电力系统继电保护技术发展论文

2022-05-05 版权声明 我要投稿

继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。一、计算机化随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。今天小编为大家推荐《电力系统继电保护技术发展论文 (精选3篇)》,仅供参考,希望能够帮助到大家。

电力系统继电保护技术发展论文 篇1:

浅析电力系统继电保护技术发展与标准化建设

摘 要:此文阐述了我国电力系统继电保护的发展过程,并且对目前智能电网保护的发展方向与标准化建设提出了若干建议。

关键词: 电力系统 继电保护 现状 发展趋势

中图法分类号: TM73 文献标识码 :A

1 继电保护技术发展历程

到目前为止,为不同原理、不同机型微机线路和主设备保护等各领域都取得了长足发展,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠继电保护装置。微机保护装置研究,微机保护软件、算法等方面也取了很多理论成果。可以说从90年代开始我国继电保护技术已进入了微机保护时代。继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。 (1)计算机化 。随着计算机技术的不断发展,计算机应用范围也不断发展。整个供电系统对计算机保护要求也在不断提高,除了保护基本功能外,还具有容量大故障信息和数据长期存放的空间,另外,快速数据处理功能、强大通信能力、控制装置和调度联网以共享全系统数据、信息和网络资源能力。南京电力自动化研究院一开始就研制了16位CPU为基础微机线路保护,已得到大面积推广,目前也研究32位保护硬件系统。东南大学研制微机主设备保护硬件也进行了多次改进和提高,这样的例子很多。

(2)控制网络化 。计算机网络在电力方面的应用已成为信息时代电力行业支柱,使电力生产和工作强度发生了根本变化。它深刻影响着电力行业的发展,为电力行业提供了强有力通信手段。网络化后继电保护装置能够得到系统故障信息多,则对故障性质、故障位置判断和故障距离检测愈准确。微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展必然趋势。 (3)数据通信一体化 ,实现继电保护微机控制一体化的条件下,保护装置实际上就是一台高性能、多功能计算机,是整个电力系统计算机网络上一个智能终端。它可从网上获取电力系统运行和故障任何信息和数据,也可将它所获被保护元件任何信息和数据传送给网络控制中心或任一终端。每个微机保护装置可完成继电保护功能,无故障正常运行情况下还可完成测量、控制、数据通信功能,既实现保护、控制、测量、数据通信一体化。1992年天津大学提出了保护、控制、测量、通信一体化问题,并研制了以TMS320C25数字信号处理器(DSP)为基础一个保护、控制、测量、数据通信一体化装置。 (4)智能化 。最近几年来,人工智能技术在电力系统各个领域都到了应用,继电保护领域应用研究也已开始。神经网络是一种非线性映射方法,很多难以列出方程式或难解复杂非线性问题,应用神经网络方法则可迎刃而解。例如输电线两侧系统电势角度摆开情况下发生渡电阻短路就是一非线性问题,距离保护很难正确作出故障位置判别,造成误动或拒动;用神经网络方法,大量故障样本训练,样本集中充分考虑了各种情况,则发生任何故障时都可正确判别。天津大学从1996年起进行神经网络式继电保护研究,已取初步成果。可以预见,人工智能技术继电保护领域必会到应用,以解决用常规方法难以解决问题。

2 建设完整的战略性继电保护标准体系

继电保护是电力系统非常重要的保护系统,因为这个系统能以最短的时间切除故障.确保事故对整个电网损害影响范围尽可能的最小化,用以维护电力系统特别是高压、超高压和大电网、大容通设备的平稳安全的运行。目前.我国电网特别是高压、超高压电网和大容,设备采用的继电保护设备,基本都由电力行业所属单位提供。因此,中国电力企业联合会一直十分重视继电保护专业及其标准化的建设。在相关部门的指导下,我们将继电保护专业的标准化技术体系建设,作为提升我国继电保护专业的研发、设计、制造、运行和管理等方面的水平的一项战略规划任务。围绕标准化体系建设,我们主要做了以下工作,按产品的分类,制定若干项主要产品的技术标准,作为产品研发的主要要求。按照在在电力系统使用的要求,制定产品设计标准。为提高继电保护设备的制造质量,制定了在制造、检验方面的技术标准。为使继电保护设备能够在电力系统成功地运行,制定了安装和运行方面的标准。为了对继电保护设备在各个方面的工作进行评价和监督,制定了继电保护设备运行评价规程、整定计算和管理标准。

总之,从继电保护设备的研发开始,直到在电力系统运行的所有过程,都有标准可循,有规章可依,形成我国继电保护专业完整的标准化建设体系。这个体系,也随着技术进步和继电保护工作重点的变化,用科学发展观及时加以修订和补充。

3 通过制定技术标准引导技术进步

为了在充分满足电力系统要求的基础上.规范对继电保护设备和安全稳定控制设备的全面要求,相关部门及时制定了《電力系统橄机继电保护技术导则》和《电力系统安全稳定控制技术导则》。在制定这两项标准时,考虑到微机技术的快速发展将促进继电保护技术的发展,我们在充分征求并采纳有关学者、专家的意见后,采取了当年日本在制定机床标准时适当超前当时的机床技术水平的做法,在有关的技术指标的性能方面,适当超前于当时的继电保护普谊的技术水平,使得在标准发布后的继电保护和安全自动装置水平有较大的提高,为利用技术标准促进技术进步做了有益的尝试,在某项继电保护新技术发展的初期,要及时总结经验,通过制定相应的技术标准,引导继电保护技术进步。 随着“十二五”计划实施,我国电力建设将进入一个以高技术为主的崭新时期。同时,随着计算机和通信技术的发展,继电保护专业将融入更多的新技术。在这种形势下.我们将进一步围绕电力系统的建设,以科学发展观为指导.开展以下继电保护标准化工作:1.制定特高压电力系统的继电保护和安全稳定控制的技术和管理的系列标准。2制定特高压直流系统的保护和控制技术及管理系列标准。3.充分考虑继电保护和其他新技术的融合带来的变化,制定新的特别是需要其他专业配合或配合其他专业的标准。例如数字化变电站的标准化建设,以及电子式互感器、光纤通遂及规约等技术标准。4.积极参与I EC/TC95的活动。目前已派出3位继电保护专家参加丁C95的特别工作组,参与继电保护性能标准的总体规划工作。尽管TC95在制定这方面的标准要达到国内的水还有很长的路耍走.但是我们可通过参与其中的工作,了解各方面的情况,并且在技术标准方面获得发言权。

继电保护标委始终坚持标准化工作为电力建设服务的原则,紧紧跟踪行业的发展和工作重点的变化,制定急需的标准。在继电保护技术发展的每个阶段,我们都在征求专家意见的基础上,及时提出并制定相关的技术或管理标准,以满足电力行业发展的需要。

作者:万国

电力系统继电保护技术发展论文 篇2:

浅议电力系统继电保护技术发展

继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。

一、 计算机化

随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。原华北电力学院研制的微机线路保护硬件已经历了三个发展阶段:从8位单CPU结构的微机保护问世,不到5年时间就发展到多CPU结构,后又发展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。华中理工大学研制的微机保护也是从8位CPU,发展到以工控机核心部分为基础的32位微机保护。

电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其他保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台PC机的功能。在计算机保护发展初期,曾设想过用一台小型计算机做成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。天津大学已研制成用同微机保护装置结构完全相同的一种工控机加以改造作成的继电保护装置。这种装置的优点有:(1)具有486 PC机的全部功能,能满足对当前和未来微机保护的各种功能要求。(2)尺寸和结构与目前的微机保护装置相似,工艺精良、防震、防过热、防电磁干扰能力强,可运行于非常恶劣的工作环境,成本可接受。(3)采用STD总线或PC总线,硬件模块化,对于不同的保护可任意选用不同模块,配置灵活、容易扩展。

继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。

二、 网络化

计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻地影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。继电保护的作用也只限于切除故障元件、缩小事故影响范围。这主要是由于缺乏强有力的数据通信手段。国外早已提出过系统保护的概念,这在当时主要指安全自动装置。因继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网链接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。对于一般的非系统保护,实现保护装置的计算机联网也有很大的好处。继电保护装置能够得到的系统故障信息愈多,则对故障性质、故障位置的判断和故障距离的检测愈准确。对自适应保护原理的研究已经过很长的时间,也取得了一定的成果,但要真正实现保护对系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,只有实现保护的计算机网络化,才能做到这一点。对于某些保护装置实现计算机联网,也能提高保护的可靠性。天津大学1993年针对未来三峡水电站500 kV超高压多回路母线提出了一种分布式母线保护的原理,初步研制成功了这种装置。其原理是将传统的集中式母线保护分散成若干个(与被保护母线的回路数相同)母线保护单元,分散装设在各回路保护屏上,各保护单元用计算机网络联接起来,每个保护单元只输入本回路的电流量,将其转换成数字量后,通过计算机网络传送给其他所有回路的保护单元,各保护单元根据本回路的电流量和从计算机网络上获得的其他所有回路的电流量,进行母线差动保护的计算,如果计算结果证明是母线内部故障则只跳开本回路断路器,将故障的母线隔离。在母线区外故障时,各保护单元都计算为外部故障均不动作。这种用计算机网络实现的分布式母线保护原理,比传统的集中式母线保护原理有较高的可靠性。因为如果一个保护单元受到干扰或计算错误而误动时,只能错误地跳开本回路,不会造成使母线整个被切除的恶性事故,这对于像三峡电站具有超高压母线的系统枢纽非常重要。

由上述可知,微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。

三、 保护、控制、测量、数据通信一体化

在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。

目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰。现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,将来必然在电力系统中得到应用。在采用OTA和OTV的情况下,保护装置应放在距OTA和OTV最近的地方,亦即应放在被保护设备附近。OTA和OTV的光信号输入到此一体化装置中并转换成电信号后,一方面用作保护的计算判断;另一方面作为测量量,通过网络送到主控室。从主控室通过网络可将对被保护设备的操作控制命令送到此一体化装置,由此一体化装置执行断路器的操作。1992年天津大学提出了保护、控制、测量、通信一体化问题,并研制了以TMS320C25数字信号处理器(DSP)为基础的一个保护、控制、测量、数据通信一体化装置。

四、 智能化

近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。例如,在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其他如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。天津大学从1996年起进行神经网络式继电保护的研究,已取得初步成果。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。

建国以来,我国电力系统继电保护技术经历了四个时代。随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化,这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

(广东晶通公路工程建设集团有限公司)

作者:吕国栋

电力系统继电保护技术发展论文 篇3:

电力系统继电保护现状及发展状况综述

【摘要】电力系统继电保护是保证电力系统安全运行、提高经济效益的有效技术。本文阐述了电力系统继电保护的概念、组成结构,基本任务及电力系统对其的基本要求,回顾了继电保护技术的发展历史,讨论了其发展现状,最后了继电保护技术的未来发展方向。

【关键词】继电保护;速动;微机化;网络化

Key words:relay protection;quick-operation;computerization;networkiing

1.继电保护的概念、组成、任务及其基本要求

1.1 继电保护的概念和基本组成

继电保护技术通常是指根据电力系统故障和危机安全运行的异常工况,提出切实可行的对策的反事故自动化措施。

一般来说,一套继电保护装置由3个部分组成,即测量部分、逻辑部分和执行部分,其结构原理图如图1所示。

图1 继电保护装置的结构原理图

(1)测量部分。测量被保护装置的工作状态电气参数,与整定值进行比较,从而判断保护装置是否应该启动。

(2)逻辑部分。根据测量部分逻辑输出信号的性质、先后顺序、持续时间等,使保护装置按一定的逻辑关系判定故障类型和范围,确定保护装置如何动作。

(3)执行部分。根据接收到的逻辑部分的信号,完成跳闸、发出信号等动作。

1.2 电力系统中继电保护的基本任务

继电保护是保证电力系统安全运行、提高经济效益的有效技术,其基本任务:

(1)自动的、迅速的、有选择性的将故障元件从电力系统切除,迅速恢复非故障部分的正常供电;

(2)能正确反映电气设备的不正常运行状态,并根据不正常工作情况和设备运行维护条件的不同发出信号,以便值班人员进行处理,或由装置自动调整;

(3)与供配电系统的自动装置,如自动重合闸装置ARD、备用电源自动投入装置APD等配合,根据电网运行方式,选择短路类型,选择分值系数,缩短事故停电时间,提高供电系统的运行可靠性。

1.3 电力系统中对继电保护的基本要求

判断继电保护装置是否符合标准,必须在技术上满足以下条件:选择性、速动性、灵敏性和可靠性这四个基本要求。而对于其他一些较轻微的故障,继电保护要求也因此降低了,发生故障时可动作于发信号来满足保护条件即可。

(1)选择性

当电力系统中线路或设备发生短路故障时,负责本段线路胡设备的继电保护装置会动作,当其拒动时,会由相邻设备或线路的保护装置将故障切除;

(2)速动性

电力系统发生故障时,电力系统中继电保护装置应能够快速地将故障切除,防止对人或电力设备、公共财产造成不必要的伤亡损失降低设备的损坏程度,提高系统并列运行的稳定性;

(3)灵敏性

当电力系统中线路或设备发生短路故障时,电力系统保护装置的及时反应动作能力,能够满足灵敏性的要求的继电保护,在规定范围内发生故障时,不论短路点的短路的类型和位置如何,以及短路点是否存有过渡电阻,都能够正确反应并动作,即要求不仅在系统的最大运行方式下三相线路短路时能够可靠动作。电力系统中保护装置的灵敏度大小是由灵敏系数来衡量;

(4)可靠性

即是继电保护设备能够安全稳定的工作动作,不误动、不拒动是对继电保护装置最根本要求。

选择性、速动性、灵敏性和可靠性这四个基本要求既相互联系又相互制约,我们应视具体问题而定,辩证的利用这四个要求合理做出机电保护装置的设定。

2.继电保护发展历程与现状

电力系统的发展带动了继电保护的不断发展。在二十世纪初期,电力电网系统的发展,继电器广泛开始在电力系统的保护中应用,这个时期是继电保护装置技术发展的开端。自二十世纪五十年代到九十年代末,在四十多年的时间里,电力系统继电保护装置完成了发展的四个阶段,从电磁式继电保护装置到晶体管式的继电保护装置再到集成电路的继电保护装置及微机继电保护装置。

十九世纪后期,电力系统结构日趋复杂,电力系统的飞速发展,短路容量的不断增大,到二十世纪初期产生了作用于断路器的电磁型的继电保护装置。虽然在一九二八年电力电子器件已开始与保护装置相结合,但电子型的静态继电器的大量生产和推广,只是在当时五十年代晶体管与其他的固态元器件发展起来之后才能够得以实现。静态继电器具有较高的灵敏度及维护简单、作速度、寿命长、消耗功率小、体积小等优点,但容易受外界干扰和环境温度的影响。随后在一九五六年出现了应用计算机研发的数字式继电保护。大规模的模集成电路技术飞速发展,微型计算机和微处理机普遍的应用,极大地推动了数字式继电保护技术开发与研究,目前微机式数字保护技术正处于日新月异的研究与试验阶段,并已有少量装置已电力系统的容量逐渐增大,应用范围越来越广是当今电力电网企业所面临的一个重要问题,仅仅是将系统的各元件的继电保护装置设置完善,远远不能避免。电力电网中因长时间停电造成的事故与经济损失。当电力电网系统正常运行被破坏时,尽可能的将其影响的范围限制到最小,负荷停电的时间减小到最短这是电力系统保护的任务。因此必须从电力系统的全局出发,研究的故障元件被相应的继电保护装置动作并切除后,系统将呈现何种状况,如何尽快的恢复正常运行等等。此外,炉、机、电任一部分的故障都将影响到电能的生产安全,特别是在大机组和大电力系统中的相互协调和影响正成为电能生产安全的重大课题。因此,保证炉、机、电的安全运行已经成为继电保护的一项重要任务。

3.继电保护的未来发展方向

随着计算机技术、电子技术、通信技术的飞速发展,人工智能技术如遗传算法、人工神经网络、模糊逻辑、进化规模等相继在电力系统继电保护的领域研究中应用,电力系统继电保护技术已向网络化、计算机化、一体化方向不断发展。

3.1 继电保护的计算机化

按照著名的摩尔定律,芯片上的集成度每隔18-24个月翻一番。其结果是不仅计算机硬件的性能成倍增加,价格也在迅速降低。微处理机的发展主要体现在单片化及相关功能的极大增强,片内硬件资源得到很大扩充,单片机与DSP芯片二者技术上的融合,运算能力的显著提高以及嵌入式网络通信芯片的出现及应用等方面。这些发展使硬件设计更加方便,高性价比使冗余设计成为可能,为实现灵活化、高可靠性和模块化的通用软硬件平台创造了条件。

我国在2000年220kV及以上系统的微机保护率为43.99%,线路微机保护占86%,到2003年底,220kV以上系统的微机保护已占到70.29%,线路的微机化率达到97.6%。实际运行中,微机保护的正确动作率要明显高于其他保护,一般比平均正常动作率高0.2-0.3个百分点。

继电保护装置的计算机化是不可逆转的发展趋势。电力系统对微机保护的要求不断提高,除了保护基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信功能,与其他保护、控制装置和调度联网以供享全系统数据、信息和网络资源的能力、高级语言编程等。

3.2 继电保护的网络化

网络保护是计算机技术、通信技术、网络技术和微机保护相结合的产物,通过计算机网络来实现各种保护功能,如线路保护、变压器保护、母线保护等。网络保护的最大好处是数据共享,可实现本来由高频保护、光纤保护才能实现的纵联保护。另外,由于分站保护系统采集了该站所有断路器的电流量、母线电压量,所以很容易就可实现母线保护,而不需要另外的母线保护装置。

电力系统网络型继电保护是一种新型的继电保护,是微机保护技术发展的必然趋势。它建立在计算机技术、网络技术、通信技术以及微机保护技术发展的基础上。网络保护系统中网省级、省市级和市级主干网络拓扑结构,以及分站系统拓扑结构均可采用简单、可靠的总线结构、星形结构、环形结构等。分站保护系统在整个网络保护系统中是最重要的一个环节。分站保护系统有两种模式:一是利用现有微机保护;另一个是组建新系统,各种保护功能完全由分站系统保护管理机实现。由于继电保护在电网中的重要性,必须采取有针对性的网络安全控制策略,以确保网络保护系统的安全。

3.3 继电保护的智能化

随着计算机技术的飞速发展及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法不断被应用于计算机继电保护中,近年来人工智能技术如专家系统、人工神经、网络、遗传算法、模糊逻辑、小波理论等在电力系统各个领域都得到了应用,从而使继电保护的研究向更高的层次发展,出现了引人注目的新趋势。例如电力系统继电保护领域内出现了用人工神经网络(ANN)来实现故障类型的判别、故障距离的测定、方向保护、主设备保护等。在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一种非线性问题,距离保护很难正确做出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。

随着人工智能技术的不断发展,新的方法也在不断涌现,在电力系统继电保护中的应用范围也在不断扩大,为继电保护的发展注人了新的活力。将不同的人工智能技术结合在一起,分析不确定因素对保护系统的影响,从而提高保护动作的可靠性,是今后智能保护的发展方向。虽然上述智能方法在电力系统继电保护中应用取得了一些成果,但这些理论本身还不是很成熟,需要进一步完善。随着电力系统的高速发展和计算机、通信等各种技术的进步和发展,可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。

3.4 保护、控制、测量、数据通讯一体化

在实现继电保护的计算机化和网络化的前提下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可以从网络上获取电力系统运行和故障的任何信息和数据,也可将它获得的任何被保护元件的信息和数据传送给网络控制中心或任意终端,即实现了保护、控制、测量、数据通讯一体化。如果将保护装置就地安装在室外变电站的被保护装置旁,则可以免除大量的控制电缆。

现在光电流互感器(OTA)和光电压互感器(OTV)已处于研究试验阶段,将来必然在电力系统继电保护装置中得到应用。

4.结论

随着电力系统的高速发展和计算机技术、网络技术和人工智能技术的进步,继电保护技术面临着进一步发展的趋势。其发展将出现原理突破和应用革命,由数字时代跨入信息化时代,发展到综合自动化水平。这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

参考文献

[1]杨奇逊.微型机继电保护基础[M].北京:水利电力出版社,1988.

[2]陈向东.电力系统网络型继电保护模式探讨[J].电力信息化,2009,7(1):38-40.

[3]张宇辉.电力系统微型计算机继电保护[M].北京:中国电力出版社,2000.

[4]葛耀中.新型继电保护与故障测距原理与技术[J].西安:西安交通大学出版社,1996.

[5]吕卫胜.人工智能技术在电力系统继电保护中的应用[J].山东电力技术,2006,147(1):61-63.

[6]胥岱遐,韩天行,梁志成.电力系统继电保护及自动化装置可靠性试验与评估[J].中国电力,2008,41(3):17-21.

作者简介:孙文革(1967—),大学本科,实验师,研究方向:电子技术及自动控制技术。

作者:孙文革

上一篇:市委科技培训指导方案下一篇:城市对外贸易发展措施探析论文