机械专业英语汇总

2022-09-05 版权声明 我要投稿

第1篇:机械专业英语汇总

机械密封行业常用英语汇总

1 . sealing ring --密封环

2. seal face--密封端面

3. seal interface--密封界面

4. rotating ring--动环/旋转环

5. stationary ring--静环/静止环

6. compensated ring--补偿环

7. un-compensated ring--非补偿环

8. seal head--补偿环组件

9. primary seal--主密封

10. secondary seal--副密封

11. auxiliary seal--辅助密封

12. auxiliary seal ring--辅助密封圈

13. bellows--波纹管

14. pushing out ring--撑环

15. back-up ring--挡圈

16. compensated ring adaptor--补偿环座

17. un-compensated ring adaptor--非补偿环座

18. spring adaptor--弹簧座

19. seal adaptor--波纹管座

20. retainer--传动座

21. driving screw--传动螺钉

22. set screw--紧定螺钉

23. snap ring--卡环

24. clamp ring--夹紧环

25. anti-rotating pin--防转销

26. annular seal space--密封腔

27. seal chamber--密封腔体

28. end cover--密封端盖

29. elastic component--弹性元件

30. a pair of friction components--摩擦副

31. inner circulation--内循环

32. outer circulation--外循环

33, self circulation--自循环

34. flush--冲洗

35. flush fluid--冲洗流体

36. quench--阻封

37. quench fluid--阻封流体

38 . buffer fluid--隔离流体

39 . temperature adjustable fluid--调温流体

40. coolant--冷却流体

41. heating fluid--加热流体

42. sealed medium--被密封介质

43. sealant--密封流体

44. pv --pv值(密封流体压力P与密封端面平均滑动速度V的乘积)45 . limiting pv --密封达到失效时的PV值.它表示密封的水平

46. working pv --极限PV值除以安全系数

47. PcV--端面比压Pc与密封端面平均滑动速度V的乘积

48. limiting PcV --密封达到失效时的PcV值.它表示密封材料的工作能力

49. working PcV --许用PcV值.极限PcV值除以 安全系数

50 .leakage rate-- 泄漏量

51 .run out--跳动

52. wear rate--磨损率

53. operating life--工作寿命

54. operating period--使用期

55 .abortive failure--早期失效

56. Operating limits:工作参数

57. Speed/velocity:转速

58. Combination of material:材料组合

59. Halted ring:弹簧挡圈

60. Bellows:波纹管

61. Retainer:传动套,传动座

62. Drive ring:压圈

63. Cup gasket:静环套

64. Spring retainer:弹簧座

65. O-ring: O形圈

66. Tension spring:拉簧

67. Stationary seat:静环形式/静环基座

68. Rotary seat:动环座

69. Drive screw:传动螺钉

70. Wave spring/Bellow spring:波形弹簧

71. Rotary o-ring:动环O形圈

72. Stationary o-ring:静环O形圈

73. Collar:定位套

74. Snap ring/clamp ring:卡环

75. Disc/thrust ring:止推环

76. Wedge ring:楔形环

77. Mating ring:静止环/静环

78. Primary ring:动止环/动环

79. Inventory:存货

80. Agitator:搅拌器

81. Cryogenics:低温学

82. Mixer:搅拌机

83. Refinery:炼油

84. Petrochemical:石化

85. Pulp:纸浆

86. Paramecia:配药

87. Desalination:脱盐

88. Wastewater:污水

89. Impeller:叶轮

90. Fit:安装

91. Lead:石墨,铅

92. Edge:边缘

93. Grade:等级

94. Secondary sealing element:辅助密封材质

95. Hydrostatic:流体静力学的

96. Cross-section:横截面

97. Material code:材料代码

98. Seal size:密封轴径尺寸

99. Assembly number:装配代码

100. Sulphuric:硫酸

101. Nitric acid:销酸

102. Phosphoric acid:磷酸

103. Hydrochloric:盐酸

104. PV—pressure/velocity:压力与转速105. RS—rotating seat:动环座

106. Multiplier:增效器

107. TC—tungsten carbide:硬质合金108. Pin:销

109. Engage:接合,啮合

110. Pro剖面/侧面

111. Adapter:适配器

第2篇:机械密封行业常用英语汇总

文章来源于:http:///

1.sealingring--密封环

2.sealface--密封端面

3.sealinterface--密封界面

4.rotatingring--动环/旋转环

5.stationaryring--静环/静止环

6.compensatedring--补偿环

7.un-compensatedring--非补偿环

8.sealhead--补偿环组件

9.primaryseal--主密封

10.secondaryseal--副密封

11.auxiliaryseal--辅助密封

12.auxiliarysealring--辅助密封圈

13.bellows--波纹管

14.pushingoutring--撑环

15.back-upring--挡圈

16.compensatedringadaptor--补偿环座

17.un-compensatedringadaptor--非补偿环座

18.springadaptor--弹簧座

19.sealadaptor--波纹管座

20.retainer--传动座

21.drivingscrew--传动螺钉

22.setscrew--紧定螺钉

23.snapring--卡环

24.clampring--夹紧环

25.anti-rotatingpin--防转销

26.annularsealspace--密封腔

27.sealchamber--密封腔体

28.endcover--密封端盖

29.elasticcomponent--弹性元件

30.apairoffrictioncomponents--摩擦副

31.innercirculation--内循环

32.outercirculation--外循环

33,selfcirculation--自循环

34.flush--冲洗

35.flushfluid--冲洗流体

36.quench--阻封

37.quenchfluid--阻封流体

38.bufferfluid--隔离流体

39.temperatureadjustablefluid--调温流体

40.coolant--冷却流体

41.heatingfluid--加热流体

42.sealedmedium--被密封介质

43.sealant--密封流体

44.pv--pv值(密封流体压力P与密封端面平均滑动速度V的乘积)

45.limitingpv--密封达到失效时的PV值.它表示密封的水平

46.workingpv--极限PV值除以安全系数

47.PcV--端面比压Pc与密封端面平均滑动速度V的乘积

48.limitingPcV--密封达到失效时的PcV值.它表示密封材料的工作能力

49.workingPcV--许用PcV值.极限PcV值除以安全系数

50.leakagerate--泄漏量

51.runout--跳动

52.wearrate--磨损率

53.operatinglife--工作寿命

54.operatingperiod--使用期

55.abortivefailure--早期失效

56.Operatinglimits:工作参数

57.Speed/velocity:转速

58.Combinationofmaterial:材料组合

59.Haltedring:弹簧挡圈

60.Bellows:波纹管

61.Retainer:传动套,传动座

62.Drivering:压圈

63.Cupgasket:静环套

64.Springretainer:弹簧座

65.O-ring:O形圈

66.Tensionspring:拉簧

67.Stationaryseat:静环形式/静环基座

68.Rotaryseat:动环座

69.Drivescrew:传动螺钉

70.Wavespring/Bellowspring:波形弹簧

71.Rotaryo-ring:动环O形圈

72.Stationaryo-ring:静环O形圈

73.Collar:定位套

74.Snapring/clampring:卡环

75.Disc/thrustring:止推环

76.Wedgering:楔形环

77.Matingring:静止环/静环

78.Primaryring:动止环/动环

79.Inventory:存货

80.Agitator:搅拌器

81.Cryogenics:低温学

82.Mixer:搅拌机

83.Refinery:炼油

84.Petrochemical:石化

85.Pulp:纸浆

86.Paramecia:配药

87.Desalination:脱盐

88.Wastewater:污水

89.Impeller:叶轮

90.Fit:安装

91.Lead:石墨,铅

92.Edge:边缘

93.Grade:等级

94.Secondarysealingelement:辅助密封材质

95.Hydrostatic:流体静力学的

96.Cross-section:横截面

97.Materialcode:材料代码

98.Sealsize:密封轴径尺寸

99.Assemblynumber:装配代码

100.Sulphuric:硫酸

101.Nitricacid:销酸

102.Phosphoricacid:磷酸

103.Hydrochloric:盐酸

104.PV—pressure/velocity:压力与转速

105.RS—rotatingseat:动环座

106.Multiplier:增效器

107.TC—tungstencarbide:硬质合金

108.Pin:销

109.Engage:接合,啮合

110.Pro剖面/侧面

111.Adapter:适配器

适用范围

被密封介质∶水、油等一般腐蚀性液体

密封腔压力∶≤0.8MPa

密封腔温度∶–20℃~+100℃

线速度∶≤10m/s

特点

真空器件的密封有两种情况,一种是密封件把充满液态介质的某一容器与外部真空空间分割开。在这种情况下,密封件的主要作用是防止液态介质漏入真空空间。另一种情况是密封件把真空内腔与外腔分割开,它的作用是保持要求的真空度。这种情况比较复杂,因为周围气体介质即使稍微漏入真空腔内,也会使其真空度降低。如果漏入了腐蚀性气体,真空设备就可能损坏。在很多情况下,真空度和真空空间的洁净,对真空条件下进行的各种工艺过程的质量有决定性的影响。真空器件所使用的机械密封在结构上并无特殊之处。对于上述的第一种情况,通常是采用气密性好的金属波纹管型单端面机械密封。第二种情况则要用双端面机械密封,若使用单端面密封,势必存在密封端面不能获得润滑的问题。

第3篇:机械专业毕业论文题目汇总(推荐)

毕业论文与设计题目列表

1、 (XH745)卧式加工中心的分度工作台的设计

2、 两级圆柱齿轮减速器的设计

3、 4层学生宿舍楼的设计

4、 80T起闭机大齿轮工艺设计与制造的设计

5、 BSG宽带砂光机的设计

6、 C7620车床主传动及液压系统的设计

7、 JL型锻压操作机底盘与运行机构的设计

8、 JL型锻压操作机机身与手笔控制的设计

9、 JL型锻压操作机液压系统的设计

10、 LZ2型保健床的设计

11、 SQL数据库酒店管理系统的设计

12、 Vfp现在物流企业管理系统的设计

13、 X5032型立式铣床的设计

14、 X6132型万能卧式升降台铣床的设计

15、 Z3040型摇臂钻床的设计

16、 办公自动化系统的设计

17、 半喂入式花生摘果机的设计(文本)

18、 泵叶轮注射模具的设计

19、 基于Ansys8.0的永磁直线电机的有限元分析及计算 20、 变频器控制原理图的设计

21、 宾馆客房管理系统

22、 并联式井下旋流分离装置的设计

23、 茶树修剪机的设计

24、 车备胎支架设计与制造

25、 车用柴油机总体及曲柄连杆机构的设计

26、 成绩管理系统

27、 齿轮套注塑模具及注塑模腔三维造型CAD CAM

28、 冲压模论文

29、 大豆螺杆挤压膨化试验装置总体设计 30、 带式输送机减速器的设计

31、 单立柱巷道堆垛机的设计

32、 冰箱、洗衣机修理翻转架的设计

33、 电火花切割机床的设计

34、 电机转速与温升检测装置的设计

35、 动力差速式转向机构的设计

36、 多功能切菜机的设计

37、 多房间温度、湿度检测系统的设计

38、 二级减速器的设计

39、 复摆颚式破碎机的设计 40、 某油缸设计图纸

41、 高温火焰电视监测系统的设计

42、 工业机械手的设计

43、 关节型机器人腕部结构设计

44、 关节型机器人腰部结构设计

45、 锅炉燃烧系统控制和汽包水位控制

46、 海工码头工字钢数控切割设备的设计

47、 护罩注塑模具及注塑模腔三维造型CAD CAM

48、 回转式固液分离机及螺旋输送机的设计

49、 活塞连杆组件装配自动输送线的设计(总体机械结构设计与压销机设计) 50、 机场行李输送系统自动控制设计

51、 基于PLC的工业机械手的设计

52、 基于PSOC的无刷直流电机智能控制系统的开发

53、 基于单片机机床插补控制模块的程序设计

54、 基于单片机的自动给水系统的设计

55、 基于虚拟仪器的震动信号采集与分析系统论文

56、 加工工件的自动装卸装置

57、 计算机与电子电路类毕业论文

58、 通用雕刻机的设计

59、 建筑用垂直运输机的设计 60、 精密智能测硫仪的设计 6

1、 卷扬机的设计 6

2、 考勤系统

63、 一级减速器的设计 6

4、 快速成型机的设计 6

5、 葵花脱粒机的设计 6

6、 螺旋输送机设计

67、 码垛机器人机械部分的设计 6

8、 棉花采集机械手的设计

69、 诺基亚6600手机前盖注塑模具设计与动画演示 70、 爬管式切割装置结构设计 7

1、 散料输送皮带机设计 7

2、 单段锤式破碎机的设计 7

3、 企业数据信息系统的设计

74、 8T内河港口门座起重机(中)机械部分二维设计 7

5、 气顶式太空电梯的设计

76、 气压冲击夯实机实体建模与仿真 7

7、 汽车U型螺栓拆装机的设计 7

8、 汽车行驶信息监控系统的设计 7

9、 汽车自动清洗系统的设计 80、 球轴承内圈超精研磨机的设计 8

1、 全封闭输送机的设计 8

2、 全路面起重机的设计 8

3、 人事管理系统

84、 深水作业光缆切割机的设计

85、 十字路口 交通灯控制系统的设计

86、 实现主轴分级无级变速的车床主传动系统的设计 8

7、 手机外壳注塑模计算机辅助设计与制造 8

8、 垂直循环式机械立体车库的设计 8

9、 数控车床六角刀架设计 90、 数字时钟

91、 双立柱堆垛机的设计

92、 水泥刨花板下涂膜机的设计 9

3、 四柱万能液压机整体设计 9

4、 四自由度搬运机器人的设计 9

5、 图书管理系统

96、 挖掘机工作过程仿真 9

7、 万能升降台铣床的设计 9

8、 网上选课系统(文本) 9

9、 往复裁板锯的设计

100、 物料包装线模型码垛机设计(堆垛机) 10

1、 物料包装线模型码垛推动机构的设计 10

2、 物料传送系统的设计 10

3、 物资管理系统

10

4、 箱体零件的工艺规程及夹具设计 10

5、 小型提升机的设计

10

6、 行星齿轮的注塑模具设计及其模腔三维造型CAD 10

7、 悬臂液压升降横移立体车库的设计 10

8、 旋风式选粉机的设计 10

9、 学生学籍管理系统

110、 烟厂车间温度湿度自动监测系统 1

11、 液压冲击夯实机实体建模与仿真 1

12、 液压顶升机整体设计 1

13、 液压缸的设计

1

14、 自行式野外高空作业升降平台的设计 1

15、 液压绞车设计 1

16、 液压拉力器设计

1

17、 液压驱动式轿车维修升降机设计 1

18、 液压升降横移立体车库 1

19、 液压同步模板滑移装置设计 120、 医院管理系统

1

21、 油压钻杆矫直机设计 1

22、 油压冲孔机设计

1

23、 游泳镜盒注塑模具设计 1

24、 振筛机传动齿轮设计 1

25、 中小型线材压轧机的设计 1

26、 中型活体水产品运输装箱设计 1

27、 轴承立体仓库机械系统的设计 1

28、 猪鬃长度分选机(顺根机构) 1

29、 装载机举升机构优化设计 130、 自动化立体仓库的设计 1

31、 自动切肉机的设计 1

32、 自动取料机械手的设计 1

33、 自动上下料机械手的设计

1

34、 4110发动机飞轮壳前端面钻模夹具设计 1

35、 CA6140拨叉系列课程设计 1

36、 换热器的设计

1

37、 电子公文传输管理系统 1

38、 图书馆在线系统(包含文档) 1

39、 液压式测力装置 140、 货车驱动桥毕业设计

1

43、 110柴油机飞轮壳机械加工工艺规程及工装设备设计 1

44、微型果蔬保鲜库控制系统设计 1

45、中草药有效提取机组掏渣器设计

1

46、中草药有效成分提取机组控制系统设计 1

47、中草药有效提取机组掏渣器设计 1

47、摩擦式离合器试验台的设计 1

48、汽车制动系统实验台设计

1

49、汽车ABS制动系统实验台控制系统设计 150、纸筒卷管机的设计

1

51、汽车ABS制动系统实验台结构设计 1

52、纸罐筒体切割机的设计

1

53、五自由度装卸工件机器人(图) 1

54、泵改造毕业设计 1

55、物料搬运机器人设计 1

56、离合器设计

1

57、台式钻床的自动化改造及进给系统设计 1

58、[经济型数控车床横向伺服单元]设计 1

59、缸体零件上端面铣加工夹具 160、飞锯机的设计

16

1、"包装机对切部件"设计

16

2、20 5t桥式起重机的电气控制线路

16

3、G41J-6型阀体双面钻24孔专机上的专用夹具设计 16

4、RYA真空乳化机控制电路设计 16

5、WY型滚动轴承压装机设计

16

6、XKA5032AC数控立式升降台铣床自动换刀装置(刀库式)设计 16

7、岸桥前大梁的工艺过程和工艺过程 16

8、拨叉加工自动线设计

16

9、城市污水处理用旋滤器室内试验装置 170、除霜机的设计

17

1、粗镗活塞销孔专用机床及夹具设计 17

2、电池板铝边框冲孔模的设计 17

3、定位支座数控加工夹具设计 17

4、多层次金属密封蝶阀设计 17

5、二级电液比例节流阀设计 17

6、封闭板成形模及冲压工艺设计 17

7、钢筋弯曲机设计及其运动过程虚拟

17

8、高档不锈钢保温杯过滤盘落料拉深模具设计 17

9、三自由度工业机器人设计

180、集装箱起重机侧立柱制作检验和质量控制 18

1、滑轨的外框挂钩模具的设计与制造 18

2、基于90915-10001滤清器的模具设计 18

3、胶带输送机-散料输送

18

4、连杆体的机械加工工艺规程的编制 18

5、溜板工艺极其挂架式双引导镗床夹具 18

6、螺杆压缩机系统装置设计

18

7、某大型水压机的驱动系统和控制系统 18

8、某机型铰链座制造与工艺夹具 18

9、三级减速器毕业设计 190、普通钻床改造为多轴钻床 19

1、气缸盖螺钉孔加工专机 19

2、全自动制袋机的设计 19

3、数控车床电动刀架 19

4、塑料传动支架模具设计 19

5、塑料拉手注塑模具设计 19

6、拖拉机拨叉铣削专机

19

7、自动弯管机装置及其电器设计 19

8、小汽车维修用液压升举装置 19

9、车轮快速拆装机设计 200、龙门式举升机设计 20

1、小型非开挖装置设计

20

2、LFB-1500电脑控制型塑料注射成型机

20

3、LFB-1500型塑料注射成型机液压系统的设计 20

4、液压系统设计

20

5、岸边集装箱起重机的结构设计与PLC控制 20

6、升降电梯驱动系统设计

20

7、自动扶梯驱动机及其PLC控制系统设计 20

8、送料机械手设计及Solidworks运动仿真 20

9、2层5位升降横移立体车库设计

210、2层20位升降横移立体车库设计

211、3层10位升降横移立体车库及其PLC系统设计

212、4轮转向系统设计

213、4位俯仰式简易式立体车库的设计

214、6X3200剪板机设计图纸

215、10吨桥式起重机小车总体方案选择分析及运行机构设计

216、40T-26m岸桥起重机前大梁图

217、16t电动葫芦门式起重机计算书

218、50_10t通用桥式起重机设计

219、400型水溶膜流研成型机设计 220、500型茶树重修剪机的设计 2

21、900×1200简单摆动鄂式破碎机设计书 2

22、3120滚齿机设计图(整套) 2

23、3536岸桥起重机总图 2

24、6500ATV工程车设计 2

25、掩护式液压支架设计

2

26、B型双模轮胎硫化机机械手的设计 2

27、C6132普通车床的数控改造

2

28、CK6140数控卧式车床及控制系统的设计 2

29、CQ6123车床的数控化改造设计 230、JX316 掩护式液压支架设计 2

31、KFC-04地下工程服务车设计 2

32、MQS2736球磨机设计

2

33、PE1200X1500破碎机全套图纸

2

34、QY40型液压起重机液压系统设计计算说明书 2

35、U型材轧机的设计

2

36、VVVF垂直电梯轿箱系统设计 2

37、WY120挖掘机图纸

2

38、X62W型升降台铣床结构设计

2

39、XK5040数控立式铣床及控制系统设计 240、Y32-315液压机液压系统(汽车的) 2

41、φ900螺旋滤水机图纸

2

42、半流体物装置设计(护肤霜定量包装) 2

43、翻车机图纸

2

44、边双链型刮板输送机结构设计 2

45、变速箱上盖钻孔组合机床--图 2

46、采煤机设计

2

47、差速器壳的加工工艺设计 2

48、柴油机P型喷油器设计

2

49、车床主轴箱箱体左侧8-M8螺纹攻丝机设计 250、车床主轴箱总装配图

2

51、车用柴油机缸体缸盖及配气机构设计 2

52、车用柴油机燃油润滑冷却及起动系统设计 2

53、冲击压路机毕业设计图纸

2

54、创意组合机械系统搭接综合实验台的总体设计 2

55、垂直升降式立体车库设计

2

56、单托棍全封闭带式输送机的设计 2

57、地下铲运机传动系统的结构设计 2

58、电动执行机构减速器的设计 2

59、垂直升降电梯生产图 260、多功能柔性转子实验台 26

1、发动机翻转架设计

26

2、福田车备胎支架设计与制造的毕业设计 26

3、复合肥配料生产线的PLC控制

26

4、复合化肥混合比例装置及PLC控制系统设计 26

5、盖子零件注射模设计 26

6、工业型煤成型机设计

26

7、公路运输成本费用分析与定价原理(文本) 26

8、辊板式泡罩包装机图纸

26

9、滚子直动从动件平面凸轮CAD系统设计 270、货用升降机设计

27

1、机床主传动设计(钻床) 27

2、机床主轴箱的设计Z=16 27

3、机箱壳体用PROENGINEER软件辅助实现数控加工方案设计 27

4、基于逆向工程和快速成型的手机外形快速设计 27

5、加工中心侧铣头结构设计

27

6、减温减压阀ProEngineer三维结构设计及有限元结构分析 27

7、剪叉式物流液压升降台的设计 27

8、矫直机设计

27

9、轿车5+1变速器设计

280、经济型数控螺杆铣床的改制 28

1、开卷机设计

28

2、立式精锻机自动上料机械手机械结构设计 28

3、连杆平行度测量仪设计

28

4、两斜辊立式紧凑型矫直机设计(棒材) 28

5、铝活塞铸造毛坯搬运机械手设计 28

6、履带机器人设计 28

7、螺旋榨油机设计

28

8、门座式起重机毕业设计 28

9、米袋码垛机械手设计 290、扭转式糖果包装机设计

29

1、普通CA6140车床的经济型数控改造 29

2、起重机10吨小车设计 29

3、汽车变速器设计

29

4、汽车曲柄连杆机构毕业设计 29

5、汽车驱动桥设计

29

6、球面蜗杆加工专用数控机床及控制系统设计 29

7、全自动定量包装机

29

8、山地旋耕机传动系设计图 29

9、数控十字工作台

300、手机外壳注塑模计算机辅助设计与制造(SW) 30

1、双立柱堆垛机的设计 30

2、双梁桥式起重机设计 30

3、送料机械手设计

30

4、塑料注射模具毕业设计(盖板注塑模设计) 30

5、挖掘机毕业设计图纸

30

6、物料包装线模型码垛推动机构设计 30

7、铣床的数控X-Y工作台设计 30

8、球蘑机毕业设计 30

9、心型台灯注塑模设计

310、新型连续式洗米机

311、镗磨缸机毕业设计

312、压力机与垫板间的夹紧机构

313、药品装盒机的设计

314、液压板料折弯机设计

315、液压上料机械手设计

316、溢流型球磨机结构设计

317、玉米脱粒机设计

318、榛子破壳机的设计

319、振动筛式花生收获机的设计 320、注射器盖注塑模毕业设计

321、注塑模具毕业设计论文(闹钟后盖实例)

322、自动化立体仓库与双立柱堆垛机的设计

323、自动哨子生产机设计

324、2YAH1548型圆振动筛毕业设计

325、300X400数控激光切割机设计

326、PCF2018单段锤式破碎机设计

327、带式输送机设计

328、单级蜗轮蜗杆减速器设计

329、攻丝机三维模型设计

330、欠驱动多指手抓取力分析及仿真设计 3

31、三坐标上胶机机械结构设计 3

32、试卷分拣机设计

3

33、数控车床XY工作台与控制系统设计 3

34、水平刮板输送机设计 3

35、瓦楞纸冲裁成型机设计

知识不仅是指课本的内容,还包括社会经验、文明文化、时代精神等整体要素,才有竞争力,知识是新时代的资本,五六十年代人靠勤劳可以成事;今天的香港要抢知识,要以知识取胜

第4篇:机械专业英语翻译

第一单元 极限与公差

几何精度设计是在机械制图上使用的一个三维国际工程设计语言。这个语言主要由符号组成,这些符号是清楚地定义在由美国机械工程协会出版的ASME Y14.5M-1994中。这个制图标准在北美使用和全世界都认同。它代替了更早的ANSI Y14.5M-1982标准和已经发展到几乎等同于它的ISO副本。这个标准在确定使用各种几何符号的方式和在清楚地展示设计者的意图的其他方法上是完善的。

几何精度设计的合理使用保证了工程设计想要的形状、配合和功能,没有在车间的假想或每个人都诠释不同的精细制作的笔记。几何精度设计将通过在整个工程设计、制造和品质功能中提供相同的解释,增加制造公差,提升效率和品质来节约公司花销。我们的经验表明许多设计者、车间和品质控制人员,尽管在几何精度设计工作了许多年,但还是没有完全了解要求和没有利用到几何精度设计的所有优点。

设计和生产系统,复杂性,电算化,和全球制造对准确的工程图纸提出了强制性要求。 功能测量,刀具,零件尺寸和制造受益于几何精度设计。几何精度设计的学习是重要的,因为它是设计、制造过程和质量三者沟通的粘合剂。

制造,设计系统需要一个易懂的语言,否则,它是不一致的和不可用的。一门技术语言被定义为一个标准,这个被广泛使用的标准是ASME Y14.5M-1994。我们的目的是让几何精度设计和制造过程协调一致。你可以已经在计算机辅助设计课或制图课上接触到几何精度设计。

第二单元

力学概论

力学的基本概念:

力学是用来处理运动,时间和力的科学分析的分支,它由静力学和动力学组成。静力学研究静态系统的分析,这时,时间不是一个考虑的因素;动力学则是随时间变化的系统。 力是通过相配合的表面传递到机器各个构件的。例如,从齿轮到轴或一个齿轮通过啮合齿传动到另一个齿轮或连杆通过轴承传到杠杆,从V带到滚轮或从凸轮到传动件。有许多理由都必须知道力的大小。力在边界及配合表面的分布必须要合理,其强度必须在构成表面的材料的工作极限内。例如,如果作用在套筒轴承上的力太大,将会把油膜挤出,并导致金属表面的胶合,过热和轴承过快失效,动力学的研究主要是确定李的大小、时间和位置。

下面将说明一下我们这方面的研究

力:我们最早的关于力的想法是源于我们对推、举和拉河中物体的需要。因此力是一个物体对另一个物体的作用。自觉对力的联系包括力作用的位置,方向和大小,这些称为力的特性。

物质:物质是一种材料或实物,如果它完全封闭则称为物体。

质量:牛顿吧质量定义为物体的数量,由体积和密度来衡量。这定义并不是很多人满意的,因为密度是单位体积的质量。通过猜想我们可以谅解牛顿,可能他并不认为那是个定义。然而,他已经认识到了一个事实,那就是所有的物体都具有不同于重量的内在性质。所以,尽管月球重量不同于地球重量,但一块月球上的岩石仍有特定不变的本质数量。这个恒定的本质数量或物质食粮就是岩石的质量。

国际单位制最大的有点事它对任何物体有且仅有一个单位。长度的单位为米,质量的单位为千克,力的单位为牛顿,时间的单位为秒等等。为了和这种特性保持一致,就要求一个给定的单位或词不能仅一个被认可的技术名称在二个物理量中使用。然而,习惯叫做“重量”的这个词已经在技术和非技术领域广泛使用,表示着物体所受的引力和其本身质量。

粒子:粒子就是指尺寸小到可以忽略的物体。

刚体:物体要么是弹性的,要么是塑性的,只要作用上力都会产生变形。当物体形变量很小时,通常将其假想为刚体,即没有变形的能力,作此假想以便简化分析。

可变形的物体,作为应力和应变是由将要分析的作用力所提供的,则刚体假说将不再适用。因此我们认为物体时可变形的。这种分析常称为弹性物体分析,兵并应用这附加的假说,即在力作用范围内,物体仍保持弹性。

牛顿定律,牛顿三大定律是:

牛顿第一定律:如果一对平衡力作用在一个质点上,那么这个质点仍将保持静止或匀速直线运动。

牛顿第二定律:如果作用在质点上的力不是平衡的,则该质点将经历一个加速度且加速度与合理大小成比例,沿合力方向。

牛顿第三定律:当一对质点相互作用,作用力与反作用力其大小相同,方向相反,作用在过二个质点的直线上。

2,力和力矩:

当一个物体从一个组成系统中聚集到一起,任意两物体间相互作用的力称为约束力。约束力使物体以特定的方式运动。作用在系统上的力称为作用力。

有的力在作用中并没有实际的物理接触。例如,电力磁力和引力。有许多,但不是大多数的力我们会涉及到。这些力是通过物理的或机械上的接触相互作用的。

力是个矢量,力的要素是:力的大小,方向和作用点。力的方向包括那条沿力的指向为方向的直线。因此力可能沿直线正向,也可能沿直线反向。二个大小相等,方向相反,作用不共线的合力。任意二个这种力作用在物体上将会形成一个力偶,力臂是作用线的垂直距离,作用和面是通过二个作用力的平面。

第三单元

简单机械

图3-1给出了直杠的三种布置情况,每个例子中F是支点;P是作用力,作用在b点上;W是载荷,作用在c点上,当杠杆处于平衡时,为P使杠杆绕f转动的趋势必须与载荷w使杠杆往反方向旋转的趋势相平衡。忽略在支点上的摩擦力,以上关系可用数学式表达为:P*BF=WX从上式可以看出,施加的作用力乘以支点到一作用点应等于另一侧的乘积,从这可以导出“机械效率”这个量,它等于载荷除以作用力:

机械效率=W/P=bf/cf

图3-1A中如果bf/cf=3,就意味着30磅的载荷能被10磅的为所平衡。如果力稍超过这个数值,杠杆将会随着为P的增大而绕点f旋转,为P比载荷W增加得更快更大,这也是机械效率,但应忽略摩擦力的作用,显然,f、c间的距离越短,杠杆的力放大八月入越大。

图3-1A的布置情况可在钳子和剪刀上找到,而图3-1B的情况可在手推车中找到,f相相当是车轮,W为载荷,力P由操作者施加在手柄上。图3-1C中,杠杆的作用于是作为一种运动放大装置,它用在脚踏板上来驱动一些小机械。脚踏板上b的小运动可在c产生大运动。

图3-1D中所示的差动滑轮就是基于杠杆原理。半径为R的轮A和半径为r的轮B固定在轴上,并可以转动。力P是由一条位于轮边缘一个槽中的绳子所提供的,载荷 W由绕在驱动轴上的绳子来提升。当驱动轴静止时,力P促使轴的转动趋势与W促使轴的转动趋势相等,且方向相反。忽略轴承摩擦力的话,力P和大轮半径R的乘积将等于载荷W与驱动轴半径的乘积:P*R=w*r 机械效率还是等于W/P,也等于轮R与驱动轴R的比值。

这种情况和杠杆类似。然而杠杆只能移动载荷很短的距离。而差动滑轮能移动开荷 的距离,只限制于线强长度。

当轮A和绳由装辐条的轮代替时,差动涔轮就仅适于从井里提升一桶桶的水。然而更重要的是差动滑轮的原理在许多工具和机械中是很显而易见的。例如,螺刀,由手提供的力作用在大半径上就能在小半径上转化出很大的力作用在螺钉上。

滑轮是一种最基本的简单机械之一。它从根本上说是由一个轮子和一个支承组成,轮子的轮边带有槽,槽上绕着柔软的绳子,而支承有如固定的或可动的轴承组,一个往下的拉力会产生一个大小相同的向上的力。图3-1E中滑轮和可动组B结合时,如果饭略摩察力的话,绳中所有点的张力P是一样的,因此在绳松开的这边给定一个向下的拉力,将可以提起这个拉力两倍的重物W,而重物W的上升速度交为绳移动速度的一半。因此机械效率为2倍,若使用种种带有固定的和可动的轴承组的滑轮组合,那机械效率将比2倍还要大。例如熟知的轴承级和滑车组合就是一种基本的力放大装置。

现在来考虑一下图3-2中楔的运动。它由力P向左边击打。当角度Q越小,摩擦力F也越小时,以r表示的分力N将会越大。对于任一楔表面的粗糙度以及对奕的摩托车擦力,如果角Q大于一个给定值,即使力P撤掉后,楔仍会保持原位或像粘住了。

可楔紧的锥度在机床主轴中常用来夹抚持切削刀具,如钻头铰刀。其它应用楔原理的机械装置有木刨, 子,刀,金属世削刀具和凸轮

丝杠可以认为是楔锥在一个圆柱体上。丝杠是由在实心圆柱上切削出连续不断的槽所形成的,这些被实心材料分开的,连续的,圆周的槽称为螺纹。螺纹和槽都是螺旋形的。

如果将图3-3右侧所示的图ACC`A`H上线段AB`和BD 在左侧直径为d的圆柱上,将会形成1。5图的螺旋。其对应的轴向距离l称为导程。导程角λ是用来度量螺旋的倾斜角。

一些早期的螺钉,其切削方法类似于用展开的如图3-3左边的螺旋一条柔软的金属薄板,以右螺角形式,缠绕在圆柱形毛坯上,以便右角的一臂能平行于轴线,斜边用在圆柱上形成螺旋,用作切削螺旋槽的导向。

如果滑动无件被约束为沿平行圆柱轴线运动,如图3-3中的F,沿着轴线00`运动,它就能被圆柱体的旋转、螺旋或是拉直螺旋的平移所驱动。另一种情况,楔的运动是很明显的。如果螺帽的一部分构件F,它限制了旋转运动但轴向运动是自由的,丝杆螺帽组合将会把螺旋运动转化成

第四单元

机构

基本类型

机构的目的是为了传递运动,而不管机构有没有变更。虽然机构有许多中组成形式,但总的来说只有三种分类,如图4-1所示

图中的每种机构,杆2和杆4都是通过O点和Q点联接到杆1的。这两种机构的运动传递方式如图4-1所示:(A)通过柔性的包裹联接器传递,如皮带,绳子,缆和链条等;(B)通过直接接触传递,如用凸轮,齿轮或是摩擦轮;(C)用刚性的联接杆或联轴器传递。在各种情况中杆2都是驱动件,它以每分钟n2转的转速转动,而杆4是从动件,以每分钟n4的转速转动,对于这三种情况,杆2和杆4的转速比是由Of的长度与Qf的长度比值所决定的。图4-1A中由于点f固定与OQ的中心,所以它的速率是一个常量,在图4-1B和4-1C中,由于点f将会随着物体的转动而移动,故其速率是变化的。直接接触的物体能设计成只会摆动,如图4-1B,或只会持续转动。在所有的情况中,点f都是位于有公法线和中心线的交点上。

直接接触机构

在大多数的情况中,直接接触的表面互相之间是滑动的,并仅仅只有滑动运动。这样表面情况是很容易恶化的。而在特定的条件下,表面磨损不厉害的纯滚动接触具有更高的效率。如果其他条件满足了,物体将会以匀速传递运动。这些特定的情况在齿轮联接和凸轮联接中是很有用的。纯滚动的条件是接触点位于中心线上。

共有三种纯滚动接触的情况,当两物体是圆柱体时,公法线和中心线是重合的,所能传递的载荷是由其表面摩擦所决定的,这就是所谓的基于摩擦的滚动。对于不依赖于摩擦的驱动,其公法线一定不能穿过驱动件或从动件的中心。忽略摩擦,且两相互接触物体间的力沿着法线作用时,当力的作用线没有穿过从动件的转动枢轴线时,从动件将被主动驱动。图4-1B中的物体,接触点在P,提供主动驱动。

任一直接接触物体,其速率比的公式中唯一的变量就是图4-1B中点f的位置。因此,保持匀速或恒定速率比的条件是公法线在一些固定点上通过中心线。尽管法线可能会转动,但只要它在相同点通过中心线,速率比将会保持恒定。

对于大多数给定的物体形状或轮廓,另一物体的,轮廓都能被构造出来,用于以匀速速率传递运动。这就是共轭轮廓。其本身就是存在能传递共轭运动的数学曲线;摆线和渐进线就是其中的两种;用于齿轮轮齿中。摆线就是跟踪空间中滚动轮边缘的一点所形成的轨迹。轮齿的轮廓是跟踪小圆边缘的一点在大圆内外侧滚动所形成的轨迹。渐开线就是处于大圆的内外侧,渐开线就是跟踪小圆边缘一点沿大圆内外侧滚动所形成的轨迹。渐开线也是跟踪从圆柱体上展开的线上的一点所形成的轨迹。通过研究一对渐开线的接触能很好地理解两渐开线轮齿表面的相互作用方式。图4-2中,由基圆1和基圆2产生的两条渐开线通过点m、f和n想联接,且应注意到由于基圆2比基圆1大,渐开线便有不同的形状。

第五单元

连杆机构

连杆机构也许可以定义为实体物体或连杆的载体,其中每根杆件通过销联接(铰链)或滑动接头至少和其他两个杆件相联接。为了满足这个定义,连杆机构必须形成一个无限的封闭的链或一系列封闭的链。很明显,由很多杆联接的链与只有一个杆相比,其性能是不同的。这在机械上就提出了一个非常重要的问题,那就是为传递运动而给定机构的适应性问题。其适应性取决于杆件和街头的数量。

自由度,三杆机构(包括三杆联接在一起的)很明显是一个刚性框架;连杆之间不可能有相对运动,为了表达四杆机构中连杆的相对位置,只需知道任意两杆间的夹角。(算上固定连杆OQ,图5-1C所示机构有4个连杆,因此是四杆机构。)这个连杆机构有一个自由度。要确定五杆机构中连杆的相对位置需要两个角度,也就是它有两个自由度。

带有一个自由度的连杆机构,其运动是有约束的。例如,连杆所有点在其它连杆上的轨迹是固定而又确定的。通过假定连杆上所求轨迹是固定的,并移动与约束相协调的连杆,轨迹是很容易得到的或很容易可视化观察到。

四杆机构。当所受约束的连杆机构中的一个构件固定时,这个连杆机构将变成一个在机械中能够完成有用的机械功能的机构,在销连接的连杆机构中,输入杆(主动杆)和输出杆(从动杆)通常是以枢轴的连接方式连接到固定杆上的;这个连接杆(连接件)通常既不是输入杆,也不是输出杆。由于任意连杆都能固定。如果四种机构中,连杆都不等长,并且都有不同的输入-输出关系,那么就能得到四杆机构。这四种机构也就是所谓的基本连杆机构的转换。

当图5-1左边中最短杆a固定时,杆b和杆d就能完成整圈的旋转运动。这就是双曲柄机构。若曲柄b以恒定的速度转动,则曲柄d将以变化的速度作同向转动。双曲柄机构本身,或者和别机构联接起来时,其曲柄都能提供有用的运动效果,图中,曲柄b是主动杆,它以匀速率逆时针旋转;曲柄d为从动件;三者都能同时完成整圈的旋转运动。但当b转过150°的角度是,从动杆d只能转动50°的角度。这就是意味着从B运动到B’时,曲柄d将比b转得慢,而从B’运动到B时,d比b转得快。如果将同样比例的曲柄d联接到包装机械的主轴上,例如联接运动较慢的轴上,那它将会暂停运动或者停顿。这在必须慢速的地方将派上用场。

通过将最短杆a作为主动杆能得到四杆机构的第二种转换。如图5-1右所示,在杆a做整圈旋转运动的同时;其相对的杆,可能在杆b,c,或杆d,却只能在φ角的范围内摆动。这称为曲柄摇杆机构。它是产生带有急回动作的摆动运动的有用装置。产生急回运动的原因是:当杆a逆时针旋转时,会带动杆 c从B摆动到B’,其摆过角度为θ1,而杆c从B’摆动到B时,其摆过的角度为θ2。由于曲柄a的转速是恒定的,且θ1大于θ2,因此摇杆从右摆动到左的时间将长于其它摆动途径。只有当活动杆件沿一个方向移动,急回装置快速将杆件送回初始位置时,机械才是做有用功。

图5-1右所示的极端位置,曲柄a与连接杆b共线,且假定摇杆c为主动杆时,就必须提供方法使从动杆a通过死点。在用脚踏式操作的磨刀机上,脚踏板连接着杆c,磨刀机主轴连接着杆a,就是靠着磨刀机的角动量使杆通过死点。

在四杆机构的第三种转换中,最短杆a为连接杆,其它的杆件只能摆动,这就是双摇杆机构。

连杆机构的综合,在连杆机构中,用图形法和分析法很容易测定出杆件的位移,速度和加速度。设计或综合连杆来满足特定要求就难得多了。还没有可用的方法来设计双曲柄机构以满足给定的输入-输出的关系谱。能做的就是调查一些选定的特定结构的性能特性。并挑选出其中最佳的

在曲柄摇杆机构中,设计者能控制摇杆的摆动角度,并在一定的程度上控制急回。而曲柄和要干的位移,速度和加速度却无法关联起来。

若四杆机构中的连杆总是以相同或相反的方向转动,并且他们的转动范围远小于180°,那么就有可能将曲柄转动在3点,4点,5点或者甚至更多的位置关联起来。图形法和分析法都能建立这种关联。

第六单元 飞轮

飞轮是一个连接到机械主轴上的重的轮子,它的目的是为了抵消和减轻在机械速度上由所提供的或所需要的动力的造成的速度不均匀性引起的任何波动。飞轮也被用来测试制动器和储存可以在紧急情况下使用的能量,或者可以在快速释放时提供大的力。

抵抗一个旋转物体使其速度发生变化的办法是改变它的惯性矩。这个性质取决于对旋转轴的材料的处置上。惯性矩是与物体的每个构件的重量和它们到旋转轴的距离的平方获得的乘积成正比。普通几何形状物体的惯性矩可以在手册中得到;对于非普通的形状,它们可以由整体的积分或者通过经验来确定。从惯性矩的性质可知,一个飞轮的材质在尽可能离旋转轴远的地方集中是最有效的。因此最好的飞轮有一个通过轮辐或圆盘连接到中心轮毂重的轮缘。

一个飞轮的运行情况完全取决于扭矩或作用在它身上的转动力。如果一个顺时针的扭矩作用在一个固定的飞轮一段时间,这个飞轮将获得一个顺时针角度方向的速度,它与平均扭矩乘以时间段的积成正比,与飞轮的惯性矩成反比。如果一个旋转飞轮受到与它旋转方向相同的一个扭矩作用,它的速度将提升;反之,速度将下降。飞轮的惯性矩越大,由一个给定的扭矩引起的速度变化将越小。如果没有扭矩作用在飞轮上,它的速度将不会改变。

在一个往复式发动机的每个旋转期间作用在曲柄轴上的扭矩都会变化。这种变化是由于在汽缸中的蒸汽或气压的不均匀性和连杆(将活塞压力转变为曲柄轴扭矩)与曲柄轴之间的变化的夹角造成的。当曲柄和连杆是共线的,这时将没有扭矩传递给曲柄,每次旋转这种情况会发生两次。在发动机上飞轮的一个附带的功能是带领曲柄轴经过这些死点位置。

所有的旋转机械都构件都具有惯性矩和像飞轮一样都会对扭矩变化作出反应。这些构件启动、暂停或速度变化所需要的扭矩被称之为惯性扭矩或惯性载荷。惯性载荷存在于所有机械中,当机械启动时它们的存在尤其明显。

飞轮在间歇地传递机械功的机械上是特别有用的。例如,在冲床上,在活塞的下行冲程期间冲压或成型金属盘所需的大的力才会发生。在下行冲程的剩余时间,整个上行冲程和冲程之间的时段,机器是空转的,来自驱动马达的所需的动力是很低的。使用一个具有传递足够大的扭矩去创造冲孔成型所需的大的力的驱动马达是不经济的。飞轮作用于储存在机器空转时由低动力马达造成的能量和在下行冲程做工部分释放部分能量。

在1880年代,一个快速旋转的飞轮被用作鱼雷推动系统的动力源;据报道,在450米的距离将获得24海里/时的速度。在飞机上,直径25厘米,转速52000转/分钟的飞轮有足够的能量去升起和降下起落架。这个飞轮储能系统重90千克,低于完成相同功能的液压系统。在公交运输方面的一个近来(1970年)的应用是在无轨电车上使用飞轮的提议。新型的高密度的钢轮,重300千克,转速为每分钟20000转,它将允许电车离开电线行驶在临近十公里的区域内。在飞轮上获得高密度储能能力的关键在于由材料可以带动的旋转引起的离心应力的大小。相同的材料,平的圆盘可以比轮缘形的轮子多储能百分之50,而锥形的等压力盘可以比轮缘形的轮子多储能百分之100。

第八单元 材料的热处理

热处理是在固态下加热和冷却材料来改变它的的物理性质的工艺。根据所使用的工序,钢可以被硬化来抵抗切割运动和磨损,或者它可以被软化来进行进一步加工。结合适当的热处理,可以消除内部应力,细化晶粒,增加韧性,或生产一个韧性的内部和硬的表面的材料。直到热处理之前,在机械车间制造的大部分产物只有很少的价值或没有价值。热处理不仅可以用于钢上面,也可以用在许多非铁金属上面,例如铝,铜和黄铜。钢热处理的工序包括硬化淬火,回火,退火和表面淬火。

在许多人处理工艺上,加热的速度是重要的。热度以一定的速率从钢的外部传导到内部。如果钢加热太快,外部将会比内部更热,不会得到均匀的结构。如果工件在形状上是不规则的,为了消除变形和裂纹,缓慢的加热速度是更加必要的。工件越重,为了达到均匀的结果,加热时间必须更久。尽管已经达到了正确的温度,工件也应该保持在这个温度相当一段时间来使它最厚的截面达到相同的温度。

1硬化

硬化是一个加热和冷却的过程来增加它的硬度和拉伸强度,降低延展性,和得到一个良好的晶粒结构。这工序包括在温度的临界点加热金属,随后快速冷却。随着金属被加热,铁和碳之间发生物理和化学的改变。这个临界点或临界温度是钢具有最理想特性的点。当钢达到在1400到1600华氏度间的某个温度,如果它被快速冷却,这个变化对制出硬,又强的材料是理想的。如果金属缓慢冷却,它将会变回原本的状态。通过把热的金属投入水,油或盐水中(淬火),可以得到所想要的特性。金属对比之前是非常强和硬的和有更少的延展性。

2回火

已经通过快速淬火硬化的钢是脆的和不适合于大部分用途。通过回火,硬度和脆性将减少到耐用条件所需要的点。随着这些性质减少,钢的抗拉强度也会减小,而在延展性和韧性会增加。这个工艺包括了淬硬钢再加热到低于临界范围的某个温度,随后以任何速度冷却。虽然这个过程软化了金属,但它完全不同于退火,在这个过程中回火有助于对物理性质的精细控制,和在大部分过程中,回火不会把金属软化到退火将达到的程度。最后从硬化金属完全回火所得到的结构被称为回火马氏体。

因为硬化金属的主要成分马氏体的不稳定性,所以回火是合理的。从300到400华氏度的低温不会造成硬度降低,它主要用于消除内部应变。随着回火温度的增高,马氏体的分解将以更快的速度发生,和在大约600华氏度,变成被称为回火马氏体的结构是非常快的。

回火工艺可以被描述成沉淀和结块,或渗碳体聚结的工艺。大量渗碳体的沉淀是在600华氏度,这会产生硬度降低。温度升高会造成碳化物的聚结,而硬度会继续降低。

3退火

退火的主要目的是软化硬的钢以致使它可以被机加工和冷加工。通常这是通过加热金属到稍稍在形成奥氏体的临界温度之上,并保持这个温度直到工件的温度处处相同,和那时以一个缓慢的可控速度冷却以致使工件的表面温度和中心温度近似相等来完成的。这个过程被称为完全退火,因为它消除了之前结构的所有的痕迹,提纯了结晶结构,和软化了金属。退火也消除了以前在金属产生的内部应力。

当硬化的金属二次加热到临界范围之上,组织将变回奥氏体,和缓慢冷却,那时将提供足够的时间完成奥氏体到更软的结构的转变。对于亚共析钢,这些结构是珠光体和铁素体。通过参考平衡态图标,可以注意到过共析钢退火温度是更低的,稍稍在A线之上。没有理由去加热到A线之上,因为在这个点硬的组织渗碳体开始析出。通过加热到更低的临界范围之上和缓慢冷却,所有的马氏体会转变成珠光体。在钢里面任何自由的渗碳体都不收这些处理的影响。

第九单元 材料的选择与机械零件的强度

1材料的选择

这些年来,工程材料的选择已经显得非常重要。此外,选择过程应该是一个对材料的连续不断的重新评价过程。新材料不断出现,而一些原有的材料的可以被利用的数量可能会减少。环境污染,材料的回收利用.工人的健康及安全等方面的关心经常会对材料选择附加新的限制条件。为了减轻重量或者节约能源,可能会要求使用不同的材料,来自国内和国际的竞争.对产品维修方便性要求的提高和顾客的反馈等方面的压力。此外,材料与材料加工之间的相互依赖关系已经被人们认识得更清楚,新的加工方法的出现通常会促使人们对被加工材料进行重新评价。因此,为了能在合理的成本和确保质量的前提下获得满意的结果,设计工程师和制造工程师都必须认真仔细地选择,确定和使用材料。

制造任何产品的第一步工作都是设计,设计通常可以分为几个明确的阶段,(a)总体设计b)功能设计c)生产设计。在总体设计阶段,设计者着重考虑产品应该具有的功能。通常要设想和考虑几个方案,然后决定这种想法是否可行;如果可行,则应该对其中一个或几个方案作进一步的改进,在此阶段,关于材料选择唯一要考虑的问题是:是否有性能符合要求的材料可供选用,如果没有的话,是否有较大的把握在成本和时间都允许的限度内研制出一种新材料。

在功能设计或工程设计阶段,要做出一个切实可行的设计,在这个阶段要绘制出和相当完整的图纸,选择并确定各种零件的材料,通常要制造出样机或者实物模型,并对其进行试验,评价产品的功能,可靠性,外观和适用性等 ,虽然这种试验可能会表明,在产品进入到生产阶段之间,应该更换某些材料,但是,绝对不能将这一点作为不认真选择材料的借口,应该结合产品的功能,认真仔细地考虑产品外观,成本和可靠性。一个很有成就的公司在制造所有样机时,所选用的材料应该和其在生产中使用的材料相同,并尽可能使用同样的制造技术,这样做对公司是很有的。功能完备的样机如果不能根据预期的销售量经济地制造出来,或者是样机与正式生产的装置在质量和可靠性方面有很大不同,则这种样机就没有多大的价值。设计工程师最好能在这一阶段全部完成材料的分析,选择和和确定工作,而不是将其留到生产设计阶段去做。因为,在生产设计阶段材料的更换是由其他人进行的,这些人对产品的所有功能的了解可能不如设计工程师。

在生产设计阶段中,与材料有关的主要问题是应该把材料完全确定下来,使它与现有的设备相一对一,能够利用现有设备经济地进行加工,材料的数量能够比较容易地保证供应。

在制造过程中,不可避免地会出现对使用中的材料作一些更改的情况,经验表明,可以采用某些理家材料作为替代品。然而,在大多数情况下,在进行生产以后改换材料要比在开始生产前改换材料所花费的代价要高在生产设计阶段做好材料选择工作,可以避免大多数的这种材料更换情况,在生产制造开始后出现了可供使用的新材料的。当然,这些新核燃料可能降低成本,改进产品性能。但是,必须对新材料进行认真的平价,以倚其所有性能都被人们所了解。应当时刻牢记,新材料的性能和可靠性很少能像现有材料那样为人们所了解大部分的产品失效和产品责任事故案件是由于在选用新材料作为替代材料之前,没有真正了解它们的长期使用性能而引起的。

产品的责任诉讼迫使设计人员和公司在选择材料时,采用最好的程序,在材料选择过程中,五个最觉的问题为:(A)不了解或者未能利用关于材料应用方面的最新和最好的信息资料(B)未能和考虑产品可以的合理用途,如有可能,设计人员还应进一步和考虑由于产品使用方法不当造成的后果 。在近年来的许多产品责任诉讼案件中,由于错误地使用产品而受到伤害的控告生产大家,并且赢得判决(C)所使用材料的数据不全或者有些数据不确定,尤其是当具长期性能数据是如此的时候(D)质量控制方法不适当和经验证明由一些完全 不称职的人员选择材料。

通过对上违一个问题的分析,可以得出这些问题是没有充分理由存在的结论,对这些问题的分析和研究以给避免这些问题的指明方向。以往采用最好的材料选择办法也不能避免发生产品责任诉讼,设计人员工业界按照适当的程序进行最佳选择,可以大减少诉讼的数量。

因为所生产的压痕尺寸的函数,这表明由于硬度是非破坏性试验,而且不需要专门的,因而硬度是一个容易测量的性能,通常可以直接在实际的机械零件上进行硬度试验。

第十单元

车床及其他机床

车床

1. 车床用于旋转工件,并朝着生成所需要加工的表面方向进给切削刀具。 2. 最常见的车床形式是图10-1a中以图解方式显示的六角车床,它由一个支撑着床头箱,拖板和六角刀架的水平床身组成,工件夹在卡盘和夹头中,或者安装在机床主轴端部的花盘上。 3. 工件的旋转由一台电机通过一个齿轮系驱动主轴提供。 4. 切削刀具安装在横向滑板及六角刀架上,在横向滑板上的刀具在平行于工件旋转轴线方向或在工件旋转轴线的法线方向驱动或给进。六角刀架可以通过分度头将各种刀具定位并可以沿车床的床身方向驱动或给进。

5. 现代六角车床由计算机控制所有工件和刀具运动,这些车床称为计算机数字控制(CNC)车床,而且刀具或横向滑板可以在水平面上的任一方向进给以使工件上产生所需的廓形。 6. 图10-1b说明的是通过工件旋转以及托板沿车床床身运动所产生的柱面,这一工序称为外圆车削。

7. 车床设定的进给运动也就是工件每转一圈刀具移动的距离,机床的进给量f的定义是:刀具或工件每一行程或每转一圈,刀具相对于工件在进给运动的方向的位移,这样,为了车削长度为Lw的柱面,工件的转数是Lw/f,则加工时间Tm由下式给出的Tm=Lw/(fnw),式中nw是工件的旋转速度。

8. 在此应当强调t,是刀具沿工件走一次(一次切削)的时间,但是,这一次通过并不意味着加工工序的完成,如果首次切削用于以高进给来去除大量材料(粗切),在操作过程中产生的力将有可能引起机床结构的明显挠曲,引起的精度损失可能需要以小进给量进一步加工(精切),使工件直径在规定的界限内并提供光滑的加工表面。由于这些原因,在粗切时常被加工成稍大一点的尺寸,留下少量材料在随后的精加工中去除。 立式镗床

9. 水平主轴的车床不适于车削沉重的大直径工件,否则机床主轴的轴线将不得不升高到机床操作工够不到固定刀具或固定工件的装置的高度,此外,在垂直的花盘上安装零件或在顶尖之间支撑零件会有困难,因此使用了一种与车窗相同的工作原理,但具有垂直轴线的机床并称为立式镗床(图10-2),这种机床像车床那样旋转工作并向刀具施加连续的,线性的进给运动。

10. (立式镗床)使用单刃刀具,而且进行的作业一般限于车削,端面车削和镗削。

11. 便于定位大型工件的水平工件台由一个带有径向T型槽的,起夹持作用的旋转工作台构成

卧式镗床

12,这里介绍的另一种实用单刃刀具并具有旋转主运动的机床是卧式镗床(图10-3),这种机床主要用于沉重的圆柱形工件,在这种工件内有一个待加工的内圆柱形表面,一般讲,在描述机床时,使用卧式或立式来讲。两个词指的是提供主运动的机床轴(主轴)的姿态,可见,在卧式镗床中,主轴是水平的。

13,此类机床的主要特征是,工件在加工过程中保持静止,所有造型运动都施加在刀具上。最常见的加工工序是镗削,如图所示,镗削是通过旋转刀具来实现的,刀具安装在与主轴相连接的镗杆上,然后沿旋转线进给主轴,镗杆和刀具的进给是用于移动工件的机床运动只是用来给工件定位,在进行加工时一般不使用,端面车削工序可以通过使用专门刀具架(图10-4),在其旋转时径向进给刀具来实现。

此外先前推导的镗削和端车加工时间和金属切削率的公式仍将适用。 刨床

14,刨床适用于在非常大的部件上加工平面,在这种机床(图10-5)上,线性运动作用在工件上,二刀具则垂直于该运动的方向进给,主运动通常利用变速马达通过齿条与齿轮传动来实现,而且进给运动是断续的工序用提供的T型槽固定在机床的工作台上,加工时间tm和金属切削率zw可以按下面公式估算:tm=bw/(fnr),式中bw是待加工面得宽度。Nr是切削行程的频率,f是进给量,金属切削率zw由下式给出zw=fapv,式中v是切削速度,ap是切口深度(去除材料层的深度)

第十一单元基本的加工工序——切削、镗削、和磨削

基本的加工工序

机床是从早期的埃及人的脚踏动力车床和约翰。威尔金森的镗床发展而来,它们用于为工件和刀具两者提供坚固的支撑并且可以精确控制它们的相对位置和相对速度。基本上讲,在金属切削中一个磨尖的楔形工具以紧凑变形的切削形式从有韧性的工件表面去除一条很窄的金属。切削是一种废弃的产品,与其他工件相比它相当短但是比未切削的部分厚度有相对的增加。机器表面的几何形状取决于刀具的形状和加工操作过程中刀具的路径。

大多数加工工序产出不同几何形状的部件。如果一个粗糙的圆柱形工件绕中心轴旋转而且刀具穿破工件表面并与旋转中心平行的方向前几,就会产生一个旋转面,这道工序叫做车削。如果以类似的方式加工一根空心管的内部,则这道工序叫镗削。制造一个直径均匀变化的锥形外表面叫做锥体车削。短的锥面或柱面也可以仿形车削。如果刀具尖端以一条半径可变的路径前进,就可以制造出像保龄球杆那种仿形表面。如果工件足够短(约1英寸)而且支撑具有足够的刚性,仿形表面可以通过进给一个垂直于旋转轴的仿形刀具来制造。

常常需要的是平坦的或平的表面。它们可以通过径向车削或端面车削来完成,期中刀具尖端沿垂直于旋转轴的方向运动。在其他情况下,更方便的是固定工件不动;以一系列直线式切削的方式使刀具横过工件作往复运动,在每次切削行程前具有一定横向进给量。这一工序叫做刨削,是在牛头刨床上进行的。对于大一些的工件,很容易保持刀具固定不动,而像龙门刨削那样在其厦门拉动工件。仿形面可以通过使用仿形刀具来制造。

在每次往复时进给刀具。也可以使用多刃刀具。钻削使用两刃刀具,孔深可达钻头直径的5~10倍。不管是钻头转动还是工件旋转,切削刃与工件间的相对运动是一个重要的因素。在铣削操作中,有许多切削刃的旋转铣刀与工件相接合,这种工件相对铣刀运动缓慢。根据铣刀的几何形状和进给的方式,可以加工出平面和仿形面。可以使用水平或垂直旋转轴,工件可以沿三个坐标方向中的任意一个进给。

基本的机床

机床用于以切削的形式从韧性材料上去除金属来加工特殊几何形状和精密尺寸的部件。切屑是废品,其变化形状从像钢这样的韧性材料的长的连续带状到铸铁形成的易于处理、彻底断掉的切屑,就处理的观点来讲,不想要长的连续带状屑。机床完成5种基本的金属切削工艺:车削,刨削,钻削,铣削和磨削。其他所有金属切削工艺都是这5种基本工艺的变形。因此,仅有4种使用专用可控几何形状的刀具的基本机床:

1、车床

2、刨床

3、钻床

4、磨床。例如:镗削是内部车削:铰削、攻丝和平底锪孔是修改已钻好的孔,与钻削有关;滚齿与切齿基本上是铣削作业;弓锯削和拉削是刨削和研磨的一种形式;而研磨、超精加工、抛光和磨光则是磨削和研磨切削加工作业的各种变化形式。磨削工艺形成碎屑,但是磨粒的几何形状不可控制。

不同加工工艺切削材料的量和速度可能很大,如在大型车削作业或极小,如研磨或超精加工作业,只有表面高出的点被去除。

机床完成3种主要功能:

1、刚性支撑工件或工件的夹具以及切削刀具;

2、提供工件与切削工具间的相对 运动;

3、提供了一定范围的进给和速度,通常每种情况有4~32种选择。 加工中的速度和进给

切削速度、进给和深度是经济加工的3个主要变量,其他变量还有工件和刀具材料,冷却剂以及切削刀具的几何形状,金属切削的速率和加工所需的功率就取决于这些变量。

切削深度,进给和切削速率是在任何金属切削作业中都必须建立的机器设置,它们都会影响切削力,功率和对金属切削的速率。切削的深度是唱针进入唱片的量或者是槽的深度。切削速度由任意时刻唱片表面和对于拾音器臂内的唱针的速度来表示进给由唱针每圈径向向内的前进量或者把两个相邻槽的位置间来表示可以通过把它们与留声机的唱针和唱片相比较给出其定义。

第十二单元 计算机辅助设计

好的工程设计需要保证一个部件或机构正确的运转和持续相当长的一段时间。此外,在设计过程的功能性因素包含重量,强度,热性能,运动学和动力学。

第十五单元

柔性制造、

一、柔性制造的定义

制造的演变用图表示为一个连续统一体,如图15-1所示。如此图显示的那样,制造的过程和系统处在把手工操作到最后实现全盟的集成制造的过度状态。计算机集成制造的前一步叫做柔性制造。

柔性在现代制造环境中是一个重要的特征。它意味着一个制造系统是用途多且适应性强,同时又能进行产量相对较大的制造。柔性制造系统是多用途的,这是因为它能制造多种多样的部件。它适应性强,因为它能很快地加以改变来制造完全不同的另一种部件。这种柔性在竞争激烈的国际市场上可能成败有别。

这是一个平衡的问题。独立的计算机数字控制(nc)机床有着高度的柔性,但是只能处理批量相对较小的制造。正相反,系列连锁生产线能进行批量较大的制造,但都不很灵活。柔性制造试图运用工业技术在灵活的与制造运行间达到最佳的平衡。这些工业技术包括自动化的材料、处理,成组技术及计算机和分布数字控制。

柔性制造系统(FMS)是一个独立的机床或一组机床服务于一个自动材料处理系统。它是由计算机控制的而且有对刀具处理的能力。由于他有刀具处理能力并受计算机控制,这样的系统可以不断的重新配置来制造更加多样的部件,这就是它被称作柔性制造系统的原因。

一个制造系统要成为柔性制造系统必须具备的要素有:

1、计算机控制

2、自动处理材料能力

3、刀具处理能力

柔性制造向全面集成化制造的目标迈进了重要的一部。它实现了自动制造过程的集成化。在柔性制造中,自动化的制造机器(如车床、铣床、钻床)和自动化材料处理系统之间,通过计算机网络进行即时的沟通。这是小规模的集成,图15-2是柔性制造系统的一个样例。

二、柔性制造的概况

通过综合几个自动化的制造概念,柔性制造系统向全面集成化的目标迈出了重要的一步,这些观念是:

1、 独立机床的计算机数字控制

2、 制造系统的分布式数字控制

3、 自动化的材料处理系统

4、 成组技术,零件族

当这些自动化工艺,机器和观念合成到一个集成的系统时,就产生柔性制造系统。在柔性制造系统中,和计算机起了重要作用,当然大的劳动量比手工操作的制造系统要小得很多。然而,人仍然在柔性制造系统的操作中起了至关重要的作用,人的任务包括几个方面:

1、 设备故检、维护和修理

2、 刀具的变换和设置

3、 安装和拆卸系统

4、 数据输入

5、 部件程序的变换

6、 程序的开发

柔性制造系统设备像所有制造设备一样,必须有人监管以免出现失常、机器程序错误,以及故障。当发现问题时检修人员必须确定问题的根源,然后给出正确的措施,人还要采取指定的措施来修理运行不正常的机器。甚至当所有系统正常运转时,定期的维护也是必要的。

操作人员还要根据需要设置机床,换刀具,以及重新配置系统。柔性制造系统的刀具处理能力消弱了,但并没有消除,在刀具变换和设置上仍需要人力。在装卸柔性制造系统时也是这样,一旦原材料被送到自动化材料处理系统上,它就会以规定的方式,在系统中移动。然而,初装到材料处理系统仍然是由人员完成的,成品的拆卸也是同样。

与计算机的交流仍需要人力完成,人开发零件程序,通过计算机控制柔性制造系统。当重新配置FMS制造另一种类型零件时,他们还在必要的时候变换程序。人在柔性制造系统中劳动力密集型的成分越来越少,但仍然是很重要的。

柔性制造系统中的各层控制都是由计算机来完成的。在柔性制造系统中独立的机床是由CNC来控制点。整个的系统是由DNC来控制的。自动化的材料处理系统是计算机来控制的,其他的功能如数据收集、系统监控、刀具控制、运输控制也是计算机控制的,人机交互是柔性制造系统中的关键。

二、柔性制造的历史发展

柔性制造产生于20世纪60年代中期,当时英国莫林斯有限公司开发了24号系统。24号系统是一个真正的FMS。然而,它从一开始就注定是失败的,因为自动化、集成化和计算机控制技术还没有发展到能够恰好支持这一系统的程度。第一个FMS是超前的开发。因此,最终因不能工作而被放弃。

在20世纪60年代和70年代的其余时间里,柔性制造仍然是一个学术观念。然而,随着复杂计算机控制技术在20世纪70年代末和80年代初的出现,柔性制造便成为可能。在美国最初的主要用户是汽车、卡车和拖拉机制造商。

四、柔性制造的理由 在制造中,生产率和柔性之间经常存在协调一致的问题。在该领域的一端是具有高生产率却低柔性的连续生产线,在该领域的另一端是能提供最大柔性的独立的计算机数字控制的机床,但它只能进行低生产率的制造。柔性制造处在此连续统一体的中间。在制造中总是需要一个系统,这个系统比单个机床能制造更大批量且用于更多制作过程,但仍保持其柔性。

连续生产线能以高生产率制造大量的零件。这条生产线需要大量的准备工作,但却能制造出大量的相同的零件。它的主要缺点是即使一个部件在设计上有小的改变都能造成整个生产线的停产和建构改变。这是一个致命的弱点,因为这意味着没有高成本,耗时停工和变化连锁生产线结构是不能制造出不同的零件的,即使是来自同一个零件族。

传统上计算机数字控制机床是用来制造少量在设计上稍有不同的零件。这种机床很适合这一用途。因为它们能迅速地改变程序来适应设计上小的或者更大的改变。然而,作为独立的机床它们不能大量地或高生产率地制造零件。

柔性制造系统比独立的计算机数控机床具有更大的生产能力和更高的生产率。它们在柔性方面比不上计算机数字控制机床,但它们却相差不多。柔性制造的中间性能的特殊意义在于大多数制造要求中等量的生产率来制造中等及的产品。同时有足够的柔性以快速改变结构来制造另一个零件或产品。柔性制造填补了制造中长期存在的空白。

柔性制造以其基本能力给制造者提供了许多有点:

1、 在一个零件族内具有柔性

2、 随意进给零件

3、 同时制造不同的零件

第5篇:大学机械专业英语情景对话

Mr.Liu:Come in ,please.

刘先生:请进。

Mr.Bao:Good afternoon,Mr.Liu.

包先生:.下午好,刘先生。

Mr.Liu:Good afternoon.Have a seat,please.

刘先生:下午好,请坐。

Mr.Bao:Thank you very much.

包先生:非常感谢。

Mr.Liu:Are you Mr.Bao?

刘先生:您是包先生吗?

Mr.Bao:Yes,I am.

包先生:是的。

Mr.Liu:I have read your resume.I know you have worked for 3 years.Why did you choose to major in mechanical engineering?

刘先生:我看了你的简历,知道你已经工作过3年。为什么你选择了机械工程专业呢? Mr.Bao:Many factors lead me to majoring in mechanical engineering.The most important factor is I like tinkering with machines.

包先生:许多因素致使我选择了这个专业。最重要的一个因素就是我喜欢修理机器。 Mr.Liu:What are you interested in about mechanical engineering?

刘先生:关于机械工程,你最感兴趣的是什么?

Mr.Bao:I like designing products and one of my designs received an award.Moreover,I am familiar with CAD.

包先生:我喜欢设计产品,我的一份设计作品还得过奖。而且,我非常熟悉CAD。 Mr.Liu:Great.Then what is your technical post title now?

刘先生:很好。那么你现在的技术职称是什么?

Mr.Bao:I’m a senior mechanical design engineer.

包先生:.我现在是高级机械设计工程师。

MrLiu:Do you take the original certificate with you?

刘先生:你把证书原件带来了吗?

Mr.Bao:Yes.Here it is.

包先生:.是的,给。

Mr.Liu:Why did you decide to apply for this position?

刘先生:为什么你决定申请这份岗位?

Mr.Bao:Your company has a very good reputation.I’m very interested in the field of your company.包先生:.贵公司声望很高。我对这领域也很感兴趣。

Mr.Liu:Well,thanks.I’ll let you know the result of the interview as soon as possible,Goodbye. 刘先生:那好吧,谢谢你。我会尽快告诉你面试结果的,再见。

Mr.Bao:Thank you.I do hope the answer will be favorable.Goodbye.

包先生:谢谢,我希望结果顺利。再见。

第6篇:机械电子专业英语翻译

Quality Control Fundamentals质量控制基本原理 Quality质量

Quality has become one of the most important consumer decision factors in the selection among competing products and services. The phenomenon is widespread, regardless of whether the consumer is an individual, an industrial organization, a retail store, a bank or financial institution, or a military defense program. Consequently, understanding and

improving quality are key factors leading to business success, growth, and enhanced competitiveness. There is a substantial return on investment from improved quality and from successfully employing quality as an integral part of overall business strategy.

质量是消费者在激烈的产品和服务竞争中进行选择的一个重要因素.不管这个消费者是个人、产业组织、零售店或防务工程,这个想象是普遍存在的.因此,关注并提升质量是取得成功、发展并强化竞争力的关键因素.投资质量的提升并把质量作为经营策略的主要部分将会得到极大地回报. We may define quality in many ways. Most people have a conceptual understanding of quality as relating to one or more desirable characteristics that a product or service should possess. Although this conceptual understanding is certainly a useful starting point, we will give a more precise and useful definition. 我们对质量有很多种定义.许多人在观念上把质量理解为产品或服务拥有一个或更多满意的性能.尽管这种概念性理解是有效地,我们将给出更精确、有效地定义. Quality---- characteristic or property consisting of several well-defined technical and aesthetic, hence subjective, considerations; conformance to design (customer) requirement. 质量-特性或性能中包含几种明确定义的技术的美学的,因此主观考虑;满足设计(顾客)需求. Quality control------detecting poor quality (nonconformance) in manufactured products and taking corrective action to eliminate it. 质量控制-检测在工业产品中检测不合格的质量(不合格品)并采取纠正措施去避免. The traditional definition of quality is based on the viewpoint that products and services must meet the requirement of those who use them. Therefore, Quality means fitness for use.

传统的质量定义是产品或服务必须满足使用者的需求.因此,质量就是适用度

There are two general aspects of fitness for use: quality of design and quality of conformance. 适用度一般有两个方面:设计质量和一致性的质量。

Quality by design intent refers to the various grades or levels of quality that are intentionally determined by design. All goods and services are produced in various grades or levels of quality. These variations in grades or levels of quality are intentional, and, consequently, the appropriate technical term is quality of design.

设计意图的质量指的是设计中故意设计的各种等级或质量等级。所有的商品和服务都是在不同的等级或质量等级中产生的。这些变化的等级或质量水平是故意的,因此,适当的技术术语称之为设计质量。

Quality of conformance refers to how well the product conforms to specifications required by design. 产品质量的一致性是指如何符合规范设计的要求。

Quality of conformance is influenced by a number of factors, including the choice of manufacturing processes, the training and supervision of the workforce, the types of process controls, tests, and inspection activities that are employed, the extent to which these procedures are followed, and the motivation of the workforce to achieve quality.

一致性质量受到很多因素的影响,包括生产流程的选择、员工的培训和监督,所采用的过程控制,测试,和检查活动的类型,这些程序被遵循的程度 ,激励员工来实现质量。

Unfortunately, this definition has become associated more with the conformance aspect of quality than with design. This is in part due to the lack of formal education most designers and engineers receive in quality engineering methodology. This also leads to much less focus on the customer and more of a ―conformance-to-specifications‖ approach to quality, regardless of whether the product, even when produced to standards, was actually ―fit-foruse‖ by the customer. Also, there is still a widespread belief that quality is a problem that can be dealt with solely in manufacturing, or that the only way quality can be improved is by ―gold-plating‖ the product.

不幸的是,相对于设计,这个定义更多的关于质量的一致性。这部分是由于大多数设计师和工程师缺乏质量工程方法的正规教育。这也导致更少地关注客户和更多关注质量与规格一致, 无论产品,即使生产标准,实际上是“适合使用”的客户。同时,普遍仍认为,在生产制造中质量问题完全可以解决, 或者唯一的可以提高质的方式是给产品“镀金”。

We prefer a modern definition of quality: Quality is inversely proportional to variability. Note that this definition implies that if variability in the important characteristics of a product decreases, the quality of the product increases. As an example of the operational effectiveness of this definition, a few years ago, one of the automobile companies in the United States performed a comparative study of a transmission that was manufactured in a domestic plant and by a Japanese supplier.

我们倾向于质量的现代定义:质量与变化成反比。请注意,这个定义意味着如果产品的重要特征的变化减少,产品的质量就会提高。举一个这个定义的操作效益的例子,几年前, 美国的一个汽车公司进行了一个在国内工厂制造过程的传输和由日本供应商制造过程的传输的比较研究。

An analysis of warranty claims and repair costs indicated that there was a striking difference between the two sources of production, with the Japanese-produced transmission having much lower costs, as shown in Fig. 5.1. As part of the study to discover the cause of this difference in cost and performance, the company selected random samples of transmissions from each plant, disassembled them, and measured several critical quality characteristics. 保修索赔和维修费用的分析表明,两者的生产有着显着的区别,如图5.1所示,日本制造的运输成本很低。这项研究的一部分是发现成本和表现中这种差异的原因,公司从每个工厂随机选择抽样,拆卸样本,并测量了几个关键的质量特性。

Figure 5.2 is generally representative of the results of this study. Note that the distribution of the critical characteristics for the transmissions manufactured in the United States takes up about 75% of the width of the specifications, implying that very few nonconforming units would be produced. In fact, the plant was producing at a quality level that was quite good, based on the generally accepted view of quality within the company. However, the Japanese plant produced transmissions for which the same critical characteristics take up only about 25% of the specification band. As a result, there is considerably less variability in the critical quality characteristics of the Japanese-built transmissions in comparison to those built in the United States. 图5.2通常是这项研究的结果的代表。注意的是美国生产传输的临界特征的分布 占宽度规格的75%左右,这意味着不相容的产品很少。事实上, 根据公司内部的质量标准, 工厂生产的质量水平很好,然而,日本工厂的生产传输的相同的临界特征规范只占用约25%的规格带。因此,日本建立的生产传输中的关键质量特征的变化要比美国的少很多。

There are two obvious questions here: Why did the Japanese do this? How did they do this? The answer to the ―why‖ question is obvious from examination of Fig. 5.1. Reduced variability has directly translated into lower costs。Furthermore, the Japanese-built transmissions shifted gears more smoothly, ran more quietly, and were generally perceived by the customer as superior to those built domestically. Fewer repairs and warranty claims means less rework and the reduction of wasted time, effort, and money. Thus, quality truly is inversely proportional to variability. How did the Japanese do this? The answer lies in the systematic and effective use of the methods described in this text. 这里有两个明显的问题:为什么日本人这样做呢?他们是如何做到这一点呢? 再看图5.1, “为什么”的问题的答案是显而易见的。减少的变化直接转化为低成本。此外,日本造的变速齿轮更顺畅,更安静,客户通常认为日本的变速齿轮要比国内的好。更少的维修和保修索赔意味着很少的返工,节约时间 ,精力,和金钱。因此,质量真的是与变化成反比。日本人是怎么做的呢?答案就在于系统和有效地使用本文中描述的方法。

Dimensions of Quality质量维度 The quality of a product can be described and evaluated in several ways. It is often very important to differentiate these different dimensions of quality. Garvin provides an excellent discussion of eight components or dimensions of quality. We summarize his key points concerning these dimensions of quality as follows: 一个产品的质量可以用几种方法来描述和评价。区分这些不同维度的质量往往是很重要的。加文 对于质量的八种要素做了一个很好的讨论。我们总结了他的关键点,这些尺寸的质量如下:

Performance –product does intended job

表现—产品满足特定功能 Reliability—product is available 可靠性----产品是可用的

Durability—product lasts for a reasonable time 持久性---产品能使用一个合理的时间 Serviceability—product is easy to repair/service

维护性---产品维修维护方便

Aesthetics—product has acceptable/appealing appearance

美观---产品具有可接受或吸引人的外观

Features—product has capabilities beyond basic performance 功能性---产品具有超越基本功能的功能

Perceived Quality—product & company have good reputation; measured by customer loyalty 感知质量—产品和公司在消费者中具有良好的声誉。

Conformance to Standards—product made consistent with designer intent (and consistent with industry & national standards) 标准一致---制造的产品符合设计师的意图(并符合行业和国家标准)。

Quality Improvement质量的提升 Quality improvement is the reduction of variability in processes and products. Excessive variability in process performance often results in waste. For example, consider the wasted money, time, and effort that is associated with the repairs represented in Figure 5.1. Therefore, an alternate and frequently very useful definition is that quality improvement is the reduction of waste. 质量改进是减少过程和产品中的变化。过程性能的过度变化往往导致浪费。例如,图5.1所反映的维修中浪费的金钱,时间和精力。因此,一个替代的,通常是非常有用的定义是,质量改进是减少浪费。

Implementing quality improvement: management must 实施质量改进:管理

Evaluate dimensions of quality as they pertain to their business objectives (assuming the objectives are defined); 评估质量维度与他们的业务目标(假设定义了目标); Think strategically about quality;战略性地考虑质量;

Recognize critical role of suppliers in quality management strategies; 认识到供应商在质量管理战略中的重要作用;

Recognize that everyone in the organization is responsible for quality;认识到组织中的每个人都对质量富有责任;

Recognize that statistical quality control techniques communicate both problems & solution; 认识到统计质量控制技术,沟通问题和解决方案;

Implement effective quality improvement programs tailored to their business; 针对他们的业务实施有效的质量改进方案;

Total quality management; 全面质量管理;

Quality improvement benefits—business growth; enhanced competition; cost reduction; reduced product liability; improved productivity. 质量改进的效益----业务增长;增强竞争;降低成本;减少产品债务;提高生产率。

Quality Engineering Terminology质量工程术语

Every product possesses a number of elements that jointly describe what the user or consumer thinks of as quality. These parameters are often called quality characteristics. Quality characteristics –- Physical; Sensory; Time Orientation; can be attributes or variable. 每个产品都有许多描述用户或消费者心目中的质量的要素。这些参数通常被称为质量特性。

品质特性–身体;感官;时间方向;可以是属性或变量。

Quality engineering—the set of operational, managerial and engineering activities used to ensure that quality characteristics of a product are at nominal or the required levels. 质量工程---一套确保产品的质量特性是在名义或所需的水平操作,管理和工程活动。

Statistical methods—applied to measurements for product’s quality characteristics, they are usually the result of the engineering design process for the product.

统计方法---用于测量产品的质量特性,通常是产品的工程设计过程的结果。 Quality measurement---compare measured value to nominal or target value for characteristic; values bounded by allowable limits, namely, upper specification limit (USL) and low specification limit (LSL) (determined by design engineer); values outside limits are considered to be nonconforming, hence, product is defective.

质量测量——将质量的测量值与真值相比较,特征值被范围所限制,即规范上限(USL)和规范下极限(LSL)(由设计工程师决定);特征值外部限制被认为是不一致的,因此,产品是有缺陷的。

Concurrent engineering ---multi-disciplinary, team-based approach to design (early in design process). 并行工程---多学科,以团队为基础的设计方法(多在早期的设计过程)。

History of Quality Methodology质量方法学史

Quality always has been an integral part of virtually all products and services. However, our awareness of its importance and the introduction of formal methods for quality control and improvement have been an evolutionary development. Table 5.1 presents a timeline of some the important milestones in this evolutionary process. 质量几乎一直是所有产品和服务的一个组成部分。然而,我们意识到它的重要性,并介绍了正式的质量控制和改进的方法,一直是一个进化的发展。表5.1给出了一些在这个进化过程中的重要里程碑的时间线。

A Timeline of Quality Methods质量测量方法的时间线

1700—1900 Quality was largely determined by the efforts of an individual craftsman. Eli Whitney introduces standardized, interchangeable parts to simplify assembly. 质量在很大程度上取决于个人的努力。伊莱·惠特尼介绍标准化,可互换的零件以简化装配。1875 Frederick W. Taylor introduces principles of Scientific Management;division of labor &work standards; improved productivity.

1875年弗雷德里克·W·泰勒 介绍了科学管理的原则;劳动分工和劳动标准;提高生产率。

1900–1930 Henry Ford—the assembly line—further refinement of work methods to improve productivity and quality; Ford developed mistake-proof assembly concepts, self-checking, and in-process inspection. 亨利福特的装配线进一步细化工作方法以提高生产率和质量;福特开发的防误装配的概念,自我检查和中间验收,

1924 Walter. A. Shewhart introduces the control chart concept in a Bell Laboratories technical memorandum. 沃尔特在贝尔实验室的技术备忘录介绍了控制图的概念。 1928 Acceptance sampling methodology is developed and refined by H. F. Dodge and H. G. Roming at Bell Labs. H. F.道奇和H. G.漫游在贝尔实验室开发和总结了验收抽样方法。 1940 The U.S. War Department publishes a guide for using control charts to analyze process data. 美国战争部出版了一份使用控制图来分析处理数据指南。

1946 ASQC formed to promote use of quality improvement methods for products & service.

建立美国质量控制协会以促进使用产品与服务质量改进方法。

1946–1949 Deming is invited to japan by the Economic and Scientific Services Section of the U.S. War Department to help occupation forces in rebuilding Japanese industry. He was invited to give statistical quality control seminars to Japanese industry. 戴明被美国国防部的经济和科学服务部邀请到日本帮助占领军重建日本工业。他被邀请给日本工业的统计质量控制开研讨会。

1951 Dr.A. V. Feigenbaum publishes the first edition of his book, Total Quality Control. G.E.P.Box & Wilson published work on designed experiments & process optimization methods.

在1951年,费根鲍姆博士出版了他的第一本书---全面质量控制。威尔逊发明了工作流程优化设计和在线实验的方法。

1960s Courses in statistical quality control become widespread in industrial engineering academic programs. Zero defects (ZD) programs are introduced in certain U.S. industries.

在20世纪60年代的统计质量控制的广泛的课程成为工业工程学术课程。零缺陷(ZD)计划被美国工业产业引进。

1989 Motorola’s six-sigma initiative began.摩托罗拉开始倡议六西格玛。

1990s ISO 9000 certification activities increase in U.S. industry; applicants for the Baldrige award grow steadily; many states sponsor quality awards based on the Baldrige criteria. 上世纪90年代,在美国工业行业,ISO 9000认证活动增加;对波多里奇奖的申请稳步增长;许多国家赞助基于波多里奇标准的质量奖。

1995 Many undergraduate engineering programs require formal courses in statistical techniques, focusing on basic methods for process characterization and improvement. 许多本科工程项目需要专注于过程特性和改进的基本方法 统计技术的正式课程。

1997 Motorola’s six-sigma approach spreads to other industries.

1997年,摩托罗拉的六西格玛方法扩展到其他行业。

1998 The American Societies for Quality Control becomes the

American Society for quality, attempting to indicate the broader aspects of the quality improvement field.

1998年,美国质量控制协会成为美国质量学会,其试图表明更广泛的质量改善领域。

Statistical Methods统计方法 Statistical process control (SPC): use control charts to reduce variability & maintain measure of process quality within acceptable limits, namely, upper control limit (UCL) and lower control limit (LCL).

统计过程控制(SPC):使用控制图来减少变化及维持质量测量在可接受的范围内,即控制上限(UCL)和控制下限(LCL)。

Statistically designed experiment: used to discover key variables that influence quality characteristics of interest; systematically vary process controllable input factors to determine their effects on output product parameters. 统计学设计的实验:用于发现影响质量特性的关键变量,系统变化的过程可控的输入因素,以确定其对输出产品参数的影响。

Process modeling: captures the relationship between input and output variable of process; statistical such as regression or time-series analyses, also, neural network techniques, used to determine the nature &magnitude of adjustments required to bring process back into control. 过程建模:捕捉过程中的输入和输出变量之间的关系;统计,如回归或时间序列分析,神经网络技术,用于确定控制过程中所需调整的性质和幅度。

Acceptance sampling: inspection & classification of sampled units, selected at random, from larger batch of product (lot) for the purpose of determining disposition of lot; decision may be to accept, reject, or rework lot; emphasizes conformance to requirements approach to quality control. 验收抽样: 从大批产品(很多)检查和分类抽样单位,随机选择以确定处置方式, 决定可能是接受,拒绝,或返工;强调符合要求的质量控制方法。

Manufacturing Process Characteristics制造工艺特点

Random variations----caused by variability among operators, Raw materials, machine vibrations, and environmental changes; usually uncontrollable; regarded as process noise; no particular pattern or trend. 随机变化--由操作者,原材料,机器振动,和环境改变中的变化造成;通常无法控制的;被视为过程噪声;没有特定的模式或趋势。

Assignable variations--- exception from normal operating conditions, e.g, operator mistakes; defective raw materials; tool failures; machine malfunctions, can be traced to specific causes. 可分配的变化---从正常工作条件下,例如,操作者错误的异常;有缺陷的原料;工具失效;机器故障,都可以追溯到具体原因。

Machining processes are capable of tolerances of +_0.002 in (+_0.05), e.g, sand castings generally have tolerances of 10 to 20 times those used for machined parts. 加工过程能够在(+_0.05)公差允许+-0.002,比如沙铸件的公差通常是用于加工零件的公差的10至20倍。

Total Quality Management (TQM) 全面质量管理

Total quality management (TQM) is a strategy for implementing and managing quality improvement activities on an organization wide basis. TQM began in the early 1980s, with the philosophies of Deming and Juran as the focal point. It evolved into a broader spectrum of concepts and ideas, involving participative organizations and work culture, customer focus, supplier quality improvement, integration of the quality system with business goals, and many other activities to focus all elements of the organization around the quality improvement goal. Typically, organizations that have implemented a TQM approach to quality improvement have quality councils or high-level teams that deal with strategic quality initiatives, workforce-level teams that focus on routine production or business activities, and cross-functional teams that address specific quality improvement issues. 全面质量管理(TQM)在组织基础中是一种实现和管理质量改进活动的战略。全面质量管理始于上世纪80年代初,随着戴明和朱兰的理念为焦点。它演变成一个涉及参与组织和工作文化,关注客户,供应商的质量改进,质量体系与业务目标的整合,以及许多其他的围绕质量改进目标的组织的所有元素的活动的概念。通常情况下,已经实施了全面质量管理方法以提升质量的组织具有处理质量的战略举措的质量委员会或者高层团队,聚焦日常生产、经营活动的劳动力水平的队伍,解决具体的质量改进问题的跨 职能团队。

机械专业词汇

Manufacturing process 制造工艺 Serviceability 维护性

Conformance to standards 标准一致 Quality engineering 质量工程 Measured value 测量值 Nominal value 真值 Multi-disciplinary 多学科的 Concurrent engineering 并行工程 Standardized parts 标准件 Six-sigma 六西格玛 LSL 下限 USL 上限

ISO9000 质量保证体系9000 Process modeling 过程建模 Process control 过程控制 TQM全面质量管理 Sand casting 沙铸件

Acceptance sampling 进料抽样实验 Assignable variation 系统变差 Critical dimension 临界大小 科技特殊句式 1.动名词做主语

Understanding and improving quality are key factors leading to business success, growth, and enhanced competitiveness.

2.非谓语动词做定语

Quality---- characteristic or property consisting of several well-defined technical and aesthetic, hence subjective, considerations; conformance to design (customer) requirement.

3. 复杂长句

This also leads to much less focus on the customer and more of a ―conformance-to-specifications‖ approach to quality, regardless of whether the product, even when produced to standards, was actually ―fit-for use‖ by the customer.

4. 名词短语

There are two general aspects of fitness for use: quality of design and quality of conformance.

5.复杂长句 Organizations that have implemented a TQM approach to quality improvement have quality councils or high-level teams that deal with strategic quality initiatives, workforce-level teams that focus on routine production or business activities, and cross-functional teams that address specific quality improvement issues. 典型句式

1. 定义句式

Quality by design intent refers to the various grades or levels of quality that are intentionally determined by design. Paradigm refers to models of inquiry that guides scientific work

2. 满足标准

The traditional definition of quality is based on the viewpoint that products and services must meet the requirement of those who use them. All structural steel, plate and sheet meet the requirements of certain specifications. 3. 比例关系

Quality is inversely proportional to variability. Al Most objects are big in proportion to the size of an atom but small in proportion to the size of the sun. 4.图表所占比例

The Japanese plant produced transmissions for which the same critical characteristics take up only about 25% of the specification band. Girl students accounted for 47.3 percent of total primary school enrollment. Figure 4.2 gives the results of the experiment. 5.研究表明

An analysis of warranty claims and repair costs indicated that there was a striking difference between the two sources of production. A study indicated that the successful language learners are same at many aspects. 6.结论

Therefore, an alternate and frequently very useful definition is that quality improvement is the reduction of waste. It can be concluded that baud rate is very important to the telephone engineer. 7.举例

For example, consider the wasted money, time, and effort that is associated with the repairs represented in Figure 5.1. For example, consultants and freelancers interviewed for this article set targets from$ 50 to$ 300 per hour. 8.相关性

This definition has become associated more with the conformance aspect of quality than with design. The density of a soil is directly associated to its bearing capability. 9.图表引用

Figure 5.2 is generally representative of the results of this study. Figure 4.2 gives the results of the experiment. 10.It---that语句

It is often very important to differentiate these different dimensions of quality. It is evident that a well lubricated bearing turns more easily than a dry one.

上一篇:准高一新生暑假计划表下一篇:优秀经理获奖感言