九年级数学知识点总结

2022-04-03 版权声明 我要投稿

年复一年,日复一日,当一段工作完成后,或是一个项目结束后,回首工作与项目的过程,从中反思不足之处,可获得宝贵的成长经验。因此,我们需要写一份工作报告,但如何写出重点突出的总结呢?今天小编为大家精心挑选了关于《九年级数学知识点总结》,仅供参考,大家一起来看看吧。

第一篇:九年级数学知识点总结

北师大版,九年级数学上册,证明(二)(三)知识点总结(最终版)

第一章 证明

(二)知识点

一、 证明三角形全等的方法

SSSSASASAAASHL

全等三角形的对应边相等,对应角相等。

二、 与等腰三角形有关的定理

定义:有两条边相等的三角形是等腰三角形

1、 等边对等角

2、 等腰三角形三线合一(底边上的中线、底边上的

高、顶角的角平分线)

3、 等角对等边

三、 与等边三角形有关的定理

定义:有三条边相等的三角形是等边三角形

1、 等边三角形的三个角都相等,并且每个角都等于

60°

2、 三个角都相等的三角形是等边三角形

3、 有一个角等于60°的等腰三角形是等边三角形

四、 与直角三角形有关的定理

1、 在直角三角形中,如果有一个锐角等于30°,

那么它所对的直角边等于斜边的一半。

2、 在直角三角形中,如果一条直角边等于斜边的一

半,那么这条直角边所对的锐角等于30°

3、 勾股定理:直角三角形两条直角边的平方和等于

斜边的平方

4、 勾股定理的逆定理:如果三角形两边的平方和等

于第三边的平方,那么这个三角形是直角三角形

五、 与线段的垂直平分线有关的定理

1、 线段垂直平分线上的点到这条线段两个端点的

距离相等

2、 到一条线段两个端点距离相等的点,在这条线段

的垂直平分线上

3、 三角形三条边的垂直平分线相较于一点,并且这

一点到三个顶点的距离相等

六、 与角平分线有关的定理

1、 角平分线上的点到这个角的两边的距离相等

2、 在一个角的内部,且到角的两边距离相等的点,

在这个角的平分线上

3、 三角形的三条角平分线相交于一点,并且这一点

到三条边的距离相等

七、 线段垂直平分线的作法

八、 角平分线的作法

第三章证明

(三)知识点

一、平行四边形:

1、性质定理:

平行四边形的对边相等;平行四边形的对角相等;

平行四边形的对角线互相平分。

2、判定定理:

两组对边分别平行的四边形是平行四边形(定义);两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两条对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形。

二、等腰梯形:

1、性质定理:

等腰梯形在同一底上的两个角相等; 等腰梯形的两条对角线相等。

2、判定定理:

同一底上的两个角相等的梯形是等腰梯形。

三、三角形中位线定理:

三角形的中位线平行且等于第三边的一半。

四、矩形:

1、性质定理:

矩形的四个角都是直角;矩形的对角线相等

2、判定定理:

有一个角是90°的平行四边形是矩形(定义); 有三个角是直角的四边形是矩形;

对角线相等的平行四边形是矩形。

3、定理:

直角三角形斜边上的中线等于斜边的一半;

如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

五、菱形:

1、性质定理:

菱形的四条边相等.

菱形的对角线互相垂直,并且每条对角线平分一组对角.

2、判定定理:

有一组临边相等的平行四边形是菱形(定义);四条边都相等的四边形是菱形;

对角线互相垂直的平行四边形是菱形.

六、正方形:

1、性质定理

正方形的四个角都是直角,四条边都相等;

正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。

2、判定定理

有一组临边相等的矩形是正方形(定义); 有一个角是直角的菱形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。 菱形的面积等于对角线乘积的一半。

七、中点四边形:

任意四边形的中点四边形是平行四边形; 平行四边形的中点四边形是平行四边形; 矩形的中点四边形是菱形; 菱形的中点四边形是矩形; 正方形的中点四边形是正方形; 等腰梯形的中点四边形是菱形。

第二篇:九年级上册数学知识点总结归纳

第二十一章

一元二次方程

第二十二章

二次函数

第二十三章

旋转

第二十四章

第二十五章

概率初步

第二十一章

一元二次方程

知识点1:一元二次方程的概念

一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为

0,这样的方程叫一元二次方

程.

一般形式:ax2+bx+c=0(a≠0)。注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

知识点2:一元二次方程的解法

1.直接开平方法:对形如(x+a)2=b(b≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。

X+a=

=-a+

=-a-

2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2=b的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b<0,则原方程无解.

3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是(b2-4ac≥0)。步骤:①把方程转化为一般形式;②确定a,b,c的值;③求出b2-4ac的值,当b2-4ac≥0时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程乘积的形式,解这两个一元一次方程,它们的解就是原一元二次方程的解.

因式分解的方法:提公因式、公式法、十字相乘法。

5.一元二次方程的注意事项:

在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程.

应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c的值;②若b2-4ac<0,则方程无解.

利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4)

=3(x+4)中,不能随便约去x+4。

注意:解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.

6.一元二次方程解的情况

⑴b2-4ac≥0方程有两个不相等的实数根;

⑵b2-4ac=0方程有两个相等的实数根;

⑶b2-4ac≤0方程没有实数根。

解题小诀窍:当题目中含有“两不等实数根”“两相等实数根”“没有实数根”时,往往首先考虑用b2-4ac解题。主要用于求方程中未知系数的值或取值范围。

知识点3:根与系数的关系:韦达定理

对于方程ax2+bx+c=0(a≠0)来说,x1

+x2

=—,x1●x2=。

利用韦达定理可以求一些代数式的值(式子变形),如

解题小诀窍:当一元二次方程的题目中给出一个根让你求另外一个根或未知系数时,可以用韦达定理。

知识点4:一元二次方程的应用

一、考点讲解:

1.构建一元二次方程数学模型,常见的模型如下:

与几何图形有关的应用:如几何图形面积模型、勾股定理等;

有关增长率的应用:此类问题是在某个数据的基础上连续增长(降低)两次得到新数据,常见的等量关系是a(1±x)2=b,其中a表示增长(降低)前的数据,x表示增长率(降低率),b表示后来的数据。注意:所得解中,增长率不为负,降低率不超过1。

经济利润问题:总利润=(单件销售额-单件成本)×销售数量;或者,总利润=总销售额-总成本。

动点问题:此类问题是一般几何问题的延伸,根据条件设出未知数后,要想办法把图中变化的线段用未知数表示出来,再根据题目中的等量关系列出方程。

2.注重解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.

一元二次方程与实际问题

1、病毒传播问题

2、树干问题

3、握手问题(单循环问题)

4、贺卡问题(双循环问题)

5、围栏问题

6、几何图形(道路、做水箱)

7、增长率、降价率问题

8、利润问题(注意减少库存、让顾客受惠等字样)

9、数字问题

10、折扣问题

第二十二章

二次函数

一、二次函数概念:

1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数

,而可以为零.二次函数的定义域是全体实数.

2.

二次函数的结构特征:

等号左边是函数,右边是关于自变量的二次式,的最高次数是2.

是常数,是二次项系数,是一次项系数,是常数项.

二、二次函数的基本形式

1.

二次函数基本形式:的性质:

a

的绝对值越大,抛物线的开口越小。

的符号

开口方向

顶点坐标

对称轴

性质

时,随的增大而

;时,随的增大而

;时,有最

.

时,随的增大而

;时,随的增大而

;时,有最

.

2.

的性质:

上加下减。

的符号

开口方向

顶点坐标

对称轴

性质

时,随的增大而

;时,随的增大而

;时,有最

.

时,随的增大而

;时,随的增大而

;时,有最

.

3.

的性质:

左加右减。

的符号

开口方向

顶点坐标

对称轴

性质

时,随的增大而

;时,随的增大而

;时,有最

.

时,随的增大而

;时,随的增大而

;时,有最

.

4.

的性质:

的符号

开口方向

顶点坐标

对称轴

性质

时,随的增大而

;时,随的增大而

;时,有最

.

时,随的增大而

;时,随的增大而

;时,有最

.

三、二次函数图象的平移

1.

平移步骤:

方法一:⑴

将抛物线解析式转化成顶点式,确定其顶点坐标

;

保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:

2.

平移规律

在原有函数的基础上“值正右移,负左移;值正上移,负下移”.

概括成八个字“左

,上

”.

方法二:

⑴沿轴平移:向上(下)平移个单位,变成

(或)

⑵沿轴平移:向左(右)平移个单位,变成(或)

四、二次函数与的比较

从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.

五、二次函数图象的画法

五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).

画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.

六、二次函数的性质

1.

当时,抛物线开口向上,对称轴为,顶点坐标为.

当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.

2.

当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.

七、二次函数解析式的表示方法

1.

一般式:(,,为常数,);

2.

顶点式:(,,为常数,);

3.

两根式(两点式):(,,是抛物线与轴两交点的横坐标).

注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

八、二次函数的图象与各项系数之间的关系

1.

二次项系数

二次函数中,作为二次项系数,显然.

当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;

当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.

总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.

2.

一次项系数

在二次项系数确定的前提下,决定了抛物线的对称轴.

在的前提下,

当时,,即抛物线的对称轴在轴左侧;

当时,,即抛物线的对称轴就是轴;

当时,,即抛物线对称轴在轴的右侧.

在的前提下,结论刚好与上述相反,即

当时,,即抛物线的对称轴在轴右侧;

当时,,即抛物线的对称轴就是轴;

当时,,即抛物线对称轴在轴的左侧.

总结起来,在确定的前提下,决定了抛物线对称轴的位置.

的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异”

总结:

3.

常数项

当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;

当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;

当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.

总结起来,决定了抛物线与轴交点的位置.

总之,只要都确定,那么这条抛物线就是唯一确定的.

二次函数解析式的确定:

根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:

1.

已知抛物线上三点的坐标,一般选用一般式;

2.

已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;

3.

已知抛物线与轴的两个交点的横坐标,一般选用两根式;

4.

已知抛物线上纵坐标相同的两点,常选用顶点式.

九、二次函数图象的对称

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达

1.

关于轴对称

关于轴对称后,得到的解析式是;

关于轴对称后,得到的解析式是;

2.

关于轴对称

关于轴对称后,得到的解析式是;

关于轴对称后,得到的解析式是;

3.

关于原点对称

关于原点对称后,得到的解析式是;

关于原点对称后,得到的解析式是;

4.

关于顶点对称(即:抛物线绕顶点旋转180°)

关于顶点对称后,得到的解析式是;

关于顶点对称后,得到的解析式是.

5.

关于点对称

关于点对称后,得到的解析式是

根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

十、二次函数与一元二次方程:

1.

二次函数与一元二次方程的关系(二次函数与轴交点情况):

一元二次方程是二次函数当函数值时的特殊情况.

图象与轴的交点个数:

当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离.

当时,图象与轴只有一个交点;

当时,图象与轴没有交点.

当时,图象落在轴的上方,无论为任何实数,都有;

当时,图象落在轴的下方,无论为任何实数,都有.

2.

抛物线的图象与轴一定相交,交点坐标为,;

3.

二次函数常用解题方法总结:

求二次函数的图象与轴的交点坐标,需转化为一元二次方程;

求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;

根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合;

二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.

抛物线与轴有两个交点

二次三项式的值可正、可零、可负

一元二次方程有两个不相等实根

抛物线与轴只有一个交点

二次三项式的值为非负

一元二次方程有两个相等的实数根

抛物线与轴无交点

二次三项式的值恒为正

一元二次方程无实数根.

与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:

图像参考:

十一、函数的应用

二次函数应用

二次函数考查重点与常见题型

1.

考查二次函数的定义、性质,有关试题常出现在选择题中,如:

已知以为自变量的二次函数的图像经过原点,

则的值是

2.

综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:

如图,如果函数的图像在第一、二、三象限内,那么函数的图像大致是(

)

y

y

y

y

1

1

0

x

o-1

x

0

x

0

-1

x

A

B

C

D

3.

考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:

已知一条抛物线经过(0,3),(4,6)两点,对称轴为,求这条抛物线的解析式。

4.

考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:

已知抛物线(a≠0)与x轴的两个交点的横坐标是-1、3,与y轴交点的纵坐标是-

(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.

5.考查代数与几何的综合能力,常见的作为专项压轴题。

【例题经典】

由抛物线的位置确定系数的符号

例1

(1)二次函数的图像如图1,则点在(

)

A.第一象限

B.第二象限

C.第三象限

D.第四象限

(2)已知二次函数y=ax2+bx+c(a≠0)的图象如图2所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x的值只能取0.其中正确的个数是(

)

A.1个

B.2个

C.3个

D.4个

(1)

(2)

【点评】弄清抛物线的位置与系数a,b,c之间的关系,是解决问题的关键.

例2.已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,O)、(x1,0),且1O;③4a+cO,其中正确结论的个数为(

)

A

1个

B.

2个

C.

3个

D.4个

会用待定系数法求二次函数解析式

例3.已知:关于x的一元二次方程ax2+bx+c=3的一个根为x=-2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为(

)

A(2,-3)

B.(2,1)

C(2,3)

D.(3,2)

例4、如图(单位:m),等腰三角形ABC以2米/秒的速度沿直线L向正方形移动,直到AB与CD重合.设x秒时,三角形与正方形重叠部分的面积为ym2.

(1)写出y与x的关系式;

(2)当x=2,3.5时,y分别是多少?

(3)当重叠部分的面积是正方形面积的一半时,

三角形移动了多长时间?求抛物线顶点坐标、

对称轴.

例5、已知抛物线y=x2+x-.

(1)用配方法求它的顶点坐标和对称轴.

(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.

【点评】本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系.

例6.已知:二次函数y=ax2-(b+1)x-3a的图象经过点P(4,10),交x轴于,两点,交y轴负半轴于C点,且满足3AO=OB.

(1)求二次函数的解析式;(2)在二次函数的图象上是否存在点M,使锐角∠MCO>∠ACO?若存在,请你求出M点的横坐标的取值范围;若不存在,请你说明理由.

例7、

“已知函数的图象经过点A(c,-2),

求证:这个二次函数图象的对称轴是x=3。”题目中的矩形框部分是一段被墨水污染了无法辨认的文字。

(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由。

(2)请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整。

点评:

对于第(1)小题,要根据已知和结论中现有信息求出题中的二次函数解析式,就要把原来的结论“函数图象的对称轴是x=3”当作已知来用,再结合条件“图象经过点A(c,-2)”,就可以列出两个方程了,而解析式中只有两个未知数,所以能够求出题中的二次函数解析式。对于第(2)小题,只要给出的条件能够使求出的二次函数解析式是第(1)小题中的解析式就可以了。而从不同的角度考虑可以添加出不同的条件,可以考虑再给图象上的一个任意点的坐标,可以给出顶点的坐标或与坐标轴的一个交点的坐标等。

用二次函数解决最值问题

例1

某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:

x(元)

15

20

30

y(件)

25

20

10

若日销售量y是销售价x的一次函数.

(1)求出日销售量y(件)与销售价x(元)的函数关系式;

(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?

【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:(1)设未知数在“当某某为何值时,什么最大(或最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;(2)问的求解依靠配方法或最值公式,而不是解方程.

例2.你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4

m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5

m处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5

m,则学生丁的身高为(建立的平面直角坐标系如右图所示)

(

)

A.1.5

m

B.1.625

m

C.1.66

m

D.1.67

m

分析:本题考查二次函数的应用

第二十三章

旋转

一、旋转

1、定义

把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质

(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

二、中心对称

1、定义

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质

(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形

把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点五、坐标系中对称点的特征

(3分)

1、关于原点对称的点的特征

两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)

2、关于x轴对称的点的特征

两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)

3、关于y轴对称的点的特征

两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)

第二十四章

一、知识回顾

圆的周长:

C=2πr或C=πd、圆的面积:S=πr²

圆环面积计算方法:S=πR²-πr²或S=π(R²-r²)(R是大圆半径,r是小圆半径)

二、知识要点

一、圆的概念

集合形式的概念:

1、圆可以看作是到定点的距离等于定长的点的集合;

2、圆的外部:可以看作是到定点的距离大于定长的点的集合;

3、圆的内部:可以看作是到定点的距离小于定长的点的集合

轨迹形式的概念:

1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;

固定的端点O为圆心。连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;

3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;

4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;

5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系

1、点在圆内

点在圆内;

2、点在圆上

点在圆上;

3、点在圆外

点在圆外;

三、直线与圆的位置关系

1、直线与圆相离

无交点;

2、直线与圆相切

有一个交点;

3、直线与圆相交

有两个交点;

四、圆与圆的位置关系

外离(图1)

无交点

;

外切(图2)

有一个交点

;

相交(图3)

有两个交点

;

内切(图4)

有一个交点

;

内含(图5)

无交点

;

五、垂径定理

垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:

①是直径

弧弧

弧弧

中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙中,∵∥

∴弧弧

六、圆心角定理

顶点到圆心的角,叫圆心角。

圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

此定理也称1推3定理,即上述四个结论中,

只要知道其中的1个相等,则可以推出其它的3个结论,

即:①;②;

③;④

弧弧

七、圆周角定理

顶点在圆上,并且两边都与圆相交的角,叫圆周角。

1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

即:∵和是弧所对的圆心角和圆周角

2、圆周角定理的推论:

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;

即:在⊙中,∵、都是所对的圆周角

推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。

即:在⊙中,∵是直径

或∵

∴是直径

推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

即:在△中,∵

∴△是直角三角形或

注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

八、圆内接四边形

圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

即:在⊙中,

∵四边形是内接四边形

九、切线的性质与判定定理

(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;

两个条件:过半径外端且垂直半径,二者缺一不可

即:∵且过半径外端

∴是⊙的切线

(2)性质定理:切线垂直于过切点的半径(如上图)

推论1:过圆心垂直于切线的直线必过切点。

推论2:过切点垂直于切线的直线必过圆心。

以上三个定理及推论也称二推一定理:

即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

十、切线长定理

切线长定理:

从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

即:∵、是的两条切线

平分

十一、圆幂定理

(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。

即:在⊙中,∵弦、相交于点,

(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

即:在⊙中,∵直径,

(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

即:在⊙中,∵是切线,是割线

(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。

即:在⊙中,∵、是割线

十二、两圆公共弦定理

圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。

如图:垂直平分。

即:∵⊙、⊙相交于、两点

∴垂直平分

十三、圆的公切线

两圆公切线长的计算公式:

(1)公切线长:中,;

(2)外公切线长:是半径之差;

内公切线长:是半径之和。

十四、圆内正多边形的计算

(1)正三角形

在⊙中△是正三角形,有关计算在中进行:;

(2)正四边形

同理,四边形的有关计算在中进行,:

(3)正六边形

同理,六边形的有关计算在中进行,.

十五、扇形、圆柱和圆锥的相关计算公式

1、扇形:(1)弧长公式:;

(2)扇形面积公式:

:圆心角

:扇形多对应的圆的半径

:扇形弧长

:扇形面积

2、圆柱:

(1)A圆柱侧面展开图

=

B圆柱的体积:

(2)A圆锥侧面展开图

=

B圆锥的体积:

第二十五章

概率初步

一、概率的概念

某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率.

2、事件类型:

①必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.

②不可能事件:有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件.

③不确定事件:许多事情我们无法确定它会不会发生,这些事情称为不确定事件.

3、概率的计算

一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都

相等,事件A包含其中的m中结果,那么事件A发生的概率为

(1)

列表法求概率

当一次试验要设计两个因素,

并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

(2)

树状图法求概率

当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。

4、利用频率估计概率

①利用频率估计概率

:在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。

②在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。

③随机数:在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。把这些随机产生的数据称为随机数。

第三篇:九年级数学知识点归纳:相似图形

常见考法

(1)判断某两个图形是不是相似;

(2)判断一组数据是不是成比例线段;

(3)已知图上距离和比例尺大小求实际距离;

(4)利用比例的性质求值。

误区提醒

(1)在判断四条线段是否成比例问题时忽略单位统一;(2)在用图上距离求实际距离时忽略了单位换算问题。

【典型例题】(XX江苏淮安)在比例尺为1:200的地图上,测得A,B两地间的图上距离为4,则A,B两地间的实际距离为.

【解析】4×200=9000=9

相似三角形

一、平行线分线段成比例定理及其推论:

定理:三条平行线截两条直线,所得的对应线段成比例。

2推论:平行于三角形一边的直线截其他两边所得的对应线段成比例。

3推论的逆定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条线段平行于三角形的第三边。

二、相似预备定理:

平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。

三、相似三角形:

定义:对应角相等,对应边成比例的三角形叫做相似三角形。

2性质:(1)相似三角形的对应角相等;

(2)相似三角形的对应线段成比例;

(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。

说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。

3判定定理:

(1)两角对应相等,两三角形相似;

(2)两边对应成比例,且夹角相等,两三角形相似;

(3)三边对应成比例,两三角形相似;

(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。

四、三角形相似的证题思路:

五、利用相似三角形证明线段成比例的一般步骤:

一“定”:先确定四条线段在哪两个可能相似的三角形中;

二“找”:再找出两个三角形相似所需的条;

三“证”:根据分析,写出证明过程。

如果这两个三角形不相似,只能采用其他方法,如找中间比或引平行线等。

六、相似与全等:

全等三角形是相似比为1的相似三角形,即全等三角形是相似三角形的特例,它们之间的区别与联系:

共同点它们的对应角相等,不同点是边长的大小,全等三角形的对应边相等,而相似三角形的对应的边成比例。

2判定方法不同,相似三角形只求形状相同的,大小不一定相等,所以改“对应边相等”成“对应边成比例”。

常见考法

(1)利用判定定理证明三角形相似;(2)利用三角形相似解决圆、函数的有关问题。

误区提醒

(1)根据相似三角形找对应边时,出现失误找错对应边,因此在写比例式时出错,导致解题错误信息;(2)在定理的实际应用中,常常忽视“夹角相等”这个重条,错误认为有两边对应比相等,再有一组角相等,就能得到两个三角形相似。

第四篇:新人教版九年级上册数学知识点归纳

第二十一章

一元二次方程

21.1

一元二次方程

在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。

一元二次方程有四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为

ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.

(4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)

21.2

降次——解一元二次方程

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:

1、直接开平方法:

用直接开平方法解形如(x-m)2=n

(n≥0)的方程,其解为x=±

m.

直接开平方法就是平方的逆运算.通常用根号表示其运算结果.

2、配方法

通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。

1.转化:

将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)

2.系数化1:

将二次项系数化为1

3.移项:

将常数项移到等号右侧

4.配方:

等号左右两边同时加上一次项系数一半的平方

5.变形:

将等号左边的代数式写成完全平方形式

6.开方:

左右同时开平方

7.求解:

整理即可得到原方程的根

3、公式法

公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,

b,

c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。

21.3

实际问题与一元二次方程

列一元二次方程解应用题是列一元一次方程解应用题的继续和发展

从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.

第二十二章

二次函数

22.1二次函数及其图像

二次函数(quadratic

function)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为y=ax2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。

一般的,自变量x和因变量y之间存在如下关系:

一般式  y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,(b2-4ac)/4a)

;

顶点式

y=a(x-h)2+k(a≠0,a、h、k为常数)或y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;

交点式

y=a(x-x1)(x-x2)

[仅限于与x轴有交点A(x1,0)和

B(x2,0)的抛物线]

;

重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。

y

在平面直角坐标系中作出二次函数y=x2的平方的图像,

可以看出,二次函数的图像是一条永无止境的抛物线。

不同的二次函数图像

如果所画图形准确无误,那么二次函数将是由一般式平移得到的。

x

轴对称

1.抛物线是轴对称图形。对称轴为直线x

=

-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

顶点

2.抛物线有一个顶点P,坐标为P

(

-b/2a

,4ac-b2)/4a

)

当-b/2a=0时,P在y轴上;当Δ=

b2-4ac=0时,P在x轴上。

开口

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

决定对称轴位置的因素

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

因为若对称轴在左边则对称轴小于0,也就是-

b/2a<0,所以b/2a要大于0,所以a、b要同号

当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-

b/2a>0,

所以b/2a要小于0,所以a、b要异号

可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时

即ab<

0

),对称轴在y轴右。

事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的

斜率k的值。可通过对二次函数求导得到。

决定抛物线与y轴交点的因素

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

抛物线与x轴交点个数

6.抛物线与x轴交点个数

Δ=

b2-4ac>0时,抛物线与x轴有2个交点。

Δ=

b2-4ac=0时,抛物线与x轴有1个交点。

Δ=

b2-4ac<0时,抛物线与x轴没有交点。

当a>0时,函数在x=

-b/2a处取得最小值,当a<0时,函数在x=

-b/2a处取得最大值

当b=0时,抛物线的对称轴是y轴,

7.特殊值的形式

①当x=1时

y=a+b+c

②当x=-1时

y=a-b+c

③当x=2时

y=4a+2b+c

④当x=-2时

y=4a-2b+c

用函数观点看一元二次方程

1.

如果抛物线与x轴有公共点,公共点的横坐标是,那么当时,函数的值是0,因此就是方程的一个根。

2.

二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

实际问题与二次函数

在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。

第二十三章

旋转

23.1

图形的旋转

1.

图形的旋转

(1)定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。

(2)生活中的旋转现象大致有两大类:一类是物体的旋转运动,如时钟的时针、分针、秒针的转动,风车的转动等;另一类则是由某一基本图形通过旋转而形成的图案,如香港特别行政区区旗上的紫荆花图案。

(3)图形的旋转不改变图形的大小和形状,旋转是由旋转中心和旋转角所决定,旋转中心可以在图形上也可以在图形外。

(4)会找对应点,对应线段和对应角。

2.

旋转的基本特征:

(1)图形在旋转时,图形中的每一个点都绕旋转中心旋转了同样大小的角度。

(2)图形在旋转时,对应点到旋转中心的距离相等,对应线段相等,对应角相等;

(3)图形在旋转时,图形的大小和形状都没有发生改变。

3.

几点说明:

(1)在理解旋转特征时,首先要对照图形,找出旋转中心、旋转方向、对应点、旋转角。

(2)旋转的角度是对应线段的夹角或对应顶点与旋转中心连线的夹角。

(3)旋转中心的确定分两种情况,即在图形上或在图形外,若在图形上,哪一点旋转过程中位置没有改变,哪一点就是旋转中心;若在图形外,对应点连线的垂直平分线的交点就是旋转中心。

23.2

中心对称

中心对称:把一个图形绕着某一点旋转180°,假如它能够与另一个图形重合,那么这刘遇图形关于这个点对称或中心对称。

中心对称的性质:①关于中心对称的刘遇图形,对应点所连线段都经过对称中心,而且被对称中心所平分。②关于中心对称的刘遇图形是全等形。

中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。

对称点的坐标规律:①关于x轴对称:横坐标不变,纵坐标互为相反数,②关于y轴对称:横坐标互为相反数,纵坐标不变,③关于原点对称:横坐标、纵坐标都互为相反数。

23.3

课题学习

图案设计

灵活运用平移、旋转、轴对称等变换进行图案设计.

图案设计就是通过图形变换(平移、旋转、轴对称或几种的组合)把基本图形组成具有一定意义的新图形,图案设计时不仅要看是否正确使用了图形变换,还要看图案是否很好的体现了设计意图.

第二十四章

24.1

定义:(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

圆心:(1)如定义(1)中,该定点为圆心

(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4)

垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示

直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

周长计算公式

1.、已知直径:C=πd

2、已知半径:C=2πr

3、已知周长:D=cπ

4、圆周长的一半:12周长(曲线)

5、半圆的长:12周长+直径

面积计算公式:

1、已知半径:S=πr平方

2、已知直径:S=π(d2)平方

3、已知周长:S=π(c2π)平方

24.2

点、直线、圆和圆的位置关系

1.

点和圆的位置关系

点在圆内点到圆心的距离小于半径

点在圆上点到圆心的距离等于半径

点在圆外点到圆心的距离大于半径

2.

过三点的圆不在同一直线上的三个点确定一个圆。

3.

外接圆和外心

经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。

外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。

4.

直线和圆的位置关系

相交:直线和圆有两个公共点叫这条直线和圆相交,这条直线叫做圆的割线。

相切:直线和圆有一个公共点叫这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。

相离:直线和圆没有公共点叫这条直线和圆相离。

5.

直线和圆位置关系的性质和判定

如果⊙O的半径为r,圆心O到直线的距离为d,那么

直线和⊙O相交;②

直线和⊙O相切;③

直线和⊙O相离。

圆和圆

定义:

两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。

两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。

两个圆有两个交点,叫做两个圆的相交。

两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。

两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。

原理:

圆心距和半径的数量关系:

两圆外离<=>

d>R+r

两圆外切<=>

d=R+r

两圆相交<=>

R-r=r)

两圆内切<=>

d=R-r(R>r)

两圆内含<=>

dr)

24.3

正多边形和圆

1、正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。

2、正多边形与圆的关系:

(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。

(2)这个圆是这个正多边形的外接圆。

3、正多边形的有关概念:

(1)正多边形的中心——正多边形的外接圆的圆心。

(2)正多边形的半径——正多边形的外接圆的半径。

(3)正多边形的边心距——正多边形中心到正多边形各边的距离。

(4)正多边形的中心角——正多边形每一边所对的外接圆的圆心角。

4、正多边形性质:

(1)任何正多边形都有一个外接圆。

(2)正多边形都是轴对称图形,当边数是偶数时,它又是中心对称图形,正n边形的对称轴有n条。

(3)边数相同的正多边形相似。

重点:正多边形的有关计算。

知识讲解

1、正多边形定义:各边相等,各角也相等的多边形叫正多边形。

例如:正三角形、正四边形(正方形)、正六边形等等。如果一个正多边形有n条边,那么,这个多边形叫正n边形。

再如:矩形不是正多边形,因为它只具有各角相等,而各边不一定相等;菱形不是正多边形,因为,它只具有各边相等,而各角不一定相等。

2、正多边形与圆的关系。

正多边形与圆有密切关系,把圆分成n(n≥3)等份,依次连结分点所得的多边形是这个圆的内接正n边形。

相邻分点间的弧相等,则所对的弦(正多边形的边)相等,相邻两弦所夹的角(多边形的每个内角)都相等,从而得出,所连的多边形满足了所有边都相等,所有内角都相等,从而这个多边形就是正多边形。

如:将圆6等分,即,则AB=BC=CD=DE=EF=FA。

观察∠A、∠B、∠C、∠D、∠E、∠F所对的弧可以发现都是相等的弧,所以,∠A=∠B=∠C=∠D=∠E=∠F。

所以,将一个圆6等分,依次连结各分点所得到的是⊙O的内接正六边形。

3、正多边形的有关计算。

(1)首先要明确与正多边形计算的有关概念:即正多边形的中心O,正多边形的半径Rn——就是其外接圆的半径,正多边形的边心距rn,正多边形的中心角αn,正多边形的边长an。

(2)正n边形的n条半径把正n边形分成n个全等的等腰三角形,等腰三角形的顶角就是正n边形的中心角都等于;如果再作出正n边形各边的边心距,这些边心距又把这n个等腰三角形分成了2n个全等的直角三角形。

如图:是一个正n边形ABCD……根据以上讲解,我们来分析RtΔAOM的基本元素:

斜边OA——正n边形的半径Rn;

一条直角边OM——正n边形的边心距rn;

一条直角边AM——正n边形的边长an的一半即AM=an;

锐角∠AOM——正n边形的中心角αn的一半即∠AOM=;

锐角∠OAM——正n边形内角的一半即∠OAM=[(n-2)·180°];

可以看到在这个直角三角形中的各元素恰好反映了正n边形的各元素。

因此,就可以把正n边形的有关计算归纳为解直角三角形的问题。

4、正多边形的有关作图。

(1)使用量角器来等分圆。

由于在同圆中相等的圆心角所对的弧也相等,因此作相等的圆心角(即等分顶点在圆心的周角)可以等分圆;根据同圆中相等弧所对的弦相等,依次连接各分点就可画出相应的正n边形。

(2)用尺规来等分圆。

对于一些特殊的正n边形,还可以用圆规和直尺作出图形。

①正四、八边形。

在⊙O中,用尺规作两条互相垂直的直径就可把圆分成4等份,从而作出正四边形。

再逐次平分各边所对的弧(即作∠AOB的平分线交于

E)

就可作出正八边形、正十六边形等,边数逐次倍增的正多边形。

②正六、三、十二边形的作法。

通过简单计算可知,正六边形的边长与其半径相等,所以,在⊙O中,任画一条直径AB,分别以A、B为圆心,以⊙O的半径为半径画弧与⊙O相交于C、D和E、F,则A、C、E、B、F、D是⊙O的6等分点。

显然,A、E、F(或C、B、D)是⊙O的3等分点。

同样,在图(3)中平分每条边所对的弧,就可把⊙O12等分……。

5、正多边形的对称性。

正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心,如果正多边形有偶数条边,那么,它又是中心对称图形,它的中心就是对称中心。

如:正三角形、正方形。

24.4

弧长和扇形面积

知识点1、弧长公式

因为360°的圆心角所对的弧长就是圆周长C=2R,所以1°的圆心角所对的弧长是,于是可得半径为R的圆中,n°的圆心角所对的弧长l的计算公式:,

说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。

(2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。

知识点2、扇形的面积

如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。

又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。

知识点3、弓形的面积

(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。

(2)弓形的周长=弦长+弧长

(3)弓形的面积

如图所示,每个圆中的阴影部分的面积都是一个弓形的面积,从图中可以看出,只要把扇形OAmB的面积和△AOB的面积计算出来,就可以得到弓形AmB的面积。

当弓形所含的弧是劣弧时,如图1所示,

当弓形所含的弧是优弧时,如图2所示,

当弓形所含的弧是半圆时,如图3所示,

注意:(1)圆周长、弧长、圆面积、扇形面积的计算公式。

圆周长

弧长

圆面积

扇形面积

(2)扇形与弓形的联系与区别

(2)扇形与弓形的联系与区别

知识点4、圆锥的侧面积

圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积

说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。

(2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。

知识点5、圆柱的侧面积

圆柱的侧面积展开图是矩形,如图所示,其两邻边分别为圆柱的高和圆柱底面圆的周长,若圆柱的底面半径为r,高为h,则圆柱的侧面积,圆柱的全面积

知识小结:

圆锥与圆柱的比较

名称

圆锥

圆柱

图形

图形的形成过程

由一个直角三角形旋转得到的,如Rt△SOA绕直线SO旋转一周。

由一个矩形旋转得到的,如矩形ABCD绕直线AB旋转一周。

图形的组成

一个底面和一个侧面

两个底面和一个侧面

侧面展开图的特征

扇形

矩形

面积计算方法

第二十五章

概率初步

25.1

随机事件与概率

1.随机试验与样本空间

具有下列三个特性的试验称为随机试验:

(1)

试验可以在相同的条件下重复地进行;

·

(2)

每次试验的可能结果不止一个,但事先知道每次试验所有可能的结果;

(3)

每次试验前不能确定哪一个结果会出现.

试验的所有可能结果所组成的集合为样本空间,用表示,其中的每一个结果用表示,称为样本空间中的样本点,记作.

2.随机事件

在随机试验中,把一次试验中可能发生也可能不发生、而在大量重复试验中却呈现某

种规律性的事情称为随机事件(简称事件).通常把必然事件(记作)与不可能事件(记作)

看作特殊的随机事件.

3.频率与概率的定义

(1)

频率的定义

设随机事件A在n次重复试验中发生了次,则比值/n称为随机事件A发生的频率,记作,即

.

(2)

概率的统计定义

在进行大量重复试验中,随机事件A发生的频率具有稳定性,即当试验次数n很大时,频率在一个稳定的值(0<<1)附近摆动,规定事件A发生的频率的稳定值为概率,即.

(3)

古典概率的定义

具有下列两个特征的随机试验的数学模型称为古典概型:

(i)

试验的样本空间是个有限集,不妨记作;

(ii)

在每次试验中,每个样本点()出现的概率相同,即

.

在古典概型中,规定事件A的概率为

.

(4) 几何概率的定义

如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为

·

25.2

用列举法求概率

1、当一次试验中,可能出现的结果是有限个,并且各种结果发生的可能性相等时,可以用被关注的结果在全部试验结果中所占的比分析出事件中该结果发生的概率,此时可采用列举法.

2、列举法就是把要数的对象一一列举出来分析求解的方法.但有时一一列举出的情况数目很大,此时需要考虑如何去排除不合理的情况,尽可能减少列举的问题可能解的数目.

3、利用列表法或树形图法求概率的关键是:①注意各种情况出现的可能性务必相同;②其中某一事件发生的概率;③在考查各种情况出现的次数和某一事件发生的次数时不能重复也不能遗漏;

4、用列表法或树形图法求得的概率是理论概率,而实验估计值是频率,它通常受到实验次数的影响而产生波动,因此两者不一定一致,实验次数较多时,频率稳定于概率,但并不完全等于概率。

25.3

用频率估计概率

在做大量重复试验时,随着试验次数的增加,一个随机事件出现的频率应该稳定于该事件发生的概率。事件发生的频率与概率既有区别又有联系:事件发生的频率不一定相同,是个变数,而事件发生的概率是个常数;但它们之间又有密切的联系,随着试验次数的增加,频率越来越稳定于概率。

在具体操作过程中,大家往往发现:虽然多次试验结果的频率逐渐稳定于概率,但可能无论做多少次试验,两者之间存在着一定的偏差。应该注意:这种偏差的存在是经常的,并且是正常的。另外,由于受到某些因素的影响,通过试验得到的估计结果往往不太理想,甚至有可能出现极端情况,此时我们应正确地看待这样的结果并尝试着对结果进行合理的解释。对试验结果的频率与理论概率的偏差的理解也是形成随机观念的一个重要环节。

在实际应用中,当试验次数越大时,出现极端情况的可能性就越小。因此,我们常常通过做大量重复试验来获得事件发生的频率,并用它作为概率的估计值。试验次数越多,得到的估计结果就越可靠。

第二十六章

反比例函数

26.1知识点1

反比例函数的定义

一般地,形如(k为常数,)的函数称为反比例函数,它可以从以下几个方面来理解:

⑴x是自变量,y是x的反比例函数;

⑵自变量x的取值范围是的一切实数,函数值的取值范围是;

⑶比例系数是反比例函数定义的一个重要组成部分;

⑷反比例函数有三种表达式:

①(),

②(),

③(定值)();

⑸函数()与()是等价的,所以当y是x的反比例函数时,x也是y的反比例函数。

(k为常数,)是反比例函数的一部分,当k=0时,,就不是反比例函数了,由于反比例函数()中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。

26.2知识点2用待定系数法求反比例函数的解析式

由于反比例函数()中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。

26.3知识点3反比例函数的图像及画法

反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量,函数值,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点:

①列表时选取的数值宜对称选取;

②列表时选取的数值越多,画的图像越精确;

③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;

④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

26.4知识点4反比例函数的性质

☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:

反比例函数

()

符号

图像

性质

①的取值范围是,y的取值范围是

②当时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y随x的增大而减小。

①的取值范围是,y的取值范围是

②当时,函数图像的两个分支分别在第二、第四象限,在每个象限内,y随x的增大而增大。

注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当时,y随x的增大而减小“,就会与事实不符的矛盾。

反比例函数图像的位置和函数的增减性,是有反比例函数系数k的符号决定的,反过来,由反比例函数图像(双曲线)的位置和函数的增减性,也可以推断出k的符号。如在第一、第三象限,则可知。

☆反比例函数()中比例系数k的绝对值的几何意义。

如图所示,过双曲线上任一点P(x,y)分别作x轴、y轴的垂线,E、F分别为垂足,

反比例函数()中,越大,双曲线越远离坐标原点;越小,双曲线越靠近坐标原点。

双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x和直线y=-x。

第二十七章 相似

27.1

图形的相似

概述

如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。(相似的符号:∽)

判定

如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。

相似比

相似多边形的对应边的比叫相似比。相似比为1时,相似的两个图形全等。

性质

相似多边形的对应角相等,对应边的比相等。相似多边形的周长比等于相似比。

相似多边形的面积比等于相似比的平方。

27.2

相似三角形

判定

1.两个三角形的两个角对应相等

2.两边对应成比例,且夹角相等

3.三边对应成比例

4.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

例题

∵∠A=∠A';

∠B=∠B'

∴△ABC∽△A'B'C'

性质

1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

2.相似三角形周长的比等于相似比。

3.相似三角形面积的比等于相似比的平方

27.3

位似

如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

性质

位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比。

位似多边形的对应边平行或共线。

位似可以将一个图形放大或缩小。

位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。

根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。

注意

1、位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;

2、两个位似图形的位似中心只有一个;

3、两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;

4、位似比就是相似比.利用位似图形的定义可判断两个图形是否位似;

5、平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形位似。

第二十八章 锐角三角函数

28.1

锐角三角函数

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。

正弦(sin)等于对边比斜边,

余弦(cos)等于邻边比斜边

正切(tan)等于对边比邻边;

直角三角形ABC中,

角A的正弦值就等于角A的对边比斜边,

余弦等于角A的邻边比斜边

正切等于对边比邻边,

28.2

解直角三角形

勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)

a^2+b^2=c^2,

其中a和b分别为直角三角形两直角边,c为斜边。

勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如:3,4,5。他们分别是3,4和5的倍数。

A

B

C

D

直角三角形的特征

⑴直角三角形两个锐角互余;

⑵直角三角形斜边上的中线等于斜边的一半;

⑶直角三角形中30°所对的直角边等于斜边的一半;

⑷勾股定理:直角三角形中,两直角边的平方和等于斜边的平方,即:

在Rt△ABC中,若∠C=90°,则a2+b2=c2;

A

B

C

a

c

b

⑸勾股定理的逆定理:如果三角形的一条边的平方等于另外两条边的平方和,则这个三角形是直角三角形,即:在△ABC中,若a2+b2=c2,则∠C=90°;

⑹射影定理:AC2=ADAB,BC2=BDAB,CD2=DADB.

锐角三角函数的定义:

如图,在Rt△ABC中,∠C=90°,

∠A,∠B,∠C所对的边分别为a,b,c,

则sinA=,cosA=,tanA=,cotA=

特殊角的三角函数值:(并会观察其三角函数值随的变化情况)

sin

cos

tan

cot

30°

45°

1

1

60°

1.

解直角三角形(Rt△ABC,∠C=90°)

⑴三边之间的关系:a2+b2=c2.

⑵两锐角之间的关系:∠A+∠B=90°..

⑶边角之间的关系:sinA=,cosA=.

tanA=,

⑷解直角三角形中常见类型:

①已知一边一锐角.②已知两边.③解直角三角形的应用.

第二十九章 投影与视图

29.1 投影

一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影(projection),照射光线叫做投影线,投影所在的平面叫做投影面。

有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。由平行光线形成的投影是平行投影(parallel

projection).

由同一点(点光源发出的光线)形成的投影叫做中心投影(center

projection)。投影线垂直于投影面产生的投影叫做正投影。

投影线平行于投影面产生的投影叫做平行投影。

物体正投影的形状、大小与它相对于投影面的位置有关。

29.2 三视图

三视图是观测者从三个不同位置观察同一个空间几何体而画出的图形。

将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状,

还有其它三个视图不是很常用。三视图就是主视图、俯视图、左视图的总称。

特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

主视、俯视

长对正

物体的投影

主视、左视

高平齐

左视、俯视

宽相等

在许多情况下,只用一个投影不加任何注解,是不能完整清晰地表达和确定形体的形状和结构的。如图所示,三个形体在同一个方向的投影完全相同,但三个形体的空间结构却不相同。可见只用一个方向的投影来表达形体形状是不行的。一般必须将形体向几个方向投影,才能完整清晰地表达出形体的形状和结构。

一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

画法:根据各形体的投影规律,逐个画出形体的三视图。画形体的顺序:一般先实(实形体)后空(挖去的形体);先大(大形体)后小(小形体);先画轮廓,后画细节。画每个

形体时,要三个视图联系起来画,并从反映形体特征的视图画起,再按投影规律画出其他两个视图。对称图形、半圆和大于半圆的圆弧要画出对称中心线,回转体一定要画出轴线。对称中心线和轴线用细点划线画出。

第五篇:九年级数学知识竞赛比赛结果

表扬

在数学教研组的组织下,学校3月底举行了九年级数学基础知识竞赛,以下同学在本次比赛中通过努力,取得了较好的成绩,特此表扬。

104班前6名:张权、胡丽玲、张彩霞、陈樟辉、周宏静、罗娟娟 105班前6名:张程、姜艳妃、张宇龙、吴兴红、吴齐玉、罗希 106班前6名:张友爱、余长江、姜杨、林颖、吴兴伟、吴彬好 希望其他同学多向他们学习,今后取得进步。

学校四月份将举行全校英语口语比赛,五月份将举行八年级地理知识竞赛,请各位同学做好参赛的准备,全力以赴,取得好成绩。

龙门中学教导处

2013.3.31

第六篇:九年级数学期末总结

心 2012-2013学年第二学期九年级数学期末总结

本学期即将结束,这一学期里在学校领导的关怀下,也通过我和学生的努力付出,顺利地完成了九年级数学教学工作。回顾这一学期,我觉得自己学到很多知识,也进步了很多,现将本期的教学工作总结如下:

本学期我继续担任九年级的数学教学工作,一学期来,我自始至终以认真、严谨的治学态度,勤恳、坚持不懈的精神从事教学工作。

为了能更好地胜任九年级数学教学工作,我在寒假期间就开始熟悉教材,并认真制定计划,认真备课,有了这些未雨绸缪的准备,在本学期的教学中我比较好地完成了教学任务。本学期我主要从以下几方面来开展教学工作:

一、学生情况

我校九年级大部分学生都是武术生,文化课基础差,即使是走读生,基础也不算好。特别是武术生,好动的性格使班级学习氛围不好。虽然面临中学毕业,但他们还是没有主动学习文化课的概念。又因为文化课基础差,又面临着毕业,许多学生认为:反正是上完这学期,就不上学了。他们就放弃了追求,根本就听不进老师、家长的教诲。

二、认真备好每一节课

①认真钻研教材,掌握教材的基本思想、基本概念,了解教材的结构,重点与难点,掌握知识的逻辑,并主动向其他教师请教应补充哪些资料,怎样才能教得更好。

②了解学生原有的知识技能,了解他们的兴趣、需要和习惯,知道他们学习新知识可能会有哪些困难,采取相应的预防措施。

③考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。

三、努力上好每一堂课

在数学课上,我注重把抽象的数学知识与学生的生活紧密联系,为学生创设一个富有生活气息的学习情境,同时,也要注重对学生学习能力的培养,引导学生在合作交流中学习,在主动探究中学习。课堂上,我始终以学生为学习主体,把学习的主动权交给学生,挖掘学生潜在的能力,让学生自主学习,学生自己能完成的,我决不包办代替。碰到简单的教学内容,我就放手让学生自学,不懂的地方提出来,由老师和同学们共同解决。让学生的智慧、能力、情感、心理得到满足,学生成了学习的主人,学习成了他们的需求,学中有发现,学中有乐趣,学中有收获,关注全体学生,注意信息反馈,调动学生的有意注意,使其保持相对稳定性,同时,激发学生的情感,使他们产生愉悦的心境,创造良好的课堂气氛,课堂语言简洁明了,克服了以前重复的毛病,课堂提问面向全体学生,注意引发学生学数学的兴趣。

四、工作中存在的问题

1、教材挖掘不深入。

2、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。

3、新课标下新的教学思想学习不深入。对学生的自主学习 , 合作学习 , 缺乏理论指导。

4、差生未抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数,导致了教学中的盲目性。

5、教学反思不够。

五、今后努力的方向

1、加强学习,学习新课标下新的教学思想。

2、学习新课标,挖掘教材,进一步把握知识点和考点。

3、多听课,学习同科目教师先进的教学方法的教学理念。

4、加强转差培优力度,加强教学反思,加大教学投入。

在今后的教学中我会不断反思,不断总结经验,不断创新,使不同的学生得到不同的发展,一份耕耘,一份收获,教学工作苦乐相伴,我将扬长避短,一如既往,再接再厉!

上一篇:酒店领班工作计划下一篇:酒吧消防工作总结