混凝土裂缝控制措施

2022-12-23 版权声明 我要投稿

第1篇:混凝土裂缝控制措施

大体积混凝土裂缝控制措施探析

摘要:随着我国建筑业的迅猛发展,建筑施工中大体积混凝土的裂缝问题越来越受到人们的关注,大体积混凝土产生的裂缝不但会影响整个工程的施工质量,而且还会威胁人们的生命和财产安全,所以,在建筑施工过程中,必须对大体积混凝土裂缝采取防范措施,本文主要对大体积混凝土裂缝控制措施进行探讨。

关键词:大体积混凝土裂缝控制措施

近些年来,我国的经济和科技取得了长足的发展进步,我国的建筑工程规模和建筑技术都取得了令人骄傲的成绩,随着建筑事业的发展,在一些大型的建筑工程中,大体积混凝土已经成为一种必不可少的施工环节,但是在现实中大体积混凝土无论是在施工还是在日后的使用过程中,经常会出现各种各样的裂缝,这些裂缝的出现直接影响着整个建筑工程的施工质量,尤其是在基础部分出现的贯穿性裂缝,会对整个建筑工程造成非常严重的影响,使整个建筑工程的耐久性和承载能力大大降低,其安全性也会存在很大的安全隐患。因此,怎样才能够有效地防止和控制大体积混凝土结构出现裂缝,已经成为当前建筑工程中一个非常重要的问题。

1大体积混凝土裂缝产生的原因

1.1收缩裂缝

在建筑工程施工过程中,混凝土由于散热和硬化会引起其体积的收缩,这种现象对于大体积混凝土而言更加明显,当大体积混凝土的这种收缩受到周围外界其他力的约束时,大体积混凝土的内部就会出现相应的收缩应力,当这种收缩应力大于混凝土自身所能承受的最大抗拉强度时,混凝土就会出现各种各样的裂缝。混凝土收缩量大小最主要的影响因素就是混凝土在配制时使用的水量和水泥量,这二者使用的量越大,混凝土自身产生的收缩就越大。不同的水泥品种会产生不同的收缩量。

混凝土的自身收缩与其干缩有着相似的原理,二者都是因为混凝土中水分的迁移而引起的,但是也有一定的不同,自身收缩并不是由于水分向外蒸发而散失,而是由于水泥在水化过程中会对自身的水分产生消耗,进而使得凝胶孔的液面出现下降,最终形成弯月面,导致自身干燥作用的发生、另外,混凝土自身水灰比的变化对干燥收缩和自身收缩有着截然相反的作用,简单来讲就是当混凝土自身的水灰比逐渐降低,混凝土的干燥收缩会随之降低,但是混凝土的自身收缩则会随之不断增加。

1.2温度裂缝

在建筑工程中,大体积混凝土一般施工过程都是一次性完成浇注,浇注完成后,混凝土会因为水泥的水化作用而产生水化热,但是由于大体积混凝土的体积相对较大,其内部的水化热很难被散发出去,从而造成了大体积混凝土内部的温度出现上升的现象,但是大体积混凝土的表面温度散失却较快,这就使得其内外出现温度差,造成大体积混凝土内部出现压应力,而外部则出现拉应力。

1.3人为因素造成的裂缝

建筑工程中大体积混凝土的应用,大多都会与大基础、大空间的建筑工程联系到一起,这些建筑工程的大体积混凝土不仅体积大,而且重量也非常大。在大体积混凝土的浇注施工过程中,往往由于施工人员或者施工器材的活动,对已经浇注好的混凝土造成影响,原来可能出现的一些非常细微的小裂缝,可能会因为这些活动而不断扩大,逐步成为一些较大的裂缝。一般而言浇注完成的混凝土需要对其进行28天的养护,但是实际施工过程中,往往由于工期的原因,在没有达到相应养护期限的情况,提前进行接下来的施工,导致混凝土自身强度无法达到相应的设计强度,这时加上一些人为的因素以及拆模的影响,很容易导致混凝土出现较大的裂缝,所以,大体积混凝土必须要达到规定的养护时间才能进行接下来的施工。

1.4沉陷裂缝

大体积混凝土的沉陷裂缝产生原因主要是,因为建筑的地基土质不匀、回填土方不实等造成地基出现不均匀的沉降。另外,因为模板的强度不够、模板支撑的间距过大、模板支撑的底部松动等原因也会引起沉陷裂缝。沉陷裂缝的出现在冬季尤为明显,因为模板的支撑部分作用在冻土上,当冻土解冻后,支撑也会随之产生不规则的沉陷,导致混凝土出现裂缝。这种裂缝往往是一些深进或者贯穿性的裂缝,裂缝的方向和大小与整个沉陷情况有关,沉陷裂缝随着地基的沉陷量降低而不断减小。

2大体积混凝土裂缝的有效控制措施

2.1充分做好大体积混凝土的养护工作

建筑工程中混凝土出现干缩变形是不能避免的,因为这是由于混凝土自身的性质导致的。我们只能通过改变其影响因素的方法对混凝土裂缝的产生和大小进行最大化的控制。在大体积混凝土施工时,应该从外界温度的变化出发,对混凝土进行必要的浇水养护,此外,有条件的还可以利用薄膜、草垫、草袋等方法对混凝土进行覆盖保护,这样可以保证大体积混凝土在水分蒸發的同时,还可以获得水分的养护,有效地避免裂缝的产生。

2.2对大体积混凝土施工的配合比及材料进行严格控制

大体积混凝土的内外温差会导致裂缝的产生,所以,在选择混凝土的材料和配合比时应该尽量减少大体积混凝土的内部热量。在进行施工前,首先需要进行混凝土试块试验,从混凝土的强度、质量检验以及和易性等方面的要求出发确定合适的配合比。混凝土中所选用的集料应该尽量选择那些粒径较大的,从而有效降低混凝土内的空隙率和砂率,减少混凝土自身的收缩量,从而实现对混凝土自身抗裂强度的提升。

2.3实施温控防裂措施

比如,改善骨料的级配,采用一些干硬性的混凝土掺混合料,在混凝土配比过程中加人引气剂或是塑化剂等,减少混凝土当中水泥的用量;混凝土在搅拌的时候的冷却可以添加水,这样能有效的降低混凝土浇筑的温度;在炎热的天气下要是浇筑混凝土,尤其是浇注是大体积的混凝土之时要尽量的降低浇筑厚度,尽力将这个度控制在500毫米内,便干表面的散热。进行第二层浇筑的时候,需要在第一段的混凝土未发生初凝之前来完成;要根据混凝土浇注面积进行上、下、中各个部分的测温.定时的测定内外温度,还要通过调整和养护的方式降温差。合理的设定拆模时间,要避免混凝土的表面发生一些急剧温度的梯度。必须加强保温的养护措施,混凝土在浇注后要先覆盖一层塑料的薄膜,另外,应尽量避免在大雨中进行混凝土浇筑工作。

2.4提高混凝土的表面温度

大体积混凝土浇筑完成后,对混凝土表面实行保温潮湿养护,同时根据预先埋置在混凝土内部的测温点,使其保持一定温度,是防止混凝土内部和外表面产生过大的温差而引起表面裂缝的有效措施。试验表明,恒定的养护条件对混凝土的收缩影响很大,养护14d的收缩比养护3d的收缩降低约20%,同时养护环境的相对湿度越高,收缩越小。所以对于采用钢模浇筑的大体积混凝土,带模养护有一定的保温作用,还可在模板外面挂草帘,以加强混凝土外侧表面的保温。对于某些特殊部位还可采用一砖厚的永久性砖模(混凝土硬化后亦不拆除),可起到较好的保温效果。对于大体积混凝土基础底板的上表面,可铺土、铺砂、灌水养护,亦可铺盖黑色塑料薄膜加盖草袋进行保温保湿养护。必要时还可对表面进行加温,以减小内外温差。

总之,大体积混凝土产生裂缝是由多种原因造成的,在大体积混凝土施工中,通过合理选择施工材料、优化混凝土配合比、改善施工工艺、提高施工质量、严格施工管理以及加强后期养护等控制措施,可以有效防止裂缝的产生,避免给工程造成不必要的损失。

参考文献

【1】王洪亮.关于大体积混凝土裂缝控制的探究【J】.世界家苑,2013(12)

【2】赵红亮.大体积混凝土裂缝控制与施工技术【J】.城市建设理论研究(电子版),2013(23)

【3】郭蓬勃.大体积混凝土裂缝控制的施工技术探讨【J】.中国科技信息,2013(8)

作者:刘镇莲

第2篇:混凝土结构裂缝控制的综合措施

摘 要:混凝土结构裂缝是当今工程领域非常难以解决一个问题,本文在汇集混凝土结构裂缝成因的基础上,结合多年来的工程经验,对存在的问题进行了探讨,并提出了裂缝的三阶段控制措施和控制重点。

关键词:混凝土结构 裂缝 耐久性 控制措施

一、前言

混凝土结构具有耐火性好、因地制宜、经济可行等优点,适合我国现阶段国情,因此得到了广泛的应用。但20多年来,混凝土结构工程一直存在着一个相当普遍的问题——裂缝,该问题直接影响到建筑物的正常使用功能和耐久性,这尤其不利于混凝土结构向地下空间和大跨度方向发展。大量的研究和实验结果表明,混凝土结构的裂缝是不可避免的,这与混凝土本身的材料特性及强度增长机理密切相关。因此,目前最重要的是如何控制裂缝的大小、减少导致裂缝产生的各种因素。

二、混凝土结构裂缝的危害

混凝土结构工程的裂缝问题相当普遍,据统计,十之八九的混凝土工程都存在不同程度的裂缝问题,笔者接触的工程也都有类似的情况,这为正常使用和建筑物的耐久性带来了相当大的麻烦:第一,降低了结构的耐久性、整体性、甚至承载能力。裂缝的普遍存在使得水分侵入结构内部,造成了钢筋腐蚀,如果在结构周围存在侵蚀性介质时,这种危害更为严重;对地下室而言,不论裂缝的大小如何,都会直接影响到地下室的正常使用和耐久性,尤其当地下水位较高时。从另外一个角度而言,裂缝的大量存在,尤其当裂缝宽度较大时,将引起结构内力的重分布或者影响混凝土的承载机理而降低结构的整体性和承载力;第二,影响正常使用。在各类工程中,板面渗水现象极为普遍,混凝土结构板作为防水的最后一道防线,往往因裂缝的存在而丧失了防水功能,然而从耐用期限来看,结构防水具有柔性防水不可比的优势,一方面结构防水期限与结构的使用寿命一致,而柔性防水也不过二十年。

三、混凝土结构裂缝产生的原因

混凝土结构裂缝产生的原因,现在已经得到了普遍的認可,但不同的分类可得到不同的结论和不同的控制措施。

1.裂缝产生的内部因素取决于混凝土材料本身特点和混凝土强度增长机理。混凝土是一种人工复合材料,微观上具有不均质性,其抗拉强度很低,在不大的拉应力作用下就可能出现裂缝。而且混凝土亚微观研究表明,混凝土在承受荷载之前就已经存在着微裂缝,如在混凝土强度增长过程中(即混凝土凝结硬化过程)产生的化学收缩裂缝(比如碱骨料反应裂缝)、凝结硬化过程中水化热产生的温度差所带来的温度裂缝;

2.从裂缝产生的外部因素来看主要有三种情况:第一,混凝土成形和强度增长过程中受外部作用影响而产生的裂缝,如混凝土终凝前因表面水分蒸发较快而形成的表面网状裂缝(尤其在风速大、温度高、气候干燥的环境中);这类裂缝一般常见于施工期间,是由不正确行为或其它潜在因素造成的,结构设计时一般不予考虑,因此可称之为“非正常结构性裂缝”;第二,正常使用阶段由荷载引起的裂缝。第三,混凝土强度形成后,由变形作用引起的裂缝包括温度、湿度、收缩和膨胀、不均匀沉降等因素引起的裂缝,尤其是温度与不均匀沉降所产生的。如现在混凝土屋面之所以发生普遍的渗水现象就与大面积混凝土屋面的温度积累效应有关。

四、混凝土结构裂缝的三阶段控制措施

混凝土结构工程的裂缝控制属于开环控制,对于一个具体工程而言,因施工的一次性而不能建立起一个有效的反馈控制系统,这就客观上要求技术人员必须根据工程实际情况综合考虑,具体化每一个潜在的影响因素,做好事前控制,如采取因果分析图、鱼刺图等方法。结合多年来的工程经验,针对混凝土工程施工中普遍存在的问题,笔者认为控制混凝土裂缝应该从以下三个阶段着手(虽然每一个阶段的主体不同,但控制裂缝是一个系统工程,需要各参与方的共同努力)做好事前控制,保证工程的正常使用和耐久性:

(一)设计阶段的裂缝控制

设计阶段的控制是有效控制混凝土裂缝的基础,设计人员要根据建筑物的使用环境、用途、地质情况、结构构件的重要性及使用部位等因素综合考虑,采用相应的技术保证措施。虽然说现行规范都对设计作了相应的规定,但这些规定毕竟都是基本要求,也缺乏一定的针对性(因为每一个工程都有自己特别的要求)。

1.针对产生不均匀沉降的因素,采取“放”与“抗”相结合的控制措施,确保不同承载能力的土体变形的一致性。不均匀沉降的产生原因主要有二种:土质承载力不同和上部荷载分布不均匀,当建筑面积较大或者存在主楼、群楼时这种现象更加明显。一般设计时采用地基加固和设置后浇带的方法,但沉降并不是在施工竣工验收前结束,这是就必须从基础着手保证在使用阶段具有一定抗或者减少这种约束变形的能力,而且有些时候还要设置永久性的沉降缝;

2.控制荷载裂缝及荷载次应力裂缝。设计人员除了考虑结构的整体性外还应根据各个结构构件的使用环境、使用部位和重要性等因素确定相应的裂缝控制等级,而不能一概而论。通过整体变形分析加强薄弱部位的技术措施;对于异型构件,由于其受力比较复杂,需要进行单独和整体两种验算;关键部位要有相应的技术保证措施。

3.温度是影响混凝土裂缝的重要因素,设计过程中设计人员往往只注意混凝土的厚度带来的温度效应而忽略了面积大所带来的温度累积效应。以混凝土屋面板为例,屋面直接接收阳光照射,而目前常用的屋面材料都具有较强的吸热性能如屋面缸砖。两年来,没有发生渗水现象,效果较明显。屋面裂缝控制还应采取“避”的措施,如屋面使用反光材料或者做出绿色屋面等。

(二)混凝土施工阶段的裂缝控制

混凝土施工阶段导致裂缝产生的因素很多,为了实现有效控制,建立网络控制图是十分必要的,因为这些因素不仅仅会诱发裂缝的产生,还影响到结构或者施工等其它方面,如大体积混凝土为了降低水化热往往采用粉煤灰水泥,但这不利于早期强度的增长,尤其是冬季施工时;商品混凝土往往要掺加泵送剂,这是为了方便施工,但同时会增加混凝土的收缩性能,若减少泵送剂的用量,将会为施工造成麻烦。建立网络控制图的目的就是明确结构性能、混凝土强度增长、施工工艺等与裂缝控制之间的关系,以利于综合权衡。

1.控制原材料质量,选择合适的水泥、外加剂品种,控制配合比。同时,商品混凝土供应前应协同业主、监理方、设计院和施工单位共同商量,在满足混凝土设计强度的前提下,合理化配合比、控制混凝土的含碱量,选择合适的水泥、外加剂品种,优化外加剂的用量,以减少内因产生的裂缝;

2.模板对混凝土裂缝的影响及控制

模板是保证混凝土构件尺寸及形状的工具,但是,如果模板本身没有足够的强度、刚度和稳定性,势必产生混凝土构件的“先天变形”而改变构件的受力情况,尤其对水平构件和压杆构件其影响更大。结果容易产生裂缝。

3.钢筋对混凝土裂缝控制的影响

钢筋布置是否符合设计图纸要求,影响到结构构件受力时的应力分布,这种情况产生的裂缝在混凝土板中最为常见:一般设计时,板筋直径小、易变形,混凝土浇筑时,易造成板底筋和面筋间距减少的现象,从而降低了板的有效承载力,这也是楼板出现裂缝的一个主要原因。因此严格控制钢筋绑扎和节点部位的钢筋布置,使之符合设计与施工规范要求是保证构件承载力的重要措施。

4.保证浇筑的连续性、振捣的密实性和有组织施工。现场浇筑时,往往由于组织不到位、混凝土供应跟不上而造成隐形的施工缝,而且这些施工缝不是事前确定的,大都带有随机性,如果发生在构件剪力较大的部位,就会降低结构构件的有效承载力而产生裂缝。对于大体积混凝土,要采取合理的浇筑方案,分层浇筑时应保证分层处混凝土的整体性(如分层处设加强筋),并做好温控措施。

(三)混凝土强度形成阶段的裂缝控制

1.采取针对性的养护措施,确保混凝土强度的正常增长。多年来的研究和工程实践证明:混凝土强度增长期间,需要水分的不断补充。针对性的养护措施应该根据水泥品种、外加剂的品种和用量、配合比及施工环境等因素综合考虑,尽量减少不利于混凝土强度增长的因素,以降低强度增长期间产生的微裂缝。

2.确保拆模时,混凝土构件强度达到规范规定的施工强度要求。拆模过早易引起混凝土构件的变形,改变构件的受力情况。关于同条件养护,新的混凝土结构工程施工验收规范有明确的规定,这里不再多说。

3.防止混凝土构件,尤其是楼板过载。由于此阶段混凝土强度还没有完全形成,承载能力有限,过量的堆载会产生同“过早拆模”一样的结果,造成结构上的隐患,因此该阶段应该控制新浇混凝土楼面上的堆载,尤其是集中荷载,使之既能保证正常施工,又不产生不良影响。

五、结束语

本公司在监理项目时,就采取了这种控制方法。项目监理部结合项目的特点通过详尽的分析,把混凝土裂缝的影响因素按照实施主体和实施阶段进行划分,并通过一系列的协调工作明确了责任归属。从实施效果来看,这种控制混凝土裂缝的方法是可行的。

参考文献:

1.罗季英,冷发光等.商品混凝土地裂缝问题及限制收缩开裂研究.中南水力发电.2001.6.

2.闫文生.大体积混凝土裂缝的原因及防治.铁道标准设计.2001.3.

3.王铁梦.工程结构裂缝控制.北京:中国建筑工业出版社.1997.

4.傅沛兴.混凝土化学反应裂缝及防治.建筑技术.2002.1.

作者:李桂玲

第3篇:道路桥梁混凝土裂缝控制措施探讨

摘要:随着科学技术水平的不断提高以及现代桥梁工程施工工艺的快速发展,桥梁工程施工的管理手段也得到了不断的完善和加强,桥梁工程的内在施工质量也有了很大的提高。但是外观质量也是影响桥梁质量的一个主要因素,在桥梁施工的过程中,混凝土裂缝是最常见的问题之一。裂缝的出现不仅会影响桥梁的质量,甚至会导致桥梁垮塌。所以如何采取有效的措施,使桥梁裂缝得到克服和控制,是每一个桥梁工程技术人员迫切需要解决的问题。

关键词:混凝土裂缝;成因;施工控制

一、道路桥梁混凝土施工裂缝的主要原因分析

根据混凝土道路桥梁裂缝的种类,就其产生的原因,大致可划分为以下几种:

(一)前期设计阶段的问题引起的裂缝

通过分析道路桥梁裂缝的问题,能够了解到出现裂缝的原因不仅仅是施工过程中技术工艺的问题,还可能与道路桥梁的前期设计工作有关。通常情况下,道路桥梁施工之前需要图纸设计进行大致的规划、细致的测量,如果在图纸设计这一环节出现了差错,也必然会造成施工过程出现问题。通过分析,设计方面出现施工裂缝的原因有以下三方面:第一,在进行桥梁的设计时,对于整个建筑群的内部结构与外部压力设计不合理,造成道路桥梁结构受力不均,在大型的建筑方面,受力不均衡就会导致结构受到破坏,进而产生了施工裂缝。第二,在进行设计构思的时候,没有进行实地勘察,充分了解道路桥梁建设的周围环境、地理位置等问题。因此在没有实际为基础的情况下,设计图纸的适用性必然存在一些问题,进而导致实际施工无法达到最理想的设计理念,如此一来也会造成裂缝问题的出现。第三,道路桥梁设计人员与施工人员没有进行很好的沟通,使得在施工的过程中,施工人员不能明确的理解设计图纸的标注,最终造成施工裂缝的产生。

(二)温度变化引起的裂缝

混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内产生应力,当应力超过混凝土抗拉强度时就会产生温度裂缝。温度裂缝区别其他裂缝最主要特征是将随温度变化而扩张或合拢。施工阶段引起温度变化主要因素是水化热和养护措施。在施工过程中,大体积混凝土浇筑之后由于水泥水化放热,致使内部温度很高,内外温差太大,致使表面出现裂缝。采用电热张拉法张拉预应力构件时,预应力钢材温度可升高至350℃,混凝土构件也容易开裂。

(三)施工材料质量引起的裂缝

混凝土主要由水泥、砂、骨料、拌和水外加劑组成。配置混凝土所采用材料质量不合格,可能导致结构出现裂缝。砂石粒径太小、级配不良、空隙率大。将导致水泥和拌合水用量加大,影响混凝土的强度,使混凝土收缩加大,如果使用超出规定的特细砂,后果更严重。砂石中云母的含量较高,将削弱水泥与骨料的粘结力,降低混凝土强度。砂石中硫化物可与水泥中的铝酸三钙发生化学反应,体积膨胀2.5倍。拌合水或外加剂中氯化物等杂质含量较高时对钢筋锈蚀有较大影响。采用海水或含碱泉水拌制混凝土,或采用含碱的外加剂,可能对碱骨料反应有影响。

(四)荷载引起的裂缝

(1)直接应力裂缝

直接应力裂缝产生的原因主要是由于在桥梁设计阶段对结构的计算不合理,实验受力与实际受力不相符,导致桥梁安全系数不够。还有就是在施工的过程中,没有完全按照施工设计图纸进行操作,对施工过程中的材料堆放、运输、安装等没有加以限制。

(2)次应力裂缝

次应力裂缝是指由于外荷载引起的次生应力产生的裂缝。比如桥梁结构中经常需要开凿和开洞等,而这部分施工一般只是根据经验来设置受力钢筋。相关研究表明,受力构件在挖孔后,在孔的周围会产生巨大的应力集中。在实际的桥梁中,次应力的产生是导致混凝土裂缝产生的主要原因。

二、预防道路桥梁施工中裂缝的措施和方法

(一)加强对设计图纸的审查

在真正动土施工之前,一定要对道路桥梁的设计图纸进行细致的审核,需要根据以往的施工经验对可能会出现施工裂缝的环节进行重点检查,确保图纸的有效可行性,避免由于设计图纸的问题造成的施工裂缝问题,道路桥梁建设是一项设计广泛,复杂的工程,一旦施工过程中出现问题,损失就会很严重。另外,设计人员应当与建筑单位进行充分的沟通,了解建筑目的、理念、功能,对图纸设计很有帮助,对于图纸中存在的不明确问题,要及时交流,保障后期施工的顺利进行。

(二)要选择合适适量材料

混凝土属于一种混合物料,不同物料的特征、性质不同。例如:混凝土中的骨料,本身具有吸水的特性,主动吸收周围空气中的水分,导致混凝土结构吸水膨胀,占有很大的空间,道路桥梁工程中的混凝土材料,大多暴露在室外环境中,当骨料膨胀的应力大于混凝土结构本身应力时,即会引起结构裂缝。混凝土材料造成的裂缝中,还包括水泥、外加剂等,不利于混凝土的质量保障。

(三)温度控制

温度对道路桥梁混凝土裂缝的影响比较大,道路桥梁工程应该积极控制温度因素,规避温度造成的裂缝风险。以某道路桥梁工程为例,分析温度控制的措施。该桥梁性质为立交桥,双向6车道,该桥梁工程量非常大,全面把控工程质量。该桥梁混凝土施工集中在夏季,混凝土散热的难度比较大,该工程将温度控制的重点放在混凝土浇筑方面,降低浇筑厚度,加快混凝土散热的速度,实际混凝土面积非常大,该工程在混凝土结构内部设计了降温管,以免热量囤积在混凝土内部而引起裂缝,该工程监督混凝土降温措施,同时设计夜间工程,复杂的混凝土工艺,选择夜间作业,待周围环境温度降低后,安排混凝土施工,用于缓解夏季高温的影响,降低裂缝发生的机率。

(四)地基控制

地基是道路桥梁混凝土裂缝的间接因素,但是其对混凝土裂缝的影响不可忽略。道路桥梁工程中,为了解决地基造成的混凝土裂缝问题,需要全方位的控制地基施工,强化地基的稳定性,进而为道路桥梁混凝土施工,提出优质的条件,实现预防混凝土裂缝的目的。例如:道路桥梁工程勘察地质信息,深入分析地质情况,设计地基加固的措施,用于防护地基变形或沉降,利用稳定的地基,保护混凝土结构,以免地基不稳定造成混凝土裂缝。地基控制是道路桥梁混凝土裂缝控制中的一项基础措施,目的是维护道路桥梁混凝土结构,改善混凝土性能,防护混凝土裂缝。

(五)后期保养工作要做好

在道路桥梁完工后的一段时间被称为裂缝问题的多发时间段,在这一阶段也不能放轻松,所以后期的保养工作也要进行严格的管理与控制,为了减少该阶段出现的裂缝问题,也为了保证道路桥梁养护操作的实效性。道路桥梁在进行后期养护操作的过程中,应当格外关注外界环境的湿度和温度,提前预防外界温度的变化导致的施工裂缝问题,高度重视道路桥梁施工的最后一道工序。例如当温度升高的时候,可以采取洒水降温的措施对道路桥梁进行养护。

三、结语

总之,道路桥梁施工建设是一项工程量大而又复杂的工程,在施工的过程中,无论哪一个环节出现了问题都会影响整个施工过程,导致施工裂缝的产生。因此,在施工过程中应当尽力避免造成裂缝的因素,保证施工的质量。此外,如果出现了施工裂缝,应当结合出现的原因进行研讨分析,提出相应的解决措施。并加强后期工作,严格按照操作工序进行操作,避免施工裂缝的产生,确保道路桥梁养护的有效性,延长道路桥梁的使用寿命。

参考文献

[1]冯安翠.试论道路桥梁施工裂缝的原因及预防对策[J].建筑工程技术与设计,2017(1):434.

[2]葛庆.道路桥梁施工裂缝原因分析[J].中国高新技术企业,2015(24):91-92.

[3]王莉.道路桥梁施工裂缝成因及预防措施[J].建筑工程技术与设计,2016(31):11.

个人简介:道路桥梁与隧道工程 湖南省双峰县花门镇群楼村刘家村民组

作者:刘宗帮

第4篇:大体积混凝土温度裂缝控制措施

1、概述

此次拟浇筑砼系华荣xx城D区基础筏板。D区基础砼等级为为C35P8,板的一般厚度为2.0m,集水井处最厚区域为4.35m;本区域一次浇筑砼方量约为2980m3;板内配筋情况是:板上下部均为φ28@150双向双层网筋,第二层配有φ18@150双向网筋一层,板中间配置构造抗裂钢筋网片φ16@200,D区柱下配置φ22@150。由此可见,该筏板确具有体形大、结构厚、砼方量多,钢筋密而工程条件较复杂和施工技术要求高等特点。

大体积混凝土是指最小断面尺寸大于1m以上的混凝土结构。与普通钢筋砼相比,具有结构厚,体形大、混凝土数量多、工程条件复杂和施工技术要求高的特点。

大体积混凝土在硬化期间,一方面由于水泥水化过程中将释放出大量的水化热,使结构件具有“热涨”的特性;另一方面混凝土硬化时又具有“收缩”的特性,两者相互作用的结果将直接破坏混凝土结构,导致结构出现裂缝。因而在混凝土硬化过程中,必须采用相应的技术措施,以控制混凝土硬化时的温度,保持混凝土内部与外部的合理温差,使温度应力可控,避免混凝土出

现结构性裂缝。

2、大体积混凝土裂缝产生的原因

大体积混凝土墩台身或基础等结构裂缝的发生是由多种因素引起的,各类裂缝产生的主要影响

因素如下:

(1)收缩裂缝。混凝土的收缩引起收缩裂缝。收缩的主要影响因素是混凝土中的用水量和水泥用量,用水量和水泥用量越高,混凝土的收缩就越大。选用的水泥品种不同,其干缩、收缩的

量也不同。

(2)温差裂缝。混凝土内外部温差过大会产生裂缝。主要影响因素是水泥水化热引起的混凝土内部和混凝土表面的温差过大。特别是大体积混凝土更易发生此类裂缝。

大体积混凝土结构要求一次性整体浇筑。浇筑后,水泥因水化热,由于混凝土体积大,聚集在内部的水泥水化热不易散发,混凝土内部温度将显著升高,而其表面则散热较快,形成了较大的温度差,使混凝土内部产生压应力,表面产生拉应力。此时,混凝土龄期短,抗拉强度很低。当温差产生的表面抗拉应力超过混凝土极限抗拉强度,则会在混凝土表面产生裂缝。 (3)材料裂缝。材料裂缝表现为龟裂,主要是因水泥安定性不合格或骨料中含泥量过多而引起

的。

3、大体积混凝土裂缝控制的理论计算

华荣.上海城D区,混凝土及其原材料各种原始数据及参数为:一是C35P8混凝土采用P.O42.5普通硅酸盐水泥,其配合比为:水:水泥:砂:石子:粉煤灰:矿粉(单位Kg)=172:285:716:1070:60:100(每立方米混凝土质量比),砂、石含水率分别为3%、0%,混凝土容重

为2390Kg/m3。

二是各种材料的温度及环境气温:水30℃,砂、石子35℃,水泥40℃,粉煤灰35℃,矿粉35℃,

环境气温32℃。 3.1混凝土温度计算

(1)混凝土拌和温度计算:公式TO=∑Timici/∑mici可转换为:TO=[0.9

(mcTc+msTs+mgTg+mfTf+mkTk)+4.2Tw(mw-Psms-Pgmg)+C1(PsmsTs+PgmgTg)-C2(Psms+Pgmg)÷[4.2mw+0.9(mc+ms+mg+mf+m

k)] 式中:TO为混凝土拌和温度;mw、mc、ms、mg、mf、mk—水、水泥、砂、石子、粉煤灰、矿粉单位用量(Kg);Tw、Tc、Ts、Tg、Tf、Tk—水、水泥、砂、石子、煤灰、矿粉的温度(℃);Ps、Pg—砂、石含水率(%);C

1、C2—水的比热容(KJ/Kg.K)及溶解热(KJ/Kg)。

当骨料温度>0℃时,C1=4.2,C2=0;反之C1=2.1,C2=335.

本实例中的混凝土拌和温度为:TO=[0.9(285*40+716*35+1070*35+60*35+100*35)+4.2*30(172-716*3%)+4.2*3%*716*35]÷4.2*

172+0.9(285+716+1070+60+100)]=34.3℃. (2)混凝土浇筑温度计算:按公式TJ=TO-(α.Tn+0.032n)*(TO-YQ) 式中:TJ—混凝土浇筑温度(℃);TO—混凝土拌和温度(℃);TQ—混凝土运送、浇筑时环境气温(℃);Tn—混凝土自开始运输至浇筑完成时间(h);n—混凝土运转次数。

α--温度损失系数(/h)本例中,若Tn取1/3,n取1,α取0.25,则:

TJ=34.3-(0.25×1/3+0.032×1)×(34.3-32)=34.0℃

3.2混凝土的绝热温升计算

Th=WO.QO/(C.ρ)

式中:WO—每立方米混凝土中的水泥用量(Kg/m3);QO—每公斤水泥的累积最终热量(KJ/Kg);C—混凝土的比热容取0.97(KJ/Kg.k);ρ—混凝土的质量密度(Kg/m3)

Th=(285*375)/(0.97*2390)=55.8℃

3.3混凝土的内部实际温度

Tm=TJ+ξ•Th

式中:TJ—混凝土浇筑温度; Th—混凝土最终绝热温升;ξ—温将系数查建筑施工手册,若混凝土浇筑厚度4.0m,则:ξ3取0.74,ξ15取0.55,ξ21取0.37. Tm(3)=34.0+0.74*55.8=75.3℃;

Tm(15)=34.0+0.55*55.8=64.7℃;

Tm(21)=34.0+0.37*55.8=54.6℃. 3.4混凝土表面温度计算

Tb(T)=Tq+4h,(H- h,)△T(T)/H2式中:Tb(T)—龄期T时混凝土表面温度(℃);Tq--龄期T时的大气温度(℃);H—混凝土结构的计算厚度(m)。

按公式H=2h+ h,计算,h—混凝土结构的实际厚度(m);h,--混凝土结构的虚厚度(m);h ,=K•λ/Βk=--计算折减系统取0.666,λ—混凝土的导热系数取2.33W/m•K

β—模板及保温层传热系数(W/m2•K);

β值按公式β=1/(∑δi/λi+1/βg)计算;δi—模板及各种保温材料厚度(m); λi—模板及各种保温材料的导热系数(W/m•K);βg—空气层传热系数可取23(W/m2•K). T(T)-- 龄期T时,混凝土中心温度与外界气温之差(℃):

T(T)= Tm(T)-Tq,

若保护层厚度取0.04m,混凝土灌注厚度为4m,则:

β=1/(0.003/58+0.04/0.06+1/23)=1.4:1 h,=K•λ/β=0.666×2.33/1.41=1.1;

H=2h+ h,=4.0+2×1.1=6.2(m)

若Tq取32℃,则:

T(3)=75.3-32=43.3℃ T(15)=64.7-32=32.7℃ T(21)=54.6-32=22.6℃

则:Tb(3)=32+4×1.1(6.2-1.1)×43.3/6.22=57.3℃ Tb(15)=32+4×1.1(6.2-1.1)×32.7/6.22=51.1℃ Tb(21)=32+4×1.1(6.2-1.1)×22.6/6.22=45.2℃ 3.5混凝土内部与混凝土表面温差计算

本工程中: T(3)s=75.3-57.3=18℃ △ T(15)s=64.7-51.1=13.6℃ △ T(21)s=54.6-45.2=9.4℃

4、计算结果分析

从以上计算可以看出,混凝土3d龄期时内外温度差达到最大值18℃,符合混凝土内外温差小于25℃的技术要求。但必须看到计算结果是基于养护环境温度为32℃,表面保温措施得当,入模混凝土温度为34℃条件下得出的。实际施工养护中有可能无法满足以上条件要求。2008年8月19日实测C30混凝土拌和后温度未36℃,当时拌和水温度为30℃,环境温度为32℃,若养护环境温度为夜间较低时的情况,假设为23℃,则△T(3)s=22.6℃,加上保温措施有可能达不到要求,有产生温度裂缝的可能,因此有必要采取一丁的措施防止温度裂缝的产生。

5、大体积混凝土施工技术措施

(1)降低混凝土入模温度。包括:浇筑大体积混凝土时应选择较适宜的气温,尽量避开炎热天气浇筑。可采用温度较低的地下水搅拌混凝土,或在混凝土拌和水中加入冰块,同时对骨料进行遮阳保护、洒水降温等措施,以降低混凝土拌和物的入模温度,掺加相应的缓凝型减水剂。 (2)加强施工中的温度控制。包括:在混凝土浇筑之后,做好混凝土的保温保湿养护,以使混凝土缓缓降温,充分发挥其徐变特性,减低温度应力。应坚决避免曝晒,注意温湿,采取长时间的养护,确定合理的拆模时间,以延缓降温速度,延长降温时间,充分发挥混凝土的“应力松弛效应”;加强测温和温度监测。可采用热敏温度计监测或专人多点监测,以随时掌握与控制混凝土内的温度变化。混凝土内外温差应控制在25℃以内,基面温差和基底面温差均控制在20℃以内,并及时调整保温及养护措施,使混凝土的温度梯度和湿度不致过大,以有效控制有害裂缝的出现(养护措施详见大体积砼浇筑方案)。

(3)提高混凝土的抗拉强度。包括:控制集料含泥量。砂、石含泥量过大,不仅增加混凝土的收缩而且降低混凝土的抗拉强度,对混凝土的抗裂十分不利,因此在混凝土拌制时必须严格控制砂、石的含泥量,将石子含泥量控制在1%以下,中砂含泥量控制在2%以下,减少因砂、石含泥量过大对混凝土抗裂的不利影响;改善混凝土施工工艺。加强早期养护,提高混凝土早期及相应龄期的抗拉强度和弹性模量;在大体积混凝土基础表面及内部设置必要的温度配筋,以

改善应力分部,防止裂缝的出现。

第5篇:混凝土结构裂缝成因及控制措施

一、内容摘要

现浇钢筋混凝土楼面板的裂缝,是目前较难克服的质量通病之一,住宅工程楼面出现裂缝,往往会引起投诉纠纷及索赔。建筑物钢筋混凝土结构的普遍应用,伴随着商品混凝土的推广,建筑楼面出现裂缝的机率在增加,日益受到社会人士关注;楼面结构出现裂缝原因复杂,有材料、温度变化等原因,也有设计、施工、使用等方面问题。混凝土工程中材料的特性决定了结构较易产生裂缝,从实践中来看施工中混凝土出现裂缝的概率也是很大的,相当一部分裂缝对建筑物的受力及正常使用无太大的危害,但裂缝的存在会影响到建筑物的整体性、耐久性,会对钢筋产生腐蚀,是受力使用期应力集中的隐患,应当尽量在各方面给予重视,以避免裂缝的出现或把裂缝控制在许可的范围之内。本文以监理为主,兼顾设计和材料等方面,阐述楼面裂缝的产生原因及防治措施。

二、混凝土结构裂缝成因及控制措施

混凝土结构的裂缝是一个相当普遍的现象,大量工程实践以及近代科学关于混凝土强度的细观研究都表明结构物的裂缝是不可避免的,它是材料的一种特性。因此,科学地对待裂缝问题是在对裂缝进行分类、研究的基础上,采取有效的措施,将裂缝的有害程度控制在允许的范围内。本章将就混凝土结构中常见裂缝进行分类,并对结构中占主要部分的裂缝进行成因分析。

混凝土结构裂缝成因

裂缝的形成有外荷载、结构计算模型差异、材料的收缩(主要为的混凝土收缩、温度变形)等原因造成。从技术角度来分析,有设计、施工、材料等方面问题,主要反映如下: 1.1设计原因引起的裂缝

楼板刚度不足:设计按多跨连续板进行配筋计算,侧重于满足结构安全,较少考虑混凝土收缩特性和温度变形等多种因素,楼板高跨比仅为L/33.6-L/35,其刚度较小对裂缝控制很不利。 2)楼板构造配筋设计不周:设计在支座处按常规配设负筋,在中部板面不配钢筋,当板面出现温度变形和混凝土收缩,因无构造钢筋约束,板面即出现裂缝。

3)楼板内布线欠合理:由于水电施工图由各专业设计,实际施工中出现水电管交叉叠放,或由于设计考虑管内容线面积,部分预埋管径≥D25;且设计管线位置在楼板跨中,即在单层双向配筋处,楼板有效截面受到很大程度(15%-40%)削弱,成为楼板最易开裂的部位;当楼板收缩应力大于混凝土极限抗拉强度时,即出现沿管线表面呈直线状的裂缝。

4)从房屋的空间结构来看,剪力墙刚度大,约束了剪力墙间梁板的水平向自由变形,而梁刚度又较板刚度大,因各类因素引起的水平向收缩变形均集中到剪力墙间刚度最小的板上,造成这块板开裂。

5)膨胀剂的选用与掺量:设计未明确混凝土的限制膨胀率,只提出膨胀剂的品种和掺量范围,施工时按设计提供掺量进行配比施工,使混凝土的实际限制膨胀率不能达到最佳限制膨胀率。

1.2施工原因引起的裂缝

水电预埋管施工时在板内位置欠合理:管位置过高或过低;位置过高时,极易在板面出现因混凝土硬化收缩产生的裂缝,也易在维修裂缝或室内装修时损坏管线;两根管线并行布置时,管线间距过小甚至并拢,更易因管线集中而产生裂缝。

空载养护期不足:从楼面混凝土浇完、收光至施工材料堆放,平均空载养护期仅为一天半,人为因素过早地震动、荷载造成楼板幼龄混凝土内部受损开裂。且施工中用塔吊吊运的钢管、钢筋等周转材料因受剪力墙钢筋影响多堆放在预埋管线部位。 1.3材料原因引起的裂缝

楼板商品混凝土强度为C40(8层以下)C35(8—18层)C30(18层以上),其收缩变形值为同标号普通混凝土的1.2--1.3倍,且商品混凝土单方用水量过大(200Kg),其中部分水在振捣时被游离出来,部分水与水泥结合成凝胶,相当大一部分为自由水仍留在混凝土孔隙中,成为混凝土干缩的隐患。楼板拆模后,板面和板底长期裸露在大气中,后期施工的细石混凝土面层养护期过后也长期处于干燥环境中。正是这种环境效应(受温度、湿度、风力影响使水泥石毛细孔、凝胶孔内的自由水由表及里逐渐蒸发),和尺寸效应(楼板裸露面积大,厚度薄)的共同影响,使楼板较其它构件更易出现干缩裂缝。混凝土的干缩、温度收缩、收缩是要因,而由于施工管线预埋欠合理、楼板刚度不足、材料等多重原因综合,使本工程楼板沿预埋管线处出现大量裂缝。

2、混凝土裂缝的预防措施

由于裂缝的产生是多种多样的,在混凝土结构中普遍存在且危害较大,因此,要对混凝土裂缝进行认真研究、区别对待,并在设计、施工中采取各种有效的措施来预防裂缝的出现和发展。

2.1设计措施

1)增配构造筋提高抗裂性能,配筋应采用小直径、小间距。全截面的配筋率应在0.3~0.5%之间。

2)避免结构突变产生应力集中,在易产生应力集中的薄弱环节采取加强措施。 3)在易裂的边缘部位设置暗梁,提高该部位的配筋率,提高混凝土的极限拉伸。

4)在结构设计中应充分考虑施工时的气候特征,合理设置后浇缝,在正常施工条件下,后浇缝间距20~30m,保留时间一般不小于60天。如不能预测施工时的具体条件,也可临时根据具体情况作设计变更。从住宅工程现浇板裂缝发生的部位分析,最普遍的是房屋四周、阳台处的房间在离开阳角1米左右,即在楼板配筋的负弯矩筋以及角部放射筋末端或外侧发生45°左右的楼地,面斜角裂缝,这在现浇板任何一种类型的建筑中都普遍存在。主要是混凝土的收缩特性和温差、沉降等作用所引起,并且越靠近屋面处的楼层裂缝越大。从设计角度看,现行设计规范侧重于强度,对温差和混凝土收缩特性等多种因素综合考虑不足,构造配筋量达不到要求。而房屋的四周阳角由于受到刚度相对较大的楼面梁约束,限制了楼面板的自由变形,因此在温差和混凝土收缩变化时,板面在配筋薄弱处首先开裂,产生45°左右的斜角裂缝。虽然楼地面斜角裂缝对结构安全使用没有影响,但在有水源等情况下会产生渗漏缺陷,容易引起住户投诉,是裂缝防治的重点。根据上述原因分析,设计单位应在房屋四周的阳角处楼面板配筋进行加强,负筋不采用分离式切断,改为沿房间全长配置,设置双层双向钢筋,阳角处钢筋间距不宜大于100㎜,钢筋直径不宜小于¢8。外墙转角处尚应设置放射钢筋,配筋范围应大于板跨的1/3,钢筋间距不宜大于100㎜,房屋长度大于50m时,在楼中部位设置后浇带加强措施。 2.2施工措施

1)严格控制混凝土原材料的的质量和技术标准,选用低水化热水泥,粗细骨料的含泥量应尽量减少(1~1.5%以下)。

2)细致分析混凝土集料的配比,控制混凝土的水灰比,减少混凝土的坍落度,合理掺加塑化剂和减少剂。

3)浇筑时间尽量安排在夜间,最大限度降低混凝土的初凝温度。白天施工时要求在沙、石堆场搭设简易遮阳装置,或用湿麻袋覆盖,必要时向骨料喷冷水。混凝土泵送时,在水平及垂直泵管上加盖草袋,并喷冷水。

4)根据工程特点,可以利用混凝土后期强度,这样可以减少用水量,减少水化热和收缩。 5)加强混凝土的浇灌振捣,提高密实度。 6)混凝土尽可能晚拆模,拆模后混凝土表面温度不应下降15℃以上,混凝土的现场试块强度不低于C5。

7)采用两次振捣技术,改善混凝土强度,提高抗裂性。 8)根据具体工程特点,采用UEA补偿收缩混凝土技术。 9)对于高强混凝土,应尽量使用中热微膨胀水泥,掺超细矿粉和膨胀剂,使用高效减水剂。通过试验掺入粉煤灰,掺量15%~50%。 2.3技术措施

楼面裂缝的发生除以45°斜角裂缝为主外,还有较常见的两种: 1)预埋线管及线管集中处;

2)施工中周转材料较集中和较频繁的吊装卸料堆放区域。施工中采取以下技术措施可以有效防止楼板面裂缝:

2.1)重点加强楼面钢筋网的有效保护措施钢筋在楼面混凝土板中是受拉力,起着抵抗外荷载所产生的弯矩和防止混凝土收缩和温差发生的双重作用,而这一双重作用均需钢筋处在上下合理的保护层前提下才能确保有效。实际施工中,楼面下层的钢筋网在受到混凝土垫块及模板的依托下保护层较易正确控制。但当垫块间距放大1.5m时,钢筋网的合理保护层厚度就无法保证,所以纵横向的垫块间距限制在1㎡中放2块。于此相反,楼面上层钢筋网的有效保护,一直是施工中的一大难题。其原因:板的上层钢筋一般较细,施工中受到人员踩踏后容易变形、弯曲;各工种交叉作业,施工人员多,行走十分频繁,钢筋难免被大量踩踏;上层钢筋网的马凳间距设置过大,甚至不设。根据施工实践,楼面上上层钢筋必须设置马凳,其横向间跨不应大于700㎜,(即每㎡不少于2只),特别是对于¢8一类细小钢筋,马凳的间距应控制在600㎜以内(即每㎡不少于3只),同时采取下列措施:2.1.1)尽可能合理和科学地安排好

各工种交叉作业时间,在板底钢筋绑扎后,线管预埋应及时布置,以减少板面钢筋绑扎后的作业人员数量;

2.1.2)在楼梯、通道等频繁和必须通行处应搭设临时简易通道(或铺设跳板),以供施工人员通行。

2.1.3)加强教育和管理,使作业人员充分重视钢筋的成品保护,行走时,应自觉沿马凳支撑点通行,减少对钢筋的踩踏; 2.1.4)安排足够钢筋工在混凝土浇筑前及浇筑中及时对踩踏变形的钢筋进行修整,特别是支座端部受力最大部位及负弯矩受力最大区域(四周阳角处、预埋管线位置、大跨度房间等)应重点检查和修整;

2.1.5)混凝土工在浇筑混凝土时应铺设临时活动跳板,尽量减少上层钢筋受到踩踏变形。 2.2)、预埋线管处的裂缝防治

特别是在楼梯处是线管集中处,容易导致现浇板裂缝。当预埋线管管径较大,房间开间大,且线管有重叠时,很容易引起板面裂缝。因此对于较粗的管线或多根线管集中处钢筋须进行加强处理。应增设抗裂短钢筋,间距≤100㎜。

2.3、材料吊卸区域的楼面裂缝防治目前在主体结构施工过程中,普遍存在质量与工期的矛盾。一般主体结构的楼层施工速度在7天左右,因此当楼层混凝土浇筑完毕后不足24h的养护时间,就忙着钢筋、钢管、模板、砖块等材料的吊运施工,这样,在混凝土强度不足的情况下,板面受材料的吊卸冲击荷载引起不规则的裂缝并且这些裂缝一旦形成,就形成永久性裂缝。因此对这类裂缝应做好如下措施:

2.3.1)主体施工速度不能强求过快,楼层混凝土浇筑完后应得到有效养护;

2.3.2)科学安排楼层施工作业,在楼层混凝土浇筑完的24h后,可进行一些定位放线、弹性等准备工作,不允许吊装大宗材料,小宗材料应分散堆放,避免冲击荷载和集中荷载。混凝土终凝后可先分批安排少量钢筋进行绑扎,做到轻卸、轻放,第三天可开始吊装钢管、模板、砖块等材料,也应当避免集中堆放。 2.4)、混凝土的养护对楼面混凝土的养护对其强度增长和各类性能的提高十分重要,特别是早期的养护可避免表面脱水减少混凝土初期收缩裂缝的生。施工中必须坚持草包或麻袋进行一周左右的养护。应特别注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此施工中应以预防贯穿性裂缝的发生为主。实践证明,混凝土常见的裂缝,大多数是不同深度的表面裂缝,此说寒冷地区的混凝土保温对防止表面早期裂缝尤为重要。混凝土的早期养护,重要目的在于保持适宜的温湿条件,已达到两个方面的效果,一方面使混凝土免受不利温、湿度变形的侵蚀,防止有害的冷缩和干缩。一方面使水泥水化作用顺利进行,以期达到设计的

强度和抗裂能力。混凝土的保温效果常常也有保湿的效果。从理论上分析,新浇混凝土中所含水分完全可以满足水泥水化的要求,但由于蒸发等原因,常常引起水分损失,从而推迟或妨碍水泥的水化,表面混凝土最容易受到这种不利影响。因此混凝土浇筑后的最初几天是养护的关键时期,在施工中应重视。

3、混凝土结构裂缝的处理技术

采取了上述措施后,由于各种原因仍可能有少量楼面裂缝发生。当这些裂缝

发生后,应在楼面施工和天棚粉刷前,预先做好妥善的裂缝处理工作,然后再进行装修。根据一些经验,住宅楼地面上部的找平层较厚,可通过在找平层中增设钢丝网进行加强;楼板底则粉刷层较薄或无粉刷层,且通常无吊顶遮盖,更容易暴露裂缝,影响美观而引起投诉,建议采用复合增强纤维等材料对裂缝作粘贴加强处理,当遇到裂缝较宽,受力较大等特殊情况时采用碳纤维粘贴加强,是目前较为理想的裂缝弥补措施。

三、结论与展望

裂缝是混凝土结构中普遍存在的现象,它的出现不仅会降低建筑物的抗渗能力,影响建筑物的使用功能,而且会引起钢筋的锈蚀,混凝土的碳化,降低材料的耐久性,影响建筑物的承载能力,因此严格按规程、规范要求施工,严把质量关,防患于未来,尽可能的降低混凝土裂缝的出现,并对混凝土裂缝进行认真研究,采用合理的方法进行处理,并在施工中采取各种有效的预防措施来预防裂缝的出现和发展,保证建筑物和构件的安全,使混凝土稳定的工。

第6篇:浅析大体积混凝土裂缝控制措施 (2)

地下防水综合施工技术

摘要:淮南矿业集团顾北煤矿选煤厂—落煤筒地下通道防水等级为二级,为保证地下通道防水工程质量,从设计到施工采取了一系列综合防水技术,本文拟对此作一介绍,重点阐述混凝土结构自防水、SBS活性沥青复合胶卷材防水层、桩体四周与混凝土底板接触部位采用金汤水不漏修平、膨胀止水条防水施工措施. 关键词:地下防水 综合施工技术

1 工程概况

顾北煤矿储煤厂落筒地下通道,基础底板厚1200mm,基础底板底标高-8.4m.柱基采用CFG柱,桩头嵌入基础底版100mm,地下水位标高-2.5m。

该工程地下室设计防水等级为二级,地下通道采用刚柔结合的防水体系,即地下通道、底板、外墙采用钢筋混凝土自防水〈混凝土抗渗等级为P8〉,外加一层SBS改性沥青复合胶防水卷材(4mm厚).桩头防水采用遇水膨胀止水条及金汤水不漏防水材料,施工缝采用钢板止水带. 2 混凝土结构自防水

该工程基础底板和地下室外墙自防水采用C30P8防水混凝土,基础底板厚1200mm,外墙厚400mm,迎水面钢筋保护层厚度为40mm,施工过程中将混凝土的抗渗性、密实度及防止有害裂缝的产生作为控制重点,确保防水混凝土施工质量. 2.1预拌混凝土供应

与搅拌混凝土厂家签订合同时,要求其对混凝土原材料质量及掺量上严格控制,对混凝土数量,使用水泥的质量,外加剂品种,砂石骨料的粒径,坍落度,混凝土初终凝时间供应速度及碱含量等均作详细要求。

2.1.1选用低水化热的矿渣硅酸盐水泥,强度等级42.5。

2.1.2选用中砂,细度模量2.5~3.0含泥量≤2%,在可泵送情况下,粗骨料选用5~30mm连续级配石子,含泥量≤1%,以减少混凝土收缩变形。

2.1.3外加剂采用复合型高效减水剂,掺量为水泥用量的4%,掺入外加剂时,混凝土有适度的膨胀性能和较小的后期收缩落差,且不泌水,不离析,可泵性好,具备良好的密实性和抗渗性能。

2.1.4掺入粉煤灰,本工程粉煤灰掺量为水泥用量的12%。 2.2混凝土浇筑施工

2.2.1采用适当的浇筑方法.在基础底板浇筑过程中“斜面分层、薄层浇筑、循序退打、一次到顶”的连续浇筑方法,施工中注意上下层混凝土浇筑时间间隔不得超过初凝时间。

2.2.2改善浇捣工艺.根据混凝土泵送时自然形成的流淌斜坡度,在每条浇筑带前、中、后各布置3道振动器.第一道布置在混凝土卸料点振捣手负责出管混凝土的振捣,使之顺利通过面筋流入底层;第二道设置在中间部位;第三道设置在坡角。振捣时控制好振捣方式及时间,避免漏振及过振。

基础底板上表面进行二次压光,即混凝土出现初凝后再进行一次压光,封闭混凝土表面很小的收缩裂缝。

2.3混凝土测温及养护措施

大体积混凝土的内外温差大,必须做好测温养护工作。本工程浇注时气温高达33℃,基础底板浇筑完毕后,采用JDC-2建筑电子测量仪进行测温。密切注意混凝土中心最高气温,严格控制混凝土内外温差≤25℃。采用浇水养护并覆盖塑料薄膜,防止混凝土水分蒸发和表面脱水产生干缩裂缝,养护时间不少于14d。

3 SBS改性沥青复合胶卷材防水层

该工程防水采用1层SBS改性沥青复合胶防水卷材(4mm厚)。进场的防水卷材具有产品的合格证书和性能检测报告,材料的品种、规格、性能等符合规定的国家产品标准和设计要求,进场进行抽样送检,检验合格后方可正式投入施工。

3.1工艺流程

清理基层→涂刷基层处理剂→细部附加增强处理→弹基准线→热熔铺贴卷材→搭接缝处理→防水保护层施工

3.2清理基层

基层必须牢固,无松动,空鼓,起砂,裂缝,凹凸不平等现象,含水率小于9%。基层若高低不平或凹坑较大时用掺胶的1:3的水泥砂抹平,阴阳角处做成圆弧形。

3.3涂刷基层处理剂

在基层表面满涂一道用汽油稀释的氯丁橡胶沥青胶粘剂,要涂刷均匀,不得漏刷和漏底,以隔离基层水分上浮,增加卷材与基层粘接力。基层处理剂涂刷完毕后,经8h以上达到干燥程度方可进行热熔法施工,以免失火。

3.4细部附加增强处理

对于阴阳角、桩根部以上100㎜等部位做增强处理。做法是先按细部形状将卷材剪好,不要加热,在细部贴一下,视尺寸、形状合适后,再将卷材的底面(有热熔胶的一面)用手持汽油喷灯烘烤,待其底面呈熔融状态,即可立即粘贴在已涂刷一道密封材料的基层上,并压实铺牢。

3.5弹基准线

在已经处理好并干燥的基层表面,按照所选卷材的宽度留出搭接缝尺寸,即要求同一层卷材长边和短边搭接均不得小于100mm,上下两层和相邻两幅卷材的接缝相互错开1/3幅宽。且两层卷材不得相互垂直铺贴。将铺贴卷材的基层线弹好,以便按此基准线进行卷材铺贴施工。

3.6热熔铺贴卷材

施工采用“滚铺法”,先将整卷卷材置于铺贴起始端,对准已弹好的基准线,先将端部卷材铺贴牢固。起始端卷材粘牢后,用喷灯对准卷材和基层的夹角,加热卷材和基层,至卷材底层胶层呈黑色光泽并伴有微泡,及时推动卷材滚进行粘贴,后随一人进行排气压实工作。在立面与平面的转角处,卷材的搭接留在平面上,且距离立面600mm。

3.7保护层施工

地板防水保护层采用50mm厚C20细石混凝土保护层,施工时注意不破坏防水层,并及时养护。防水卷材用甩搓部位首先用塑料布盖严,再用砖和砂浆压住封闭盖严,局部用胶合板加强保护。地下室外墙防水卷材经验收合格后立即进行50mm厚聚乙烯泡沫板保护层施工。聚乙烯泡沫板保护层施工后直接进行回填土。

4 桩头四周防水施工 该工程要求桩头锚入基础底板100mm,桩头与基础底板混凝土间的结合越好,工程基础的整体性能,防水性能,防震性能就越好。如果采用卷材式涂膜防水材料,桩头与基础底板之间会形成一道隔离层,不利于桩与基础底板的整体结合,并且卷材式涂膜防水材料都要求基层面平整,但是桩头及桩身平整度根本达不到要求,须另外进行桩头修补,不仅增加工程量,还延长工期,根据上述特点,该工程桩身四周选用金汤水不漏及膨胀止水条相结合的桩基防水施工方法。

金汤水不漏沿着桩身周围修补找平,可防止地下水从桩身缺陷部位渗水,然后表面再放一圈膨胀止水条。

4.1工艺流程

桩身四周清理剔凿→用水冲洗干净→抹金汤水不漏找平层→放置止水条→与垫层随打随压光→SBS防水卷材→50mm细石混凝土保护层

4.2桩身四周处理

桩头凿到设计标高以后,开始用手锤剔桩身四周凸出部位的混凝土及蜂窝内的泥土,疏松结构,直到见坚硬混凝土基层,用水冲干净。

4.3桩身局部处理

当桩身清理干净后,用金汤水不漏从桩根部往上找平一圈高10cm,特别是桩体中侧面的蜂窝必须填塞密实,同时开始浇筑垫层,边浇筑边放置止水条。

5 变形缝、施工缝等细部防水措施

变形缝、施工缝等细部构造是地下防水工程中的薄弱环节,处理不当会导致渗漏。变形缝处采用固定式橡胶止水带安装,施工缝采用止水钢板。

5.1为保证防水混凝土施工质量,在地板以上700mm墙身留设水平施工缝,防水采用止水钢板。

5.2变形缝处防水措施

在地下通道每段从底板、立壁及顶板一圈。变形缝采用固定式橡胶止水带,每边埋入混凝土宽度相同,混凝土的浇筑顺序根据变形缝设置,隔一段浇筑一段,每段顶板和立壁一起浇筑不留施工缝。底板埋入式橡胶止水带,要把止水带下部的混凝土振捣密实,然后将铺设的止水带由中部向两侧挤压按定,再浇筑上部混凝土,墙体内的橡胶止水带,用成型的钢筋加固,采用和易性较好的混凝土,避免止水带周围骨料集中。

墙体变形缝两侧混凝土,应分层浇筑,并用插入式振动器分层振捣,切勿漏振或过振。棒头不得碰撞止水带。

5.3穿墙螺栓

地下通道外墙模板全部采用带止水环的穿墙螺栓,止水环的焊接质量必须逐个验收。防止有漏焊点等焊接不合格的现象而导致漏水。对拉螺栓两端放置塑料块堵头,拆模后将螺栓沿平凹底割去,再用膨胀水泥砂浆封。

6 结束语

本工程地下防水以混凝土结构自防水为主,结合柔性卷材与桩头防水利用金汤水不漏加膨胀止水条。在合理设计的前提下,通过对多种防水技术的综合应用,多道设防,精心组织施工,认真贯彻执行地下工程防水规范要求,并注意对完成部位的保护、修补,确保地下防水工程的施工质量。

第7篇:浅析施工中控制混凝土裂缝的措施

中国混凝土网 [2007-6-15] 网络硬盘 我要建站 博客 常用搜索 征订网刊

摘 要:施工中常见的裂缝种类有收缩裂缝、温度裂缝、应力裂缝、施工裂缝等,混凝土裂缝是施工中较普遍性的质量问题。本文主要介绍了几种裂缝的控制方法及出现裂缝后的处理措施。

关键词:收缩裂缝 温度裂缝 应力裂缝 施工裂缝

中图分类号:T U 7 文献标识码:A 文章编号:1672-3791(2007)05(a)-0060-01

混凝土工程在施工、使用中,可能会出现各种裂缝,不同的裂缝对结构的耐久年限、安全使用性能的影响不同。本文依据混凝土裂缝产生的原因及类型制定防治方案,下面从混凝土裂缝产生的原因、特点、类型及如何防治等几方面进行探讨。

1 混凝土裂缝的类型

混凝土裂缝的分类方法较多,按裂缝出现的时间可分为两个阶段;施工期间的早期裂缝和使用期间的后期裂缝。常见的混凝土裂缝具体分类如下。

施工期间出现的裂缝: 温差裂缝、收缩裂缝、沉降裂缝、沉陷裂缝、龟裂裂缝及由于配筋不当、混凝土早期受冻引起的裂缝等。

使用期间常出现的裂缝; 冻融裂缝、锈蚀裂缝、浸蚀裂缝等。

按裂缝的形状、位置及分布情况可分为:横向裂缝、纵向裂缝、斜向裂缝、八字和倒八字裂缝、龟裂裂缝、交叉裂缝等。

按裂缝出现的原因可分为:收缩裂缝、温差裂缝、沉降裂缝、沉陷裂缝等。 2 几种常见裂缝的控制方法

2.1 收缩裂缝的控制

收缩裂缝的控制主要在于控制湿度的变化,使结构、构件具有相对稳定的湿度。

(1)加强混凝土的早期养护,混凝土浇筑完后,裸露表面应及时用草垫、草袋或塑料薄膜覆盖,并洒水湿润养护。在气温高、湿度低、风速大的天气及早覆盖、喷水雾养护,并适当延长养护时间。

(2)加强混凝土表面的抹压,但应注意避免过分抹压。

(3)采用密封保水方法,如在混凝土表面喷养护剂或覆盖塑料薄膜,使水分不易蒸发,或采用其他减少空气流动( 如设挡风墙、罩) ,延缓表面水分蒸发的办法。

(4)预应力构件应及时张拉,避免长期堆放。

(5) 适当选择配合比,避免水灰比、水泥用量、砂率过大,严格控制砂、石的含泥量,避免使用粉砂,以提高混凝土抗拉强度。

(6)构件长期露天堆放时,应继续适当洒水或覆盖养护,以便有较长的保湿养护时间,特别是薄壁构件,应放在阴凉地方覆盖堆放。

2.2 温度裂缝的控制

防止混凝土内部约束引起的表面温度裂缝,一般采用控制混凝土表面与外界或内部的温差的方法,使其小于25℃。常用控制措施是:对加热养护的构件,采用缓慢升降温,使升降温速度不大于10℃/h,并注意缓慢揭盖、脱模,避免表面急剧冷却引起表面温度应力过大;对大体积结构,当混凝土与外界温差较大时,采用保温养护,适当延长拆模时间,使温差控制在2 5 ℃以内。预防结构受外部约束引起的混凝土温度裂缝,一般可采取以下技术措施。

(1)选用低热或中热水泥(如矿渣水泥、抗硫酸盐水泥、粉煤灰水泥)配置混凝土;在混凝土中掺加粉煤灰或减水剂;利用后期(90d、180d)强度以降低水泥用量和温升;在基础内预埋冷却水管,通人循环冷水,将水化热导出;在厚大少筋大休积混凝土汇总,掺入20%以下块石吸热,并可节省混凝土。

(2)避开炎热天及夜间浇筑混凝土;采用低温水拌制混凝土;对砂石进行冷水雾降温,或设置简易避阳装置,以降低混凝土拌合物温度。同时采取薄层浇筑混凝土,每层厚度不大于30cm;加快热量散发,并使热量分布均匀。

(3) 做好混凝土的保温、保湿养护,缓慢降温,充分发挥徐变特性,消减温度应力;夏季避免暴晒,冬季采取保温覆盖,以免出现急剧的温度梯度;采取长时间养护,规定合理的拆模时间,充分发挥混凝土的“应力松弛效应”; 加强温度检测,及时调整保温及养护措施,控制混凝土内外温差不大于25℃;混凝土拆模后,及时回填土,避免结构侧面长期暴露。

2.3 应力裂缝的控制

(1) 加强施工中钢筋、模板、混凝土配料、振捣的质量控制检查,确保结构构件钢筋位置、安装支撑系统、支撑位置正确,混凝土强度达到要求。

(2)正确掌握拆模时间,避免过早拆模,敲击过重;严格控制施工临时堆载;构件堆放、运输、吊装时保持支撑和吊点位置正确、稳定, 避免振动、碰撞。

(3)预应力构件张拉或放张,混凝土必须达到规定的强度;控制应力应准确,不应超张,应缓慢放松预应力筋;胎模端部加弹性垫层(木或橡胶),减缓胎模角度,使构件回缩不被卡住。

2.4 施工裂缝的控制

(1)木模板浇水湿透,防止胀模将混凝土拉裂。采用反转脱模时应平稳,防止剧烈冲击和振动,并应在平整坚实的铺砂地面上进行。

(2)构件堆放按支撑受力状态设置垫木;重叠堆放时,支点保持在一条直线上,同时做好标记, 避免板、梁、柱构件反放。

(3)混凝土冬期施工掺加适量的早强剂,同时掺加亚硝酸钠阻锈剂( 为水泥重量的1%~2%)。

3 裂缝的处理

3.1 温度、收缩裂缝的处理

温度、收缩等因结构变形变化引起的裂缝,对钢筋产生的附加应力一般很低,对结构的承载力影响较小,但会引起钢筋锈蚀,影响长期强度和耐久性。对于表面裂缝的处理,可在裂缝稳定后采用涂刷两遍环氧胶泥、加贴玻璃纤维布、抹(喷)水泥砂浆等方法,进行表面封闭处理。对有整体性、防水、防渗要求的结构,缝宽大于0.1mm 深进的或贯穿的裂缝,应根据裂缝可灌程度采用化学注浆等方法进行补缝处理。也可采取灌浆与表面封闭相结合,恢复原有功能。对于宽度小于0.1mm 的裂缝,由于后期水泥生成氢氧化钙、硫铝酸钙等物质,使裂缝自行,愈合,一般可不进行处理。但如出现渗漏,应将缝隙剔凿开后,用堵漏剂进行封堵。

3.2 应力裂缝的处理

应力裂缝产生的应力较高(缝宽0.2mm 时应力可达180~250Mpa),影响结构强度和刚度。对梁、板类结构、构件主筋处最大竖向裂缝宽度在0.3mm 内的,可作表面封闭处理;缝宽大于0.4mm 或斜裂缝超过3/4 梁高者,应作加固处理;对不稳定和发展的裂缝应做卸荷或加固处理;沉降裂缝多为深进或贯穿性的,对结构的承载力和整体性有较大影响,因根据裂缝的严重程度进行适当加固处理;轻微的张拉裂缝,在结构受荷后会逐渐闭合,基本上不影响承载力,可按温度、收缩裂缝的处理方法进行表面封闭处理;缝宽大于0.2m。较严重的裂缝,将明显降低结构的刚度,应根据具体情况,采取加固或用钢筋混凝土围套、钢套箍加固以及用结构胶胶粘剂粘薄钢板加同等方法处理;预应力板(梁)横向裂缝深度至大肋(梁)高1/3 的,则不能使用。

3.3 施工裂缝的处理

纵向施工裂缝一般对结构承载力的影响远比横向裂缝小,一般可用环氧胶泥或水泥浆进行修补;当缝较宽时,应先沿裂缝凿成倒八字形凹槽,再用水泥砂浆或环氧胶泥嵌补;对于构件边角的纵向裂缝,可将裂缝处松散混凝土剔除,然后用水泥砂浆或细石混凝土修补。

参考文献

[1] 冯乃谦.新实用混凝土大全[M].北京:科学出版社,2005.

[2] 梁建智,朱维益.实用建筑施工手册[M].北京:中国建筑工业出版社,2006.

原作者: 麦伟全

来 源: 《建筑科学

第8篇:建筑混凝土结构裂缝的成因及其控制措施

建筑物钢筋混凝土结构的普遍应用,伴随着商品混凝土的推广,建筑楼面出现裂缝的机率在增加,日益受到社会人士关注;专家认为控制裂缝是个系统工程。楼面结构出现裂缝原因复杂,有材料、温度变化等原因,也有设计、施工、使用等方面问题,而楼面沿板内预埋管线出现的裂缝尚未引起工程人员足够重视,寻找其成因,利于有目的进行裂缝控制。

混凝土工程中材料的特性决定了结构较易产生裂缝,从实践中来看施工中混凝土出现裂缝的概率也是很大的,相当一部分裂缝对建筑物的受力及正常使用无太大的危害,但裂缝的存在会影响到建筑物的整体性、耐久性,会对钢筋产生腐蚀,是受力使用期应力集中的隐患,应当尽量在各方面给予重视,以避免裂缝的出现或把裂缝控制在许可的范围之内。

一、裂缝的成因分析

裂缝的形成有外荷载、结构计算模型差异、材料的收缩(主要为的混凝土收缩、温度变形)等原因造成。从技术角度来分析,有设计、施工、材料等方面问题,主要反映如下:

1、从设计方面看 ⑴楼板刚度不足:设计按多跨连续板进行配筋计算,侧重于满足结构安全,较少考虑混凝土收缩特性和温度变形等多种因素,楼板高跨比仅为L/33.6-L/35,其刚度较小对裂缝控制很不利。⑵楼板构造配筋设计不周:设计在支座处按常规配设负筋,在中部板面不配钢筋,当板面出现温度变形和混凝土收缩,因无构造钢筋约束,板面即出现裂缝。⑶楼板内布线欠合理:由于水电施工图由各专业设计,实际施工中出现水电管交叉叠放,或由于设计考虑管内容线面积,部分预埋管径≥D25;且设计管线位置在楼板跨中,即在单层双向配筋处,楼板有效截面受到很大程度(15%-40%)削弱,成为楼板最易开裂的部位;当楼板收缩应力大于混凝土极限抗拉强度时,即出现沿管线表面呈直线状的裂缝。⑷从房屋的空间结构来看,剪力墙刚度大,约束了剪力墙间梁板的水平向自由变形,而梁刚度又较板刚度大,因各类因素引起的水平向收缩变形均集中到剪力墙间刚度最小的板上,造成这块板开裂。⑸膨胀剂的选用与掺量:设计未明确混凝土的限制膨胀率,只提出膨胀剂的品种和掺量范围,施工时按设计提供掺量进行配比施工,使混凝土的实际限制膨胀率不能达到最佳限制膨胀率。

2、从施工方面看 ⑴水电预埋管施工时在板内位置欠合理:管位置过高或过低;位置过高时,极易在板面出现因混凝土硬化收缩产生的裂缝,也易在维修裂缝或室内装修时损坏管线;两根管线并行布置时,管线间距过小甚至并拢,更易因管线集中而产生裂缝。⑵空载养护期不足:从楼面混凝土浇完、收光至施工材料堆放,平均空载养护期仅为一天半,人为因素过早地震动、荷载造成楼板幼龄混凝土内部受损开裂。且施工中用塔吊吊运的钢管、钢筋等周转材料因受剪力墙钢筋影响多堆放在预埋管线部位。

3、从材料方面看 楼板商品混凝土强度为C40(8层以下)C35(8—18层)C30(18层以上),其收缩变形值为同标号普通混凝土的1.2--1.3倍,且商品混凝土单方用水量过大(200Kg),其中部分水在振捣时被游离出来,部分水与水泥结合成凝胶,相当大一部分为自由水仍留在混凝土孔隙中,成为混凝土干缩的隐患。楼板拆模后,板面和板底长期裸露在大气中,后期施工的细石混凝土面层养护期过后也长期处于干燥环境中。正是这种环境效应(受温度、湿度、风力影响使水泥石毛细孔、凝胶孔内的自由水由表及里逐渐蒸发),和尺寸效应(楼板裸露面积大,厚度薄)的共同影响,使楼板较其它构件更易出现干缩裂缝。

混凝土的干缩、温度收缩、收缩是要因,而由于施工管线预埋欠合理、楼板刚度不足、材料等多重原因综合,使本工程楼板沿预埋管线处出现大量裂缝。

二、裂缝的控制措施

(一)总体而言

1、设计措施 1)增配构造筋提高抗裂性能,配筋应采用小直径、小间距。全截面的配筋率应在0.3~0.5%之间。2)避免结构突变产生应力集中,在易产生应力集中的薄弱环节采取加强措施。3)在易裂的边缘部位设置暗梁,提高该部位的配筋率,提高混凝土的极限拉伸。4)在结构设计中应充分考虑施工时的气候特征,合理设置后浇缝,在正常施工条件下,后浇缝间距20~30m,保留时间一般不小于60天。如不能预测施工时的具体条件,也可临时根据具体情况作设计变更。

2、施工措施 1)严格控制混凝土原材料的的质量和技术标准,选用低水化热水泥,粗细骨料的含泥量应尽量减少(1~1.5%以下)。2)细致分析混凝土集料的配比,控制混凝土的水灰比,减少混凝土的坍落度,合理掺加塑化剂和减少剂。3)浇筑时间尽量安排在夜间,最大限度降低混凝土的初凝温度。白天施工时要求在沙、石堆场搭设简易遮阳装置,或用湿麻袋覆盖,必要时向骨料喷冷水。混凝土泵送时,在水平及垂直泵管上加盖草袋,并喷冷水。4)根据工程特点,可以利用混凝土后期强度,这样可以减少用水量,减少水化热和收缩。5)加强混凝土的浇灌振捣,提高密实度。6)混凝土尽可能晚拆模,拆模后混凝土表面温度不应下降15℃以上,混凝土的现场试块强度不低于C5。7)采用两次振捣技术,改善混凝土强度,提高抗裂性。8)根据具体工程特点,采用UEA补偿收缩混凝土技术。9)对于高强混凝土,应尽量使用中热微膨胀水泥,掺超细矿粉和膨胀剂,使用高效减水剂。通过试验掺入粉煤灰,掺量15%~50%。

(二)具体措施

1、加强设计控制:梁板混凝土强度等级不宜大于C30;楼板应双层双向配筋,屋面、转换层楼面配筋宜加强;楼板内管线应避免出现交叉(将交叉部位设置在梁或墙上);控制管线直径,使其不超过板厚的20%且≤D25;重视房屋外围护构件(外墙、屋面、门窗等)的保温设计,若使房屋具有良好的保温性能,不仅可大幅度降低房屋长期能耗,更是减少因温差变形而引起裂缝的有效手段。

2、加强施工控制:采取有效固定措施(经计算高度的钢筋撑脚,预埋管线时管扎在撑脚上或采用砂浆垫块固定)使预埋管布置在板中部;延长空载养护时间,减少早期荷载裂缝;并行走向管线间距应大于0.25m,在管线集中或交叉处设加强筋,并在上下部铺放钢丝网,宽度应大于管区100mm;控制施工期间及竣工后的门窗洞口风速,减少环境温差和风速对结构的影响。

3、通过商品混凝土生产级配中材料的替换和外加剂的合理使用,降低商品砼的水泥和水用量;配比中添加聚丙烯纤维,可有效减少早期收缩裂缝(本工程在14层、18层楼板及屋面使用,掺量为1.2Kg/m3);合理选用混凝土膨胀剂(宜选用一等品),其掺量应经试配确定,来满足设计的限制膨胀率;加强养护,延长养护时间,也可在板面和板底拆模后涂刷养护剂,避免混凝土的早期干缩,确保膨胀剂产物的充分水化,使混凝土达到有效的补偿收缩作用。

4、在施工前与设计沟通,精心编制施工组织设计,通过材料调换,使楼面面层与楼板混凝土一起浇捣(采取有效保护措施),同时提升上层钢筋位置,这样在不增加荷载前提下增大了楼板的刚度,将有效减少裂缝的出现。

参考文献

[1]管大庆高温下大体积混凝土温度计算施工技术1996.2 [2]王铁梦工程结构裂缝控制北京中国建筑工业出版社1997.8

第9篇:控制混凝土温度裂缝的施工技术措施

口口葛华辉(福建联美建设集团有限公司,福建福州350

摘要:从控制混凝土温升、提高混凝土极限拉伸值、改善边 界约束和构造设计等方面,对建筑工程混凝土施工过程中控 制温度裂缝的施工技术措施进行了探讨。 关键词:温度裂缝;施工;温差;收缩 中图分类号:TU 528.07 文献标识码: 引言 在建筑工程混凝土施工过程中,温度裂缝控制 是施工质量控制的一项重要内容,尤其是对体积较 大的混凝土,如较大规模的地下室底板、大截面的转 换梁等,由于水泥水化热引起混凝土内部温度和温 度应力的剧烈变化,是导致混凝土发生裂缝的主要 原因。因此,在施工过程中应采取有效的技术措施, 减少和防止混凝土温度裂缝的产生。本文结合笔者 从事工程施工管理的实践经验,从控制混凝土温升、 提高混凝土极限拉伸值、改善边界约束和构造设计 等方面,对建筑工程混凝土施工过程中控制温度裂 缝的施工技术措施进行探讨。 1控制混凝土温升 混凝土结构在降温阶段产生温度应力的原因在 于降温和水分蒸发等导致的收缩,而外在约束使其 不能自由变形。因此,对水泥水化热导致的温升进 行控制,可以减小降温温差,从而降低温度应力,防 止温度裂缝。控制水泥水化热产生的温升可以采取 下列措施: (1)选用中低热的水泥品种。混凝土升温的热 源是水泥水化热,在施工中应选用水化热较低的水 泥,并尽量降低单位水泥用量。为此,施工大体积混 凝土结构多使用P・S 32.5和P・S 42.5水泥。 (2)利用混凝土的后期强度。试验结果表明, 每m 的混凝土中水泥用量每增加或减少10 kg,混 凝土温度会相应地升高或降低1℃。因此,为控制 混凝土温升,减小温度应力,降低温度裂缝产生的可 能性,可根据结构实际的荷载状况,用 √'酏或 替 代,28作为混凝土设计强度。这样可使混凝土中水泥用量减少40—70 kg/m ,混凝土的水化热温升也 相应减少4—7℃。但利用混凝土后期强度时,要专 门进行混凝土配合比设计,并通过试验证明28 d之 后混凝土强度能继续增长。 (3)掺加外加剂。为了满足送到现场的混凝土 具有一定的坍落度,若单纯增加单位水泥用量,不仅 多用水泥,加剧混凝土收缩,而且会使水化热增大, 容易引起开裂。因此,应掺用适当的外加剂。木质 素磺酸钙属阴离子表面活性剂,对水泥颗粒有明显 的分散作用,并能使水的表面张力降低而引起加气 作用。在混凝土中按水泥质量的0.25%掺人木质 素磺酸钙减水剂,不仅能使混凝土的和易性明显改 善,同时减少10%左右的拌和水,节约10%左右的 水泥,降低了水化热。近年来出现了许多新型外加 剂(如UEA、AEA等),掺用后可使混凝土空隙中水 分表面张力下降,从而减少收缩40%一60%。但 能否有效地控制收缩裂缝,还应注重其应用条件和 后期收缩。 (4)掺加粉煤灰外掺料。粉煤灰具有一定的活 性,不但可以替代部分水泥,而且粉煤灰颗粒呈球 形,具有“滚珠效应”,可起到润滑作用,能改善混凝 土的粘塑性,并可使泵送混凝土要求的0.315 mm 以下细粒含量增加,改善混凝土的可泵性,降低混凝 土的水化热。大体积混凝土的初期强度增长较快, 而到后期则增长缓慢,其原因是混凝土在初期处于 高温条件下,水化作用迅速,随着混凝土龄期的增 长,水化作用慢慢停止。掺加粉煤灰可改善混凝土 的后期强度,但会使其早期抗拉强度和早期极限拉 伸值少量降低。因此,对早期抗裂要求较高的工程, 粉煤灰掺入量应少一些,否则表面易出现细微裂缝。 (5)控制混凝土的出机温度和浇注温度。混凝 土原材料中石子的比热较小,但其在每m 混凝土 中所占的比例较大;水的比热最大,但在每m 混凝 土中只占小部分。因此,对混凝土出机温度影响最 大的是石子及水的温度,砂的温度次之,水泥的温度 影响很小。为了降低混凝土的出机温度,最有效的

上一篇:会计实习报告个人总结下一篇:招生简章培训