大学计算机教育论文

2022-04-14 版权声明 我要投稿

摘要:分析非计算机专业大学计算机教学的起点,探讨大学计算机教育第一层次课程的构成与教学内容,阐述制定大学生基本信息素养和应用能力标准的意义和重要性,提出需求导向的大学计算机基础课程的分类方案。今天小编为大家推荐《大学计算机教育论文 (精选3篇)》仅供参考,希望能够帮助到大家。

大学计算机教育论文 篇1:

关于新一轮大学计算机教育教学改革的若干意见全国高等院校计算机基础教育研究会

1 积极推动新一轮大学计算机教育教学改革

1.1 新一轮大学计算机教育教学改革的动因

自20世纪80年代以来由于计算机科学与技术的发展和应用的普及,在高等教育非计算机专业的计算机课程基础上逐步形成计算机基础教育和课程体系,并先后成立全国高等院校计算机基础教育研究会和教育部计算机基础课程教指委,以指导大学计算机基础教育改革和课程建设。90年代以来,高等职业教育也在各专业开设了计算机公共课程。

最初的计算机基础教育是从计算机工具的视角,以掌握计算机基础知识和基本技能为主,90年代提出计算机文化的概念,将计算机基础教育提升到普适性文化层面。当前由于我国基础教育中信息技术教育的发展,使原高等教育中计算机基础教育的内容重心下移,计算机基础课程受到很大冲击,大学计算机基础教育面临新的挑战。2012年教育部高教司和教育部计算机基础课程教指委提出以计算思维为切入点的大学计算机教育和课程改革,拉开新一轮大学计算机教育教学改革的序幕。我们认为新一轮大学计算机教育教学改革的动因有以下3个方面:

(1)新一代信息技术的发展和迅速普及应用;

(2)计算机科学与技术突破其专业层面,提升形成普适性的科学思维和行为方式;

(3)大学新生计算机应用能力总体水平提高和发展不平衡、不规范并存。

1.2 总结大学计算机教育基本经验和规律

大学计算机教育已历经30多年,其间经历多次改革,其教学体系、课程内容不断完善,教育理念逐步形成,以新一轮大学计算机教育教学改革为契机,有必要对迄今大学计算机教育所取得的基本经验和形成的基本规律进行总结,它们反映了大学计算机教育相对稳定和本质特征,主要表现在如下4个方面:

(1)大学计算机教育应是面向应用的教育。大学计算机教育的初衷就是要培养能够在各自专业中应用计算机工作与学生自身发展的合格大学生。

(2)大学计算机教育应是以需求为导向的教育,需求决定了大学计算机教育的存在、改革与发展。

(3)大学计算机教育应是以计算机应用能力培养为核心的教育。理论知识的学习应以应用为目的,支持能力的培养。

(4)大学计算机教育应是分类指导的教育,大学计算机教育的分类不仅要考虑学科专业,而且与正在形成的我国高等教育和高等学校分类发展相关。

1.3 探索新一轮大学计算机教育教学改革的新特征

大学计算机教育是在不断改革中发展的,新一轮大学计算机教育教学改革较之现行的大学计算机基础教育有了重大突破和发展,这些突破和发展可以表现为多个方面,但重点是在大学计算机教育以能力培养为核心的基本规律中,其能力内涵发生了重大变化和发展,使能力突破了计算机学科专业领域层面,发展到普适性的计算思维和行动能力层面,提升了问题求解能力的培养。能力内涵的变化本质上已使大学计算机教育的功能发生了重大转变,超越了大学计算机教育仅解决计算机领域问题的局限,开创了运用源于计算机的思维与行为方式解决各类专业或社会生活问题的新功能,这是新一轮大学计算机教育教学改革的新特征,也是包括计算思维在内的科学思维的提出对大学计算机教育的新贡献。

2 需求导向是保持大学计算机教育生存活力的基础

多年的计算机教育实践和研究都表明、大学计算机教育必须面向应用选择其学习内容,面向应用的首要体现是需求导向,因此需求导向是保持大学计算机教育生存活力的基础。需求导向应包括目标需求和起点需求两个方面。

2.1 大学计算机教育的目标需求

目标需求包括以下5个方面:

(1)计算机科学技术发展及应用对大学计算机教育的需求;

(2)经济社会发展对大学计算机教育的需求;

(3)高等教育发展对大学计算机教育的需求;

(4)学生生涯发展对大学计算机教育的需求;

(5)大学计算机教育自身发展的需求。

2.2 大学计算机教育的起点需求

大学计算机教育的起点需求是指由于基础教育中信息技术教育的出现和加强,大学新生掌握计算机应用能力的总体水平不断提高,要求大学计算机教育的教学起点相应调整。

确定大学计算机教育教学的起点要从我国每年700万大学新生整体的计算机应用能力水平出发,计算机教育教学要适应不同计算机基础学生的学习差异。

3 计算机应用能力培养是大学计算机教育的长效目标

大学计算机教育发展初期以培养计算机基础知识和基本技能为目标,将计算机视为工具,培养计算机操作和编程能力;但时代对大学生计算机应用能力要求不断提高,不仅要有熟练使用计算机的能力,还要掌握必要的计算机技术以及运用其解决相关问题的能力;计算思维的提出进一步将计算机应用能力提升到普适能力层面。在能力体系中计算机理论知识是计算机应用能力的基础,不同层次的能力对计算机理论知识的内容、宽度和厚度会有不同的要求。

3.1 重视计算思维能力培养

计算思维是美国学者20世纪90年代提出的概念,是计算机科学技术深度发展和广泛应用的结果;本世纪初我国学者也有相关计算思维论述;2006年美国学者周以真教授全面定义和阐释了计算思维的内涵;近年在推动以计算思维为切入点的新一轮大学计算机教育教学改革中,教育部计算机基础课程教指委的专家学者们深入研究了计算思维及其应用;大学计算机教育的一线教师在了解计算思维的过程中,开始将计算思维引入大学计算机教学。

计算思维能力是解决问题能力的基础,所以必须高度重视计算思维能力的培养,在大学计算机教学中融入计算思维,提升学生的计算思维能力。

3.2 重点培养解决问题的能力

大学计算机教育要重点培养学生解决问题的能力,能够利用计算机解决实际问题是检验大学生计算机应用能力的根本标准,是大学计算机教育的最终目标,也应是新一轮大学计算机教育教学改革的核心内容。

解决问题要由计算机应用能力结构体系中的诸多能力合作完成,必须统筹规划专业、思维、行动等能力在培养中的作用。学术性人才比较强调思维能力,应用型人才比较强调行动能力,大学计算机教育则更应强调以计算机专业能力为基础,将计算思维和科学行动相互结合,并按培养类型各有有侧重。

4 分类指导是实施大学计算机教育的基本原则

大学计算机基础教育始终是分类指导的,如教育部计算机基础课程教指委曾分为理工科和文科教指委,全国高等院校计算机基础教育研究会下设有理工、文科、农林、师范等专业委员会,实施按学科专业的分类指导。随着高等教育的发展,人才培养的分类被最先提出,CDIO、卓越工程师等项目的实施开启了教育分类发展的进程;2010年颁布的《国家中长期教育改革和发展规划纲要》又明确要求建立高等学校的分类体系;2013年成立的“中国应用技术大学联盟”显示高等学校分类体系在实践中的落实。这就要求大学计算机教育必须适应分类指导的新形势,要在大学计算机教育的标准、内容和方式等方面贯彻差别化、多样性和针对性的思路,实施在人才、教育和学校维度的大学计算机教育分类指导。

5 构建以计算机应用能力为导向的课程体系

5.1 大学计算机教育课程体系框架

以计算机应用能力为导向的大学计算机课程体系的基础是大学计算机教育课程体系框架,包括专业和普适两个层面。专业层面(第一层面)分为基础、技术和综合应用3个层次,大学计算机课程体系将寓于该层面框架之中;普适层面(第二层面)为思维与行动融入提升层面,不建议单独开设课程,而应通过融入第一层面课程以提升培养。从非计算机专业对计算机需求的视角,将计算机技术分为计算技术、数据技术、网络技术和设计技术4个技术领域,要重视用最新发展的计算机技术更新课程内容。

5.2 研究计算思维和解决问题能力的培养方式

落实计算思维能力培养必须研究其教学方法,计算思维能力培养的教学方法大体有3种:第一种为问题启发式教学法,是在传授计算机科学技术知识的同时,将学科概念升华为思维要素,通过问题、实验、练习等方式启发学生联想和思考,逐步建立思维方式;第二种为案例教学法,通过设计具体案例,分析计算思维在案例中的应用,建立思维方式;第三种为项目教学法,通过项目或任务实践,体验计算思维的应用,建立思维方式。

行动能力以及解决问题能力培养,其教学方法也是案例教学法和项目教学法,而且追溯这些教学方法产生的历史渊源,主要是从培养行动能力、解决问题能力等方面开始的,因此如何充分利用案例教学法和项目教学法功能,提高教学法使用效率,实现大学计算机教育目标,值得研究和思考。

5.3 更新教育观念,改革大学计算机教育教学方式

实施新一轮大学计算机教育教学改革,要求从事大学计算机教育的教师更新教育观念,改变原计算机教育基础课程基于安排和给予型的教学管理形式,即靠学校规定计算机基础教育学时的教学管理形式,而变为主动服务型的人才培养形式,即以学校安排学时和主动争取教学任务相结合的教学管理形式。这就必须在课程建设和教学改革上下功夫,开发一批使各专业切实感到需要,学生切实有兴趣的大学计算机教育课程,吸引专业和学生选择。

大学计算机教育要敢于创新教学方式,带头运用混合教学方法,尝试网络在线学习,即将传统的以课堂教学为主的教学形式与现代的学生选课和自主学习的教学形式结合起来,将网络学习、软件平台学习等新的学习方式纳入正常的教学管理体系,引领教学改革。

6 大力推动高职计算机教育教学改革

6.1 高职同样面临计算机教育教学改革的新形势

高等职业教育虽然没有建立计算机基础教育课程体系,但自20世纪90年代以来,由于各专业的发展需要,都开设了计算机类课程,其中高职“计算机应用基础”课程,类似于大学计算机基础教育中的第一门课程,一般称为高职计算机公共课程,有些相关专业还依据专业需要开设其他计算机类课程。

大学计算机教育改革的动因对于高等职业教育同样存在,所以当前高等职业教育同样面临大学本科计算机教育改革的新形势,因此本科大学计算机教育的改革必然波及和影响到高等职业教育。

6.2 构建高职计算机教育课程体系

高等职业教育的教学改革在学习借鉴国际先进职业与技术教育经验基础上,走了一条与本科不同的改革路线,因此高职计算机教育改革不能照搬大学本科计算机教育改革的经验。高职教育与本科教育同处在信息技术发展与迅速普及应用的环境中,同样受到大学计算机教育改革新形势的推动,高职教育可以借鉴本科大学计算机教育改革经验,在已取得专业教学改革成果基础上,进一步克服改革中的问题,完善高职改革成果,构建起高职计算机教育课程体系。

高职计算机教育课程体系按课程使用的广泛程度可分为3个层次模块:第一层次模块是作为公共课程的高职“大学计算机”课程,所有专业都需开设,是使用最广泛的高职计算机基础课程;第二层次模块是高职非计算机专业类所需要的计算机类课程模块,可设计多门课程供需要的高职专业类别选择使用;第三层次模块是高职计算机专业类课程,与本科不同,高职专业目录包含有电子信息大类专业,细分为计算机类、电子信息类和通信类3个子类,除计算机类全部专业以及后两类中很多专业都可属于高职计算机专业类。按如上3个层次模块,构建高职计算机教育课程体系,每个层次模块可遵循不同的教育教学理念和课程设计思路进行课程开发。

6.3 高职计算机教育课程开发理念

高职计算机教育教学改革既要适应计算机教育教学改革特点,又要适应高职教育理念和专业课程设计特点。对于第一层次模块的高职计算机公共课程,要以信息素养为导向,将计算机基础知识和基本技能融入其中,支持其职业工作应用,但重点考虑学生信息素养的养成,为其职业生涯发展服务。就其课程设置可以只设置一门高职“大学计算机”课程,但应开发不同内容的高职“大学计算机”课程。由全国高等院校计算机基础教育研究会编写的《中国高等职业教育计算机教育课程体系2014》(中国铁道出版社预计2014年5月出版)将给出几种不同模式的高职“大学计算机”课程典型案例。对于第二层次模块的高职计算机专业平台课程,要采用改进的高职专业平台课程设计理念,设计相关专业可以共用的高职计算机专业平台课程,将信息素养的养成融入专业平台课程中。第三层次模块是高职计算机专业类课程,属专业问题,应按高职专业课程设计理念和方法进行设计开发。

高职计算机教育课程改革要考虑建设现代职业教育体系的需要,实施中职、高职、应用型本科相衔接的课程设计。

高职课程改革以能力为主导,重视职业行动能力培养,对于高职计算机教育课程应继续坚持,但也应学习和借鉴本科大学计算机教育教学改革经验,适当融入计算思维能力培养,使行动与思维相结合,进一步提升学生解决实际问题的能力。

7 结语

推动新一轮大学计算机教育改革的重要意义毋庸置疑,要取得预期成果还需方方面面的共同努力。不仅所有相关教师要更新观念、提升能力、积极参与,院校的各级领导和管理部门、省市与教育部各级相关管理机构与领导更应给予关注。加强研究,勇于探索,营造氛围,制定政策,为新一轮大学计算机教育改革保驾护航,使其在飞速发展的信息时代发挥更重要的作用。

(编辑:彭远红)

作者:中国铁道出版社

大学计算机教育论文 篇2:

大学计算机教育的起点与分类教学

摘要:分析非计算机专业大学计算机教学的起点,探讨大学计算机教育第一层次课程的构成与教学内容,阐述制定大学生基本信息素养和应用能力标准的意义和重要性,提出需求导向的大学计算机基础课程的分类方案。

关键词:大学计算机教育;信息素养和能力标准;课程体系

0 引言

信息技术的飞速发展、信息技术教育融入基础教育使得大学计算机基础教育面临新的挑战,这也是新一轮大学计算机教育和课程改革的主要动因。大学计算机教育的第一门课程应该如何应对这种外界环境及应用需求的变化,是需要认真研究、亟待解决的问题。

1 确定大学计算机教育的起点

教育部颁布《中小学信息技术课程指导纲要(试行)》后,全国中小学普遍开设信息技术课程。同时,随着计算机技术的普及,越来越多中小学生已经能够熟练使用计算机上网、玩游戏、操作办公软件等。于是,很多学校压缩了大学计算机基础课程的授课学时。更有人认为,中学信息技术课程内容与大学计算机基础课程内容有很多重叠,进入高等学校的学生已经掌握了计算机的基本操作,大学计算机基础课程应该取消。目前大学新生计算机应用能力状况如何?大学计算机教育的起点是什么?

(1)通过网络、座谈交流等多种方式的调查,我们了解到目前全国范围内,只有少数重点高校完全取消了大学计算机基础课程。绝大多数高校(包括一些211、985院校)仍以不同形式开设包含计算机基础知识、基本操作为主要内容的课程;也有高校采用授课内容与实验内容分离的方式,讲授的内容因学校的不同而有较大不同,实验课内容仍是计算机基本操作,原因是大学新生对于计算机基础知识与基本操作的掌握情况有很大差异。

(2)2013年全国大学生计算机应用能力与信息素养大赛(简称“大赛”)的竞赛内容基本涵盖大学计算机基础课程的内容,即主要是计算机基础知识与基本操作。大赛分为院校赛和全国总决赛两个阶段。参加全国总决赛的442名选手(来自151所院校,覆盖全国27个省、市、自治区)是从全国230所院校、14 280选手中产生的,既有大学一年级的学生(2012年入学),也有二三年级的学生,覆盖面比较广,参赛选手所属高校的类别分布见表1。

由表2所列出的全国总决赛成绩统计可以看出,院校赛中选拔出来的优胜者参加总决赛的平均成绩不足80分,最低只有20.6分(高职高专)。这说明经过大学计算机基础课程学习,并为参加这次竞赛进行了一定赛前培训的选手,整体成绩的差异仍很大。一般说来,未参赛学生的计算机基础知识与基本操作的整体水平不会高于参加全国总决赛的选手。考虑到这些参赛选手都已经学过大学计算机基础课程,从全国大多数院校的情况可推断,进入高校的大学新生对计算机基础知识与基本操作的掌握情况不容乐观,整体没有达到中学信息技术课程的基本要求;对于全国大多数高校,现阶段还不具备完全取消计算机基础知识与基本操作课程的条件。得大学新生掌握计算机基本操作的能力差异非常大,即在目前阶段,大学计算机课程很难确定一个统一的起点。

2 大学计算机教育课程体系及第一层次课程

非计算机专业大学计算机教育的本质特征是:面向应用、需求导向、能力核心、分类指导,基本的长效性目标是培养学生的计算机应用能力。实际上,这也是大学计算机基础教育30年来一直坚持的目标。本轮改革的重大突破和发展之一在于能力的内涵发生了重大变化。

按照计算机应用能力结构体系,大学计算机应用能力分为学科专业和普适应用两个层面,其中学科专业层面的能力又分为计算机基本技能、技术与应用能力和综合应用能力。

根据调查分析,大学新生对计算机基本操作技能的掌握情况,远未达到预期目标。如何解决技术发展、需求变化与学生程度不齐的问题?《若干意见解读》中提出基于能力结构的课程体系,如图1所示,该体系第1层次包含“大学计算机基础”和“大学计算机”两门课程。

目前,各高校不同程度地缩减大学计算机课程的学时或取消这门课程。在这种形势下,将第1层次的课程增加为“大学计算机基础”和“大学计算机”两门,是否具备可行性?该体系框架中的这两门课程是根据各地区、各校、各专业类的需求选择,而不要求同时开设这两门课程。两门课程的主要内容是:

(1)“大学计算机基础”是针对没有掌握计算机基础知识,不具备计算机基本操作技能的学生开设的。这门课程不仅培养学生操作计算机的技能,更能提高他们的信息素养;使非计算机专业的学生感悟到计算机应用的领域、方式、价值等。

教学实施建议:

①对于重点院校或经济较发达地区的院校,学生利用网络教学平台采用自学为主的方式进行学习。经过测试,达到基本要求者视为通过。②对于一般院校或经济欠发达地区的院校,可以此课程为第一层次的课程。但是,在该课程的教学中,要体现出计算机应用能力内涵的提升与发展,体现出对思维能力的培养。

(2)“大学计算机”课程是从非计算机专业对计算机应用需求的视角,选择工程计算技术、数据处理技术、网络应用技术、设计技术等主要技术应用领域,参照教指委编制的《高等学校计算机基础教学发展战略研究报告暨计算机基础课程教学基本要求》(简称“白皮书”)提出的课程基本知识体系和实验体系,融入云计算、大数据、物联网等新一代信息技术的相关概念、方法和应用,培养学生利用信息技术工作的能力和科学思维能力,而不仅仅是简单操作计算机的能力。利用信息技术完成的工作既包含不需要复杂的思维活动(如有效搜索、整理、呈现等)的简单工作任务,也包含需要具备一定学习、筛选、判断、规划、设计、实施等行动能力的较为复杂的工作任务。

3 大学计算机基础与基本标准

作为第1层次的“大学计算机”面临的一个重要问题是如何适应不平衡、不规范和差异性的大学新生实际情况。在图1所示的课程体系框架之下,学生是否选修“大学计算机基础”课程,取决于是否掌握了计算机的基础知识与基本操作技能。那么,依据什么判别学生是否达到基本要求?或者说,什么是大学生应该具备的计算机基础知识与基本操作技能?事实上,现在我国没有一个标准用于衡量受过高等教育的人应该具备的基本信息素养与计算机应用能力。

1)关于大学生基本信息素养和应用能力标准。

为了适应信息社会基本的生活、工作需求,一些发达国家制定了国民或高等院校学生的信息素养标准,旨在引领和规范相关的教育教学活动。参照国内外具有一定社会认可程度的相关评价标准、考试大纲、课程规范,考虑信息技术的最新发展,构建大学生基本信息素养和应用能力标准(简称“基本标准”),对于非计算机大学计算机教育的发展有着非常积极的意义。

2)基于“基本标准”的“大学计算机基础”课程。

“大学计算机基础”课程面向未能达到“基本标准”的学生。这门课程不是简单地按照标准将原“大学计算机基础”课程进行内容重组,而是将提升学生的基本信息素养和计算机应用能力作为重点,较之以往的“大学计算机基础”课程,重点改进是:①以“基本标准”为教学内容的基准;解决学生具有不同起点、差异大的问题,同时按照规范进行教学,使学生具备在当今信息社会应有的基本信息素养和计算机应用技能。②以应用计算机完成工作的能力培养为主线。不要求学生死记硬背计算机领域的一些概念、专业术语,而通过运用计算机技术解决实际问题,理解相关技术的基本概念,掌握解决问题的基本方法、思路、过程。③以思维能力、信息素养养成训练为关注点。培养学生利用信息技术工作时应具备的一种普适的思维能力是课程的重要目标,这个目标不是通过概念讲授所能够完成的,而是要通过案例训练、项目训练等方式达成。

4 需求导向的大学计算机基础课程分类方案

我国有约2700多所高校,每年约有700万大学新生。不同学校、不同类别专业的人才培养目标有很大差异,使得非计算机专业的计算机课程有不用的目标和要求。即使是达到“基本标准”的学生,也无法用一个统一的方案适应所有学校的教学要求。应该针对不同的教学需求,设计不同的教学方案。

(1)方案1:面向提升计算机应用能力的课程方案,本方案适用于应用型本科院校非计算机专业。

从非计算机专业对计算机应用的要求入手选择课程的主要内容,而不是从学科理论人手,有利于非计算机专业的学生体会、感受有哪些计算机技术可用于其专业领域,以及可解决什么性质的问题,由应用需求入手,倒推出所需的理论知识支持。遵循这一理念,各个专业使用计算机主要从事的工作领域是:工程计算、数据处理、网络应用、多媒体应用等。据此总结概括提出4项技术,即计算技术、数据技术、网络技术和多媒体技术,它们基本覆盖了非计算机专业中的大部分对计算机的应用需求。

(2)方案2:注重思维能力培养的课程方案,本方案适用于研究型院校理工类专业。

研究型院校的生源质量较高,学生具有很强的学习能力。各个专业对大学计算机课程的要求更注重熟练应用计算机的能力及科学思维能力的培养。计算机不仅是为不同专业提供解决专业问题的有效方法和手段,而且提供一种独特的处理问题的思维方式。因此,课程内容除了关注使用计算机的基本能力的培养,更重要的是理解计算机系统,并培养包括计算思维在内的科学思维能力。

(3)方案3:结合专业需求的课程方案,对于非计算机专业的学生,计算机是更有效地完成本专业工作的工具。

将大学计算机课程与专业学习相结合,既有利于提升学生的学习兴趣,也有利于辅助、支持专业学习。为专业服务既是大学计算机教育的理念,也是目标。找到大学计算机基础课程与专业学习的契合点,是解决为专业服务的重要问题。落实到教学实践中,很重要的一个方面就是要使非计算机专业直接感悟到计算机应用的价值。

课程内容可以针对某一种或几种主要的计算机应用技术,结合专业需求来设计。例如以数据处理的概念、技术、处理过程为线索,构造大学计算机课程,对于管理、财经专业的学生更有实际应用意义。

再如,现代医学离不开计算机技术的辅助支持,把与医学教学相关的图像处理技术、数据管理技术作为教学内容,在某种意义上真正达到了大学计算机课程为专业服务的目标。

5 结语

大学计算机教育教学改革首先要确定大学计算机教育的起点,其次要确定专业、培养目标等对计算机应用技术的培养需求。只有如此,才能有针对性地确定能力培养的目标要求,设计面向不同地区学校、不同类别专业的课程体系,即大学计算机课程要分类设计、分类教学。

在新一轮大学计算机教育教学改革中,提出了多种大学计算机课程改革方案。这些方案虽然面向不同的培养需求,差异很大。所开设的课程或关注计算思维等科学思维能力的培养;或以计算学科的知识体系为线索,使学生对计算技术有初步了解;或介绍若干常用的计算机应用技术等。不论怎样,这些课程方案具有一个共同点,即教学的主要内容是概念、知识等,计算机基本操作不属于课程的基本教学内容。大学计算机教育是面向应用的教育。那么,如何提升学生应用计算机的能力?大学计算机课程是否仅仅是扩大眼界、开拓思路的讲座、报告?这些都是需要进一步研究的问题。

作者:袁玫

大学计算机教育论文 篇3:

德国大学计算机教育的几点感触

受亚历山大×冯×洪堡(Alexander von Humboldt,1769-1859)基金会资助,笔者两次在德国从事访问研究,有幸对德国的高等教育,尤其是大学计算机教育,进行零距离的观察,并留下深刻印象。德国的计算机教育很普及,特色鲜明。为便于读者对德国大学计算机教育有更深入的了解,首先回顾一下德国教育的发展历程和高等教育的一些现状;然后,谈谈自己对德国大学计算机教育的几点感触;最后通过例子看看德国大学如何实现教学与科研的统一。

1德国教育

德意志民族一向非常重视教育。十八世纪,普鲁士国王腓特烈大帝(Friedrich Wilhelm I,1688-1740)颁布学校教育法令,强制推行全世界最早的、免费的初级教育制度,确认公民接受教育的权利和义务。几十年后,洪堡(Wilhelm von Humboldt,1767-1835)对德国教育实行全面的改革,建立起一套完整的教育制度,确立教育的三个“自然阶段”,即“初等教育、中等教育和高等教育”。直到今天,洪堡的三阶段教育主张还被广泛采用。在德国,教育被视为国家之根本。有一次在内阁会议上,威廉三世国王(Friedrich Wilhelm III, 1770-1840)就对大臣们说:“正是因为贫穷,所以要办教育,我从未听说一个国家是因为办教育而办穷了,办亡国的。教育不仅不会使国家贫穷,恰恰相反,教育是摆脱贫穷和落后的最好手段”。所以,即使在历史上非常困难的时期,政府也十分重视发展教育,保证教育方面有足够的投入。

教育具有双重功能,一方面是提高国民的素质,为国家培养了人才,为经济发展注入了活力;另一方面它是现有社会结构的稳定因素。在国家的教育体系里,高等教育是主要成分,发挥关键、重要的作用,为经济建设直接培养高素质的应用型专业人员,以及高水平的科学研究人才。在某种程度上,高等教育体现一个国家的竞争力。在欧美的发达国家,高等教育已从精英教育向大众化教育发展。德国的高等教育有很悠久的历史,最古老的海德堡大学成立于1368年。十九世纪,按照“洪堡教育理念”成立的德国大学更是以其教学与科研統一及学术自由等特点被奉为欧美各国高等教育发展的楷模。洪堡主张把大学办成哲学、科学和学术研究的中心。毫无疑问,作为老牌的经济大国,德国的高等教育也是非常发达,学科门类完善。但不像美、英等国有所谓的一流或名牌大学,德国大学的水平大体均衡,不同的是一所大学在某一学科或者专业有公认的声誉。比如,在计算机领域,亚琛工业大学、卡尔斯鲁厄大学、慕尼黑工业大学和锡根大学等具有很高的知名度。德国现有各类大学一百多所(不考虑其他的高等专科大学),在校学生约两百万。学生有多种途径取得大学入学资格,基本上能够根据兴趣选择不同的专业。一般地,经过五年的学习,才能被授予德国的Diplom学位,相当于一些国家的硕士学位。但是,由于在德国大学里没有学习年限,且不需交纳学费,相当一部分学生在学校逗留时间超过六年。这种情况导致了至今未停歇的、轰轰烈烈的一系列教育改革大讨论。且为了与国际接轨,德国一些大学开始授予学生“学士”和“硕士”学位文凭。

2计算机教育

德国是制造出世界上第一台计算机的国家,德国人Konard Zuse(1910-1995)被认为是现代计算机的发明者。他在1936年建造出第一台可以编写程式的计算机Z1和后来更高级的Z3和Z4。然而,尽管是世界上计算机研制起步最早的国家,受二战后盟国政策的影响,计算机技术在德国属于受限制发展的范围。到了上个世纪六十年代后,德国计算机应用和技术的发展才开始,相关的计算机教育和学科建设才起步和推动。今天,德国的计算机和信息技术在工业、媒体和生活等各个领域已经相当普及。

计算机普及和就业市场的旺盛需求推动计算机学科纵向和横向地朝各个领域快速扩张和发展。德国的情形也是一样,跟随各个行业信息化的浪潮,计算机的影响席卷科学、社会和经济的所有部门。每个人都以某种形式来学习计算机的相关知识,计算机教育得到长足的发展。尤其在大学里,可以找到所有与计算机有关的课程和专业,可以授予计算机科学学士、硕士和博士学位。面对目前供不应求的情况,计算机毕业生炙手可热,大部分愿意早点时间进入就业市场,有些人在工作几年后再回来深造并完成博士论文研究。德国大学的计算机课程与电子电气课程在一个系里,不是彼此独立设置,这点给我深刻的印象。在德语里,Informatik其实是个来自法语的单词,表示计算机科学的涵义,与电气Electrotechnik或电子Electronik结合,意味着这一学科与工程的紧密关系。这点与德国人那种实践主义的精神很吻合,但并不就是说德国大学的计算机课程只注重工程方面的应用。

德国大学计算机专业设置与其他国家大体相同,有计算机科学、计算机工程、信息系统、信息技术和软件工程。也有像人工智能、多媒体、图形学、机器人和生物医学二级专业门类。计算机专业在德国能够吸引高质量的学生,大学能为他们提供最好的学习条件。在开始学习阶段,学的是学科和专业基础相关的课程,比如数学课程。到了后半段学习时间,学生才会深入接触专业课程。这些专业课程的选择通常与将来合作的教授的研究兴趣有很大关系,另外,学生的Diplom论文工作也与教授的研究项目有关。在德国的大学里,一个教授即是一个研究所,一个研究所一般也就一个研究方向,很少有超过两个教授以上的研究所。假使有两个教授的研究所,也是工作在同一个课题方向。德国大学的学生很容易接近教授的工作,这点跟我国的情况有很大的不同。

3教学和科研统一

德国的高等教育重视能力的培养,重视思维方法的训练,重视实践过程,甚至直截了当地将目光投向实际技能的教育。从课程设置、专业学习和Diplom论文工作,都能反映出这一点。特别是在学习的第二个阶段,学生非常有针对性、系统地学习专业课程,为将来工作和科研打下基础。德国大学的教授不会照本宣科地传授教材上的经典理论,事实上他们也不使用特定的教材,更多的是讲授根据个人对专业和科学的理解准备的素材,有些就是自己的专门研究成果。这样,教授可以基于最新的资料,在较高的层次上传授学生将来从事研究和工作所需要的专门知识和技能。这点不光在计算机学科,其他的学科也是这样。这种教学与科研的结合非一般的通识教育,在德国已有相当长的传统。我国大学的计算机教育情况有些不同。虽然学生在后半个阶段也是专业课程学习,老师们教的较多的是教材上的知识。而且在这个关键的专业学习阶段,学生接触实际的机会较少。

笔者在德国锡根大学实时学习系统研究所(Echtzeit Lernsysteme - EZLS)学习和工作过,以为该所在教学与科研统一方面做的非常成功,有许多值得思考和学习之处。EZLS的正式大学员工只有一个教授、一个访问学者、一个工程师、一个秘书和四个博士研究生,其余是不定数量的Diplom学生。教授每年张贴一次广告,招收对研究有兴趣的、三年级以后的学生。经过全面考核,每次录用十个左右。这些学生在项目里的分工不同,一般以三个或四个为一组。以AMOR项目为例,每年有两组学生加入,算上固定的科研人员,可以看出项目有一支强壮的、可持续的队伍。AMOR是一台室外移动机器人,学生的分组是依据它的研究内容进行,目前有计算机操作系统和数据通讯组、惯性传感系统组、视觉信息处理组和导航方案组。因为在前一阶段学习了基础课程,学生加入项目组后学习的是深入的专业知识和技能,比如嵌入系统、计算机接口与通讯、数字信号处理、计算机视觉、移动机器人和人工智能,等。这些专业课程,可以是本所教授开的课,也可以是外所教授开的课。可以看出来,这种专业学习是面向项目研究的。也正是在这个学习阶段,学生获得许多手工实践的机会,研究所也提供学生实现想法和思路的最好条件,比方说,设计、加工和检测进行信号采集与处理的印刷板电路,利用AMOR平台进行新算法测试和验证,等。这类实践,对运用所学基础理论、提高专业知识和技能以及培养科研创新能力有重大的意义。AMOR能在今年欧洲移动机器人大赛(C-ELROB)的激烈对抗中获得自动巡航赛道的冠军,可以说是教学与科研统一结下的一个硕果。教学与科研统一在德国大学计算机教育基本有一定的模式,不同专业方向与上面的例子大同小异。

作者:杨唐文

上一篇:工作总结小结(精选2篇)下一篇:上半年车间工作总结(精选2篇)