电力电子课程设计总结

2022-03-25 版权声明 我要投稿

总结是在项目、工作、时期后,对整个过程进行反思,以分析出有参考作用的报告,用于为以后工作的实施,提供明确的参考。所以,编写一份总结十分重要,以下是小编整理的关于《电力电子课程设计总结》仅供参考,大家一起来看看吧。

第一篇:电力电子课程设计总结

《电力电子课程设计》论文

目录

第一章

1.1 1.2 1.3 第二章

2.1 2.2 2.3 2.4 绪论 ............................................................................................................................................. 2 课程设计的目的 ......................................................................................................................... 2 课程设计的任务与要求 ............................................................................................................. 2 MATLAB的原理应用及SIMULINK仿真 .............................................................................. 2 主电路设计及仿真 ..................................................................................................................... 3 设计方案的论证 ......................................................................................................................... 3 主电路结构框图与说明 ............................................................................................................. 3 电路类型选择依据 ..................................................................................................................... 3 整流电路的工作原理及设计 ..................................................................................................... 3 2.4.1 整流电路的基本工作原理 ................................................................................................... 3 2.4.2 整流元件的选择 ................................................................................................................... 4 2.4.3 整流电路的设计与仿真 ....................................................................................................... 4 2.5 逆变电路的工作原理及设计 ..................................................................................................... 5

2.5.1 逆变电路的基本工作原理 ................................................................................................... 5 2.5.2 SPWM波的产生设计 ........................................................................................................... 5 2.5.3逆变电路的设计与仿真 ........................................................................................................ 5

第三章 驱动保护电路的设计 ................................................................................................................. 7

3.1 IGBT 驱动电路 .......................................................................................................................... 7 3.2 触发电路选择与设计 ................................................................................................................. 7 第四章 台灯调光电路的设计 ................................................................................................................. 8

4.1台灯调光电路的基本工作原理 ....................................................................................................... 8 4.2焊接与调试 ....................................................................................................................................... 8 第五章 综合设计与仿真 ......................................................................................................................... 9

5.1整体电路设计模型 ........................................................................................................................... 9 5.2 运行仿真并检验是否满足性能指标的要求 .................................................................................. 9 第六章 心得体会 ................................................................................................................................... 11

1

第一章 绪论

1.1 课程设计的目的

1)掌握三相全桥相控整流电路的结构及其工作原理,明确触发脉冲的相位关系,熟悉整流电路交流侧与直流侧电流、电压关系。

2)掌握单相全桥逆变电路的结构及其工作原理,明确调制信号与载波信号之间的幅值关系,明确驱动脉冲的分配关系,熟悉逆变电路输出电压与直流电压、调制信号幅值之间的关系。

3)熟悉电力电子电路的计算机仿真方法。 1.2 课程设计的任务与要求

1)使用Matlab仿真软件实现三相桥式全控整流电路仿真模型,构建触发延时角为0度,30度,60度的三相桥式全控整流电路直流侧平波电感10mH、滤波电容10mF及负载电阻10Ω。采用宽脉冲触发方式。观测电网电压波形、触发脉冲波形、直流侧电压波形和负载电流波形。

2)使用Matlab仿真软件实现三相桥式全控整流电路仿真模型,构建三相全桥PWM逆变电路。直流侧使用400V直流电压源。调制波信号为50Hz正弦波信号。载波信号为1080kHz双极性三角波。

3)将1)、2)构建的仿真模型相组合,实现交-直-交变频电路仿真模型。其中触发延时角设为60度,调制波信号为250Hz正弦波信号。载波信号为10kHz双极性三角波。调制比设为0.9。负载使用5mH+5Ω阻感性负载。观测交流侧A相电网电压波形、相控整流触发脉冲波形、直流电压波形、输出电压给定波形、负载电压波形及电流输出波形。 1.3 MATLAB的原理应用及SIMULINK仿真

MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。附加的工具箱(单独提供的专用MATLAB函数集)扩展了MATLAB 环境,以解决这些应用领域内特定类型的问题。

本次实验采用MATLAB软件中的SIMULINK平台进行电路设计,并进行仿真。在开环控制时,改变电压,可以实现整流输出电压在不同触发角时波形有着明显的区别,都是对称六脉波。在闭环控制时,其触发角主要由电压反馈电路,电流反馈电路进行调节,在示波器时基因数足够大的观察前提下,调节调压器,使该实验输出稳定的六脉波波形。

2

第二章 主电路设计及仿真

2.1 设计方案的论证

交交变频电路是把电网频率的交流电直接变换成可调频率的交流电的变流电路。交交变频电路是一种直接变频电路。

和交直交变频电路比较,优点是只用一次变流,效率较高。可方便地实现四象限工作。低频输出波形接近正弦波。

缺点是接线复杂,如采用三相桥式电路的三相交交变频器至少要用36只晶闸管。受电网频率和变流电路脉波数的限制,输出频率较低;输入功率因数较低输入电流谐波含量大,频谱复杂。交交变频电路主要用于500kW或1000kW以上的大功率、低转速的交流调速电路中。 2.2 主电路结构框图与说明

主电路系统框图如图2.2.1所示。

三相交流电源380V/50Hz整流电路滤波电路三相逆变电路合成电路三相交流负载电压与相位采集电路同步六脉冲触发电路SPWM脉冲触发电路 图2.2.1 主电路系统框图

整流电路:用来把三相交流电整流成直流电。

滤波电路:用来把整流后的脉动的直流通过储能元件,变为较为平滑的的直流。

逆变电路:用来把直流电逆变为交流电。最常见的是用6个逆变模块组件组成三相桥式逆变电路。

2.3 电路类型选择依据

整流电路:是将交流电能变为直流电能供给直流用电设备。

滤波电路:用来把整流后的脉动的直流通过储能元件,变为较为平滑的的直流。, 逆变电路:用来把直流电逆变为交流电。 2.4 整流电路的工作原理及设计

2.4.1 整流电路的基本工作原理

整流电路是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波

3

器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。 2.4.2 整流元件的选择

晶闸管额定电压:=(2~3),晶闸管的额定电流:=(1~1.5)K

2.4.3 整流电路的设计与仿真

三相桥式整流电路图如图2.4.1所示。

图2.4.1 三相桥式整流电路图

三相桥式整流电路仿真图如图2.4.2所示。

图2.4.2 三相桥式整流电路仿真图

4

2.5 逆变电路的工作原理及设计

2.5.1 逆变电路的基本工作原理

逆变电路是把直流电能转换为交流电能的电路。当交流侧接在电网上,即交流侧接有电源时,称为有源逆变;当交流侧直接和负载连接时,称为无源逆变。 2.5.2 SPWM波的产生设计

SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法。前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。 2.5.3逆变电路的设计与仿真

逆变电路图如图2.5.1所示。

图2.5.1逆变电路图

5

逆变电路仿真电压波形图如图2.5.2所示。

图2.5.2逆变电路仿真电压波形图

逆变电路仿真电流波形图如图2.5.3所示。

图2.5.3逆变电路仿真电流波形图

6

第三章 驱动保护电路的设计

3.1 IGBT 驱动电路

IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。

IGBT驱动电路是驱动IGBT模块以能让其正常工作,并同时对其进行保护的电路。 3.2 触发电路选择与设计

触发电路常用的国产单结晶体管的型号主要有BT

31、BT

33、BT35。单结晶体管在一定条件下具有负阻特性,即当发射极电流I增加时,发射极电压Ve反而减小。利用单结晶体管的负阻特性和RC充放电电路,可制作脉冲振荡器。

图3.2.1为单结晶体管触发电路,电路较简单,温度性能比较好,有一定的抗干扰能力,脉冲前沿陡,输出功率较小,脉冲宽度较窄,只能承受调节RP无法加入其它信号,移相范围≤180°,一般为150°此电路可以用在单相可控硅整流电路要求不高的场合,能触发50A以下的晶闸管。

图3.2.1 单结晶体管触发电路

7

第四章 台灯调光电路的设计

4.1台灯调光电路的基本工作原理

接通电源前,电容C上的电压为0。接通电源后,电容经由R

4、RP(R5)充电,电容的电压V逐渐升高。当到达峰值电压时,e-b1间导通,电容上电压经e-b1向电阻R3放电。当电容上的电压降到谷底电压时,单结晶体管恢复阻断状态。随后,电容又重新充电,重复上述过程,结果在电容上形成锯齿状电压,在R3上则形成脉冲电压。此脉冲电压作为可控硅VT的触发信号。调节RP(R5)的阻值,可改变触发脉冲的相位,控制晶闸管VT的导通角,便改变了灯泡的亮度。 4.2焊接与调试

正面实物图如图4.2.1所示。

图4.2.1正面实物图

背面实物图如图4.2.2所示。

图4.2.2 背面实物图

8

第五章 综合设计与仿真

5.1 整体电路设计模型

交直交变频电路图如图2.5.1所示。

图2.5.1 交直交变频电路仿真图

5.2 运行仿真并检验是否满足性能指标的要求

交直交变频电路电压仿真图如图2.5.2所示。

图2.5.2 交直交变频电路电压仿真图

9

交直交变频电路电流仿真图如图2.5.3所示。

图2.5.3交直交变频电路电流仿真图

10

第六章 心得体会

这次的电力电子课程设计让我学到了很多。从一开始的理论课就让我对这个课题产生了浓厚的兴趣,刚开始感觉有点复杂,经过老师耐心的讲解之后,慢慢的懂得了其原理。在这次电子课程设计中,学会了Matlab软件的使用,虽然是刚开始元器件都是英文版的,但是经过反复的练习后,已经能够熟练掌握基本的用法,会搭建电路了。要将这么多的元器件全部焊在电路板上,可以先布线以及元器件的合理摆放的位置。在进行焊接时,还要按照布线图去焊接,这样就不容易出错。在经过好几周努力后,焊接完成,感觉到了成就感,毕竟这是自己亲手焊接完成的,这样的机会也是难得的。决心要把这个课题顺利的完成。通过这次的学习,将理论与实际联系到了一起,在元器件的选取方面,要考虑到很多方面的因素,也认识到自己还有太多的不足。

11

参考文献

[1]王兆安,刘进军.电力电子技术.第5版.机械工业出版社,2009. [2]童诗白.模拟电子技术基础.4版.北京:高等教育出版社,2006. [3]龙志文.电力电子技术.机械工业出版社,2013. [4]马建国等.电子设计自动化技术基础.清华大学出版社,2004. [5]王维平.现代电力电子技术及应用.东南大学出版社,1999. [6]张崇巍,张兴.PWM整流器及其控制. 北京:机械工业出版社,2003. [7]党宏社.电路、电子技术试验与电子实训.华中科技大学. 电子工业出版社.2008. [8]何希才、毛德柱编著. 新型半导体器件及其应用实例. 北京:电子工业出版社 [9]杨帮文编. 新型集成器件实用电路. 北京:电子工业出版社 [10]黄继昌主编. 电子元器件应用手册. 北京:人民邮电出版社

[11]曲学基,王增福,曲敬铠编著. 稳定电源电路设计手册. 北京:电子工业出版社

12

第二篇:电力电子专业课程设计总结

随着科学技术发展的日新日异,电力电子技术在现代社会生产中占据着非常重要的地位,电力电子技术应用在是生活中可以说得是无处不在如果把计算机控制比喻为人的大脑,电磁机械等动力机构喻为人的四肢的话,则电力电子技术则可喻为循环和消化系统,它是能力转化和传递的渠道。因此作为二十一世纪的电气专业的学生而言掌握电力电子应用技术十分重要。

电力电子课程设计的目的在于进一步巩固和加深所学电力电子基本理论知识。使学生能综合运用相关关课程的基本知识,通过本课程设计,培养学生独立思考能力,学会和认识查阅和占有技术资料的重要性,了解专业工程设计的特点、思路、以及具体的方法和步骤,掌握专业课程设计中的设计计算、软件编制,硬件设计及整体调试。通过设计过程学习和管理,树立正确的设计思想和严谨的工作作风,以期达到提高学生设计能力。

从理论到实践,在专业课程设计持续的日子里,可以培养学生学到很多东西,不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过课程设计教育学生认识理论与实际相结合的重要性,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中随时会遇到各式各样的问题,同时会不断发现自己的不足之处。整了个设计过程对很多学生而言可以说是困难重重,譬如对以前所学过的知识理解得不够深刻,掌握得不够牢固,不会查阅资料,觉得无从下手等等。在课程设计过程中通过互动指导,教育学生一步一步的制定并依次实施计划,并在设计计划执行过程中教会他们查阅资料,鼓励他们克服心理上的不良情绪,不断的学习和解决难题,不断磨练炼学生意志的过程。总结本次课程设计,根据设计过程学生表现以及实习报告,本次课程设计有效培养了学生综合运用所学知识,发现,提出,分析和解决实际问题的能力。通过课程设计的教学实践,使学生所学的基础理论和专业知识得到巩固,并使学生得到运用所学理论知识解决实际问题的初步训练;使学生接触和了解实际局部设计从收集资料、方案比较、软硬件设计及整体调试的全过程,进一步提高学生的分析、综合能力以及工程设计中分析设计的基本能力,为今后的毕业设计做必要的准备,并为毕业后的工作学习提供了借鉴思路,。

第三篇:电力电子技术课程设计报告格式

力 子技术课程设计报告

题目

姓名学号201009140305年级3班专业电气工程及其自动化系(院)汽车学院指导教师齐延兴

年月日

电电

课程设计用纸和格式要求:

A4纸打印(页边距:上下左右各留2.2cm)

大标题:3号字,宋体加粗

小标题:4号字,宋体加粗

正文:小4号字,宋体,固定间距20磅

要求图表规范,文字通顺,逻辑性强

报告字数不少于8000字。

具体格式及要求如下:

题目//三号宋体加粗居中

一、引言(介绍课题研究现状、前景及研究意义)//四号宋体加粗,顶格 正文//小四,宋体,固定间距20磅

二、设计任务(设计的任务、设计指标内容及要求,应完成的工作)

三、设计方案选择及论证(列举几个适合本课题的设计方案,论证选取最优的一个进行设计)

四、总体电路设计(总体电路的功能框图及其说明)

五、各功能模块电路设计(各功能模块的设计、计算与说明,所用元器件选型及参数等)

六、总体电路(总体电路原理图及其说明)

七、总结(电路调试及结果,设计过程收获、体会及改进想法等)

八、参考文献(格式如下,不少于6篇)

[1] 王兆安,黄俊. 电力电子技木(第四版)[M].北京:机械工业出版社,2004.

[2] 徐国华. 超声波测距系统的设计与实现[J].电子技术应用, 1995(12):6-7.

注:电力电子技术课程设计报告(打印稿)

电力电子技术课程设计报告(电子稿),命名方法:设计题目-姓名(班级) 提交时间:

第四篇:电力电子技术课程总结

学 号:1111111111

Hefei University

功率变换技术课程综述

报告题目:IGBT研究现状及发展趋势

专业班级: XXXXXXXXXXXX 学生姓名: XXX 教师姓名: ZZZZZ老师 完成时间: 2017年5月14日

IGBT研究现状及发展趋势

中 文 摘 要

IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。

关键词:IGBT;半导体;研究现状;发展前景

Present situation and development trend of IGBT research

ABSTRACT IGBT (Insulated Gate Bipolar Transistor), insulated gate bipolar transistor, is composed of BJT (bipolar transistor) and MOS (insulated gate FET) composite full controlled voltage composed of driven power semiconductor devices, has the advantages of high input impedance and low conductance GTR with MOSFET through the two aspects pressure drop. The GTR saturation voltage is reduced, the carrier current density is large, but the driving current is large. The driving power of MOSFET is very small and the switching speed is fast, but the turn-on voltage drop is large and the carrier current density is small. IGBT combines the advantages of the above two devices, small driving power and lower saturation voltage KEYWORD:IGBT; Semiconductor; Status; Development prospect .

一、引言 .............................................................................................................. 1

二、IGBT介绍 ..................................................................................................... 1 2.1 什么是IGBT .......................................................................................... 1 2.2 IGBT的各种有关参数 ........................................................................... 1 2.3驱动方式及驱动功率.............................................................................. 2

三、存在的问题.................................................................................................... 4

四、研究现状........................................................................................................ 5

五、发展趋势........................................................................................................ 6 参考文献................................................................................................................ 7

一、引言

自20 世纪50 年代末第一只晶闸管问世以来, 电力电子技术开始登上现代电气传动技术舞台, 以此为基础开发的可控硅整流装置, 是电气传动领域的一次革命, 使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代, 这标志着电力电子的诞生。

进入70 年代晶闸管开始形成由低电压小电流到高电压大电流的系列产品, 普通晶闸管不能自关断的半控型器件, 被称为第一代电力电子器件。随着电力电子技术理论研究和制造工艺水平的不断提高, 电力电子器件在容易和类型等方面得到了很大发展, 是电力电子技术的又一次飞跃, 先后研制出GTR.GTO, 功率MOSFET 等自关断全控型第二代电力电子器件。而以绝缘栅双极晶体管(IGBT)为代表的第三代电力电子器件, 开始向大容易高频率、响应快、低损耗方向发展。

二、IGBT介绍

2.1 什么是IGBT 绝缘栅双极晶体管(Insulated Gate Bipolar Transistor,IGBT)是在金属氧化物场效应晶体管(MOSFET)和双极晶体管(Bipolar)基础上发展起来的一种新型复合功率器件,具有MOS输入、双极输出功能。IGBT集Bipolar器件通态压降小、载流密度大、耐压高和功率MOSFET驱动功率小、开关速度快、输入阻抗高、热稳定性好的优点于一身。作为电力电子变换器的核心器件,为应用装置的高频化、小型化、高性能和高可靠性奠定了基础。

自IGBT商业化应用以来,作为新型功率半导体器件的主型器件,IGBT在1—100kHz的频率应用范围内占据重要地位,其电压范围为600V—6500V,电流范围为1A—3600A(140mm x 190mm模块)。IGBT广泛应用于工业、4C(通信、计算机、消费电子、汽车电子)、航空航天、国防军工等传统产业领域以及轨道交通、新能源、智能电网、新能源汽车等战略性新兴产业领域。采用IGBT进行功率变换,能够提高用电效率和质量,具有高效节能和绿色环保的特点,是解决能源短缺问题和降低碳排放的关键支撑技术,因此被称为功率变流产品的“CPU”、“绿色经济之核”。在未来很长一段时间内,为适应全球降低CO2排放的战略需要,IGBT必将扮演更为重要的角色,是节能技术和低碳经济的重要支点。

2.2 IGBT的各种有关参数

2.2.1容量

低功率IGBT应用范围一般都在600V、1KA、1KHZ以上区域,为满足家电行业的需求,ST半导体,三菱公司推出低功率IGBT产品,适用于微波炉,洗衣机等。而非传统性IGBT采用薄片技术,在性能上高速,低损耗,在设计600V-1200V的IGBT时,其可靠性最高。 2.2.2 开关频率

IGBT的开通过程按时间可以分为四个过程,如下:第一:门射电压Vge小于阀值电压Vth时。其门极电阻RG和门射电容CGEI的时间常数决定这一过程。当器件的集电极电流IC 和集射电压VCE均保持不变时,CGEI就是影响其导通延迟时间tdon的唯一因素。第二:当门射电压Vge达到其阀值电压时,开通过程进入第二阶段,IGBT开始导通,其电流上升速率dI/dt的大小与门射电压Vge和器件的跨导gfs有如下关系:dIc/dt=gfs(Ic)*dVge/dt。其中,dVge/dt由器件的门极电阻Rg和门射电容CGEI所决定(对于高压型IGBT来说,门集电容Cgc可忽略不计)。第三:第三阶段从集电极电流达到最大值ICmax。第四:通之后,器件进入稳定的导通状态。

2.2.3 关断过程

当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。在任何情况下,如果MOSFET电流在开关阶段迅速下降,集电极电流则逐渐降低,这是因为换向开始后,在N层内还存在少数的载流子(少子)。这种残余电流值(尾流)的降低,完全取决于关断时电荷的密度,而密度又与几种因素有关,如掺杂质的数量和拓扑,层次厚度和温度。少子的衰减使集电极电流具有特征尾流波形,集电极电流引起以下问题:功耗升高;交叉导通问题,特别是在使用续流二极管的设备上,问题更加明显。

鉴于尾流与少子的重组有关,尾流的电流值应与芯片的温度、IC 和VCE密切相关的空穴移动性有密切的关系。因此,根据所达到的温度,降低这种作用在终端设备设计上的电流的不理想效应是可行的。

2.3驱动方式及驱动功率

2.3.1 栅极驱动电压

因IGBT栅极—发射极阻抗大,故可使用 MOSFET 驱动技术进行驱动,但 IGBT 的输入电容较MOSFET大,所以IGBT的驱动偏压应比MOSFET 驱动所需偏压强。在+20℃情况下,实测60 A,1200 V 以下的 IGBT 开通电压阀值为5~6 V,在实际使用时,为获得最小导通压降,应选取Ugc≥(1.5~3)Uge(th),当Uge 增

加时,导通时集射电压Uce将减小,开通损耗随之减小,但在负载短路过程Uge 增加,集电极电流Ic也将随之增加,使得 IGBT 能承受短路损坏的脉宽变窄,因此Ugc的选择不应太大,这足以使 IGBT 完全饱和,同时也限制了短路电流及其所带来的应力(在具有短路工作过程的设备中,如在电机中使用IGBT时,+Uge在满足要求的情况下尽量选取最小值,以提高其耐短路能力)。 2.3.2对电源的要求

对于全桥或半桥电路来说,上下管的驱动电源要相互隔离,由于 IGBT 是电压控制器件,所需要的驱动功率很小,主要是对其内部几百至几千皮法的输入电容的充放电,要求能提供较大的瞬时电流,要使 IGBT 迅速关断,应尽量减小电源的内阻,并且为防止 IGBT 关断时产生的du/dt误使IGBT导通,应加上一个-5V的关栅电压,以确保其完全可靠的关断( 过大的反向电压会造成 IGBT 栅射反向击穿,一般为-2~10V之间 ) 。 2.3.3对驱动波形的要求

从减小损耗角度讲,门极驱动电压脉冲的上升沿和下降沿要尽量陡峭,前沿很陡的门极电压使 IGBT 快速开通,达到饱和的时间很短,因此可以降低开通损耗,同理,在 IGBT 关断时,陡峭的下降沿可以缩短关断时间,从而减小了关断损耗,发热量降低。但在实际使用中,过快的开通和关断在大电感负载情况下反而是不利的。因为在这种情况下,IGBT过快的开通与关断将在电路中产生频率很高、幅值很大、脉宽很窄的尖峰电压 Ldi/dt,并且这种尖峰很难被吸收掉。此电压有可能会造成 IGBT 或其他元器件被过压击穿而损坏。所以在选择驱动波形的上升和下降速度时,应根据电路中元件的耐压能力及 du/dt 吸收电路性能综合考虑。

2.3.4对驱动功率的要求

由于 IGBT 的开关过程需要消耗一定的电源功率,最小峰值电流可由下式求出:IGP=△Uge/RG+Rg;式中△ Uge=+Uge+|Uge|;RG是IGBT内部电阻;Rg 是栅极电阻。

驱动电源的平均功率为:PAV=Cge△Uge2f,(*式中f为开关频率;Cge 为栅极电容)。 2.3.5 栅极电阻

为改变控制脉冲的前后沿陡度和防止震荡,减小IGBT集电极的电压尖峰,应在IGBT栅极串上合适的电阻Rg。当Rg增大时IGBT导通时间延长,损耗发热

加剧;Rg减小时,di/dt 增高,可能产生误导通,使 IGBT 损坏。应根据 IGBT 的电流容量和电压额定值以及开关频率来选取 Rg 的数值。通常在几欧至几十欧之间 ( 在具体应用中,还应根据实际情况予以适当调整)。另外为防止门极开路或门极损坏时主电路加电损坏IGBT,建议在栅射间加入一电阻Rge,阻值为10 kΩ左右。

2.3.6栅极布线要求

合理的栅极布线对防止潜在震荡,减小噪声干扰,保护IGBT正常工作有很大帮助:

(1)布线时须将驱动器的输出级和lGBT之间的寄生电感减至最低 ( 把驱动回路包围的面积减到最小);

(2)正确放置栅极驱动板或屏蔽驱动电路,防止功率电路和控制电路之间的耦合;

(3)应使用辅助发射极端子连接驱动电路;

(4)驱动电路输出不能和 IGBT 栅极直接相连时,应使用双绞线连接; (5)栅极保护,箝位元件要尽量靠近栅射极。 2.3.7 隔离问题

由于功率IGBT在电力电子设备中多用于高压场合,所以驱动电路必须与整个控制电路在电位上完全隔离。

三、存在的问题

因为IGBT工作时,其漏极区(p+区)将要向漂移区(n-区)注入少数载流子——空穴,则在漂移区中存储有少数载流子电荷;当IGBT关断(栅极电压降为0)时,这些存储的电荷不能立即去掉,从而IGBT的漏极电流也就相应地不能马上关断,即漏极电流波形有一个较长时间的拖尾——关断时间较长(10~50ms)。所以IGBT的工作频率较低。为了缩短关断时间,可以采用电子辐照等方法来降低少数载流子寿命,但是这将会引起正向压降的增大等弊病。

IGBT中存在有寄生晶闸管—MOS栅控的n+-p-n-p+晶闸管结构,这就使得器件的最大工作电流要受到此寄生晶闸管闭锁效应的限制(采用阴极短路技术可以适当地减弱这种不良影响)。

四、研究现状

最近20年中,IGBT的发展很快,技术改进方案很多,并且实用化。每种改进措施的采取,都会把IGBT的性能向前推进。其中,最重要的还是不断把“通态压降—开关时间”的矛盾处理到更为优化的折衷点。不同公司宣布自己研制生产的IGBT进入了第X代。但是,总体看,随着重大技术改进措施的成功,可以把IGBT的演变归纳成以下五代。

(1)第一代:即平面栅(PT)型。它提出了在功率MOS场效应管结构中引入一个漏极侧pn结以提供正向注入少数载流子实现电导调制来降低通态压降的基本方案。

(2)第二代:采用缓冲层,精密控制图形和少子寿命的平面栅穿通(PT)型外延衬底IGBT。器件纵向采用n′缓冲层,既可以减薄有效基区厚度和硅片总厚度来减小通态压降,又能降低该发射结的注入系数,以抑制“晶闸管效应”。器件横向(平面)采用精密图形,减少每个元胞的尺寸,提高器件的开关速度。再采用专门的扩铂与快速退火措施,以控制基区内少数载流子寿命的较合理分布。这样的IGBT耐压达到1200V,通态压降达到2.1-2.3V,锁定效应得到有效抑制。这时,IGBT已经充分实用化了。

(3)第三代:沟槽栅(Trench gate)型IGBT。这一代IGBT采取沟槽栅结构代替平面栅。在平面栅结构中,电流流向与表面平行的沟道时,栅极下面由P阱区围起来的一个结型场效应管(J-FET)是电流的必经之路,它成为电流通道上的一个串联电阻。在沟槽栅结构中,这个栅下面的J-FET是被干法刻蚀的工艺很好地挖去了,连同包围这个区域、延伸到原来栅极下构成沟道的部分P区层也都挖掉。于是n+发射源区和留下的P区层就暴露在该沟槽的侧壁,通过侧壁氧化等一系列特殊加工,侧壁氧化层外侧的P区内形成了垂直于硅片表面的沟道。

(4)第四代:非穿通(NPT)型IGBT。随着阻断电压突破2000V的需求,IGBT中随承受电压的基区宽度超过150微米。这时靠高阻厚外延来生成硅衬底的做法,不仅十分昂贵(外延成本同外延层厚度成正比),而且外延层的掺杂浓度和外延层厚度的均匀性都难以保证。这时,采用区熔单晶硅片制造IGBT的呼声日渐成熟,成本可以大为降低,晶体完整性和均匀性得到充分满足。

(5)第五代:电场截止(FS)型。当单管阻断电压进一步提高,硅片的基区厚度就会急剧增加。于是,IGBT的通态压降势必随其耐压的提高而增大。FS型IGBT吸收了PT型和NPT型两类器件的优点,形成硅片厚度比NPT型器件薄约

1/

3、又保持正电阻温度系数单极特征的各项优点。

五、发展趋势

IGBT作为电力电子领域非常理想的开关器件,各种新结构、新工艺及新材料技术还在不断涌现,推动着IGBT芯片技术的发展,其功耗不断降低,工作结温不断升高,从125℃提升到了175℃并向200℃迈进,并可以在芯片上集成体二极管,形成逆导IGBT(RC-IGBT/BIGT),无需再反并联续流二极管,在相同的封装尺寸下,可将模块电流提高30%,还可以将电流及温度传感器集成到芯片内部,实现芯片智能化。

IGBT芯片内部集成传感器通过对IGBT芯片的边缘结构进行隔离处理,可以形成具有双向阻断能力的IGBT(RB-IGBT),在双向开关应用中无需再串联二极管,并具有更小的漏电流及更低的损耗。

与此同时,IGBT的工艺水平也在不断提升,许多先进工艺技术,如离子注入、精细光刻等被应用到IGBT制造上。IGBT芯片制造过程中的最小特征尺寸已由5um,到3um,到1um,甚至达到亚微米的水平。采用精细制造工艺可以大幅提高功率密度,同时可以降低结深,减小高温扩散工艺,从而使采用12英寸甚至更大尺寸的硅片来制造IGBT成为可能。随着薄片与超薄片加工工艺的发展,英飞凌在8英寸硅片上制造了厚度只有40um的芯片样品,不久的未来有望实现产品化应用。

此外,新材料如宽禁带半导体材料技术的发展,可以实现更低功耗、更大功率容量、更高工作温度的器件,其中SiC成为目前的大功率半导体的主要研究方向,并在单极器件上实现商品化,在IGBT等双极器件的研究上也不断取得进展。目前IGBT主要受制造工艺及衬底材料的缺陷限制,例如沟道迁移率及可靠性、电流增益较小及高掺杂P型衬底生长等问题,未来随着材料外延技术的发展,SiC IGBT将会实现突破。

参考文献

[1] 王兆安,黄俊电力电子技术[M].4版.北京:机械工业出版社,2000. [2] 陈志明.电力电子器件基础[M].北京:机械工业出版社,1992 [3] 周志敏,周纪海,纪爱华.IGBT和IPM及其应用电路,北京:人民邮电出版社,2006.3

[4] 刘国友, 罗海辉, 刘可安等.牵引用3300V IGBT芯片均匀性及其对可靠性的影响[J],机车电传动,2013, No.231(02) 6-9

第五篇:电力电子与电气传动综合课程设计任务书

一、目的及要求:

通过电力电子与电气传动的综合课程设计教学环节,使学生掌握以直流电动机为对象组成的运动控制,包括转速单闭环调速系统,转速、电流双闭环控制调速系统,静态、动态性能分析及工程设计方法,掌握以交流电动机为对象组成的运动控制,包括基于稳态模型和动态模型的异步电动机调速系统以及同步电动机调压调速系统的工作原理和性能特点。

通过该课程的学习,培养学生理论联系实际的能力,掌握电气传动控制系统的工作原理和设计方法,从实际出发,深入地进行理论分析,应用理论解决电气传动系统中的实际问题,提高学生分析问题和解决问题的能力。检验同学们对所学知识的掌握程度和运用能力。

二、内容及步骤: 内容:

1. 设计一个三相桥式全控整流电路,电源相电压为220V,利用可调的直流电压驱动直流电机进行调速,仿真观察整流电路输出电压和电流波形,电机电流、转速、转矩变化曲线。

2. 设计一个双闭环直流电动机调速系统,整流装置采用三相桥式电路,电动机参数:UN=220V,IdN=136A,nN=1460r/min,Ce=0.132V.min/r, 过载倍数λ=1.5,整流装置放大系数Ks=40,电枢回路总电阻R=0.5欧,时间常数Tl=0.03s,Tm=0.18s,电流反馈系数β=0.05V/A,转速反馈系数α=0.007V.min/r,要求实现稳态无静差,电流超调量σi%≤5%,空载起动到额定转速时的转速超调量σn%≤10%,取电流反馈滤波时间常数Toi=0.0017s,转速反馈滤波时间常数Ton=0.01s,取转速调节器和电流调节器的饱和值为12V,输出限幅值为10V,额定转速时转速给定Un*=10V。仿真观察系统的转速、电流响应和设定参数变化对系统响应的影响。

3. 完成基于IGBT逆变电路的异步电机恒压频比变频调速系统仿真,电机参数如下:额定功率为2.2kW,额定线电压为380V,额定频率为50Hz,额定转速为1423pm,定子电阻为3.478Ω,定子漏感为0.01254H,转子电阻为2.546Ω,转子漏感为0.01226H,励磁电感为0.3329H,转动惯量为0.0131,极对数为2。

4. 采用三相SPWM技术设计一个转速开环变频调速系统,观察电动机的电流、转速和转矩曲线。

步骤如下:

1、查阅调速系统资料。

2、设计调速系统原理图和动态结构框图。

3、计算各控制参数。

4、熟悉MATLAB仿真工具。

5、对原理图和结构框图进行仿真。

6、总结课程设计报告。

三、课程设计时间和进度安排:

1、时间安排第16-18周

2、据学生人数分组:班级-电气:1097

41、109742共82人,每2-3人一组。 课程设计进度:

1:听课学习MATLAB仿真软件(1天)(占10%) 2:学习和熟悉软件的应用和基本操作(4天)(占20%) 3:查阅调速系统资料。(2天)(占10%)

4:设计调速系统原理图和动态结构框图(3天)(占20%) 5:对原理图和结构框图进行仿真(4天)(占30%)

6:总结报告:书写设计说明书、设计步骤、报告。(1天)(占10%)

四、答辩及成绩评定:

每个课程设计的最后一周的周五进行答辩,其中每一部分所占总成绩的比例请参考第三项。 教师组织考核,对每个学生做出评语,成绩可按:优、良、中、及格、不及格分为五等。 教师通过设计答辩或经验交流形式,了解学生设计水平。根据学生运动控制基本知识掌握的程度,调速系统电路设计和利用仿真软件综合设计与调试能力,独立分析解决问题的能力和创新精神,课程设计总结报告的书写评定成绩。 五:教学参考书目:

《运动控制系统》 清华大学出版社 阮毅,陈维钧

《电力电子和电力拖动控制系统的MATLAB仿真》

机械工业出版社 洪乃刚 《电力电子应用技术的MATLAB仿真》

中国电力出版社

林飞 杜欣

撰槁人 教研室主任 系主任

签名

日期

2011.5. 27

电子与电气工程系(电气教研室) 2011/5/27

第六篇:电力电子课程学习心得

前沿

在大二学习模电之后,这学期我们开始接触电力电子器件和多种变换器。其中包括直流变直流,无源逆变电路,整流和有源逆变电路,交流变交流电路,软开关变换器。电力电子技术(Power Electronics Technology)是研究电能变换原理及功率变换装置的综合性学科,包括电压、电流、频率和波形变换,涉及电子学、自动控制原理和计算机技术等学科。电力电子技术与信息电子技术的主要不同就是效率问题,对于信息处理电路来说,效率大于15%就可以接受,而对于电力电子技术而言,大功率装置效率低于85%还是无法忍受。目前能源问题已是我国面临的主要问题之一,提高电源变换效率是电力电子工程师主要任务. 电力电子器件及应用

电力电子器件特点:1.具有较大的耗散功率2.工作在开关状态3.需要专门驱动电路来控制4.需要缓冲和保护电路。我们在本章学习了功率二极管,场效应二极管,电力二极管,IGBT . 可控整流器与有源逆变器:

主要内容:

整流器的结构形式、工作原理,分析整流器的工作波形,整流器各参数的数学关系和设计方法;整流器工作在逆变状态时的工作原理、工作波形。变压器漏抗对整流器的影响、整流器带电动机负载时的机械特性、触发电路等内容。 学习重点包括:

(1) 学习不同型式整流电路的工作原理,波形分析与数值计算、各种负载对整流电路工作情况的影响。

(2) 变压器漏抗对整流电路的影响,重点建立换相压降、换相重叠角等概念,并掌握相关的计算,熟悉漏抗对整流电路工作情况的影响。 (3) 掌握产生有源逆变的条件、逆变失败及最小逆变角的限制等。

(4) 熟悉锯齿波移相触发电路的原理,建立同步的概念,掌握同步电压信号的选取方法。

交-交变换器:

主要内容:

晶闸管单相和三相交流调压器;全控型器件的交流斩波电路;交-交变频器;交-交(AC-AC)变换器的应用。

交流调压电路通常由晶闸管组成,用于调节输出电压的有效值。与常规的调压变压器相比,晶闸管交流调压器有体积小、重量轻的特点。其输出是交流电压,但它不是正弦波形,其谐波分量较大,功率因数也较低。 控制方法:

(1) 通断控制。即把晶闸管作为开关,通过改变通断时间比值达到调压的目的。这种控制方式电路简单,功率因数高,适用于有较大时间常数的负载;缺点是输出电压或功率调节不平滑。 (2) 相位控制。它是使晶闸管在电源电压每一周期中、在选定的时刻将负载与电源接通,改变选定的时刻可达到调压的目的。 基本结构和工作原理 单相交-交变频电路由两组反并联的晶闸管整流器构成,和直流可逆调速系统用的四象限变换器完全一样,两者的工作原理也相似。

三相交-交变频器电路是由三组输出电压相位互差的单相交-交变频电路组成的。

改变反并联晶闸管的控制角,就可方便地实现交流调压。当带电感性负载时,必须防止由于控制角小于阻抗角造成的输出交流电压中出现直流分量的情况。过零触发是在电压零点附近触发晶闸管使其导通,改变晶闸管的通断比,以实现交流调压或调功。过零触发克服了移相触发有谐波干扰的不足。交-交变频不通过中间直流环节而把工频交流电直接变换成不同频率的交流电。根据控制角变化方式的不同,有方波型交-交变频器、正弦波型交-交变频器之分。交-交变频器的电流控制方式有“无环流控制”及“有环流控制”两种;交-交变频器效率较高;但输出电压的频率较低。

直流-直流变换器:

主要内容:

降压变换器、升压变换器、降压-升压变换器的拓扑结构、工作原理、在电流连续和断续模式下的各物理量之间的函数关系;全桥式直流-直流变换器在单极性和双极性控制方式时的工作原理;影响直流-直流变换器输出电压纹波的因素;几种不同变换器的开关利用率。

本次讨论了几种主要型式的直流-直流变换器的拓扑结构。除了全桥式直流-直流变换器以外,其他变换器只能在电压-电流相平面的单象限运行,即功率只能单方向传递。而全桥式直流-直流变换器可以在四个象限运行。

直流-直流变换器也称为斩波器,通过对电力电子器件的通断控制,将直流电压断续地加到负载上,通过改变占空比改变输出电压平均值。 直流-直流变换器主要有如下几种基本型式: 1. 降压直流-直流变换器(Buck Converter) 2. 升压直流-直流变换器(Boost Converter) 3. 降压-升压复合型直流-直流变换器(Buck- Boost Converter) 4. 丘克直流-直流变换器

5. 全桥式直流-直流变换器(Full Bridge Converter) 直流-直流变换器的控制

基本的直流-直流变换器和它的输出波形

开关管导通时,输出电压等于输入电压Ud;开关管断开时,输出电压等于0。输出电压波形如上图所示,输出电压的平均值Uo为 式中 Ts—开关周期 D—开关占空比,

改变负载端输出电压有3种调制方法:

1.开关周期Ts保持不变,改变开关管导通时间ton。也称为脉宽调制(PWM)。 2.开关管导通时间ton保持不变,改变开关周期Ts。 3. 改变开关管导通时间ton,同时也改变开关周期Ts。

方式1的PWM是最常见的调制方式,这主要是因为后2种方式改变了开关频率,而输出级滤波器是根据开关频率设计的,显然,方式1有较好的滤波效果。

给定电压与实际输出电压经误差放大器得到误差控制信号uco,该信号与锯齿波信号比较得到开关控制信号,控制开关管的导通和关断,得到期望的输出电压。锯齿波的频率决定了变换器的开关频率。一般选择开关频率在几千赫兹到几百千赫之间。

直流-直流变换器有两种不同的工作模式: 1. 电感电流连续模式 2. 电感电流断续模式

在不同的情况下,变换器可能工作在不同的模式。因此,设计变换器和它的控制器参数时,应该考虑这两种不同的工作模式的特性。 降压变换器

降压变换器也称为Buck变换器,正如名字所定义的,降压变换器的输出电压Uo低于输入电压Ud。

在实际应用中,有如下问题:

1.实际的负载应该是感性的。即使是阻性负载,也总有线路电感,电感电流不能突变,因此,图4-1的电路可能由于电感上的感应电压毁坏开关管。采用图4-3的电路,则电感中储存的电能可以通过二极管续流释放给负载;

2.在大多数应用中需要的是平稳的直流电压。而图4-1的电路输出电压在0和Ud间变化。采用由电感和电容组成的低通滤波器可以得到平稳的输出电压。 升压变换器

升压变换器也称为Boost变换器。正如名字所指的,升压变换器的输出电压总是高于输入电压。

当开关管导通时,输入电源的电流流过电感和开关管,二极管反向偏置,输出与输入隔离。当开关管断开时,电感的感应电势使二极管导通,电感电流iL通过二极管和负载构成回路,由输入电源向负载提供能量。在下面的稳态分析中,输出端的滤波电容器被假定为足够大以确保输出电压保持恒定,即uo= Uo。

在uco

当uco>utri,使VTA-断开,触发VTA+,由于电感电流不能突变,因此负载电流经VDA+和VDB-续流,使VTA+不能导通,uo=Ud,同时电流上升,直至电流上升到0,VDA+和VDB-断开,VTA+和VTB-导通。

当-uco>utri,使VTB-断开,触发VTB+,由于电流不能突变,因此负载电流经VTA+和VDB+续流,使VTB+不能导通,uo=0,同时电流下降,由于电流小,电流会下降到0, VDB+断开,负载电流经VTB+ 和VDA+构成电流回路,电流变负;

直至-uco

直-交变换器 :

主要内容:

直流变交流变换器是指能将一定幅值的直流输入电压(电流)变换成一定幅值,一定频率的交流输出电压(电流)。

软开关变换器

提高变换器工作频率可以减小变换器体积,但增加工作频率会大大增加变换器损耗,降低变换器效率,为了同时提高变换器效率和减小变换器体积,软开关技术应运而生。所谓软开关技术,是指电力电子器件导通或关断时损耗为零的技术,与此相应若导通或关断时损耗不为零则为硬开关。

电力电子技术的应用领域主要有:

1.大功率直流电源。它的发展主要以提高单机容量和增加效率为主要目标。 电机控制。无论是交流电机还是直流电机均采用电力电子技术来完成电机的速度、转矩、跟随性等控制,但目前更多的是研究直流调速不能涉及的应用领域。

2.高压直流输电。电源变换。它的发展主要以增加效率和提高控制性能为主要目标,如电焊机、电磁感应加热、电动机车、电动汽车,电镀电源、电冰箱、洗衣机等控制。

3.无功功率补偿。

现代电力电子技术的发展方向

是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

上一篇:第二学期个人总结下一篇:电销组长竞聘报告