方案》,将分类开展流程制造、离散制造、智能装备和产品、智能制造新业态新模式、智能化管理、智能服务等6方面试点示范专项行动。

第一,针对生产过程的智能化,主要涉及流程制造和离散制造。根据《实施方案》,在石化、化工、冶金、建材、纺织、食品等流程制造领域,选择有条件的企业,推进新一代信息技术与制造技术的融合创新,开展智能工厂、数字矿山试点示范项目建设,全面提升企业的资源配置优化、实时在线优化、生产管理精细化和智能决策科学化水平;在机械、汽车、航空、船舶、轻工、家用电器及电子信息等离散制造领域,组织开展数字化车间试点示范项目建设,推进装备智能化升级、工艺流程改造、基础数据共享等试点应用。

第二,针对装备和产品的智能化。也就是把芯片、传感器、仪表、软件系统等信息技术嵌入到装备和产品中去,使得装备和产品具备动态感知、存储、处理和反馈能力,实现产品的可追溯、可识别、可定位。《实施方案》提出,加快推进高端芯片、新型传感器、智能仪器仪表与控制系统、工业软件、机器人等智能装置的集成应用,提升工业软硬件产品的自主可控能力,在高档数控机床、工程机械、大气污染与水治理装备、文物保护装备等领域开展智能装备的试点示范,开展3D打印、智能网联汽车、可穿戴设备、智能家用电器等智能产品的试点示范。

第三,针对制造业中的新业态新模式的智能化,即工业互联网方向。根据《实施方案》,在家用电器、汽车等与消费相关的行业,开展个性化定制试点示范;在电力装备、航空装备等行业,开展异地协同开发、云制造试点示范;在钢铁、石化、建材、服装、家用电器、食品、药品、稀土、危险化学品等行业,开展电子商务及产品信息追溯试点示范。

第四,针对管理的智能化。在物流信息化、能源管理智慧化上推进智能化管理试点,从而将信息技术与现代管理理念融入企业管理。物流信息化试点示范,主要是指加快无线射频识别(RFID)、自动导引运输车(AGV)等新型传感、识别技术的推广应用。

第五,针对服务的智能化。移动互联网蓬勃发展,开放、去中心化的互联网思维已经潜移默化到各行各业,用户的需求更加多元化。根据《实施方案》,在工程机械、输变电、印染、家用电器等行业,开展在线监测、远程诊断、云服务及系统解决方案试点示范。工信部电子信息司副司长安筱鹏认为,服务的智能化,既体现为企业如何高效、准确、及时挖掘客户的潜在需求并实时响应,也体现为产品交付后对产品实现线上线下(O2O)服务,实现产品的全生命周期管理。两股力量在服务的智能化方面相向而行,一股力量是传统的制造企业不断拓展服务业务,一股力量是互联网企业从消费互联网进入到产业互联网。

前者的案例有海尔,2012年底,海尔集团进入了网络化发展战略阶段,并致力于由传统企业向平台型企业转型。在这样的战略指导下,海尔服务也在积极转型,时刻以用户为中心不断演进与升级,从单纯的售后服务转型为打造全流程的用户最佳体验。

后者的案例是阿里巴巴。今年3月,阿里巴巴与富士康宣布合作,富士康基于阿里云将其包括专利、测试、工程制造经验等制造能力开放出来助力中小企业加速智能制造。还是在这个月,阿里巴巴宣布与上海汽车集团共同出资10亿元设立“互联网汽车基金”,组建合资公司,围绕互联网汽车、车联网等展开合作,未来研发的技术成果与服务平台将开放给其他汽车制造企业。

作者:海川

第2篇:基于智能设计的智能制造探讨

【摘 要】智能制造是制造业发展转型的重要举措,包含智能化的设计、生产、服务、管理、物流和系统集成6个方面,其中智能设计是智能制造的核心,是决定整个智能制造转型的关键点。文章通过对智能制造设计相关概念的提炼,从工艺设计和产品设计进行维度分析,并提出智能设计的成熟度评价指标,为企业后期进行智能制造升级和智能车间评价提供参考,同时为后期进行智能车间标准化评定提供相关技术支持。

【关键词】智能制造;工艺设计;成熟度评价;公差仿真

0 引言

制造业是整个国家经济体系的命脉,是实现科学技术理论向实践转变的最重要载体,是国家建立的根本,是国家发展的重要手段,是实现强国梦想的基础。《中国制造2025》的发布标志着我国战略部署强国政策从理论向实践迈出了关键一步[1]。“智能制造”是《中国制造2025》战略方针中最为重要的一项技术创新,是我国实现强国战略的重要举措[2]。智能制造是一个长期的发展和推广过程,目的是解决目前制造业发展过程中出现的各种资源匹配失衡,同时制定制造业生产规划和发展战略,政府、行业等也需要通过智能制造给制造业企业进行评价分析,评估和指导地方产业智能化发展,为企业实施智能制造提供技术支撑[3-4]。《中国制造2025》对中国智能制造包含智能设计、智能生产、智能服务、智能管理、智能物流及智能系统集成6个方面提出了明确要求及指导方针,各个产业、不同行业、各地政府对智能制造业进行整体规划与方案论证,特别是在生产系统、企业管理等环节取得了一定成果。但在前期的智能设计阶段明显短缺,本文将通过智能制造设计标准与相关行业专家对智能制造设计的看法,对智能制造设计相关内容进行研究。

1 智能设计

智能设计是利用现代先进的科学信息技术,把人的行为活动和思维想法用计算机进行模拟仿真,通过仿真模拟,提升计算机自我深度学习的能力,完善计算机自我感知和自我升级的能力,确保计算机在制造设计阶段能协助专业人士进行多样化、庞大的工作任务,成为专业人士可靠的工作伙伴。计算机对专业人士来说,它具有以下特点:?譹?訛以设计方法论为指导。从设计实质上来说,整个设计的过程就是从设计思路和设计方法两个角度进行探讨,这是计算机智能设计能够仿真专业人士进行设计的基本要求。?譺?訛通過计算机实现模拟仿真到实现产品的具体化。设计本身是虚拟的,在未进行生产时它只是存在可能性,通过计算机进行模拟现实,把虚拟的设计想法反映到计算机图形现实上,实现产品的具体化。?譻?訛使用标准设计软件(如CAD、CATIA等系列仿真软件)进行数据和图形处理的手段。?譼?訛实现系统集成的智能化处理方式,计算机不仅能够实现设计过程的标准化和具体化,还能够实现与CAM等系统的对接,实现数据交换与深度学习。?譽?訛它提供了强大的人机交互功能。能够帮忙专业人士进行过程变更,实现人与计算机的区别与统一。人工技术的要求能够通过智能设计快速转化为仿真产品,通过仿真产品的试验,实现实际产品的快速生产。通过对智能设计定义的分解和归纳,智能设计包括两个方面:产品设计和工艺设计。下面将分别对智能产品设计和工艺设计进行论述。

1.1 产品设计

在进行产品设计的整个过程中,必须明确产品的销售方式、产品的外观样式、产品的组装方式和产品要实现的功能,这样能够在后期进行生产方式和设备布局的确定,所以产品设计意义非凡,对整个产品具有根本性意义。智能产品设计包含数字化与模块化设计仿真模拟、产品设计试验仿真、产品虚拟产线与生产模拟仿真、产品设计公差仿真、产品物流仿真、产品并行/协同设计等。

数字化与模块化设计仿真模拟:通过计算机仿真模型设计,改善产品性能结构,实现产品整个生命周期最佳。同步使用模块化设计理念,保证模块设计在相关的功能方面和结构设计方面具有一定的完整性和相对独立性,考虑模块系列未来的扩展和向专用、变形产品的辐射,满足不同需求和产品的升级。数字化与模块化设计仿真简化了产品设计的要求,充分利用已有设计基础及设计模块,同时预留扩展窗口,为后期进行产品变更、技术升级提供空间。

产品设计试验仿真:通过计算机仿真技术对产品功能、安全、经济性等方面模拟作业,同时对整个生产过程、工艺管理、品质检验、效率分析等进行仿真分析。产品设计试验仿真围绕产品质量和功能进行仿真模拟试验,可以在前端提出现有产品与客户需求之间的差异,以及通过试验仿真能够弥补生产过程中个别性能差异带来的成本损失。

产品虚拟产线与生产模拟仿真:使用信息技术、虚拟现实技术、计算机技术等对产品生产过程进行全面模拟,找出生产中可能出现的问题,杜绝并降低在实际生产过程中出现的异常情况,实现产品快速量产,降低前期设计成本和设计时间,提高企业竞争力。

产品设计公差仿真:采用计算机辅助公差仿真技术(CAT)在产品的设计阶段、检测分析阶段等全过程中,使用计算机对产品的尺寸和公差数据进行实时监控管理和参数优化,确保实现产品单位成本最低,满足客户的技术需求和功能需求的整个过程。

产品物流仿真:对物流系统进行建模,并在计算机上编译相应的应用程序,对物流系统的实际运行进行仿真,并对仿真结果进行计数和分析,指导实际的计划、设计和运营管理。产品物流仿真能够反映实际物流运行的效率,可以确认区域物流周转效率、人员物流运行效率和物流存储量,便于进行物流管理和生产运营。

产品并行/协同设计:在产品设计阶段,应考虑产品生命周期的各个方面,并应在产品设计阶段全面计划和优化所有相关因素。产品设计要考虑客户需求,涉及产品功能、性能和结构,以及产品计划、设计、零件制造、组装、销售、操作、使用、维护和维修周期过程,直至回收和处置。

智能化产品设计实现了产品生产前期的模拟化作业,模拟了整个产品的生命周期,能够为企业管理者及生产者提供产品的模拟方式,减少产品前期的试验费用,提高产品生产能力和企业效益。

1.2 工艺设计

工艺设计是指通过长期生产和科学实验及特定的生产条件,通过生产实践不断改进的过程。工艺设计的合理性有助于促进产品质量的提升,协助现场生产管理,能够优先帮助计划和组织,并充分利用设备。智能工艺设计包含制造工艺清单(BOP)模拟、虚拟生产工艺规格书、制造工艺基础库、工艺基础文件管理、人因仿真、虚拟装配仿真、虚拟产线与生产模拟仿真等。

制造工艺清单(BOP)模拟:通过模拟BOP实现产品工艺与工序的前期设计,确保产品生产过程的完整性。在进行模拟BOP时,可以根据客户的不同需求进行定制化模拟,通过模拟确认产品清单需求,减少制定工艺清单的时间。

虚拟生产工艺规格书:通过计算机仿真模拟工艺生产,实现产品数据及指标的搜集,提前准确预知产品参数及技术指标,避免不断重复的产品工艺试验及报废品产生,减少制程管理人员的需求,同时减少生产期间因为调整产品参数和技术指标导致的不良产品损失,还可以提高产品生产过程的连续性和稳定性,提高客户满意度。

制造工艺基础库:工艺基础数据库由工艺基础数据库管理系统对数据库进行统一管理,实现数据库中各类工艺基础数据的录入、更改、维护、用户设置、安全保密等功能。工艺基础数据库为计算机辅助工艺过程设计(CAPP)系统提供支持,并与CAD/CAPP/CAM/CAQ结合,进而为整个数字化生产线提供支撑,实现制造工艺的数字化。

工艺基础文件管理:工艺技术基础文档管理是公司进行流程管理的基本要素,也是控制整个生产过程的有效手段。工艺和技术文件的管理旨在使产品在生产和操作过程中的所有流程技术文件都接近实际生产,满足实际需求,使过程和技术文件保持权威性、监管性。

人因仿真:在制造生产过程中,人在其中扮演重要的角色。无论是人机交互还是机械自动化及集成管理系統等,均明确了人的主观作用。在人机交互系统日益发展的今天,人的影响因素显得更为重要。通过计算机进行人为作业仿真设计与分析,能够最大限度地模拟出人机交互过程中人的行为影响。通过仿真,不仅能够实现生产过程的效率管理、良率管理等指标实时显示,还能够对人的作业行为及功能需求进行明确。通过仿真,模拟生产环境,对作业人员进行技术培训与仿真环境实际操作,实现人机的完美配合。

虚拟装配仿真:基于虚拟拆装技术在交互式虚拟装配环境中,用户可以使用各种交互式设备在实际环境中对产品零件进行各种装配操作。在整个实践中,虚拟装配仿真软件能够实现所有阶段数据的检验与保存,管理整个装配作业,便于使用人分析产品的可装配性、装配顺序验证、产品零件计划、装配操作员培训等。整个作业完成以后,计算机会详细记录整个装配作业,并转化为审阅分析材料、视频记录等内容,便于以后使用。

虚拟产线与生产模拟仿真:通过仿真作业环境,让作业人员思维处于计算机仿真环境中,利于优化环境,改善作业效率。通过虚拟产品与生产模拟仿真,可以让新员工在仿真试验过程中进行“实践”操作,提升作业熟练度,能够让员工快速上线熟练作业。虚拟产品与生产模拟仿真降低了员工熟练度培训的费用和实际生产过程中员工熟练操作导致的产能损失。

智能工艺设计通过仿真实现了产品在生产前的技术困扰,通过仿真模拟,为实践生产提供了技术支持,降低了生产过程中因技术参数调整导致的不良品及产能损失风险,帮助技术人员有效进行参数调整。同时,通过智能设计,可以快速响应客户需求进行模拟生产,形成量化的生产标准,便于快速报价和快速量产。

2 智能设计成熟度评价

根据智能设计定义与指标含义,制定其成熟度评价体系(见表1),同时需结合产品制造、产品管理、物流管理、系统集成等方面进行整体评价,成熟度等级越高,智能设计能力越强。

3 结语

未来必将是一个高度集成和智能的自动制造系统,其研究目标是部分系统替代制造业中人脑的工作。即在整个制造过程中,人类智能活动与智能机器的结合可以有效地提高人的知识水平和认知能力,实现制造过程的优化、智能化和自动化。对智能制造的研究不仅可以提高产品质量、生产效率和降低成本,而且可以提高整个制造业应对市场变化的能力和速度,从而在未来的国际竞争中获取成功。

参 考 文 献

[1]左世全.我国智能制造发展战略与对策研究[J].世界制造技术与装备市场,2014(3):36-41,59.

[2]张铁.工业机器人及智能制造发展现状分析[J].机电工程技术,2014,43(4):2-3.

[3]王影,冷单.我国智能制造装备产业的现存问题及发展思路[J].经济纵横,2015(1):72-76.

[4]龙锦中,吴坚,沈平.汽车生产领域智能制造技术应用研究[J].企业科技与发展,2019(11):92-93,96.

作者:王春成 王磊 吴孙阳 赵书宝

第3篇:智能制造背景下高职院校智能制造专业教学改革适应性研究

摘 要:在中国经济飞速发展的基础上,科学技术不断创新。高职院校智能制造领域的改革政策也影响了高职院校教学。解决问题需要教学创新,为了响应当前智能制造背景的社会需求,在智能制造领域培养更多的人才,教师必须改革现有的教学方法,完善课程设置。本文就该问题作出简要的概述,并就高职院校智能制造专业在教学改革适应性的几项建设策略上给出建议。

关键词:智能制造 高职院校 教学改革 建设策略

Research on the Adaptability of Teaching Reform of Intelligent Manufacturing Specialty in Higher Vocational Colleges under the Background of Intelligent Manufacturing

ZHENG Mengdong

(Chongqing Aerospace Polytechnic, Chongqing, 400021 China)

1 智能制造背景下進行高职院校智能制造专业教学改革的意义

(1)中国的大多数高职学院是从中等职业学院升级而来的,教学水平和教学设施远远达不到现阶段的教学要求。近年来一些高职院校增加了对教育设施的投资,硬件设施也得到了很大的改善,但是培训教育体系仍在保持比较传统的水平阶段。存在非常严重的辅助工作色,无法充分利用硬件设施的潜力。因此,对于高职院校的智能制造专业而言,在完善教育硬件基础设施的基础上重构实际教育教学体系是提高人才教育质量的必要条件。

(2)如今,随着智能制造行业的飞速发展,一些原始的智能制造设备变得越来越流行,甚至一些原始的非常复杂的设备也变得非常普遍,一些小公司也可以购买和使用它。对职员的需求在增长,对高职院校的需求也在增加。因此,完善智能制造的专业培训体系是满足企业需求的现实需要。

(3)由于过去20年中高职业教育的飞速发展,师资和培训设备培训的不断提高,中国现代制造业的迅猛发展,各种新型制造设备的不断出现,对高职业人才的需求质量不断提高。在这种背景下,调整和升级机械制造专业教育和高职院校的教育体系已成为提高人才教育质量的客观要求[1]。

2 高职院校智能制造专业群教学现状

2.1 资源建设深度和设计架构的丰富性有待提升

为了促进高职院校教学工作信息化,提高学生信息技术应用技能,促进教学资源共享,高职院校智能制造团队可以整合各种教学资源。同时,学校网络平台作为信息资源披露的媒介,有效地促进了高职院校智能制造专家组教育信息化水平的提高。然而,在现实世界中,许多高职院校在这一过程中通常缺乏深层次的资源建设和使用单一的设计结构。学校网络平台上发布的相关资源一旦通过相应上级部门的检查验收,大部分学校将不再有专职人员对平台上的资源进行补充,更新和维护,资源建设缺乏连续性。从设计结构来看,许多职业院校缺乏以学生为中心的教学理念,大部分资源建设都是在专业教师的努力下完成的。与企业的密切合作,对产业发展趋势的认识不足,导致职业教育的偏差,严重影响教学活动的长期发展[2]。

2.2 缺乏智能制造专业群教师团队

(1)师资队伍结构缺乏足够的合理性。研究表明,目前高职院校智能制造专家队伍的年龄结构往往不合理。青年教师的比例相对较高,他们热情饱满,精力充沛,但没有足够的教育经验,难以达到预期的教育效果。其次,就高职院校智能制造专业教师的职称结构而言,缺乏专业学科带头人是一个非常普遍的问题。 标题结构不能形成单一完整的层次结构,不仅影响教学的正常发展,而且与科研的发展背道而驰。 最后,在大多数高校中,女性教师在智能制造专业团队教师中所占的比例很大,存在着团队中性别不平衡的问题。

(2)现有的教师不能完全满足教育需求。与发达国家相比,中国的高等职业教育发展时间较短,但在发展的高峰期,高等职业教师团队已经渐渐吸收了许多高层次人才。学生还像其他具有高学历的老师一样执行繁重的教育任务。鉴于该领域教师的教育背景,这些教师中的大多数来自普通大学,对高职院校的教育模式知之甚少,许多教师将普通大学的教育理念应用于实践教育。教师的整体水平不仅不能满足教育的需要,而且不能满足学生发展的实际需要。

(3)教师需要提高教学观念。高职院校智能制造专业团队应致力于人才培养发展中的技术人才的培养,在此基础上,学生可以进入社会工作。因此,为了更好地适应实际课程中的初级生产任务,教师必须强调提高学生应用知识能力的重要性。但是,在现实世界中,许多教师在教学中更加重视理论教育,而对培养学生的实践技能却较少重视。有必要提高教师的教学观念,要求充分认识高职院校的教育特色,选择合理的教学方法,并以此为基础,促进学生养成自学的习惯,不断提高自身实践技能。

2.3 资源的管理介质和存储介质有待改善

现阶段,在高职院校的智能制造教育中,多数教师将教育资源作为学校的内部管理资源,与其他高校缺乏沟通,资源共享效率低。在一些学校官方主页上登载教育资料后,只有学校内的教师和学生才能访问,外部的人无法访问。随着学校资源的增加,在学校寻找资源变得困难起来。因此,这不仅会提高学校资源的管理难度,还会给学校资源的存储媒体带来更大的负担。另外,由于高职院校智能制造专家组在实际工作过程中没有统一的师资管理标准,学校的师资非常丰富,素质参差不齐,大部分师资都不是系统性的,而且整体教学水平偏低。在进行教育资源管理和存储任务的过程中,许多高职院校都采用传统的管理模式,这在学生需要大量使用学习资源时会导致网络硬件故障。限制了教育活动的正常开展。另外,如果存储介质损坏,如果不备份资源,则会发生资源丢失问题,这在改善资源共享方面非常不利[3]。

3 高职院校智能制造专业教学改革适应性建设策略

3.1 整合专业教学资源,丰富专业建设内涵

以开放的心态发展智能制造专业,通过双赢合作整合教育资源,丰富专业建设的内涵,培养高技能人才。该专业以双赢为导向,专注于方法创新,并解决了有关谁构建专业培训资源,如何构建它们,如何使用它们以及如何管理它们的一系列问题。优质的服务包括“服务平台”的创建,透明管理的实施,开放共享渠道的形成,政府,银行,企业,学校联合建设和共享方法,各种服务项目的开发,社会培训和技术建筑开发与服务项目教育资源库,为高职院校的類似专业,公司和政府部门以及本地学院和大学提供了出色的相关服务。目前,智能制造专业拥有由教授、医生、管理专家、技术人员组成的混合教授团队,已开发了多项与智能制造密切相关的课程标准和教科书,并拥有成千上万种PPT、照片、动画、视频。专业教育资源库,微课程和其他信息库存储了该专业自身研究和校企联合研究开发实例。通过开发教育资源,将公司资源转化为教育资源,并引入优质的海外资源,它丰富了专业建设的意义,并为智能制造专业形成了良好的影响力[4]。

3.2 提高智能制造专业群教师团队建设

(1)调整教学团队组织结构:高素质的教师团队的一个重要特点是教师可以相互补充,例如职称、年龄、技能、学历、性别和个性,并在此基础上合理地匹配团队中的教师并介绍公司的技术专家。技术专家等加入老师团队,使学校的专职老师和兼职老师可以互相合作,并从整体上提高老师团队的稳定性。同时,有必要合理地控制教师队伍的规模。原则上智能制造专家组的教师人数应控制在12人左右,过多或过少都会影响团队的整体效率,但也要考虑相关人员。根据教学任务的难度,教学团队的教师数量应根据实际需要进行合理调整。

(2)促进教学团队整体实践能力的提升:一方面,高职院校管理人员应带头引进技术型教师,以大幅度提高高职院校智能制造专业组师资队伍力量,并在此基础上充分满足实际教育的需要。另一方面,学校可以加强与企业的合作,制定相关政策,为学生提供更多的企业实践机会,指导学生获得与企业特定生产环节相对应的专业资格证书。在此基础上,老师应该完全熟悉公司的运行机制,并对行业的最新发展有更深刻的了解,以提高教师的整体素质,以便教师可以从特定的实践培训中学到更多。它可以更好地满足学生的发展需要。

(3)引导教师主动转变教学观念:高等职业教育是我国现行高等教育体系中一个非常重要的组成部分。它不仅承担着国家生产、建设、服务和管理人员的重要培养任务,而且还承担着重要的技术研究任务[5-7]。因此,在实践教育活动中,教师必须积极转变观念,使学生能够真正运用所学知识,并在毕业后通过对理论人才的培训,在实践中解决生产问题。尤其是在一群智能制造专家的教育中,由于大多数学生毕业后都会进入高科技行业,因此教师需要积极改变教学观念,以真正满足实际的教育需求,使学生取得更好的成绩[8-9]。

4 结语

在智能制造的背景下,智能制造专业课程的教学改革仍在继续。想要确保教学质量和教学效率,教师就必须满足高标准的严格要求,并为学生提供最专业的指导。科学研究和设备指导的优势都是改革和创新的重要内容,而教师的教学方法则依赖于这些外部设备和内部决定因素。开放的网络平台对提高智能制造专业人员的素质具有非常重要的影响。核心课程教育系统的创新和重组也是师资队伍重组的关键组成部分。通过广泛的创新和优化,智能制造专业培训可以提高我们自己的质量水平,并为社会培养更多的专业人才。

参考文献

[1] 沈言锦.中国制造2025背景下智能制造类专业实训教学体系重构与提升研究[J].中国教育技术装备,2018(17):130-131,134.

[2] 李晓宏,于波.高职院校智能制造专业群教学资源共享性研究[J].现代信息科技,2020,4(1):197-198.

[3] 石磊.智能制造背景下高职数控加工实训教学改革研究[J].无线互联科技,2019,16(14):90-91.

[4] 黄苏.智能制造背景下高职数控加工实训教学改革研究[J].科技视界,2019(36):227-228.

[5] 李晓光,陈松,孟文静,等.高校智能制造专业群建设与人才培养模式的探究[J].内燃机与配件,2019(3):237-239.

[6] 刘洪翔. 促进创造力培养的大学生学业评价研究[D].长沙:湖南师范大学,2019.

[7] 张慧. 习近平青年观研究[D].长春:吉林大学,2019.

[8] 杨志刚. 推行一体化教学改革,促进办学水平的提高研究[C]. 福建省商贸协会、厦门市新课改课题小组.华南教育信息化研究经验交流会论文汇编(四).福建省商贸协会、厦门市新课改课题小组:福建省商贸协会,2020:217-228.

[9] 高晓松,薛富,陈建华. 《高等职业学校实施研究性学习的理论探索与实践研》结题报告[C]. .国家教师科研基金十一五阶段性成果集(内蒙古卷).:北京中教创新软件发展研究院,2010:431-466.

[10] 张秀莲.信息化教学在高职机械制造类课程中的应用[C].《教师教学能力发展研究》科研成果集(第十二卷).《教师教学能力发展研究》总课题组,2017:516-521.

作者:郑孟冬

第4篇:智能制造产业园管委2021年工作总结

xxxx年,天府智能制造产业园认真贯彻落实党的十九届五中全会精神和历次产业功能区及园区领导小组大会精神,围绕市委“创新提能年”主题,坚持“以科创育产业,以产业带应用,以数字促融合”,着力构建智能科技的共生场景、功能复合的第三空间、公园城市的创新表达,推动高能级产业加快集聚、高质量要素持续汇聚、高品质环境不断优化,现将相关工作情况总结如下。

二、主要工作开展情况及成效

(一)坚持统筹兼顾,经济指标稳步回升。xxxx年新冠疫情突发以来,园区党工委、管委会统筹兼顾疫情防控和区域经济发展,深入开展送政策、帮企业、送服务、解难题活动,有效助力功能区企业及在建工地复工复产,稳产满产。xxxx年全年促进全区实现规模工业增加值增幅xx.x%;实现主营业务收入xxx.x亿元;实现税收xx.x亿元;顺利完成本年度经济指标。

(二)强化顶层设计,精准谋划发展蓝图。一是规划体系日趋完善。引入中建西南设计研究院等优秀设计单位编制完成了天府智能制造产业园总规修编、科创空间规划等编制工作。协助规自局开展A区控规修编,并已通过专家会审查;配合推进新津国土空间规划编制工作。二是产业研究不断深入。认真开展重点产业“两图一表”研究编制和动态优化调整,配合全市部门,完成功能区及相关生态圈蓝皮书、白皮书等编制工作;积极开展产业互联网、氢能及燃料电池汽车、川藏铁路相关产业及园区配套载体建设发展研究,形成氢能及燃料电池汽车基地策划方案、川藏铁路创新中心先进技术产业基地方案、智慧园区场景策划方案、园区生活配套有关报告等专题性研究材料xx余件。

(三)坚持引育并重,着力提升产业能级。一是招商引资成效明显。积极克服疫情、市场等不利因素,通过主动转变招商方式、深化招商机制、拓展招商信息渠道、强化招商攻坚等举措,全力保障招商引资力度不减,全年梳理行业企业xxx余家,组织开展网络招商推介、招商项目云洽谈xx余次,参与筹办相约西湖.共享机遇.共创未来-x新津投资推介会暨重大项目签约仪式、新城市.新公园-x新津投资推介会暨重大项目签约仪式、x易迅光电科技有限公司新产品上线发布暨亿达智慧科技城入驻项目签约仪式等大型推介签约活动xx余次。新引进宏胜饮料“一总部两基地”、合纵科技西南区域总部基地、安睿智达设备智能管理与服务平台运营总部等xx个项目,实际到位内资xx.xx亿元。

(四)深化促建机制,有力推进项目建设。一是推动产业项目落地。坚持挂图作战、清单管理,确保项目早开工、早建成、早投产、早达效。推动南台月项目开工建设,格力x产业园一期等xx个项目加快建设,事丰医疗等xx个项目建成投产。二是完善基础设施配套。完成新津安置房建设项目五期(地块四)工程、杨柳湖水环境综合治理工程、骑龙山安置房周边道路工程(一期)等x个项目建设,新建自来水管道约x公里,燃气管道x公里,新建及改造长约xx公里xxKV电力线路。

(五)坚持科创赋能,持续培育创新生态。一是打造高品质科创空间。规划x.x平方公里,坚持“科技共生、智能创享”,构建智能科技的共生场景、打造功能复合的第三空间,优化片区空间组织和功能业态,促进天府智能装备产业园、亿达天府智慧科技城(二期)标准厂房项目加快建设,完成天府创智湾一期x.x万平方米专业楼宇改造升级,植入民营经济博物馆、川菜文化传播中心等共享交互场景,构建适合智能科技产品研制与应用的多元载体支撑。二是加快培育创新主体。推进企业技术创新,培育中材科技获省级企业技术中心,民航电子、小巨人等x家企业荣获市级企业技术中心,科宏达创建院士专家工作站。新培育民航物流、新锚路桥等国家高新技术企业xx家。建立园区新经济及科技企业梯度培育库,新增民航物流新经济准独角兽企业x家;明然智能、易迅光电、广正科技等新经济种子企业x家,新引进新经济项目xx个。三是构建新经济应用场景。积极组织企业参与新经济未来场景建设,“民航物流新一代机场行李高速智能处理城市未来场景实验室”被认定为x市未来场景实验室。与x科创通平台联动,开展“新技术新产品天府智能制造功能区专场活动”,推广新技术应用场景;与x高新区联动,开展“xxxx双创生态升级发展峰会”智能科技专场活动助推园区企业创新创业发展,打造高品质示范园区。

(六)聚焦企业服务,构建优质营商环境。一是深化企业服务机制。依托园区“新型人才工作站”,深化企业人才服务。完善人才激励机制,定期评选优秀企业家、优秀高技能人才、“新津工匠”等,发挥示范带动作用。新冠肺炎疫情期间构建了班子成员包片、部办负责人分组、工作人员“一对一”联系服务企业机制,坚持党建引领,广泛开展重点企业大走访、大调研活动,针对企业反映的问题诉求,明确路径方法和时间节点,对症下药。坚持企业季度座谈会制度,深化每周园区领导协调研究、每月分管县领导重点调度的会商机制,对企业反映问题进行现场办公,全年累计收到各类企业诉求xxx件,已办结xxx件,办结率xx%。二是落实企业政策服务。常态化召开企业家沙龙活动、银企对接行动,做好企业人力资源服务,开展政策宣传解读和精准推送,积极帮助企业申报省、市、区各级政策,今年累计兑现资金xxxx余万元。三是助推企业金融服务。大力推广“园保贷”“壮大贷”“科创贷”等政策性金融产品,帮助企业获取融资约xx.x亿元。积极筹建新消费及智能制造产业发展基金,对接基金资源,帮助千亿光电、合纵科技获得产业基金x.xx亿元。开展建立“新津盈创动力工作站”工作,丰富资本要素供给体系。

第5篇:先进制造技术论文智能制造

智能制造

作者:王玉石

湖北文理学院机械与汽车工程学院工业工程1311班 学号2013123106

摘要:介绍了智能制造提出的背景、主要研究内容和目标,人工智能与IMT、IM的关系,IMS和CIMS,智能制造的物质基础及理论基础,智能制造系统的特征及框架结构,并简要介绍了智能加工中心IMC,智能制造技木的发展趋势,以及智能制造系统研究成果及存在问题。

关键词:智能制造,IMS,IMC,IMT。 1. 主要研究内容和目标

智能制造在国际上尚无公认的定义。目前比较通行的一种定义是, 智能制造技术是指在制造工业的各个环节,以一种高度柔性与高度集成的方式,通过计算机来模拟人类专家的制造智能活动。因此,智能制造的研究开发对象是整个机械制造企业, 其主要研究开发目标有二: ①整个制造工作的全面智能化,它在实际制造系统中首次提出了以机器智能取代人的部脑力劳动作为主要目标,,强调整个企业生产经营过程大范围的自组织能力;②信息和制造智能的集成与共享, 强调智能型的集成自动化。目前,IMT和IMS的研究方向已从最初的人工智能在制造领域中的应用(AiM)发展到今天IMS,研究课题涉及的范围由最初仅一个企业内的市场分析、产品设计、生产计划、制造加工、过程控制、信息管理、设备维护等技术型环节的自动化,发展到今天的面向世界范围内的整个制造环境的集成化与自组织能力,包括制造智能处理技术、自组织加工单元、自组织机器人、智能生产管理信息系统、多级竞争式控制网络、全球通讯与操作网等。 2.人工智能与IMT, IMS 人工智能的研究一开始就未能摆脱制造机器生物的思想,即“机器智能化”。这种以“自主”系统为目标的研究路线,严重地阻碍了人工智能研究的进展。许多学者已意识到这一点, Feigenbaum、Newell、钱学森从计算机角度出发,提出了人与计算机相结合的智能系统概念。目前国外对多媒体及虚拟技术研究进行大量投资,以及日本第五代智能计算机研制计划的搁浅等事例, 就是智能系统研究目标有所改变的明证。人工智能技术在机械制造领域中的应用涉及市场分析、 产品设计、生产规划、过程控制、质量管理、材料处理、设备维护等诸方面。结果是开发出了种类繁多的面向特定领域的独立的专家系统、基于知识的系统或智能辅助系统,形成一系列的“智能化孤岛”。随着研究与应用的深入,人们逐渐认识到, 未来的制造自动化应是高度集成化与智能化的人—机系统的有机融合, 制造自动化程度的进一步提高要依赖于整个制造系统的自组织能力。如何提高这些“孤岛”的应用范围和在实际制造环境中处理问题的能力, 成为人们的研究焦点。在80 年代末和90年代初,一种通过集成制造自动化、新一代人工智能、计算机等科学技术而发展起来的新型制造工程—— IMT和新——代制造系统—— IMS 便脱颖而出。人工智能在制造领域中的应用与 IMT 和IMS 的一个重要区别在于, IMS 和 IMT 首次以部分取代制造中人的脑力劳动为研究目标, 而不再仅起“辅助和支持”作用,在一定范围还需要能独立地适应周围环境, 开展工作。四IMS和CIMS发展的道路不是一帆风顺的。今天,CIMS的发展遇到了不可逾越的障碍,可能是刚开始时就对CIMS提出了过高的要求,也可能是CIMS本身就存在某种与生俱来的缺陷,今天的CIMS在国际上已不像几年前那样受到极大的关注与广泛地研究。从CIMS的发展来看,众多研究者把重点放在计算机集成上,从科学技术的现状看,要完成这样一个集成系统是很困难的。CIMS作为一种连接生产线中的单个自动化子系统的策略,是一种提高制造效率的技术。它的技术基础具有集中式结构的递阶信息网络。尽管在这个递阶体系中有多个执行层次,但主要控制设施仍然是中心计算机。CIMS存在的一个主要问题是用于异种环境必须互连时的复杂性。在CIMS概念下,手工操作要与高度自动化或半自动化操作集成起来是非常困难和昂贵的。在CIMS深入发展和推广应用的今天,人们已经逐渐认识到,要想让CIMS真正发挥效益和大面积推广应用,有两大问题需要解决:①人在系统中的作用和地位;②在不作很大投资对现有设施进行技术改造的情况下亦能应用CIMS。现有的CIMS概念是解决不了这两个难题的。今天,人力和自动化是一对技术矛盾,不能集成在一起,所能做的选择,或是昂贵的全自动化生产线,或是手工操作,而缺乏的是人力和制造设备之间的相容性,人机工程只是一个方面的考虑,更重要的相容性考虑要体现在竞争、技能和决策能力上。人在制造中的作用需要被重新定义和加以重视。

3.智能制造的物质基础及理论基础

3.1.智能制造系统的物质基础主要有:

(1)数控机床和加工中心美国于1952年研制成功第一台数控铣床,使机械制造业发生一次技术革命。数控机床和加工中心是柔性制造的核心单元技术。 (2)计算机辅助设计与制造提高了产品的质量和缩短产品生产周期,改变了传统用手工绘图、依靠图纸组织整个生产过程的技木管理模式。

(3)工业控制技术、微电子技术与机械工业的结合———机器人开创了工业生产的新局面,使生产结构发生重大变化,使制造过程更富于柔性扩展了人类工作范围。

(4)制造系统为智能化开发了面向制造过程

中特定环节、特定问题的“智能化孤岛”,如专家系统、基干知识的系统和智能辅助系统等。

(5)智能制造系统和计算机集成制造系统用计算机一体化控制生产系统,使生产从概念、设计到制造联成一体,做到直接面向市场进行生产,可以从事大小规模并举的多样化的生产;近年来,制造技术有了长足的发展和进步,也带来了很多新问题。数控机床、自动物料系统、计算机控制系统、 =机器人等在工业公司得到了广泛的应用,越来越多的公司使用了“计算机集成制造系统(CIMS)”、“柔性制造系统(FMS)”、“工厂自动化(FA)”、“多目标智能计算机辅助设计(M1CAD)”、“模块化制造与工厂(MXMF)、并行工程(CE)”、“智能控制系统(ICS)”以及“智能制造(IM)”、“智能制造技术(IMT)”和“智能制造系统(IMS)”等等新术语。先进的计算机技术、控制技术和制造技术向产品、工艺和系统的设计师和管理人员提出了新的挑战,传统的设计和管理方法不能再有效地解决现代制造系统提出的问题了。要解决这些问题、需要用现代的工具和方法,例如人工智能(AI)就为解决复杂的工业问题提出了一套最适宜的工具。 3.2.智能制造技术的理论基础

智能制造技术是采用一种全新的制造概念和实现模式。其核心特征强调整个制造系统的整体“智能化”或“自组织能力”与个体的“自主性”。“智能制造国际合作研究计划JIRPIMS”明确提出:“智能制造系统是一种在整个制造过程中贯穿智能活动,并将这种智能活动与智能机器有机融合,将整个制造过程从订货、产品设计、生产到市场销售等各个环节以柔性方式集成起来的能发挥最大生产力的先进生产系统“。基于这个观点,在智能制造的基础理论研究中,提出了智能制造系统及其环境的一种实现模式,这种模式给制造过程及系统的描述、建模和仿真研究赋予了全新的思想和内容,涉及制造过程和系统的计划、管理、组织及运行各个环节,体现在制造系统中制造智能知识的获取和运用,系统的智能调度等,亦即对制造系统内的物质流、信息流、功能决策能力和控制能力提出明确要求。作为智能制造技术基础,各种人工智能工具,及人工智能技术研究成果在制造业中的广泛应用,促进了智能制造技术的发展。而智能制造系统中,智能调度、智能信息处理与智能机器的有机融合而构成的复杂智能系统,主要体现在以智能加工中心为核心的智能加工系统的智能单元上。作为智能单元的神经中枢——智能数控系统,不仅需要对系统内部中各种不确定的因素如噪声测量、传动间隙、摩擦、外界干扰、系统内各种模型的非线性及非预见性事件实施智能控制,而且要对制造系统的各种命令请求做出智能反应。这种功能已远非传统的数控系统体系结构所能胜任,这是一个具有挑战性的新课题。对此有待研究解决的问题有很多,其中包括智能制造机理、智能制造信息、制造智能和制造中的计算几何等。总之,制造技术发展到今天,已经由一种技术发展成为包括系统论、信息论和控制论为核心的、贯穿在整个制造过程各个环节的一门新型的工程学科,即制造科学。制造系统集成与调度的关键是信息的传递与交换。从信息与控制的观点来看,智能制造系统是一个信息处理系统,由输入、处理、输出和反馈等部分组成。输入有物质(原料、设备、资金、人员)、能量与信息;输出有产品与服务;处理包括物料的处理与信息处理;反馈有产品品质回馈与顾客反馈。制造过程实质上是信息资源的采集、输入、加工处理和输出的过程,而最终形成的产品可视为信息的物质表现形式。 4.结语

制造业是国家经济和综合国力的基础,被称为“立国之本”。而我国的制造工业与发达国家相比,差距很大,主要表现为自主开发能力和技术创新能力薄弱,核心技术、关键技术仍依赖进口。对此,我国已引起重视,在“九五”科技规划和15年科技发展规划中,将先进制造技术列为重点发展领域之一。进入21世纪,经济全球化的进程日益加快,制造业领域的竞争日益加剧,而竞争的核心是先进制造技术。在此环境下,我们只有抓住机遇,迎接挑战,利用先进制造技术改造传统产业,实现技术创新、机制创新、管理创新及人才创新,才能实现我国跻身世界制造强国的目标。

参考文献

[1]李伟。先进制造技术。北京:机械工业出版社,2005 [2]张世昌。先进制造技术。北京:天津大学出版社,2004 [3]颜永年。先进制造技术。北京:化学工业出版社,2002 [4]张迪妮。现金制造技术。北京:北京大学出版社,2006 [5]周育才,刘忠伟。先进制造技术。北京:国防工业出版社,2011 [6]王隆太。现金指导技术。北京:机械制造出版社,2012 [7]赵云龙。先进制造技术。北京:机械工业出版社,2005 [8]张平亮。先进制造技术。北京:高等教育出版社,2012 [9]李发致。模具先进制造技术。北京;机械工业出版社,2003 [10]刘延林。柔性制造自动化概念。武汉:华中科技大学出版社,2001

第6篇:中国制造2025,主攻智能制造

在全面推进实施制造强国战略的征途中迈出了关键性一步,中国制造也再次站到了转型升级、创新驱动的风口上

制造业是国民经济的主体,是立国之本、兴国之器、强国之基。5月19日,备受瞩目的《中国制造2025》正式对外公布,标志着我国在全面推进实施制造强国战略的征途中迈出了关键性一步,中国制造也再次站到了转型升级、创新驱动的风口上。

国家统计局数据显示,2005年~2013年,我国制造业总产值年均增长20%左右,2012年我国制造业增加值为2.08 万亿美元,在全球制造业占比约20%,成为世界上名副其实的“制造大国”。

我国工业如今在全球竞争中的优势更多地体现为拥有完整的产业链条。根据联合国工业发展组织数据,我国是世界上唯一拥有联合国产业分类中全部工业门类(39个工业大类、191个中类、525个小类)的国家,形成了“门类齐全、独立完整”的工业体系。同样是来自于联合国工业发展组织数据,目前,中国工业竞争力指数在136个国家中排名第七位,制造业净出口居世界第一位。

按照国际标准工业分类,在22个大类中,中国在7个大类中名列第一,钢铁、水泥、汽车等220多种工业品产量居世界第一位。2013年,我国装备制造业产值规模突破20万亿元,占全球比重超过1/3;2013年,发电设备产量达1.2亿千瓦,约占全球总量的60%;造船完工量达4534万载重吨,占全球比重的41%;汽车产量达2211.7万辆,占全球比重的25%;机床产量达95.9万台,占全球比重的38%,我国制造业占世界的1/3强。

当前,我国经济发展进入新常态,制造业面临产能过剩、大而不强的困局,转型升级犹如逆水行舟,不进则退。可以说,现在我国比以往任何时候都更需要强大的制造强国战略。因为“中国制造”在世界上成了“低端廉价”的代名词,技术含量较低,加上中国的人口红利优势即将消失,现在制造企业的利润率普遍只有10%左右,有的甚至更低,大量中小制造企业苦苦挣扎在死亡线上。

5月13日,在中国工程院、工信部和中科院主办的“2015智能制造国际会议”上,原全国人大常委会副委员长、两院院士、中国机械工程学会荣誉理事长路甬祥在主旨报告中称,2014年中国装备制造产值占全球比重1/3,机电产品进出口额2.16万亿美元,占进出口总额55.7%,已成为全球制造大国。整体而言,发展主要依靠要素投入和低成本优势,付出了沉重的资源与环境代价,仍处于价值链的低中段,还不是制造强国。

的确,中国制造业与先进国家相比还有较大差距。主要表现在:自主创新能力弱,关键核心技术与高端装备对外依存度高,以企业为主体的制造业创新体系不完善;产品档次不高,缺乏世界知名品牌;资源能源利用效率低,环境污染问题较为突出;产业结构不合理,高端装备制造业和生产性服务业发展滞后;信息化水平不高,与工业化融合深度不够;产业国际化程度不高,企业全球化经营能力不足。

2008年国际金融危机之后,面对新一轮科技革命和产业变革,发达国家纷纷实施“再工业化”战略,重塑制造业竞争新优势,加速推进新一轮全球贸易投资新格局。一些发展中国家也在加快谋划和布局,积极参与全球产业再分工,承接产业及资本转移,拓展国际市场空间。“前有堵截,后有追兵”,我国制造业面临发达国家和其他发展中国家“双向挤压”的严峻挑战。

没有强大的制造业,我国很难突破“中等收入陷阱”,也无法从大国走向强国。建设制造强国,必须紧紧抓住战略机遇,积极应对挑战,加强统筹规划,突出创新驱动,制定特殊政策,发挥制度优势,以我为主,跨越发展。

《中国制造2025》是中国第一次从国家战略层面描绘建设制造强国的宏伟蓝图,确立了发展世界制造业强国的战略目标,同时提出两个实施阶段、三步走战略目标、五项重大工程、九大战略任务和十个重点领域。

中德制造业战略殊途同归

“中国制造2025”和“德国工业4.0”都是在新一轮科技革命和产业变革背景下,针对制造业发展提出的重要战略举措,具有相同的战略使命和核心理念。战略使命方面,两国新战略都是为了应对新一轮科技革命和产业变革。

在理念层面,两国新战略都是推进信息技术与制造技术的深度融合。德国工业4.0着眼于高端装备,提出建设信息物理系统,并积极布局智能工厂,推进智能生产。《中国制造2025》提出以加快新一代信息技术与制造业深度融合为主线,以推进智能制造为主攻方向,构建信息化条件下的产业生态体系和新型制造模式。

从不同点来看,中德两国新战略无论是发展基础、产业阶段还是战略任务都具有各自特点。在发展基础方面,德国制造业具有强大的技术基础,在两化(工业化和信息化)融合、“互联网+”方面都具有优势,而且德国是世界制造业强国和领先的工业制成品出口大国,制造业研发投入强度超过美国和日本 ,树立了德国制造的品牌形象。中国是制造大国,但还不是制造强国,依然处于产业链“微笑曲线”的中间,核心技术和品牌价值薄弱。

在产业阶段方面,德国工业4.0是在顺利完成工业1.0、工业2.0,基本完成工业3.0之后,提出的发展战略,是自然的串联式发展。中国制造业尚处于工业2.0和工业3.0并行发展的阶段,必须走工业2.0补课、工业3.0普及、工业4.0示范的并联式发展道路,不仅要兼顾自己传统产业的转型升级,同时还要实现在高端领域的跨越式发展,所以我国的任务就比德国实现工业4.0更加复杂、更加艰巨。

在战略任务方面,德国工业4.0就是瞄准新一轮科技革命制定的措施,主要聚焦制造业的高端产业和高端环节。《中国制造2025》不是专门为应对新一轮科技革命制定的规划,是对制造业转型升级的整体谋划,不仅要提出培育发展新兴产业的路径和措施,还要加大对量大面广的传统产业的改造升级力度,同时还要解决制造业创新能力、产品质量、工业基础、节能环保等一系列阶段性的突出矛盾和问题。

根据德勤与中国机械工业联合会2013年调研200家制造企业所发布的首份中国智造现状及前景报告显示,中国智能制造处于初级发展阶段,同样也是大部分处于研发阶段,仅16%的企业进入智能制造应用阶段;从智能制造的经济效益来看,52%的企业其智能制造收入贡献率低于10%,60%的企业其智能制造利润贡献低于10%。

而90%的中小企业智能制造实现程度较低的原因在于,智能化升级成本抑制了企业需求,其中缺乏融资渠道影响最大。德勤的调研显示,年收入小于5亿元人民币的企业中,50%的企业在智能化升级过程中采用自有资金,25%为政府补贴,银行贷款和资本市场融资各占11%。而企业收入规模大于50亿元人民币的企业,其智能化升级资金来源中自有资金占67%,银行贷款占比25%。整体而言,中小微型企业的银行贷款比例低于大中型企业,占企业数量绝大多数的中小企业只能依靠自有资金进行智能化改造。

所以,《中国制造2025》明确把智能制造作为两化深度融合的主攻方向,并在保障措施中提出要完善金融扶持政策和中小微企业政策,加大财税政策支持力度,包括运用政府和社会资本合作(PPP)模式,引导社会资本参与制造业重大项目建设、企业技术改造和关键基础设施建设;加快设立国家中小企业发展基金等。

智能制造是基于新一代信息技术,贯穿设计、生产、管理、服务等制造活动各个环节,具有信息深度自感知、智慧优化自决策、精准控制自执行等功能的先进制造过程、系统与模式的总称。具有以智能工厂为载体,以关键制造环节智能化为核心,以端到端数据流为基础、以网络互联为支撑等特征,可有效缩短产品研制周期、降低运营成本、提高生产效率、提升产品质量、降低资源能源消耗。

智能制造需要顺应“互联网+”的发展趋势,促进移动互联网、工业互联网、云计算、大数据在企业全流程和全产业链的综合集成应用,改造提升中国制造业。

中国社科院信息化研究中心秘书长姜奇平认为,《中国制造2025》对经济向“双中高”(中高速增长、向中高端水平)迈进具有重要意义,互联网将帮助中国推进智能制造,提高工艺水平和产品质量,促进生产性服务业与制造业融合发展,提升制造业层次和核心竞争力。

4月23日,由浪潮联合20多家机构发起的“中国智能制造信息化推进联盟”在北京成立。该联盟致力于打造协同创新平台与成果转化应用推广联合体,共同推动国家智能制造产业相关标准制定和推广工作。联盟首批成员包括中国航天科技集团、大连船舶重工集团、江南造船、山东常林、北京神舟航天软件等20多家机构,其中也包括天职国际会计师事务所、赛迪顾问等咨询机构。

浪潮集团执行总裁王兴山在会上表示,传统制造业与互联网的融合正在加快,智能制造成为当前热点,这也是中国从制造大国通往制造强国的必由之路。

为推进智能制造发展,2015年3月9日,工业和信息化部印发了《关于开展2015年智能制造试点示范专项行动的通知》,并下发了《2015年智能制造试点示范专项行动实施方案》(下称《实施方案》),决定自2015年启动实施智能制造试点示范专项行动,以促进工业转型升级,加快制造强国建设进程。

根据《实施方案》,将分类开展流程制造、离散制造、智能装备和产品、智能制造新业态新模式、智能化管理、智能服务等6方面试点示范专项行动。

第一,针对生产过程的智能化,主要涉及流程制造和离散制造。根据《实施方案》,在石化、化工、冶金、建材、纺织、食品等流程制造领域,选择有条件的企业,推进新一代信息技术与制造技术的融合创新,开展智能工厂、数字矿山试点示范项目建设,全面提升企业的资源配置优化、实时在线优化、生产管理精细化和智能决策科学化水平;在机械、汽车、航空、船舶、轻工、家用电器及电子信息等离散制造领域,组织开展数字化车间试点示范项目建设,推进装备智能化升级、工艺流程改造、基础数据共享等试点应用。

第二,针对装备和产品的智能化。也就是把芯片、传感器、仪表、软件系统等信息技术嵌入到装备和产品中去,使得装备和产品具备动态感知、存储、处理和反馈能力,实现产品的可追溯、可识别、可定位。《实施方案》提出,加快推进高端芯片、新型传感器、智能仪器仪表与控制系统、工业软件、机器人等智能装置的集成应用,提升工业软硬件产品的自主可控能力,在高档数控机床、工程机械、大气污染与水治理装备、文物保护装备等领域开展智能装备的试点示范,开展3D打印、智能网联汽车、可穿戴设备、智能家用电器等智能产品的试点示范。

第三,针对制造业中的新业态新模式的智能化,即工业互联网方向。根据《实施方案》,在家用电器、汽车等与消费相关的行业,开展个性化定制试点示范;在电力装备、航空装备等行业,开展异地协同开发、云制造试点示范;在钢铁、石化、建材、服装、家用电器、食品、药品、稀土、危险化学品等行业,开展电子商务及产品信息追溯试点示范。

第四,针对管理的智能化。在物流信息化、能源管理智慧化上推进智能化管理试点,从而将信息技术与现代管理理念融入企业管理。物流信息化试点示范,主要是指加快无线射频识别(RFID)、自动导引运输车(AGV)等新型传感、识别技术的推广应用。

第五,针对服务的智能化。移动互联网蓬勃发展,开放、去中心化的互联网思维已经潜移默化到各行各业,用户的需求更加多元化。根据《实施方案》,在工程机械、输变电、印染、家用电器等行业,开展在线监测、远程诊断、云服务及系统解决方案试点示范。工信部电子信息司副司长安筱鹏认为,服务的智能化,既体现为企业如何高效、准确、及时挖掘客户的潜在需求并实时响应,也体现为产品交付后对产品实现线上线下(O2O)服务,实现产品的全生命周期管理。两股力量在服务的智能化方面相向而行,一股力量是传统的制造企业不断拓展服务业务,一股力量是互联网企业从消费互联网进入到产业互联网。

前者的案例有海尔,2012年底,海尔集团进入了网络化发展战略阶段,并致力于由传统企业向平台型企业转型。在这样的战略指导下,海尔服务也在积极转型,时刻以用户为中心不断演进与升级,从单纯的售后服务转型为打造全流程的用户最佳体验。

后者的案例是阿里巴巴。今年3月,阿里巴巴与富士康宣布合作,富士康基于阿里云将其包括专利、测试、工程制造经验等制造能力开放出来助力中小企业加速智能制造。还是在这个月,阿里巴巴宣布与上海汽车集团共同出资10亿元设立“互联网汽车基金”,组建合资公司,围绕互联网汽车、车联网等展开合作,未来研发的技术成果与服务平台将开放给其他汽车制造企业。

第7篇:智能制造系统

智能制造系统

摘要:智能制造渊于人工智能的研究。一般认为智能是知识和智力的总和,前者是智能的基 摘要 础, 后者是指获取和运用知识求解的能力。 智能制造应当包含智能制造技术和智能制造系统, 智能制造系统不仅能够在实践中不断地充实知识库, 具有自学习功能, 还有搜集与理解环信 息和自身的信息,并进行分析判断和规划自身行为的能力 关键词:人工智能 自动化 专家 制造系统 关键词 Summary: Smart manufacturing-Yuan in artificial intelligence research. General considers that smart is the sum of knowledge and intelligence, the former is

二、智能制造的发展历史 和人类专家共同组成的人机一体化智能 智 能 制 造 系 统 ( intelligent 系统,它在制造过程中能进行智能活动, manufacture system,MS)由部分或全部具 诸如分析、推理、判断、构思。和决策 有一定自主性和合作性的智能制造单元组 等。通过人与智能机器的合作共事,去 成的、 在制造活动全过程中表现出相当智能 扩大、延伸和部分地取代人类专家在制 行为的制造系统。 智能制造系统最主要的特 造过程中的脑力劳动。它把制造自动化 征是在工作过程中知识的获取、表达与使 的概念更新,扩展到柔性化、智能化和 用。 智能制造系统根据其知识来源的不同可 高度集成化。 分为两种类型:(1)以专家系统为代表的非 毫无疑问,智能化是制造自动化的 自主式的制造系统, 其特点是系统的知识是 发展方向。在制造过程的各个环节几乎 根据人类的制造知识总结归纳而来, 系统知 都广泛应用人工智能技术。专家系统技 识依赖于人工进行扩展, 因而有知识获取瓶 术可以用于工程设计,工艺过程设计, 颈、适应性差、缺乏创新能力等缺陷;(2) 生产调度,故障诊断等。也可以将神经 建立在系统自学习、 自进化与自组织基础上 网络和模糊控制技术等先进的计算机智 的自主型的智能制造系

统, 其特点是系统的 能方法应用于产品配方,生产调度等, 知识可以在使用过程中不断自动学习、 完善 实现制造过程智能化。而人工智能技术 与进化, 从而具有很强的适应性以及开放式 尤其适合于解决特别复杂和不确定的问 的创新能力。随着以神经网络、遗传算法与 题。但同样显然的是,要在企业制造的 遗传编程为代表的计算智能技术的发展, 智 全过程中全部实现智能化,如果不是完 能制造系统正逐步从非自主式的向具有自 全做不到的事情,至少也是在遥远的将 学习、 自进化与自组织的具有持续发展能力 来。有人甚至提出这样的问题,下个世

第 1 页 共 4 页

的自主式智能制造系统过渡发展。 【1】 纵览全球,虽然总体而言智能制造 尚 处 于 概 念和 实 验 阶段, 但 各 国 政府 均 将此列入国家发展计划,大力推动实施。 1992 年美国执行新技术政策,大力支持 被 总 统 称 之 的 关 键 重 大 技 术 ( Critical Techniloty) , 包 括 信 息 技 术 和 新 的 制 造 工 艺 , 智能 制 造 技术自 在 其 中 ,美 国 政 府 希 望 借助 此 举 改造传 统 工 业 并启 动 新产业。 加拿大制定的 1994~1998 年发展战 略计划,认为未来知识密集型产业是驱 动全球经济和加拿大经济发展的基础, 认为发展和应用智能系统至关重要,并 将具体研究项目选择为智能计算机、人 机界面、机械传感器、机器人控制、新 装置、动态环境下系统集成。 日本 1989 年提出智能制造系统,且 于 1994 年启动了先进制造国际合作研究 项目,包括了公司集成和全球制造、制 造知识体系、分布智能系统控制、快速 产品实现的分布智能系统技术等。 欧洲联盟的信息技术相关研究有 ESPRIT 项目,该项目大力资助有市场潜 力的信息技术。 1994 年又启动了新的 R&D 项目,选择了 39 项核心技术,其中三项 ( 信 息 技 术、 分 子 生物学 和 先 进 制造 技 术)中均突出了智能制造的位置。 中国 80 年代末也将“智能模拟”列 入 国 家 科 技发 展 规 划的主 要 课 题 ,已 在 专 家 系 统 、模 式 识 别、机 器 人 、 汉语 机 器 理 解 方 面取 得 了 一批成 果 。 最 近, 国 家科技部正式提出了“工业智能工程” , 作 为 技 术 创新 计 划 中创新 能 力 建 设的 重 要 组 成 部 分, 智 能 制造将 是 该 项 工程 中 的重要内容。

三、智能制造的发展现状

智能制造渊于人工智能的研究。人 工智能就是用人工方法在计算机上实现 的智能。随着产品性能的完善

智能信息库 化 及 其 结 构的 复 杂 化、精 细 化 , 以及 功 能 的 多 样 化, 促 使 产品所 包 含 的 设计 信 息 和 工 艺 信息 量 猛 增,随 之 生

生 产 线和 生 产 设 备 内 部的 信 息 流量增 加 , 制 造过 程 和 管 理 工 作的 信 息 量也必 然 剧 增 ,因 而 促 使 制 造 技术 发 展 的热点 与 前 沿 ,转 向 了 提 高 制 造系 统 对 于爆炸 性 增 长 的制 造 信息处理的能力、效率及规模上。目前, 先 进 的 制 造设 备 离 开了信 息 的 输 入就 无 法运转,柔性制造系统(FMS)一旦被切 断 信 息 来 源就 会 立 刻停止 工 作 。 专家 认 为 , 制 造 系统 正 在 由原先 的 能 量 驱动 型 转 变 为 信 息驱 动 型 ,这就 要 求 制 造系 统 不但要具备柔性,而且还要表现出智能, 否 则 是 难 以处 理 如 此大量 而 复 杂 的信 息 工 作 量 的 。其 次 , 瞬息万 变 的 市 场需 求 和 激 烈 竞 争的 复 杂 环境, 也 要 求 制造 系 统 表 现 出 更高 的 灵 活、敏 捷 和 智 能。 因 此,智能制造越来越受到高度的重视。 因此,它是制造技术发展,特别是 制 造 信 息 技术 发 展 的必然 , 是 自 动化 和 集成技术向纵深发展的结果

四、智能制造的优缺点 智能制造系统(Intelligent Manufacturing System---IMS)是一种 由智能机器和人类专家共同组成的人机 一体化系统,它突出了在制造诸环节中, 以一种高度柔性与集成的方式,借助计 算机模拟的人类专家的智能活动,进行 分析、判断、推理、构思和决策,取代

第 2 页 共 4 页

或延伸制造环境中人的部分脑力劳动, 同时,收集、存储、完善、共享、继承 和发展人类专家的制造智能。由于这种 制造模式,突出了知识在制造活动中的 价值地位,而知识经济又是继工业经济 后的主体经济形式,所以智能制造就成 为影响未来经济发展过程的制造业的重 要生产模式。 智能制造系统是智能技术 集成应用的环境,也是智能制造模式展 机器人手机 现的载体。 一般而言,制造系统在概念上认为 是 一 个 复 杂的 相 互 关联的 子 系 统 的整 体 集 成 , 从 制造 系 统 的功能 角 度 , 可将 智 能 制 造 系 统细 分 为 设计、 计 划 、 生产 和 系统活动四个子系统。在设计子系统中, 智 能 制 定 突出 了 产 品的概 念 设 计 过程 中 消 费 需 求 的影 响 ; 功能设 计 关 注 了产 品 可制造性、可装配性和可维护及保障性。 另 外 , 模 拟测 试 也 广泛应 用 智 能 技术 。 在 计 划 子 系统 中 , 数据库 构 造 将 从简 单 信 息 型 发 展到 知 识 密集型 。 在 排 序和 制 造 资 源 计 划管 理 中 ,模糊 推 理 等 多类 的 专 家 系 统 将集 成 应 用;智 能 制 造 的生 产 系 统 将 是 自治 或 半 自治系 统 。 在 监测 生 产 过 程 、 生产 状 态 获取和 故 障 诊 断、 检 验 装 配 中 ,将 广 泛 应用

智 能 技 术 ;从 系 统 活 动 角 度, 神 经 网络技 术 在 系 统控 制 中 已 开 始 应用 , 同 时应用 分 布 技 术和 多 元 代 理 技 术、 全 能 技术, 并 采 用 开放 式 系 统 结 构 ,使 系 统 活动并 行 , 解 决系 统 集成。 智能制造的未来发展趋势 五﹑智能制造的未来发展趋势

1、人工智能技术。因为 IMS 的目标 单是“人工智能系统,而且是人机一体 是计算机模拟制造业人类专家的智能活 化智能系统,是一种混合智能。想以人 动,从而取代或延伸人的部分脑力劳动, 工智能全面取代制造过程中人类专家的 因此人工智能技术成为 IMS 关键技术之 智能,独立承担分析、判断、决策等任 一。IMS 与人工智能技术(专家系统、人 务,目前来说是不现实的。人机一体化 工神经网络、模糊逻辑)息息相关。 突出人在制造系统中的核心地位,同时 在智能机器的配合下,更好的发挥人的 潜能,使达到一种相互协作平等共事的

2、并行工程。针对制造业而言,并 行工程是一种重要的技术方法学,应用 于 IMS 中,将最大限度的减少产品设计 的盲目性和设计的重复性。

3、信息网络技术。信息网络技术是 制造过程的系统和各个环节“智能集成” 化的支撑。信息网络同时也是制造信息 及知识流动的通道。

4、虚拟制造技术。虚拟制造技术可 以在产品设计阶段就模拟出该产品的整 个生命周期,从而更有效,更经济、更 灵活的组织生产,实现了产品开发周期 最短,产品成本最低,产品质量最优, 生产效率最高的保证。同时虚拟制造技 术也是并行工程实现的必要前提。

5、自律能力构筑。即收集和理解环 境信息和自身的信息并进行分析判断和 规划自身行为的能力。强大的知识库和 基于知识的模型是自律能力的基础。

6、人机一体化。智能制造系统不单

第 3 页 共 4 页

关系,使二者在不同层次上各显其能, 相辅相成。

7、自组织和超柔性。只能制造系统 中 的 各 组 成单 元 能 够依据 工 作 任 务的 需 要 , 自 行 组成 一 种 最佳结 构 , 使 其柔 性 从智能制造的系统结构方面来考虑, 未来智能制造系统应为分布式自主制造系 统, 该系统由若干个智能施主组成, 根据 生产任务细化层次的不同, 智能施主可以 分为不同的级别。 如一个智能车间称为一个 施主, 它调度管理车间的加工设备, 它以 车间级施主身份参与整个生产活动; 同时 对于一个智能车间而言, 它们直接承担加 工任务。 无论哪一级别的施主, 它与上层控 制系统之间通过网络实现信息的连接, 各 智能加工设备之间通过自动引导小车实现 物质传递。 在这样的制造环境中产品的生产 过程为: 通过并行

第8篇:智能制造汇报

智能工厂——以三一重工18号工厂为例

摘要:在理论上解释了智能工厂的概念,再以三一重工18号工厂作为研究对象,对其运作方式、运作特点进行了较为详细地分析与讨论,从而得出工厂的智能化基因。并且进一步得出了智能工厂的框架,为系统化建设智能工厂打下了基础。 关键词:物联网;智能制造;数字化工厂 中图分类号:TH161

INTELLIGENT FACTORY A CASE OF SANY HEAVY INDUSTRY NO. 18TH FACTORY

Abstract:This paper explains the concept of intelligent factory in theory, then takes 31 heavy industry No. 18th Factory as the research object, analyzes and discusses its operation mode and operation characteristics in detail, thus obtains the intellectualized gene of the factory. And further draws the intelligent factory frame, lays the foundation for the systematized construction intelligent Factory. Key words:Networking of things; Intelligent manufacturing; Digital chemical plant 0 前言

随着物联网、大数据和移动应用等新一轮信息技术的发展,全球化工业革命开始提上日程,工业转型开始进入实质阶段。在中国,智能制造、中国制造2025等战略的相继出台,表明国家开始积极行动起来,把握新一轮工发展机遇实现工业化转型。智能工厂作为工业智能化发展的重要实践模式,已经引发行业的广泛关注。到底什么是智能工厂?智能工厂的核心架构是怎样的?能为企业的转型提供哪些支撑?这都是企业比较关心的话题。

本文以三一重工18号工厂为例,分析智能工厂的主要特点还有其智能化的框架。

1 数字化工厂、智能工厂和智能制造

1.1 数字化工厂

对于数字化工厂,德国工程师协会的定义是:数字化工厂(DF)是由数字化模型、方法和工具构成的综合网络,包含仿真和3D/虚拟现实可视化,通过连续的没有中断的数据管理集成在一起。数字化工厂集成了产品、过程和工厂模型数据库,通过先进的可视化、仿真和文档管理,以提高产品的质量和生产过程所涉及的质量和动态性能:

图1 在国内,对于数字化工厂接受度最高的定义是:数字化工厂是在计算机虚拟环境中,对整个生产过程进行仿真、评估和优化,并进一步扩展到整个产品生命周期的新型生产组织方式。是现代数字制造

技术与计算机仿真技术相结合的产物,主要作为沟通产品设计和产品制造之间的桥梁。从定义中可以得出一个结论,数字化工厂的本质是实现信息的集成。 1.2

智能工厂

智能工厂是在数字化工厂的基础上,利用物联网技术和监控技术加强信息管理服务,提高生产过程可控性、减少生产线人工干预,以及合理计划排程。同时,集初步智能手段和智能系统等新兴技术于一体,构建高效、节能、绿色、环保、舒适的人性化工厂。

图2

智能工厂已经具有了自主能力,可采集、分析、判断、规划;通过整体可视技术进行推理预测,利用仿真及多媒体技术,将实境扩增展示设计与制造过程。系统中各组成部分可自行组成最佳系统结构,具备协调、重组及扩充特性。已系统具备了自我学习、自行维护能力。因此,智能工厂实现了人与机器的相互协调合作,其本质是人机交互。 1.3

智能制造

智能工厂是在数字化工厂基础上的升级版,但是与智能制造还有很大差距。智能制造系统在制造过程中能进行智能活动,诸如分析、推理、判断、构思和决策等。通过人与智能机器的合作,去扩大、延伸和部分地取代技术专家在制造过程中的脑力劳动。它把制造自动化扩展到柔性化、智能化和高度集成化。

智能制造系统不只是“人工智能系统,而是人机一体化智能系统,是混合智能。系统可独立承担分析、判断、决策等任务,突出人在制造系统中的核心地位,同时在智能机器配合下,更好发挥人的潜能。机器智能和人的智能真正地集成在一起,互相配合,相得益彰。本质是人机一体化。

国内很多企业都在炒作智能制造,但是绝大多数企业还处在部分使用应用软件的阶段,少数企业也只是实现了信息集成,也就是可以达到数字化工厂的水平;极少数企业,能够实现人机的有效交互,也就是达到智能工厂的水平[1]。

图3 2 从大厂房到智能工厂

在全球科技革命的大背景下,工程机械行业作为多品种、中批量、按订单生产的离散型技能密集型产业,要想向高端制造发展,必须依靠信息化建立先进的制造和管理系统[2]。

三一重工作为重工领域的标杆,其18号厂房成为应用基础的示范。这间总面积约十万平方米的车间,成为了行业内亚洲最大最先进的智能化制造车间。在这里,厂房更像是一个大型计算系统加上传统的操作工具、大型生产设备的智慧体。 2.1 18号厂房的“智慧”运转

18号厂房是三一重工总装车间,有混凝土机械、路面机械、港口机械等多条装配线,是工程机械领域内颇负盛名的智能工厂。

在18号厂房,厂区旁边有两块电视屏幕,它们是一线工人的“老师”——不熟悉装配作业的工人,通过电子屏幕里的数字仿真和三维作业指导,可以学习和了解整个装配工艺[3]。三一重工的三维作业现场指导模式,成为了著名3D技术开发公司达索的全球最佳案例。

厂房更像是一个大型计算系统加上传统的操作工具、大型生产设备的智慧体,每一次生产过程、每一次质量检测、每一个工人劳动量都记录在案。装配区、高精机加区、结构件区、立库区等几大主要功能区域都是智能化、数字化模式的产物[4]。

当有班组需要物料时,装配线上的物料员就会报单给立体仓库,配送系统会根据班组提供的信息,迅速找到放置该物料的容器,然后开启堆高机,将容器自动输送到立体库出库端液压台上。此时,AGV操作员发出取货指令,AGV小车自动行驶至液压台取货[5]。取完货后,采用激光引导的AGV小车,将根据运行路径沿途的墙壁或支柱上安装的高反光性反射板的激光定位标志,计算出车辆当前的位置以及运动的方向,从而将物料运送至指定工位。像这样的AGV小车,在三一重工18号厂房有15台。

从大厂房到智能工厂,实施智慧化改造后,18号厂房在制品减少8%,物料齐套性提高14%,单台套能耗平均降低8%,人均产值提高24%,现场质量信息匹配率100%,原材料库存降低30%。2014年,18号厂房同比节约制造成本1亿元,年增加产量超过2000台以上,每年同比产值新增60亿元以上。此外,高精加工区也是18号厂房的特色之一。整个机加区集智能化、柔性化、少人化于一体,可以满足多品种、小批量生产要求。 2.2

智能背后的生产模式进化

2013年8月,三一重工集团启动新一轮制造变革。在大会上,三一重工董事长梁稳根这样描绘三一重工制造体系的蓝图:“所有结构件和产品都在很精益的空间范围内制造,车间内只有机器人和少量作业员工在忙碌,装配线实现准时生产,物流成本大幅降低,制造现场基本没有存货。”

制造模式的生产方式分散且独立,需要大量的人力物力予以配合,才能完成产品的生产制造,这使得生产效率低下的同时,生产成本还居高不下。因此三一重工开始借助信息化,在生产车间导入自动化制造模式。“部件工作中心岛”就是这样一个尝试。

所谓“部件岛”,即单元化生产,将每一类部件从生产到下线所有工艺集中在一个区域内,犹如在一个独立的“岛屿”内完成全部生产,故称为部件岛,将装配行业中“岛”的概念引入到结构件生产中,这是三一重工重机制造人员的首创。

3 三一重工:智能工厂实践

三一重工18号厂房是亚洲最大的智能化制造车间,有混凝土机械、路面机械、港口机械等多条装配线,是三一重工总装车间。2008年开始筹建,2012年全面投产,总面积约十万平方米。从2012年开始,以三一18号厂房为应用基础,由三一重工、湖大海捷、华工制造、华中科大等单位联合申报的“工程机械产品加工数字化车间系统的研制与应用示范项目”. 经过3年精心建设,目前,三一已建成车间智能监控网络和刀具管理系统、公共制造资源定位与物料跟踪管理系统、计划、物流、质量管控系统、生产控制中心(PCC)中央控制系统等智能系统,完成了国家批复的项目建设内容[6]。

图4 同时,三一还与其他单位共同研发了智能上下料机械手、基于DNC系统的车间设备智能监控网络、智能化立体仓库与AGV运输软硬件系统、基于RFID设备及无线传感网络的物料和资源跟踪定位系统、高级计划排程系统(APS)、制造执行系统(MES)、物流执行系统(LES)、在线质量检测系统(SPC)、生产控制中心管理决策系统等关键核心智能装置,实现了对制造资源跟踪、生产过程监控,计划、物流、质量集成化管控下的均衡化混流生产,智能化功能和系统性能指标达到国家批复要求[7]。

3.1 智能加工中心与生产线

3.1.1 智能化加工设备

早在2007年,有“智能化机械手”之称的焊接机器人现身三一挖机生产线,并在2008年后得到进一步推广。2012年三一重工在上海临港产业园建成全球最大最先进的挖掘机生产基地,焊接机器人大规模投入使用,大幅提升了产品的稳定性,使得三一挖掘机的使用寿命大约翻了两番,售后问题下降了四分之三。由于规范了管理,又进一步提升了整个生产体系的效率。不但如此,机器人的使用减少了工人数量,管理模式的重心从原来的管人转移

到了管理设备上,相对而言,管理设备要容易很多。 3.1.2

智能刀具管理

在实际加工中,有多种因素会对加工刀具产生影响,首先是加工工件本身的因素,如加工工件材质、结构型式、工件刚度等对刀具使用效果影响较大。其次是加工工装,定位基准、压紧方式、结构型式以及工装刚度等都会影响刀具使用效果。再次加工工艺方案,如加工顺序、切削三要素(切深、进给、切削速度)对刀具使用效果影响更大。最后是加工机床,设备的切削功率、设备的刚度、设备的结构型式、切削冷却介质对加工刀具发挥效率也有很大影响[8]。

三一在实践中,要充分考虑刀具寿命和加工工件成本的关系,根据不同结构的工件选择不同的刀具,包括刀具材料(分整体硬质合金、焊接硬质、高速钢等)、刀具结构(分机夹刀片、焊接刀片和整体材料刀具)以及刀具装夹方式(热装式、强力紧固式、侧固式)等。有的刀具选择涂层刀片来增加刀具的耐用度,延长刀具寿命。在高速加工时,对刀具动平衡也有要求,我们配备了刀具动平衡仪,并在加工成本允许的前提下选择耐用度较高的刀具。 3.1.3

DNC

DNC是计算机与具有数控装置的机床群使用计算机网络技术组成的分布在车间中的数控系统。该系统对用户来说就像一个统一的整体,系统对多种通用的物理和逻辑资源整合,可以动态的分配数控加工任务给任一加工设备,是提高设备利用率,降低生产成本[9]。

图5

目前,三一重工已经完成车间机加设备的研发采购与安装调试,部分完成智能上料机械手、DNC实时监控装置及刀具管理系统的购置和开发。 3.2 智能化立体仓库和物流运输系统

3.2.1 智能化立体仓库

立体仓库后台运作的自动化配送系统由华中科大与三一联合研制,通过这套系统,三一打造了批量下架、波次分拣,单台单工位配送模式,实现了从顶层计划至底层配送执行的全业务贯通,大大提高了配送效率及准确率,准时配送率超95%。

三一智能化立体仓库总投资6000多万元, 分南北两个库,由地下自动输送设备连成一个整体,总占地面积9000平方米,仓库容量大概是16000个货位。从南边仓库可以看到,这个库区有几千种物料,主要是泵车、拖泵、车载泵物料,能支持每月数千台产品的生产量。

从大厂房到智能工厂,实施智能化改造后,18号厂房在制品减少8%,物料齐套性提高14%,单台套能耗平均降低8%,人均产值提高24%,现场质量信息匹配率100%,原材料库存降低30%,2014年18号厂房预计同比节约制造成本1亿元,年增加产量超过2000台以上,每年同比产值新增60亿元以上。 3.2.2 AGV智能小车

智能化立体仓库的核心是AGV智能小车,当有班组需要物料时,装配线上的物料员就会报单给立体仓库,配送系统会根据班组提供的信息,迅速找到放置该物料的容器,然后开启堆高机,将容器自动输送到立体库出库端液压台上。此时,AGV操作员发出取货指令,AGV小车自动行驶至液压台取货。取完货后,由于AGV小车采用激光引导,小车上安装有可旋转的激光扫描器,在运行路径沿途的墙壁或支柱上安装有高反光性反射板的激光定位标志,AGV依靠激光扫描器发射激光束,然后接受由四周定位标志反射回的激光束,车载计算机计算出车辆当前的位置以及运动的方向,通过和内置的数字地图进行对比来校正方位,从而将物料运送至指定工位。像这样的AGV小车,在三一18号厂房有15台。在18号厂房南北智能化立体仓库,不仅有这样的AGV自动小车,其后台配送也是自动化系统完成的。

图6

3.2.3 公共资源定位系统

公共资源定位系统是三一重工智能工厂的一个重要支撑。公共资源定位系统能实现包括对设备定位和状态检测、人员定位以及故障实时处理与报警等功能。通过公共资源定位监控中心,三一重工的生产管理人员能及时的了解生产车间的人员位置、设备位置和状态、加工生产情况,并及时的指导生产和进行故障处理等操作。 3.3

智能化生产执行过程控制

3.3.

1高级计划排程

在考虑企业资源所提供的可行物料需求规划与生产排程计划,让规划者快速结合生产限制条件与相关信息 (如订单、途程、存货、BOM与产能限制等),以做出平衡企业利益与顾客权益的最佳规划与决策,满足顾客需求及面对竞争激烈的市场。强化了ERP系统中以传统MRP规划逻辑为主的生产规划与排程的功能,APS 系统的同步规划能力,不但使得规划结果更具备合理性与可执行性,亦使企业能够真正达到供需平衡的目的[10]。 3.3.2

执行过程调度

三一车间内一排排的MES终端机,生产线上明亮的LED屏幕,整齐划一的醒目安全灯是系统给我们带来直观的印象。SanyMES系统是指由三一集团IT总部自主研发的制造执行系统,它充分利用信息化技术,从生产计划下达、物料配送、生产节拍、完工确认、标准作业指导、质量管理、关重件条码采集等多个维度进行管控,并通过网络实时将现场信息及时准确地传达到生产管理者与决策者[11]。该

系统除了通过各种方式如短信、邮件向管理者传递生产信息外,其设置在生产现场的MES终端机,给一线工人生产制造带来了极大的便利。

通过MES终端机,生产线工人不仅可以及时报完工、方便快捷地查询物料设计图纸和库存情况,更重要的是SanyMES终端机可以正确地指导工人每个工位如何进行安装、安装时候需要哪些零部件,同时给予安全提示。有了MES系统后,再也不用去借图纸,直接在MES终端就能查到最新的图纸信息,3.3.

4 数字化质量检测

目前,三一在质检信息化方面,通过GSP、MES、CSM及QIS的整合应用,实现涵盖供应商送货、零件制造、整机装配、售后服务等全生命周期的质检电子化,并实现了SPC分析、质量追溯等功能。

以前质检,是采用纸质记录本记录检验结果和全触摸屏操作,简单方便,而且通过查看标准作业指导以规范工人的操作,避免了纸质作业指导书的损坏和更新不及时造成的附加作业,极大提高了工作效率和作业质量[12]。 3.3.3 数字化物流管控

三一自动化立体仓储配送系统实现了该公司泵车、拖泵、车载泵装配线及部装线所需物料的暂存、拣选、配盘功能,并与AGV配套实现工位物料自动配送至各个工位。

根据泵车、拖泵、车载泵装配线及部装线在车间的位置,北自所设计了两个库区,1#库负责泵车物料的储存、拣配功能,2#库负责拖泵、车载泵物料的储存、拣配功能,两个库区共用一个设置1#库区的入库组盘区域,2#库入库的物料在入库组盘区完成组盘后通过地下输送通道自动输送进入2#库库区存储。

仓储模式采用自动化立体仓库存储(主要储存中小件为主)+垂直升降库存储(主要储存小件为主)+平面仓库储存(主要储存大件等其他特殊物资)。自动化立体仓库和垂直升降库的数据采用一套软件进行统一管理,集中配送。通过垂直升降库的应用,解决了将近总量30%的物料种类的储存和出入库作业模式,很大程度地缓和了自动化立体仓库的出入库作业压力,有效地提高了整个系统的作业能力。

拣配模式采用提4台套提前一班(8小时)拣配模式,按照工位进行配送。在两个库区分别设置了两层的配盘区域,根据装配工位数量及各工位装配物料情况,对配盘区域的拣配托盘位置进行分配,拣配过程中采用LED显示屏+RF手持终端模式进行人工作业。北自所根据各工位装配物料情况,配合用户设计了多种不同的配送容器,采用多层存放,提高容器使用效率,减少线边容器数量,最终提高了AGV系统的搬运效率。

质量问题,现在则是用生产管理系统(MES),每一个检验项目都标准化、电子化,以前在本子上的内容都作为数据录入PDA和平板电脑等终端。一旦发现质量异常,系统就会第一时间自动启动不合格处理流程,将情况发送给相关责任人。“在不合格品控制流程中的隔离、评审等6个环节,保证每道工序的每个产品在下一道工序前合格。”而数据的录入则会为产品质量追溯提供可靠依据。三一的自制件可以具体查到是某台产品零部件,制作时间、制作地点和工位、制作人、制作条件等信息,供应商提供的零部件则是可以查到批次和反馈。 3.4

智能化生产控制中心

3.4.

1中央控制室

1. 生产计划及执行情况、设备状态、生产统

计图;

2. 智能计划系统操作界面;

3. 生产现场监控、看板展示及异常报警; 4. 各区域监控信息;

5. 设计部日常操作(支持10路信号同时切

入);

6. 各区域监控信息;

7. 物流部日常操作(支持10路信号同时切

入);

8. 质量部日常操作(支持10路信号同时切

入)。 3.4.2

现场监视装置

全方位的工厂车间监控系统能实现对生产过

程的全面监控和记录,保证生产现场的安全,以及现场事故的追溯和回放。 3.4.3 现场Andon Andon系统能够为操作员停止生产线提供一套新的、更加有效的途径。在传统的汽车生产线上,如果发生故障,整条生产线立即停止。采用了Andon系统之后,一旦发生问题,操作员可以在工作站拉一下绳索或者按一下按钮,触发相应的声音和点亮相应的指示灯,提示监督人员立即找出发生故障的地方以及故障的原因。一般来说,不用停止整条生产线就可以解决问题,因而可以减少停工时间同时又提高了生产效率。

Andon系统的另一个主要部件是信息显示屏。每个显示面板都能够提供关于单个生产线的信息,包括生产状态、原料状态、质量状况以及设备状况。显示器同时还可以显示实时数据,如目标输出、实际输出、停工时间以及生产效率。根据显示器上提供的信息,操作员可以更加有效的开展工作。

4 智能工厂理念

所谓“六维智能理论”,就是在设备联网+远程数据采集的基础上,实现智能化的生产过程管理与控制,从6个方面打造适合中国国情的智能工厂。 4.1 行业背景

“工业4.0”被认为是以智能制造为主导的第四次工业革命或是工业体系革命性的生产方法,而智能工厂将是构成未来工业体系的一个关键特征。在智能工厂里,人、机器和资源如同在一个社交网络里自然地相互沟通协作,生产出来的智能产品能够理解自己被制造的细节以及将如何使用,能够回答“哪组参数被用来处理我”、“我应该被传送到哪里”等问题。同时,智能辅助系统将从执行例行任务中解放出来,使他们能够专注于创新、增值的活动;灵活的工作组织能够帮助工人把生活和工作实现更好地结合,个体顾客的需求将得到满足。德国工业4.0、美国GE工业互联网均是“工业4.0”的典范,但中国有自己特殊的国情,中国制造企业打造智能工厂,不能完全照搬国外模式,而是既要紧跟国际先进理念,还要符合中国企业的实际情况[13]。

4.2

概念内涵

美国与德国的工业发展战略核心均为CPS(Cyber- Physical System)系统,是典型的二元战略。美国是C(Cyber,包括:数字、信息、网络等虚拟世界)+P(Physical,包括机器、设备、设施等实体世界),德国是P+C,两国均是基于高素质劳动者、国家人力匮乏、企业高协同化、高法制化的基础之上而提出的战略;而中国装备水平较美国和德国有一定差距,数据采集分析决策能力也有局限,但中国具有人力资源优势,所以应该充分挖掘人的作用。因此,中国制造企业推进工业发展不能完全照搬发达国家的二元战略,更宜采用CPPS(Cyber-Person -Physical System)人机网三元战略,充分体现人的能动作用。

图7

所谓“三元战略”,包括劳动者及其技能、素养、

精神、组织、管理等,CPPS战略体现了以人为本,继续发挥与挖掘了中国在人力资源方面的优势,扬长补短,实现人与赛博、物理虚实两世界的融合和迭代发展,构建以赛博智能为目的的人机网三元战略方案更符合中国国情[14]。

所谓“六维智能理论”,就是在设备联网+远程数据采集的基础上,实现智能化的生产过程管理与控制,从6个方面打造适合中国国情的智能工厂,这6个方面包括:

1. 智能计划排产,是从计划源头上集成ERP,

进行APS高级排产。

2. 智能生产协同,从生产准备过程上,实现

物料、刀具、工装、工艺的并行协同准备。 3. 智能的设备互联互通,是CPS信息物理系

统的典型体现,实现数字化生产设备的分布式网络化通讯、程序集中管理、设备状

态的实时监控等。 4. 智能资源管理,包括对物料、设备、刀具、量具、夹具等生产资源进行精益化管理、库存智能预警等。

5. 智能质量过程管控,是对影响产品质量的生产工艺参数进行实时采集、控制,确保产品质量。

6. 智能决策支持,是基于大数据分析的决策支持,形成管理的闭环,以实现数字化、网络化、智能化的高效生产模式。

总之,通过以上6个方面智能的打造,可极大提升企业的计划科学化、生产过程协同化、生产设备与信息化的深度融合,并通过基于大数据分析的决策支持对企业进行透明化、量化的管理,可明显提升企业的生产效率与产品质量,是一种很好的数字化、网络化的智能生产模式。

图8 4.3

应用前景

“六维智能”分别从计划源头、过程协同、设备底层、资源优化、质量控制、决策支持等6个方面着手实现智能工厂,这6个方面涵盖了工业生产的6个重要环节,可实现全面的精细化、精准化、自动化、信息化智能化管理与控制,通过底层设备的互联互通、基于大数据分析的决策支持、可视化展现等技术手段,实现生产准备过程中的透明化协同管理、数控设备智能化的互联互通、智能化的生产资源管理、智能化的决策支持,从而全方位达到智能化的生产过程管理与控制[15]。

从“六维智能”解决方案在青岛海尔模具有限公司的实际应用效果来看,较好地达到了智能化生产过程管理与控制的目的。该系统是专门为海尔模

具定制的,是海尔模具生态圈的主要组成部分,系统以生产设备为核心,从设备底层层面实现了机床、对刀仪等设备的互联互通与大数据分析,从生产管理层面实现了协同准备并行作业,从展现层面实现了生产信息的可视化。实施本系统后,操作工的作业效率从原来1个人管理3台设备提升到7~8台设备,设备利用率提升25%以上,使生产管理更加透明、科学、高效,应用效果比较明显,在海尔模具的数字化制造与管理中发挥了重要的作用。

5 工业4.0落地战略

“工业4.0”不同的人从不同维度来解读,涉及到国家战略、产业战略、企业发展等不同的层面。就从企业的层面去研究,看看企业层面实现工业4.0该怎么做,怎么走,有没有路线图?

近期,随着“工业4.0”的在网络上越炒越热,我国也推出了“中国制造2025”战略,在国家战略需求的驱动下,中国对于制造大国向制造强国的迈进之路也陡然提速,这将对中国制造转型升级打通主动脉。就企业层面来说中国版工业4.0如何落地将成为重点,如何通过信息技术和制造技术的深度融合,打通一切、联通一切是企业信息化建设的目标[16]。

工业4.0是什么?每个人站在不同的角度会有不同的理解,是互联、集成(纵向、横向、端到端)、数据、创新、服务、转型或是CPS、是智能工厂、是智能制造亦或是国家战略、企业目标。工业4.0核心内容就是建一个网络、三项集成、大数据分析、八项计划和研究两个主题。

5.1

建一个网络:信息物理网络系统(CPS)

CPS是英文CyberPhysical System的缩写,就是讲物理设备连接到互联网上,让物理设备具有计算、通信、精确控制、远程协调和自治等五大功能,从而实现虚拟网络世界与现实物理世界的融合,将网络空间的高级计算能力有效的运用于现实世界中,从而在生产制造过程中,与设计、开发、生产有关的所有数据将通过传感器采集并进行分析,形成可自律操作的智能生产系统。

图9 5.2

三个集成

工业4.0中的三项集成包括:横向集成、纵向集成与端对端的集成。工业4.0将无处不在的传感器、嵌入式终端系统、智能控制系统、通信设施通过CPS形成一个智能网络,使人与人、人与机器、机器与机器以及服务与服务之间能够互联,从而实现横向、纵向和端对端的高度集成,集成是实现工业4.0的重点也是难点。 5.2.1 纵向集成

纵向集成主要解决企业内部的集成,即解决信息孤岛的问题,解决信息网络与物理设备之间的联通问题。 5.2.2 横向集成

横向集成主要实现企业与企业之间、企业与售出产品之间(如车联网)的协同,将企业内部的业务信息向企业以外的供应商、经销商、用户进行延伸,实现人与人、人与系统、人与设备之间的集成,从而形成一个智能的虚拟企业网络。制造业普遍存在的工程变更协同流程就是这样一个典型的横向集成应用场景。 5.2.3 端到端的集成

端到端集成就是把所有该连接的端头(点)都集成互联起来,通过价值链上不同企业资源的整合,实现从产品设计、生产制造、物流配送、使用维护的产品全生命周期的管理和服务,它以产品价值链创造集成供应商(一级、二级、三级„„)、制造商(研发、设计、加工、配送)、分销商(一级、二级、

三级„„)以及客户信息流、物流和资金流,在为客户提供更有价值的产品和服务同时,重构产业链各环节的价值体系。

端到端的集成即可以是内部的纵向集成内容,也可以是外部的企业与企业之间的横向集成内容,关注点在流程的整合上,比如提供用户订单的全程跟踪协同流程,将用户、企业、第三方物流、售后服务等产品全生命周期服务的端到端集成。

横向、纵向、端到端三个集成的实现,不论技术层面还是业务层面在SOA信息集成都能找到相应的解决方案。 5.3

大数据分析利用

“工业4.0”时代,制造企业的数据将会呈现爆炸式增长态势。随着信息物理系统(CPS)的推广、智能装备和终端的普及以及各种各样传感器的使用,将会带来无所不在的感知和无所不在的连接,所有的生产装备、感知设备、联网终端,包括生产者本身都在源源不断地产生数据,这些数据将会渗透到企业运营、价值链乃至产品的整个生命周期,是工业4.0和制造革命的基石。

总体来说,工业4.0关注的企业数据分为四类: 5.3.1

产品数据

包括设计、建模、工艺、加工、测试、维护、产品结构、零部件配置关系、变更记录等数据。产品的各种数据被记录、传输、处理和加工,使得产品全生命周期管理成为可能,也为满足个性化的产品需求提供了条件。 5.3.2

运营数据

运营包括组织结构、业务管理、生产设备、市

场营销、质量控制、生产、采购、库存、目标计划、电子商务等数据。工业生产过程的无所不在的传感、连接,带来了无所不在的数据,这些数据会创新企业的研发、生产、运营、营销和管理方式。 5.3.3

价值链数据

包括客户、供应商、合作伙伴等数据。企业在当前全球化的经济环境中参与竞争,需要全面地了解技术开发、生产作业、采购销售、服务、内外部后勤等环节的竞争力要素。大数据技术的发展和应用,使得价值链上各环节数据和信息能够被深入分析和挖掘,为企业管理者和参与者提供看待价值链的全新视角,使得企业有机会把价值链上更多的环节转化为企业的战略优势。例如,汽车公司大数据提前预测到哪些人会购买特定型号的汽车,从而实现目标客户的响应率提高了15%至20%,客户忠诚度提高7%。 5.3.4 外部数据

包括经济运行、行业、市场、竞争对手等数据。为了应对外部环境变化所带来的风险,企业必须充分掌握外部环境的发展现状以增强自身的应变能力。大数据分析技术在宏观经济分析、行业市场调研中得到了越来越广泛的应用,已经成为企业提升管理决策和市场应变能力的重要手段。

工业4.0落地中国企业,工业大数据是一项重要抓手。利用工业大数据分析,可以找出隐性的问题并预测未知情况的发生,有助于及时地做好预防,避免故障和偏差。

6 结论

以三一重工18号工厂作为研究对象.对其运作方式、运作特点进行了较为详细地分析与讨论,从而得出工厂的智能化基因。并且进一步得出了智能工厂的框架,为系统化建设智能工厂打下了基础。主要的研究结论如下:

1. 在理论上对数字化工厂、智能工厂和智能制造进行了分析指出,要又好又快地发展智能工厂就必须先建设好数字化工厂。

2. 对比三一重工18号工厂实现智能化之后生产效率得到提升,直观地反映了智能化对制造业带来的好处。

3. 通过对18号工厂的生产线、物流系统、执行系统、控制中心进行分析,找到了工厂可实现智能化的内在基因。也就是在设备联网+远程数据采集的基础上,实现智能化的生产过程管理与控制,从6个方面打造适合中国国情的智能工厂 (1)。

4. 概括了智能工厂的框架,提出了运用大数据分析,做好CPS和三个集成是实现智能工厂的前提条件,而智能工厂的标志就是生产流程智能化,生产设备动态适应个性化的产品需求。

参考文献

[1] 李梦迪.基于以太网的智能工厂柔性制造生产

线控制系统设计与实现[D].河北工程大学,2016.

[2] 乔荻.智能工厂设备点检系统中辅助移动视频

监控的设计[D].安徽大学,2016.

[3] 商滔.面向智能工厂离散型智能制造单元的研

究[D].杭州电子科技大学,2016.

[4] 温泉.智能工厂与后台数据服务平台的设计[D].

广东工业大学,2015.

[5] 李锦绣.基于.NET框架的工厂智能监控分析系

统的设计与实现[D].北京交通大学,2016.

[6] 王冠.基于嵌入式的植物工厂智能监控系统的

研究[D].天津理工大学,2015.

[7] 史诗莹.数字化工厂技术在锅炉智能制造中的

应用[D].华东理工大学,2015.

[8] 沈振萍.基于企业信息工厂的商务智能数据管

理[D].安徽大学,2013.

[9] 孙晶.基于物联网技术的工厂智能照明系统的

设计[D].成都理工大学,2012.

[10] 赵有生.蔬菜工厂化育苗的智能管理与综合评

价研究[D].吉林大学,2011.

[11] 宋运通.基于实时数据库的工厂智能平台研究

开发[D].天津大学,2009.[1]马孟模.流程工业智能工厂建设技术应用探究[J].工业控制计算机,2017,(03):53-54+57.

[12] 江文成,李星,张晶.智能工厂增强现实技术应用

与展望[J].船舶标准化与质量,2016,(06):37-41. [13] 顾桓,田红.软包装材料生产线的智能工厂实现

模式及技术[J].计算机测量与控制,2016,(11):222-225.

[14] 李利民,侯轩,毕晋燕.高端装备制造业智能工厂

建设思路和构想[J].科技创新与生产力,2016,(04):16-19.

[15] [10]商滔.面向智能工厂离散型智能制造单元的

研究[D].杭州电子科技大学,2016.

[16] 华镕.未来的智能工厂[J].仪器仪表标准化与计

量,2015,(05):15-18.

第9篇:智能制造、企业互通

------2014年智能制造研讨与创美工业4.0现场体验会

2014年10月31日在苏州白金汉爵大酒店举行了智能制造研讨与创美工业4.0现场体验会。来自全国的300余名制造行业客户莅临现场,热情参与了本次大会。此次大会以智能制造,协同合作这一主题进行研讨,就企业间如何实现共同互联、智能互通以及如何迈向工业4.0来展开,创美集团及用友软件专家一道共同探讨了制造企业的信息化之路。

大会开始大迁总经理回顾了创美集团与用友的合作历史,从与用友王文京董事长缔结战略协议、系统原型客户的确立、NC项目开始到用友集团的大力支持,逐步讲述了创美与用友战略好伙伴的一个个美好瞬间,也为体验会的现场拉开了精彩的序幕。会上由用友集团执行总裁章培林董事长发表致辞,提出在企业互联网化时代制造企业应利用新技术将互联网和工业深度融合,并剖析NC6如何为制造业塑造核心竞争优势。随后金工场长也发表了精彩的演讲。演讲以国际产业转移趋势作为背景,讲述了创美工艺与用友的协同合作来进行管理信息化项目的实施,逐步实现了设计敏捷化、制造智能化、业务过程实时化,客户协同化、集团管控化的智能工厂这一辉煌过程。并分享了制造业生产力发展方向和总体趋势。会上作为特邀嘉宾进行本次发言的还有用友项目经理岳伟龙、创美生产革新部主任金垠博、UAP中心技术支持部总经理彭立东、摩托罗拉制造经验专家等。用友咨询与实施业务部专家岳伟龙先生为大家讲述如何为创美实现信息化价值这一经验分享。生产革新部主任金垠博就创美工业4.0的实践案例进行分享,描述了工厂制造从自动化到智能制造这一改革创新的道路。UAP中心技术支持部彭立东总经理就UAP平台与客户联合创新作为主题,进行了本次演讲。紧接着大会现场体验阶段展示了由我们创美工艺自主研发的工业4.0的原型机。该系统在2014年用友广州展会上第一次以创新的姿态展现给大家。它打穿了从生产执行系统、生产管理系统到生产设备控制系统的隔阂,并同手机移动客户端结合起来,用户只需手机上轻轻一按,就能下发订单,控制生产。会上体验的人群更是络绎不绝将大会的气氛推上了高潮。随后金工场长同用友集团执行总裁章培林董事长参加了用友产业链合作伙伴创美授牌仪式。这是即9月用友广州展会后又一大事件。本次授牌是基于用友公司与创美工艺的专业分工和战略契合。利用双方互补优势,为更多制造类企业提供更多专业类服务。会议现场,用友、创美、新华都、畅通天元领导签署了四方协议,通过四方合作将进一步推动产品伙伴招募和深化合作,标志着创美将与伙伴的形式共同实现合作开发,达成产业链共赢目标。

31日下午还进行了创美工厂车间的现场体验,来自用友的200多名制造行业客户参观了创美工厂。参观团分为4组,分别参观了第一事业部、第三事业部、第三事业部、登车平台、生产革新和新品开发车间以及金牌模具工厂等生产车间。创美向用友参观团全面展示了全自动的冲压生产线、精密的3D模具技术和测控设备、直线式机械手臂和机器点焊机、数据采集系统等等半自动甚至全自动的智能设备,让用友的各界朋友们全面感受到创美工艺正在从传统劳动力密集型向自动智能化的转变。随后的三个小时,开展了创美与用友的交流会,会场主分为:制造、财务供应链、UAP系统等三个个分会,交流会在轻松又包含成长的环境中度过,各个会场中开展了智者与智者的对话,共同体验了一次行业间的深入研讨。

创美工艺与用友集团共同打造了一整套适应于“工业4.0时代的信息化系统。基于UAP平台,创美对28个业务小系统、涉及NC18个核心业务单据的信息进行集成。除了将内部管理数据进行整合之外,通过UAP平台,创美又将智能化管理延伸到了机械设备上。即通过UAP平台,构建了一套物联网中间件,帮助创美实现了设备之间的数据互操作、设备的全面数据分析以及可视化运营,为创美集团的全球化战略奠定了坚实的基础。

未来创美工艺将率先迈入了工业4.0时代,工业4.0的内涵已经远远超越机器的自动化,甚至数字制造本身。它让设备与设备开启对话,产品和生产设备之间相互沟通,建立虚拟世界与现实世界之间的对话窗口。我们让设备开始了愉快的“生产旅行”,即将到来的机械技术与信息化技术高度融合,让机械数据和管理数据全部整合到一个数字化企业平台中,“信息平台”作为企业智能制造的中枢,将成为智能制造体系的核心。

上一篇:乡村效能建设工作计划下一篇:三年级词语复习课教案