智能电网调度自动化的关键技术探讨

2022-05-11 版权声明 我要投稿

摘要:分析了智能电网调度自动化的关键技术,进而得出若干促进调度自动化发展的途径,以供参考。

1智能电网调度自动化技术的性能特点及智能电网调度的功能分析

智能电网通过各类传感器实现对发电、输电、配电、用电等环节的数据采集,并进行整理、分析获取相应的有效信息。通过这些信息能够实现对电网的实时监控,以便调度人员能够及时发现电网风险、科学准确作出决策。

1.1智能电网调度自动化技术的自愈性

智能电网是随着电网规模不断扩大、自动化技术发展到一定阶段的必然产物。其显著特点之一就是具有强大的自愈性,保障安全稳定的电力供应。在智能电网中,以高级量测技术为基础融入通讯技术、自动化技术,获取完整的电网运行信息,实现对电网的实时监测和控制。依据其构建的电网运行全景图,调度人员能及时发现其中存在的薄弱环节,消除当前运行方式中的各类潜在风险。同时该技术能够适应系统运行方式的变化,当发生故障后针对网络拓扑和潮流变化进行实时分析,为调度人员提供紧急状态下的辅助决策和应对预案,有效弥补传统电网调度管理中的不足,提高电力系统安全运行边界。

1.2智能电网调度自动化技术的兼容性

在能源短缺、气候变化等问题日益凸显的背景下,大力开发利用新能源成为人类的必然选择。然而新能源的高比例并网给传统电网带了一系列影响和挑战。如因潮流反向导致电压、频率发生偏差的电能质量问题;因风电、光电功率高度不确定性导致的负荷预测、调度管理难度增大的问题;因电力电子元件的大量采用导致的谐波污染问题。兼容性强是智能电网的另一个优点。智能电网可将风电、水电、太阳能发电、储能等科学整合,消除各路电能相互封闭的“孤岛”,促进新能源消纳,最大程度避免弃风、弃光、弃水现象。在电网中存在功率缺额或功率盈余时,智能电网可削峰填谷、自动响应,使得潮流实现科学调配、合理分布。此外智能电网可消除谐波干扰带来的危害,提高电能质量和供电可靠性。

1.3智能电网调度自动化技术的交互性与资源优化功能

所谓交互性是指电网与电力用户间的互动,交互性强是智能电网的一个显著特征。在完全自动化的智能电网中,用户是电力系统必不可分的一部分,能够保证从发电端到用户端整个过程所有节点间信息流和能量流(电力潮流)的双向流动。对供电企业而言,可掌握用户用电特征、完善负荷预测,制定节能经济的发输电方案。对用户而言,可参与电力分配和管理,根据实时电价调整自己的消费模式。在负荷紧张或事故条件下进行需求响应,平滑负荷曲线,提高电力系统稳定性,并可保证自己的经济利益。这样电网与用户的交互响应完善了电能分配,提高了用电效能,实现了电力资源优化。此外智能电网可通过构建经济调度模型,采用智能算法计算各发电单元的并网出力,并根据实时数据自动调整实时调度方案,降低网络中的功率损耗,实现节能减排,达到电网运行效率和社会效益的同步提高。

1.4控制电网调度运行

电网的控制运行包括电厂的开停机及出力管理、变电站的监视控制等。为确保电力系统的高效运行,必须加强上述所有环节的控制,保证系统各项指标在合理区间。智能电网调度技术能够有效地控制电网运行,为电网的安全性、稳定性、可靠性提供保障。

1.5选择电网运行方式

在电网调度运行中存在许多调度决策问题需要智能调度技术辅助。智能调度技术可为调度决策提供可靠的数据分析,并根据分析结果自动生成最佳调整方案,为调度管理工作提供准确的科学依据。

1.6实现自动化的通信

相比于传统电网,智能电网的一个特点是具备发达的通信系统。该系统能使调度管理部门实时采集电网运行数据,保证调度人员发出的指令能够迅速传递到电网各节点,从而实现电网运行的优化和控制。

2智能电网调度自动化关键技术分析

作为智能电网建设的关键内容,智能电网调度自动化技术是控制智能电网运行的中枢神经,是维系电能生产、输送、分配的基础,是保证电网可靠运行和不断发展的重要手段。

2.1应用服务技术

电网调度自动化系统具有多种多样的功能,但存在一定的重复和冗余,如何对这些分散的功能进行集成融合是当前的一大难题。在智能电网中,调度自动化系统采用面向服务架构(Service-OrientedArchitecture,SOA)。SOA体系下的调度自动化系统可将多种系统应用封装,电力调度部门可根据实际需要灵活调用。同时还可配置其他调度功能模块,满足智能电网发展各阶段对调度业务的需求。

此外,SOA体系下的调度自动化系统可将传统电网调度系统的电网分析、培训仿真等模块划分出来,比如状态估计、灵敏度计算、调度员潮流等。同时这些模块可根据需求进一步完善优化,这是智能电网调度自动化系统的另一显著优势。目前智能电网调度自动化系统已在许多地区电网中得到应用,并在优化电网系统、实现节点计算机与主控计算机间的数据共享等方面发挥着重要作用。通过对电网进行实时监视控制,在事故发生前生成告警,调度监控人员可及时通知运维人员消除缺陷,有效减少故障造成的损失。

2.2数据服务技术

在电网调度自动化中数据起着至关重要的作用,所有的调度决策都依赖于准确的数据分析。传统电网调度自动化系统存在数据变换复杂、效率不高、可靠性低等问题。智能电网调度自动化技术以SOA体系为基础完成数据服务,并利用标准接口和数据注册中心完成电网信息的展示与融合。此外该技术可对电网设备实施全生命周期管理,提高调度自动化系统中数据的准确性。同时还可应用虚拟服务技术屏蔽数据的物理层信息,为调度系统内的无差别访问带来极大便利。值得关注的是,数据通信机制和数据服务间的融合,可实现智能电网统一调度前置通信系统功能。该功能在简化运维流程的同时可在线调阅和调整有关数据,为数据服务在调度自动化系统中的实时性提供保障。

2.3节能发电调度技术

电力系统的发电调度环节通常会存在大量能源浪费,加之我国能源本身不够充足,因此节能发电调度技术的研究与应用具有重要意义。电网调度管理部门应充分认识节能发电的重要性和紧迫性,投入脱硫检测、水调自动化等关键性技术,有效避免资源浪费。在节能发电调度技术中,一方面要整合、优化传统发电工程,通过技术创新减少发电中的能源损失,同时要加强对发电过程的集中管理和控制;另一方面利用节能电力调度技术有效消纳各类可再生能源,减少化石能源比例,推动电网清洁化、低碳化。

2.4电网实时动态监测技术

电力系统是典型的超高维、强非线性系统,具有动态不确定性,传统电网调度自动化系统基于局部信息的监测控制方法,难以满足电网发展过程中诸如振荡抑制与控制、动态安全防御等方面的要求。因此,基于广域测量系统(WideAreaMeasurementSystem,WAMS)的电网实时动态监测技术是智能电网调度自动化中的重要组成部分,可为大电网的实时监测和控制提供技术保障。一方面调度人员可在动态监控屏上对电力使用情况进行监测,有效掌握各类电能使用数据;另一方面可通过分析监测数据实现对目前电网运行状况的有效评价,为下一阶段的调度决策提供依据,极大加强调度人员对电网运行的管理和控制能力。

2.5一体化调度管理技术

我国电网运行遵循“统一调度,分级管理”原则,上下级调度自动化系统间的数据库、图模资源等信息如何进行异地和层级共享是一个重要课题,一体化调度管理技术是解决该问题的重要手段。利用模型拼接技术实现电网图模的“源端维护,全网共享”,提升数据库维护效率,减少自动化运维人员的工作量,保证数据系统的一致和稳定。通过一体化调度平台,以节能减排为目标函数进行优化调度,实现电网和所有并网机组的经济运行,优化电能资源配置。此外还可整合扩展其他应用模块,满足智能电网调度纵向贯通的新型业务需求。

3智能电网调度自动化技术的未来发展

电网调度自动化在发展过程中将朝着智能化的方向不断前进。随着未来电网的发展和自动化技术的进步,以智能型仪表、通信网络、用户户内网络等为主要组成部分的高级量测体系(AMI)将得到应用,有效融合电力系统与负荷两侧的数据信息。未来的调度自动化系统将包括智能机器人、三维地理信息系统、智能输电等众多新技术,不同区域间的调度数据可以相互传送并加强经验学习,消除信息阻塞。先进的自动化系统可整合重复冗余的数据,并从数据库中任意抓取所需信息构建完整的网络模型。智能电网将发电、输电、配电以及用户信息加以整合,实现源网荷互动,满足个性化用电需求,为用户提供极大便利。对电网企业而言,可实时掌握客户的用电需求、评估潜在的风险,及时调整电网运行方式,保证电网的安全、可靠、经济运行。

总之,在建设智能电网的过程中,调度自动化技术是不可缺少的一个重要组成部分。随着电网规模持续扩大、新能源并网比例增加,大型交直流混联电网形成,许多新问题、新挑战将不断涌现,调度人员在对电网进行管理时,须充分重视智能电网调度自动化关键技术的应用,保障人们的用电需求,促进智能电网的发展,为经济社会的不断前进奠定坚实的电力能源基础。拓扑模型标准化的作用主要是提供全电网或局部拓扑模型的建设方法,建设了>35kV电压级别模型的拓扑关系,维持整个电网拓扑点号绝对性统一,以标准化拓扑表结构为支撑实现传导、订阅拓扑模型,建设不同级别拓扑模型的统一建设、全局式共享。

分布式部署为不同级云建设阶段的实现理念之一,不同级别用户维护管辖范畴中的图形模型,故而需于分布式环境内、高并发率状况下实现对电网图形维护的有效调控,不管是增设、修整电网图形后对应的文件均能维持全网统一。为应对如上问题,本文整合了多用户分布式并发调控技术,为电网各图形文件设置版本号VerNo,即图形文件专一标识,被统一存储于图形文件与信息表内。采用Web图形编辑器勾画电网图形以后,调度使用图形版本控制服务,捕获最新的图形文件版本号,针对带有VerNo的图形文件,使用分布式文件服务永久的存储到文件服务器。

综上,本文以调控云为基础建设了电网图形一体化维护技术,达到了在B/S架构下基于标准图元组件库实现对全网图形的整体维护,降低人工重复维护图形的作业量,并构建了整网拓扑模型,能较为明显的统一提升高级别应用网络分析的准确度。为更好的迎合用户提出的图形源端维护的主观需求,后续研究应以此为基础开发间隔式成图、建模的功能,提升图形绘制智能化、操控过程人性化目标。

参考文献

[1]李功新,周小明,陈振宇.基于云计算技术的地区电网调控一体化备用系统[J].电力信息与通信技术,2016,7.

[2]张梁,岳菊宁.基于电网调控一体化系统的实现及技术分析[J].科技创新与应用,2014,4.

[3]刘业标.模块化的电力系统继电保护图形数据一体化设计[J].区域治理,2018,32.

[4]丁志鹏.调度配电管理一体化系统主站平台设计与实现[J].山东工业技术,2018,6.

[5]杨夏.解析主配网调控一体化图形平台设计[J].低碳世界,2018,9.

上一篇:土木工程现场施工技术管理策略下一篇:网络思想政治教育跨学科融合的新趋势及其应用