大棚监控系统设计方案

2023-02-18 版权声明 我要投稿

一项工作不能盲目的开展,在开展前必须要进行详细的准备,这就是方案存在的意义,那么要如何书写方案,才能达到预期的效果呢?以下是小编整理的关于《大棚监控系统设计方案》,供大家阅读,更多内容可以运用本站顶部的搜索功能。

第1篇:大棚监控系统设计方案

智能大棚监测控制系统设计

摘要:本文主要介绍以IAP15F2K61S2单片机为核心,以温度、湿度等传感器为主要外围元件的大棚自动监测控制系统。详细的介绍了系统的设计方案、设计原理和特点等问题。该系统可以实现对大棚的温湿度、光照度、土壤湿度和CO2浓度等参数的实时监测,并由单片机进行实时控制,从而使蔬菜生长环境实现自动控制,节省了人力,提高了控制质量产生了良好的经济效益,不仅具有广阔的市场前景,而且具有巨大的社会效益。

关键词:智能大棚;单片机;监测控制

一、概述

近年来,移动通信技术已经实现了全国联网和漫游,且网络覆盖范围大、性能稳定。本设计是基于现有GSM短信息功能的大棚自动控制系统,充分利用现有网络,无需单独组网,运行安全稳定。

智能温室是近几年逐步发展起来的一种资源节约型高效设施农业技术,它是在普通日光温室的基础上,结合现代化计算机技术、智能传感技术等高科技手段发展起来的,是集农业科技上的高、精、尖和计算机自动控制技术于一体的先进农业生产设施,是现代化农业科技向产业转化的物质基础。伴随着GSM网络发展,智能大棚监测控制系统已经开始广泛应用于温室大棚智能化管理中。

二、智能大棚监测控制系统设计原理

本系统是利用IAP15F2K61S2单片机把传感器采集的有关参数转换为数字信号,并把这些数据暂存起来,与给定值进行比较,经一定的控制算法后,给出相应的控制信号进行控制。系统还可以经过串行通信接口将数据传送至上位机,从而完成数据管理、智能决策、历史资料统计分析等更为强大的功能,并可以对数据进行显示、编辑、存储及输出。

环境检测由AM2301数字式温湿度传感器、MQ-2烟雾传感器和YL-38光强传感器等组成,分别检测温室大棚的空气温湿度、烟雾浓度、光照度。通过这些外围传感器进行数据采集,并将采集到的数据显示在液晶12864上,当检测到用户的状态请求时,主控通过GSM模块将信息发送到用户手机上。在待机状态下,主控不断监测键盘或GSM的控制指令,根据不同的指令控制相应的继电器,控制通风、喷灌和加热等装置。

三、智能大棚监测控制系统设计方案

(1)空气温度测量。温度传感器的种类多,选择余地大,本系统采用AM2301数字温湿度传感器。AM2301是一款含有已校准数字信号输出的温湿度复合传感器,用专用的数字模块采集技术和温湿度传感技术,能够确保产品具有极高的可靠性与卓越的稳定性。在系统中,AM2301将数据直接送入IAP15F2K61S2,通过单片机内部的10位A/D采集信号,设置为第1路信号,精确到0.5℃,可满足应用要求。

(2)空气湿度测量。采用AM2301的湿度测量模块,调理后,送入主控芯片,设置为第2路信号。由于AM2301有0.70%RH的温度系数,在信号调理电路中进行了温度补偿,在35%~85%RH范围内可精确到2%RH。

(3)土壤湿度。土壤水分传感器采用不锈钢管和一段钢丝制成,长20cm,不锈钢管和钢丝之间留1cm的距离并保持平行放置,将二者用绝缘材料固定。通过测量不锈钢管和钢丝之间的电阻来测量土壤水分,采用电阻桥和运算放大器OP07调到0~5V的范围,再经过模数转换器送入单片机。

(4)烟雾测量。采用烟雾传感器,通过电位器设定烟雾指标补偿,然后送入单片机的I/O,经滤波处理后,判断是否达到设定阈值,实现报警。

(5)通信模块。采用TC35i通讯模块,充分利用现有网络,无需单独组网,运行安全稳定,结构简单、运行灵活、经济可靠。而且可以实现远程控制(跨省、跨区域)。另外,还采用ZigBee模块用于实现上位机与大棚之间的通讯,节省成本,操作简单。

(6)控制功能及实现。在本系统中,主机通过接受键盘或GSM的控制信号来控制相应的继电器驱动电路,由继电器来控制通风、喷灌、加热和卷帘等装置。本系统能够实时采集温室内的空气温湿度、土壤湿度、光照强度、二氧化碳浓度等环境参数,通过12864液晶进行数据显示。当环境参数超过设定值时,系统会自动报警,并把参数信息发送到用户手机,寻求处理方案。而且用户还可以通过按键来现场控制。例如控制卷帘电机、鼓风电机、水泵等机械设备的运转,以维护大棚的正常运行。在用户的请求下还可以通过GSM模块以短信的形式将大棚的环境参数发送到用户手机,以实现对大棚的远程监测。在待机模式下,用户也可用手机远距离控制大棚中各种机械设备的工作,以实现远程控制。系统全景图如图1所示。

四、结语

本设计为闭环控制系统,由IAP15F2K 61S2单片机、A/D转换电路、温度检测电路,湿度检测电路、控制系统组成。温度检测电路将检测到的温度转换成电压,该模拟电压经A/D转换后,进入IAP15F2K61S2单片机,单片机通过比较该温度与设定温度来控制风扇或加热装置驱动电路,当大棚内温度在设定范围内时,单片机不对风扇或加热装置发出指令。实现了对大棚里植物生长温度及土壤和空气湿度的监测控制,并能对超过正常温度、湿度范围的状况进行实时处理,使大棚环境得到了良好的控制。

【参考文献】

[1]郭辉. C语言程序设计[M].北京:中国传媒大学出版社,2010

[2]冯文旭.单片机原理及应用[M].北京:机械工业出版社,2011

[3]柳其春.低压电器及PLC技术[M].北京:人民邮电出版社,1990

作者:王丽丽 韩学尧 王然升

第2篇:基于树莓派的温室大棚监控系统设计

摘要:该文针对目前传统温室大棚管理落后、自动化低等缺点,结合物联网技术,提出了一种基于树莓派的温室大棚监控系统设计方案。它以树莓派3B作为控制中心,利用温湿度传感器和光照强度传感器实现对温室大棚内环境的监测,通过sql server和java语言实现了对监测数据的存储和GUI界面的开发,并且可以在手动或自动调节模式下控制外部设备以调节温室大棚环境。经测试,系统操作简单、性能稳定,具有一定的应用价值。

关键词:监控系统;物联网;树莓派

1 背景

温室大棚是一种可以为用户提供种植反季节农作物的农业生产设施,而传统农业管理模式下的温室大棚依然存在着管理复杂、技术落后等缺点[1]。通过物联网技术可以提高温室大棚的生产效率、实现温室大棚的高效管理,顺应了当前农业现代化的发展道路。因此,该文提出了使用树莓派3B作为控制模块,结合温湿度检测、光照强度检测,实现了实时监测温室大棚内温湿度大小和光照强度大小,并将数据存储在数据库中,为管理者提供可以查看当前监测数据和控制外部设备的GUI界面,并可以手动或自动控制外部设备以调节当前温室大棚环境的温室大棚监控系统。

2 系统架构

该系统以树莓派3B为核心、主要由数据采集模块和数据分析模块组成。数据采集模块包含温湿度传感器和光照强度传感器。温湿度传感器用于采集温室大棚内温湿度数据、光照强度传感器用于采集温室大棚内光照强度,数据分析模块将采集的数据存储在数据库中,为管理者提供GUI界面,并通过向外部设备发出控制信号,以实现对外部设备的控制。该设计的系统架构图如下图1所示。

3 系统功能实现

3.1 数据采集模块

数据采集模块功能为从温室大棚中采集环境数据。温湿度采集使用了DHT11数字型温湿度传感器,测量温度范围:0℃-50℃,误差±2℃,测量湿度范围:20%-90%RH,误差在±5%RH。光照强度采集使用了GY30数字型光强度传感器,测量光强范围:0-65535lx,具有价格低、精度高的特点。传感器均需要通过Zigbee实现自组网,并将从各个大棚中采集到的数据传送至协调器中,然后将协调器中的数据通过串口传送到树莓派中[2]。

3.2 数据分析模块

数据分析模块使用了树莓派3B作为控制模块。树莓派由英国慈善组织“Raspberry Pi 基金会”开发,虽然体积小,但基本具备所有计算机的基本功能。它以SD卡作为内存,拥有USB接口、以太网接口和HDMI输出接口,具有体积小、价格低、功能全、扩展性高和开发简单等优点。

数据分析模块获得数据采集模块的数据后,将数据存储在数据库中。该系统使用了sql server的数据库管理软件,数据库管理软件为我们和物理数据库之间提供了一个桥梁,开发人员不必了解物理数据库中的构造,而直接使用数据库管理软件就可以实现数据的存储和增删改查。数据库中相应数据的存储格式如下表1所示。

数据分析模块还需要为管理者提供GUI界面,实现查看监测数据和对外部设备的控制。该系统的GUI界面通过Java语言开发。Java中GUI界面开发需要依次建立若干层容器和组件,以降低各组件的耦合度。然后通过JDBC即用于执行sql语句的Java API实现与数据库的数据交互,并将从数据库中获取

的数据显示在GUI界面上以便管理者进行查看。管理者还可以选择手动调节模式和自动调节模式。手动调节模式中,管理者可以通过GUI界面发送控制信号。自动调节模式中,如果采集的数据超出用户设定的阈值时就会发送控制信号,外部设备接收到控制信号后就会进行工作,实现对温室大棚内环境的调节。

4 测试与结果

该系统的测试[3]主要通过模拟手动调节模式和自动调节模式下系统能否正常进行工作。在手动调节模式下,通过GUI界面实现了对各个外部设备进行控制。在自动调节模式下,当温度过高时,开启降温设备以降低温度;当温度过低时,启动升温设备以提高温度;当湿度过高时,开启通风设备以降低湿度;当湿度过低时,开启加湿设备以提高湿度;当光照强度过低时,开启日光灯以提高光照强度;当光照强度过高时,关闭日光灯以降低光照强度。经测试,系统工作稳定。

5 结束语

该文给出了一种基于树莓派的温室大棚监控系统设计方案,实现了对温室大棚内的数据采集和分析功能。该系统能将监测的温室大棚环将数据存储在服务器中,管理者可以通过GUI界面查看当前和历史数据,实现对外部设备的控制。并且可以根据管理者的需要使用不同的工作模式。该系统交互界面简洁、易于控制、可扩展程度高、性能稳定,具有一定的应用价值。

参考文献:

[1] 李云强. 基于Arduino的智能温室大棚的控制系统设计[J]. 国外电子测量技术, 2018, 37(5): 114-118.

[2] 李启东, 马雪芬. 基于ZigBee的大棚温湿度监控系统设计[J]. 南方农机, 2019, 50(1): 50-51.

[3] 韓力英, 杨宜菩, 王杨, 等. 基于单片机的温室大棚智能监控系统设计[J]. 中国农机化学报, 2016, 37(1): 65-68, 72.

【通联编辑:谢媛媛】

作者:宋志扬

第3篇:基于LabView的温室大棚智能监控系统设计

【摘要】为实现温室大棚自动化监控,提高作物产量,本文设计了基于LabView的温室环境参量监控与远程控制系统。利用LabView编程,开发友好的人机界面,采用ZigBee无线通信节点解决繁琐的传感器节点布线问题,结合web通信技术,实现温室大棚控制系统远程internet浏览器访问。实验表明,本系统可以对多个环境参量准确监控,程序运行稳定可靠,可实现多个远程端口同时访问,符合温室大棚智能化控制要求。

【关键词】温室大棚LabView远程监控无线组网

A design of glasshouse automatic monitoring system based on LabView

Yang baogui

Liaoning Railway Vocational and Technical college

一、引言

我国是一个农业大国,人多地少,因此提高单位面积的作物产量是现阶段农业发展急需解决的问题。温室是设施农业的重要组成部分,由于温室不受气候和土壤条件的环境影响,是提高产量的重要措施之一[1-4]。农作物在成长过程中需要的环境因子很多,适宜的温度、湿度、光照强度以及CO2浓度是作物实现高产、优质的关键。为加快农作物的生长,达到优质、高产的目的,需对温室的环境进行监测,结合农作物的生长规律,控制温室环境,实现对温室内环境的检测与调控。随着计算机、通信以及传感器技术的飞速发展,现代化温室环境参数监测系统的研究己成为现代农业的一个研究热点[4-7],研制一套适合我国国情并且具有独立知识产权的蔬菜温室大棚智能控制系统具有非常重要的经济效益和社会意义。论文结合传感器和通信技术,设计了一种成本较低、集温室大棚环境实时监控与记录于一体的控制系统。

二、硬件电路设计

2.1传感器节点设计

温室大棚环境监测系统需要采集空气温度、空气湿度、土壤温度、土壤含水量、空气中二氧化碳浓度和光照强度等六种环境因素的参数,所以需要很多种类的传感器来采集数据。温度传感器电路连接图如图1所示。

1、温度型节点

温度是提供作物生长的最基本的要素,通过影响酶的活性来可以影响作物的各种生理性活动,对作物生理性改变有着很重要的影响。由于温室大棚温度上限低于150℃,故本设计采用数字式温度传感器,无需校准和标定。

此电路即可以测量空气温度,也可以接保护外壳后测量土壤温度。为消除温度漂移的影响,设计将稳压二极管,热敏电阻,可调电位器接到运放电路,该放大电路负端与电路输出端相连。采用差温控制法控制温度。

2、湿度型节点

土壤的湿度直接决定着农作物在生长过程中的水分供应状况。土壤湿度超过正常范围,作物的光合作用不能正常进行,农作物根系呼吸、生长基本活动受到阻碍,作物的产量和品质下降。本设计采用HS1101解决湿度测量方案。

传感器对土壤水分进行定点的长期监测。土壤含水量通过自变量为电压的三次多项式计算得到:

兹v=0.0337·ΔV3-0.0426ΔV2+0.2008ΔV-0.0041

(2)

其中ΔV=VH-VL,单位:v

3、光照强度型节点

光照条件直接影响着作物的生长发育,是作物生长的决定要素之一,尤其是在反季节生产中,直接影响作物的营养生长,对作物叶片的排列方式、形态结构以及生理性状有明显的作用。

本文选用的是LT/G光照传感器,可实现对环境光照度的测量,测量上限超过1×106lux,测量下限低于0.2lux,安装方便,线性度好,抗干扰能力强,可输出电流或者电压信号。

4、二氧化碳浓度型节点

光合作用是绿色植物生命活动的基本特征,是种植的作物生长发育的物质和能量的基础,作物周围空气中CO2浓度高低直接影响着作物光合作用的效率也就是有机物的合成,进而影响作物果实的品质。对此,我们选择了一种高性价比COZIR红外二氧化碳传感器。

为提供电路的抗干扰能力,本设计将数字电路和模拟电路分隔开,并在连接点处加上磁珠。为除去芯片内部信号对电源的干扰,在每个芯片最靠近电源和地的地方,添加一个0.luF的电容。为消除瞬间大电流对电路的影响,每8个芯片配置一个10uF的充放电电容,保证信号的稳定性。

2.2无线传输与组网

ZigBee是一种低成本、低功耗、简化标准的开放式系统互联无线通信技术[8,9]。每种节点都有10个同类型传感器,并采用拓扑结构组成星型网络,利用Chipcon CC2430射频芯片实现数据的无线传输。

本设计将4个ZigBee模块组建成一个星型的无线传感器网络,网络中有一个FFD协调器节点,4个RFD子节点。当传感器控制芯片收到来自ZigBee无线通信RFD子节点发送数据的请求标志时,将温度、湿度、CO2浓度和光照强度数据通过SPI串行方式发送给RFD子节点,子节点以无线方式向FFD主协调器传递数据。主协调器解析接收数据后将信号打包处理通过UART传输给计算机,上位机软件LabView分析、控制并显示相应环境参数。硬件连接框图如图2所示。

三、软件设计

LabVIEW是一种程序开发环境,由美国NI公司研制开发,类似于C和BASIC开发环境,与C和BASIC一样,LabVIEW也是通用的编程系统,有一个完成任何编程任务的庞大函数库。但是与其他计算机语言不同,LabVIEW使用G语言编写程序,通过图形符号描述程序的行为,易于实现友好的人机交互界面[10-12]。

3.1数据解析

计算机通过过串口从FFD协调器接收数据,计算机在对这些数据进行处理前,首先要根据UART通信协议对数据进行解析。但是由于FFD传送的是字符型数据,因此提取数据帧之后还需要对数据进行字符-数值转换。程序框图如图3所示,为增加程序的可读性,将数据解析过程用子VI的形式表述,并提供输入输出接口。

程序的主控制界面如图5所示。

3.3程序远程控制

由于LabView简洁的控制界面、便捷的操作、内嵌web服务器,因此LabView广泛的用于系统的远程控制研究中[10-15]。为了实现系统远程控制,本系统采用基于web技术的远程访问技术。访问过程中直接在浏览器内输入服务器地址,就可以远程访问控制系统前面板。为增强系统安全性,远程请求VI控制权时首先需要键入密码,密码匹配后方可远程控制服务器前面板。系统采用8000端口发送和接收远程数据,并遵循http传输协议,系统远程控制界面图如图6所示。

四、结论

系统采用NI公司LabView软件编程,实现了温室大棚实时监控,图形界面友好,可以对多个参量同时监控,出现异常系统自动发出报警信号。采用基于internet网页的远程控制模式,无需额外设备与软件,该系统经济实用,具有较的应用推广价值。

参考文献

[1]董文国.蔬菜温室大棚智能控制系统的设计. 2012,曲阜师范大学.

[2]高倩,温室大棚环境参数控制. 2012,沈阳工业大学.

[3]刘力,et al.,温室大棚内环境自动化控制方案设计.农机化研究,2013(01):p.90-93.

[4]高玲,赵海瑞.温室大棚设施农业装备使用现状及发展趋势.江苏农机化,2013(02):p.28-30.

[5]狄敬国,李秀美.基于PLC、变频器和触摸屏技术的温室大棚控制系统设计.农业装备技术,2012(05):p.39-41.

[6]姚蕾,基于USB接口温室大棚温湿度监测系统的设计.农机化研究,2013(07):p.110-114.

[7]陈利江,徐凯,王峻.温室大棚无线监控系统的设计与开发.江苏农机化,2013(02):p.19-22.

[8]李立扬,王华斌,白凤山.基于ZigBee和GPRS网络的温室大棚无线监测系统设计.计算机测量与控制,2012(12):p. 3148-3150.

[9]沙国荣,et al.,基于ZigBee无线传感器网络的温室大棚环境测控系统设计.电子技术应用,2012(01):p.60-62+65.

[10]吴建,et al.,基于LabVIEW的多通道数据采集系统设计.电子测试,2013(Z1):p.52-54.

[11]丁宗玲,基于LabVIEW的数据采集卡控制和温度采集方法研究.大学物理实验,2013(01):p.81-84.

[12]徐小华,基于labview远程控制系统的设计与实现.仪器仪表用户,2008(01):p.30-31.

[13]邵晓娟,基于LabVIEW的远程监控系统设计.电子世界,2013(02):p. 104-105.

[14]景军锋,聂鲁华,李鹏飞.基于LabVIEW的远程控制实验系统.微型机与应用,2010(04):p.77-80.

[15]徐宏坤,基于LabVIEW远程监测平台的研究. 2008,成都理工大学.

作者:杨宝贵

第4篇:农业智能大棚控制、溯源系统设计方案

生态农业智能温室大棚 监测、溯源及控制系统

设 计 方 案

xxxxxxxx有限公司

目录

背景 .................................................................................................... 3 一:客户需求 .................................................................................... 3 二:系统结构及控制模式 ................................................................ 5 三:现场数据采集与控制功能 ........................................................ 6 四:监测软件数据平台 .................................................................... 7 五:功能应用 .................................................................................... 8 六:农产品溯源系统 ........................................................................ 8

七、条码仓储管理系统(WMS) ...................................................... 10

八、商品盘点 .................................................................................. 13

背景

温室智能控制系统是利用环境数据与作物信息,指导用户进行正确的栽培管理。物联网温室环境监测系统可广泛应用于农业、园艺、畜牧业等领域,在需要特殊环境要求的场所实施监控和管理,为实现对生态作物的健康成长和及时调整栽培、管理等措施提供及时的科学的依据,同时实现监管自动化。

近年来,随着温室大棚化种植、工厂化育秧和设施栽培等农业生产技术的广泛应用,快速准确地环境参数的收集和分析就成为现实的需求,利用计算机技术对相应的农业气象参数进行采集,则一方面可及时了解作物生长的环境参数,另一方面也可根据采集的参数控制大棚环境的调节从而为农作物的生长提供适宜的生长环境。由于温室内的湿度、温度等环境条件不适合于普通PC 机工作,故这里选用单片机进行数据采集,而采集的数据可通过串口发射接收设备传送给上位PC 机进行分析处理。

一:客户需求

(1)智能温室大棚控制系统

随着国民经济的迅速发展,现代农业得到了长足的进步,全国各地根据需要普遍建设了日光温室、塑料大棚等为农作物创造出良好的生长环境。温室工程成为高效农业的重要组成。

温室大棚就是建立一个模拟适合生物生长的气候条件,创造一个人工气象环境,来消除温度、湿度等对生物生长的限制。能使不同的农作物在不适合生长的季节产出,或完全的摆脱农作物对自然条件的依赖。

浙江托普仪器有限公司托普物联网部自主研发的智能温室大棚控制系统是针对温室大棚正常有效运转的控制要求配置的远程监控与管理系统。采用传感器技术、依托传统温室大棚生产工艺、设计的具有高可靠性、安全性、可扩展性的软硬件系统。

智能温室大棚监测控制系统充分利用物联网技术和组态软件实时远程获取温室大棚内部的空气温度、湿度、光照强度、土壤水分温度、二氧化碳浓度、叶面湿度、露点温度等环境参数及视频图像,通过模型分析,远程或自动控制湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备,保证温室大棚内的环境最适宜作物生长;同时,该系统还可以通过手机、PDA、计算机等信息终端向农户推送实时监测信息、预警信息、农技知识等,实现温室大棚集约化、网络化远程管理。

二:系统结构及控制模式

(1)系统两大组成

智能温室大棚监测控制系统主要包括:上位机中心服务器控制平台和下位机现场控制节点:

◇中心服务器控制平台可选用物联网感知应用平台或者是为客户专门定制的操作监测平台。能够实现监测、查询、运算、建模、统计、控制、存储、分析、报警等多项功能。

◇现场控制节点由测控模块、电磁阀、配电控制柜及安装附件组成,与中心服务器控制平台可通过有线、无线、4G方式连接到一起。根据温室大棚内空气温湿度、土壤温度水分、光照强度及二氧化碳浓度等参数,对环境调节设备进行控制,包括内遮阳、外遮阳、风机、湿帘水泵、顶部通风、电磁阀等设备。

(2)选择合适的控制方式

◇有线监控-----通过现场布线方式进行数据传输。

◇无线Zigbee监控-----利用Zigbee模块,对0-20KM范围为的数据监测传输。

◇4G网络监控-----利用通信网络形式,可监测传输距离无限远。 ◇有线和无线结合------根据实际现场环境,灵活结合。

三:现场数据采集与控制功能

智能温室大棚内的各参数传感器,对温室环境进行多点实时动态采集,经过A/D转换送入单片机处理,驱动执行装置从而实现温室环境的自动智能调节。显示装置实时显示温室内的温湿度、光照度等数值,能够更加一目了然地展示温室大棚数据全貌。

(1)温湿度监测

通过温湿度传感器监测大棚室外空气环境温湿度、室内空气环境温湿度、地表温湿度、土壤温湿度等,并能对数据进行采集、分析运算、控制、存储、发送等。

(2)光照度监测

通过光感和光敏传感器监测记录温室大棚内光线的强度,可以直接与相关的补光系统、遮阳系统等设备相连,必要时自动打开相关设备。通过无线传输技术将相关数据传送到用户监控终端。

(3)CO

2、O2浓度监测

在温室大棚内部署二氧化碳浓度传感器,实时监测温室中二氧化碳的含量,当浓度超过系统设定阙值范围时,通过无线传输技术将相关数据传送到用户监控终端,由相关工作人员做出相应调整。

(4)分区域检测

同一个棚内划区域控制管理,可实现每个种植区不同温湿度、不同气体配置等环境技术指标。用户可以通过上位机来监测、查询各区域的数据。也可以对个分块进行单独控制和整体协调控制。

(5)灌溉及喷药施肥控制

水灌溉与农药喷洒采用一套管线系统,根据植物生长模式,可通过自动、手动方式进行操作。 (6)报警控制

用户可设定某些参数指标的上限和下限。比如大棚温度应在30-15摄氏度之间,高于或低于这个温度范围都会产生报警信息,并在上位机中控平台和现场控制节点显示出来。

(7)节点故障通知

现场控制节点出现故障时可及时以中心服务器平台、手机短信、报警信息等方式通知管理者。

(8)备用冗余功能

为了避免设备故障及异常带来不便,影响作物的生长。设备可进行扩展冗余,当设备出现故障时,辅助设备进行0切换。从而实现连续无故障运行,增加系统稳定性和可靠性。

(9)自定义控制模式

可以根据温室大棚具体控制和监测需要,定制一些相应的监测项目及控制内容,该项目可以使模拟信号、数字信号、开关信号、频率信号等监测和控制。

四:监测软件数据平台

生态农业智能温室大棚自动监控软件,采集温室大棚内现场数据,经传感器数据模块传送至ZigBee节点或RS485节点上,然后通过有线、无线、4G网络传输到数据平台,按照相关设定进行分析展示并进一步完成相应控制。

(1)友好的用户登陆管理界面

规定用户使用权限,不同用户提供不同的操作权限,非用户不能登陆系统,保证系统安全,操作简单而富有人性化。

(2)实时历史、曲线报表数据分析

系统将采集到的数据信息以实时曲线的方式显示给用户,并根据需要按照日、月、季、年参数变化曲线生成历史报表。便于对温室大棚运转情况进行分析做出改进,提高温室大棚的生产效率。

(3)多种形式的报警功能,适合不同场合需要

工作人员根据温室大棚内的具体情况设置温度、湿度等参数限值。在监测时,如发现有监测结果超出设定的阈值时,系统会自动发出报警提醒工作人员,报警形式包括:声光报警、电话报警、短信报警、E-MAIL报警等。

(4)远程控制

现场采集设备将采集到的数据通过有线、无线、4G无线网络传输到中控数据平台,用户从终端可以查看温室大棚现场的实时数据,并使用远程控制功能通过继电器控制设备或模拟输出模块对温室大棚自动化设备进行控制操作,如自动喷洒系统、自动换气系统、自动浇灌系统。

(5)监控终端

监控终端通过可视化、多媒体的人机界面实现以下主要功能:①温室大棚内植物生长环境状况全面显示、查询,包括各种参数、光照强度以及历史数据等;②向温室大棚内监控系统发调度命令、调整设备运转状况,确保温室内为植物生长最适宜环境。

五:功能应用

1、房屋保温、保湿性能评价;

2、温室、大棚的温度、湿度监测管理;

3、仓库的温度、湿度监测管理;

4、蘑菇栽培的温度、湿度监测管理;

5、孵化室温度、湿度监测管理;

6、机房、图书馆、档案室、博物馆的环境监测管理;

7、烟草、粮库、医院等环境监测管理;

8、其它领域需要的温度、湿度监测管理。

六:农产品溯源系统

农产品溯源系统主要以二维条码为载体,对农产品质量安全进行全程追溯。通过在种植基地应用便携式农事信息采集系统,实现农产品履历信息的快速采集与实时上传,亦可对手工单据进行扫描采集上传。通过在生产企业应用农产品安全生产管理系统,实现有机生产的产前提示、产中预警和产后检测;通过将各生产企业数据汇集到园区管理部门,构建追溯平台数据库,实现上网、二维条码扫描、短信和触摸屏等方式的追溯,从而保障农产品质量。使企业能够实时地、精确地掌握整个生产及供应链上的产品流向和变化,控制整个生产流通环节安全可靠。

(一)、智能化信息采集功能。

种植、采购、生产、运输、政府监管到消费者查询追溯全程采用条码进行数据采集。

应用系统基于网联网架构(java开发)。种植点、生产工厂、分销机构和异地营业网点在同一套系统内使用。数据完整性好。可跨平台部署。支持Oracle、SQL Server等多种数据库。完全支持分布式部署。完善的数据同步处理机制。数据采集端采用C#开发,采集性能好,速度快。传输系统采用http协议进行传输,支持断点续传。采用多线程技术,可多点同时进行。传输数据经过高度压缩和加密处理。安全性好。条码解析器采用数据内存预加载方式。解码速度快。系统基础资料全部采用内存预加载方式处理,系统运行速度快。可对产品进行全程追溯(种植、采购、生产、运输、政府监管、消费者查询)。

(二)、系统优点

智能化信息采集功能。养殖、批发、零售、运输、屠宰、政府监管到消费者查询追溯全程采用RFID、二维条码交替进行数据采集。

应用系统基于网联网架构(java开发)。养殖场、分销机构和异地营业网店在同一套系统内使用。数据完整性好。可跨平台部署。支持Oracle、SQL Server等多种数据库。完全支持分布式部署。完善的数据同步处理机制。数据采集端采用C#开发,采集性能好,速度快。

传输系统采用http协议进行传输,支持断点续传。采用多线程技术,可多点同时进行。传输数据经过高度压缩和加密处理。安全性好。条码解析器采用数据内存预加载方式。解码速度快。系统基础资料全部采用内存预加载方式处理,系统运行速度快。可对产品进行全程追溯

七、条码仓储管理系统(WMS)

条码仓储管理系统WMS是基于RFID、条码的网络化供应链管理一体化仓储管理解决方案。包括了基本资料、采购管理、商品入库、销售出库、其它出库、盘点(条码管理商品盘点),商品条码(物流码)跟踪,商品出入库报告、系统管理等几大模块。

条形码标签编辑及打印

利用条形码打印机以及条形码编辑软件对标签进行打印。条形码标签的打印可以根据要求进行编辑,编辑规则自己定义,只要位数确定、单一标识符确定即可,在编辑软件里面选取字段进行编辑进行打印,也可以根据实际情况进行编辑打印,只要具有唯一性即可,随意性很强。标签打印好以后,将标签粘贴在每次入库的商品上,具有唯一性,以便商品入库或出库。 采购入库

采购入库前,操作人员调出采购订单数据和安排商品单进行入库准备,商品进来以后,首先填写入库单,分别包括供应商信息和商品信息,包括产自、品名、PO号等等;填写好以后由主管部门审核,确认无误,则贴上条形码标签,手动在采集器上填写库位代号(例如1区、2区等),确认入库操作;系统操作简单,在首页面会有入库操作,点击后会有下拉菜单,首先第一项就是请填写入库单。 产成品入库

用数据采集器扫描商品上的条形码,存储在数据采集器里面,手动书写库位代码、将扫描的条形码、库位及相关信息上传到系统里,(注:数据采集器将TXT文件数据导入到系统中产生进入库记录.),具体字段定义格式有产地、型号、PO、数量等等相关字段,并留出备用字段使用。(注:如果客户提供信息资料符合系统字段格式要求直接进行核对,如果不符合,则修改成为符合系统格式要求的字段进行核对)。条形码具有唯一性。与库位码相对应。确认入库完成。 出库单

出库前,操作人员调出数据和安排商品出库单准备出库操作,得到出库前要填写出库单,出库单在系统里下载,填写出库单,出库单字段也是分为收货方信息和商品相关信息,单据在系统里自动验证,如果该商品已经出库,则显示红颜色标识该商品已出库.如果没有出库,则将出库单打印,到物流部审核,确认出库操作。同样在首页面会有出库操作,点击后会有下拉菜单,首先第一项就是请填写出库单。 商品出库

在系统里调用数据库,查找出库商品库位,系统能够将进出库记录导出成Excel列举,查找所在相应库位,用数据采集器扫描条形码,将商品取下,将数据采集器信息上传到电脑里,记录相应取货人,取货时间等信息,形成出库记录,方便将来查找,此时出库完成。 商品退货

商品出库以后,有时候会遇到商品折旧或者破损等情况,所以就要引进商品退库操作,商品退库操作主要分为几种情况的分类;商品破损、客户要求退库、错误出库、折旧等几种类型,分别以选项的形式列举,由操作人员选择;商品退还时候,选择退库原因,然后对商品进行扫描,并记录从新入库。

八、商品盘点

可以处理条码商品盘点和非条码商品盘点。

1、重要性

在仓库使用中,就应该有商品的盘点工作。原因是,无论起初的货位规划如何完美,不断改变的经营环境最终会导致目前规划不再适用。在仓库日常运作中,经营性的事项改变现有货品摆放格局的情况时有发生,还要兼顾损坏,日复一日,货位合理分配与调整被渐渐淡忘,这正是众多仓库并非进行每周或每月盘点的原因。无论是着手建设一座新仓库,还是想办法改善现有仓库的货位布置,合理进行商品的盘亏与盘赢都是节省投资,又能理想地提高仓库效率的有效手段。通过数据库或表格,我们可以在短时间内就可以完成一个仓库的货位盘点工作。

2、盘点具体操作说明

盘点前冻结库存,准备盘点,商品盘点操作分两种形式,如下:

第一种:首先从系统中将当前库存报表导出来,在将此报表导入数据采集器,用数据采集器到仓库里进行盘点,扫描每个库位上的条形码,从而在数据采集器上进行核对,在数据采集器上会显示应有数量与实有数量,将扫描的条形码与库存报表核对,从而体现盘亏与盘赢,此后将盘亏与盘赢的结果文件以TXT形式导入系统数据库进行保存以便将来查询。

第二种:首先用数据采集器对整个库存的每个库位上的条形码进行扫描,数据采集器将产生一个文件(TXT),将此文件导入系统,系统会将此文件与当前库存报表进行核对,体现盘亏与盘赢,并将结果保存在数据库里以便将来查询。 商品物流码跟踪

只要输入商品条码获物流码,就可以对商品的所有出入库过程进行跟踪查询。可以详细地跟踪到商品的来源和去向。 报表查询

系统提供各种仓储管理所需的报表的自行制作功能,比如每日出入库统计表、每日异常预警情况总表、单客户、单库位库存统计表等报表。

第5篇:太阳能温室大棚监测控制系统方案设计

为适应市场的需求,目前温室大棚在国内外都得到了广泛的应用,其中以美国、日本、荷兰等国家发展最为迅速,基本实现了环境智能监控和远程监测。而在国内,大部分温室大棚未采用智能控制技术,且存在环境控制能力低、自动化程度落后、价格昂贵等缺点,这在很大程度上降低了温室农作物的产量与质量,因此,广泛实现温室的智能监控很有必要。此外,维持温室大棚的正常运行需要提供充足的电能,而一般大型的温室大棚位于离居民生活区较远的空旷地区,对电能的利用并非很方便,但是太阳能资源丰富,因此如何实现对太阳能的利用成为一个值得思考与解决的问题。

1 设计思想

要实现对太阳能的利用,可以借助于太阳能电池实现光电转换,近年来太阳能电池的转换效率与使用寿命都有了很大的提高,目前单晶硅的转换效率可达30%左右。因此利用太阳能光伏系统为温室大棚供电成为了可能,为提高太阳能利用率,可采用MPPT和光伏系统自跟踪技术。影响农作物的生长因子主要有:温度、湿度、CO2浓度以及光照。实现对各生长因子的智能控制,能很大程度地提高农作物的产量与质量。

基于太阳能供电的温室环境智能监控系统框图如图1所示。

太阳能温室大棚监测控制系统框图

2 模块化设计

2.1 太阳能供电模块

该模块主要包含MPPT的实现、蓄电池充放电监控、自跟踪系统以及电压转换4个部分。MPPT的实现和自跟踪系统均是为了实现太阳能更高效率的利用,蓄电池充放电监控则是对蓄电池、太阳能光伏组件阵列以及负载的保护,电压转换使得该系统可为各种交流和直流负载供电。太阳能供电模块框图如图2所示。

2.1.1 MPPT的实现

MPPT即最大功率点跟踪,是指控制器能够实时侦测太阳能板的发电电压,并追踪最高电压电流值,使太阳能电池板以最高的效率对蓄电池充电。MPPT控制的原理实质上是一个自动动态寻优的过程,通过功率的比较来改变占空比和脉宽调制信号,进而改变太阳能电池板的工作负载,改变输出功率点的位置,以达到最优。实现MPPT通常需要斩波器来完成DC/DC转换,斩波电路分为BUCK电路和BOOST电路。本文中利用BUCK变换器来实现MPPT,通过调节BUCK变换器的PWM占空比输出,使负载等效阻抗跟随太阳能光伏组件阵列的输出阻抗,从而使光伏阵列在任何条件下均可获得最大功率输出。BUCK电路实际上是一种电流提升电路,主要用于驱动电流接收型负载,直流变换通过电感完成,其电路图如图3所示。

故通过调节占空比即可调整输出负载,从而可使太阳能光伏组件阵列工作在最大功率点。占空比的调节是通过控制Q基极电压来实现,可借助于单片机编程加以控制。

2.1.2 蓄电池充放电监控电路

蓄电池充放电监控电路是为了防止蓄电池组过充、过放等现象,蓄电池组在整个系统中起到储存与提供能量的作用,在硬件上可借助于单片机来实现,其软件程序流程图如图4所示。

2.1.3 自跟踪系统

为了实现对太阳能更大限度的利用,要保证太阳光每时每刻都垂直照射在太阳能电池板上,即太阳能电池板必须跟随这太阳的运动而运动。目前常用的自跟踪方法有匀速控制方法、光强控制方法、时空控制方法。为了方便实现并达到较好的跟踪效果,可以将匀速控制法与光强控制法相结合。并通过对实际光强与设定值的比较,分别采取紧跟踪、疏跟踪以及不跟踪的措施。在硬件上可以通过单片机、太阳光跟踪传感器、光强测定器等实现。

2.1.4 太阳能应用于温室的前景

目前使用太阳能光伏阵列进行供电需要占用一定的土地资源来安放太阳能电池板,然而现在已经生产出了半透明太阳能组件,此外透明太阳能电池组件也在进一步研究中,这使得将太阳能电池安装在温室顶部成为了可能。而且太阳能电池的转换效率在不断提升,因此太阳能光伏系统的广泛使用将成为必然趋势。

2.2 智能监控模块

智能监控模块的主要部分为传感器模块、A/D转换模块、微处理器以及各因子的控制设备。

2.2.1 传感器的选取

测温设备选择SLST系列数字传感器,它是采用美国Dallas半导体公司的DS18B20数字化温度传感器,为不锈钢外壳封装,防水防潮,且具有高灵敏度和极小温度延迟,现场温度以“一线总线”的数字方式传输,大大提高了系统的抗干扰性能。其测温范围为-55~+125℃,温度准确度为±0.5℃,可直接将温度转换为串行数字信号供单片机处理。温室内湿度的测量采用JCJ100MH湿度变送器,其采用高精度湿敏电容进行测量,具有灵敏度高、稳定性好、准确度高和使用寿命长 等特点。其工作环境为-40~80℃,输出电压范围为0~5 V,湿度测量范围为0~100%,均满足温室测量的需求。土壤湿度的测量采用高精度土壤水分传感器,它采用世界先进技术的土壤湿度传感器,精密、可靠、耐用,可直接连接至数据采集器,可长期埋设在地下任意深度,连续测量,其测量范围为0~100%,工作电压为7~15 V,输出0~1.1 V的电压信号,可经适当放大后供A/D转换。光照度的测定可以采用KITOZER系统光照度变送器。该种变送器以对弱光也有较高灵敏度的硅兰光伏探测器为传感器,具有测量范围宽、线性度好、防水性能好、传输距离远等特点,其工作电压为12~30 V,测量范围为0~200 000 LUX,支持二线制4~20 mA电流输出、三线制0~5 V电压输出、液晶显示输出以及RS 232,RS 485网络输出,适合在温室大棚环境下使用。CO2浓度的测定可采用FIGARO公司生产的TGS4160,它是一种固态电化学型CO2传感器,具有体积小,寿命长,选择性和稳定性好等特性。因为它的预热时间较长,故适合在室温下长时间通电连续工作。它的测量范围为0~5 000 ppm,使用寿命2 000天,内部含有热敏电阻起补偿作用。通过各传感器获得电信号,经A/D转换后输入单片机与所需要的设定值相比较,然后控制相应的设备来对各因子进行调节。

2.2.2 各生长因子的控制

农作物生长因子主要是指温度、湿度、CO2浓度以及光照。

温度 升温设备可以采用热水锅炉、燃油锅炉、太阳能加热器等,鉴于室外太阳能资源充足,白天可采用太阳能加热器加热,实现光能向热能的直接转换,在太阳不足时,采取电加热器,由蓄电池组供电。降温设备采用湿帘风机,其中通风设备采取强制通风的方式,即利用风机产生风压强制空气流动降温,湿帘是利用水蒸发吸热的原理来降温,二者的结合作用能力强,效果稳定。

湿度 当实际湿度低于所需要湿度时,可以通过控制安装在大棚顶端的喷嘴来实现,通过喷雾来提高湿度,同时又不至于使得湿度过大。当湿度过高,则可以通过通风来降低,这是利用湿度差来进行室内外的空气交换实现。

CO2浓度 CO2的浓度直接影响着农作物的产量与质量,合适的CO2浓度可能达到40%~200%的增产。大气中的CO2浓度仅为350 ppm,在温室中需要提高CO2浓度,可利用CO2发生器来实现,采用化学反应、燃煤、燃气等方式来产生CO2,当CO2浓度过低时,即可通过控制CO2发生器的开关来提高。当浓度过高时,通过打开通风机即可。

光照 光照的控制设备为遮阳设备和补光设备,当光照过强时,可借助遮阳设备来实现,当光照过弱时,可利用补光灯来实现,而且补光灯开启的数量受外界光照的影响,最终达到较为合适的光照强度。

2.2.3 A/D转换 A/D转换采用TLC1549,将各传感器所采集的模拟电信号转换为数字量输入单片机进行处。

,对各因子加以控制。TLC1549为逐次比较型10位A/D变换器,其片内自动产生转换时间脉冲。转换时间小于21μs。其具有固有的采样保持电路,终端兼容TLC549,TLV549,采用CMOS工艺,有2个数字输入和1个三态输出,可和微处理器直接相连。

2.2.4 软件实现

该系统中所采用的单片机可以选择51/52系列单片机,如AT89C51。通过单片机编程来实现对各种设备开关的控制,其控制流程图如图5所示。

环境智能控制流程图

3 结语

该系统实现了对太阳能资源的有效利用,采用MPPT和自跟踪系统来实现高效率转换,且可以较好地智能控制农作物各生长因子,使得农作物生长在最为合适的环境中,大大提高了农作物的产量与质量。本文中所涉及的只是单间温室的智能控制,然而可以通过通信接口RS 232与上位机进行通信,实现集散控制,这样可以大大提高总体工作效率。

托普物联网简介

托普物联网是浙江托普仪器有限公司旗下的重要项目。浙江托普仪器是国内领先的农业仪器研 发生产商,依据自身在农业领域的研发实力,和自主研发的配套设备,在农业物联网领域崭露头角!

托普物联网以客户需求为源头,结合现代农业科技、通信技术、计算机技术、GIS信息技术,以及物联网技术,竭诚为传统行业提供信息化、智能化的产品与端到端的解决方案。主要有:大田种植智能解决方案、畜牧养殖管理解决方案、食品安全溯源解决方案、食用菌种植智能化管理解决方案、水产养殖管理解决方案、温室大棚智能控制解决方案等。

托普物联网三大系统产品

我们知道物联网主要包括三大层次,即感知层、传输层和应用层。因此托普物联网产品主要以这三个层次延伸,涵盖了感知系统(环境监测传感设备)、传输系统(数据传输处理网络)、应用系统(终端智能控制平台。)

托普物联网模块化智能集成系统

托普物联网依据自身研发优势,开发了多种模块化智能集成系统。

1、传感模块:即环境传感监测系统。它依据各类传感设备可以完成整个园区或完成对异地园区所需数据监测的功能。

2、终端模块:即终端智能控制系统。它可以完成整个园区或远程控制异地园区进行自动灌溉、自动降温、自动开启风机,自动补光及遮阳,自动卷帘,自动开窗关窗,自动液体肥料施肥、自动喷药等各类农业生产所需的自动控制。

3、视频监控模块:即实时视频监控系统。主要是通过监控中心实时得到植物生长信息,在监控中心或异地互联网上既可随时看到作物的实时生长状况。

4、预警模块:即远程植保预警系统。可以通过声光报警、短信报警、语音报警等方式进行预警。

5、溯源模块:即农产品安全溯源系统。该系统对农产品从种植准备阶段、种植和培育阶段、生长阶段、收获阶段等对作物生长环境、喷药施肥情况、病虫害状况等实施实时信息自动记录,有据可查,在储藏、运输、销售阶段采用二维码或者RFID射频技术对各个阶段数据记录,这样就能实现消费者拿到农产品时通过终端设备或网络就能查看到各类信息,才能放心食用。

6、作业模块:即中央控制室。可通过总控室对整个区域情况进行监测,包括各个区域采集点参数、控制作业状态、实时视频图像、施肥喷药状况、报警信息等。

第6篇:温室大棚控制系统-设计报告资料专题

哈尔滨师范大学

物联网感知综合课程设计报告

题目:温室大棚控制系统

年 级: 2013级 专 业: 物联网工程 姓 名: 高英亮 袁昊慈 指导教师:李世明 杜军

温室大棚控制系统

高英亮、袁昊慈

摘要 中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。利用物联网的传感器技术实时采集温室环境的空气温湿度、土壤水分和光照度等因素,单片机将数据进行分析处理做出合理的控制决策,控制执行器进行自动喷灌,实现了计算机自动控制,按需、按期和按量喷灌。系统主要由温室环境信息采集模块、单片机模块和控制模块组成,采集模块包括光照度传感器和空气温湿度传感器。该系统采用传感器技术和单片机相结合,由上位机和下位机( 都用单片机实现) 构成,采用接口进行通讯,实现温室大棚自动化控制。本系统环保节能、节水、省力,具有很好的实用性和推广性。

1 引 言

中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。例如:空气的温度、湿度、二氧化碳含量、土壤的含水量等。在农业种植问题中,温室环境与生物的生长、发育、能量交换密切相关,进行环境测控是实现温室生产管理自动化、科学化的基本保证,通过对监测数据的分析,结合作物生长发育规律,控制环境条件,使作物达到优质、高产、高效的栽培目的。以蔬菜大棚为代表的现代农业设施在现代化农业生产中发挥着巨大的作用。大棚内的温度、湿度与二氧化碳含量等参数,直接关系到蔬菜和水果的生长。国外的温室设施己经发展到比较完备的程度,并形成了一定的标准,但是价格非常昂贵,缺乏与我国气候特点相适应的测控软件。而当今大多数对大棚温度、湿度、二氧化碳含量的检测与控制都采用人工管理,这样不可避免的有测控精度低、劳动强度大及由于测控不及时等弊端,容易造成不可弥补的损失,结果不但大大增加了成本,浪费了人力资源,而且很难达到预期的效果。因此,为了实现高效农业生产的科学化并提高农业研究的准确性,推动我国农业的发展,必须大力发展农业设施与相应的农业工程,科学合理地调节大棚内温度、湿度以及二氧化碳的含量,使大棚内形成有利于蔬菜、水果生长的环境,是大棚蔬菜和水果早熟、优质、高效益的重要环节。

目前,随着蔬菜大棚的迅速增多,人们对其性能要求也越来越高,特别是为了提高生产效率,对大棚的自动化程度要求也越来越高。由于单片机及各种电子器件性价比的迅速提高,使得这种要求变为可能。

2 温室自动喷灌系统整体设计

该系统主要由温室大棚环境信息采集模块、单片机AT89c52模块和控制模块组成。采集模块包括光照度传感器2Du6硅光电池、土壤水分传感器TDR一3和空气温湿度传感器LTM一8901。光照度传感器采用硅光电池2Du6作为光电传感器器件,土壤水分传感器采用锦州阳光科技发展有限公司设计开发的TDR一3。这两类传感器输出都是模拟量,所以需要经信号调理电路及A/D转换等预处理后传输给单片机。温室环境空气温度与湿度的采集采用温湿度一体数字式传感器SHT71,直接输出数字量给单片机。控制模块主要由光电耦合器、继电器和执行器组成,总体结构如图1所示。

图1 自动喷灌系统整体构架框图

3 信号采集系统

3.1 光照采集模块

在温室环境中,光照度是植物健康生长的重要能源因素,直接影响植物的生长、发育过程、产量和果实品质。另外,光照度也影响地表与大气的物质与能量交换,即与土壤水分含量有着密切关系,在节水灌溉中是一个重要的数据信息。所以,在设施农业中光照度的检测和监测工作越来越得到重视。系统采用硅光电

池2Du6作为光电传感器件,将该器件的短路电流信号对此进行放大到0~5V,经模数转换模块送给单片机AT89C52。由于硅光电池的短路特性随光照强度是线性变化的,光电池在不同照度下的内阻也不同,因而应选取适当的外接负载近似地满足“短路”条件。A/D转换器只能够接受电压信号,因此在硅光电池2Du6和单片机AT89c52之间需要一个电流电压转换电路。这个电流转换电压模块使用的是放大器0P777。

3.2 温湿度采集模块

温室内空气温湿度的检测仅仅靠单点测量是不能准确代表整个温室环境的状况的,尤其是对于大面积的温室大棚而言,单点检测对节水灌溉控制的精确度和节水效果有很大的影响。针对这个问题,本系统选用了数字式输出和多点网络检测的易扩展式传感器LTM一89。该传感器和单片机的接口有两种方式:一是单线接口方式;二是双线接口方式。当在小面积温室环境下,数据传输距离比较短时,采用单线接口方式;当温室面积比较大、检测点比较多及传输距离比较长的时候,采用双线接口方式。

4 控制系统

传感器采集到温室环境中土壤湿度、光照度以及空气温湿度各参数值,经过单片机处理分析后,给出最优化喷灌策略,发出控制信号使执行机构动作,进而实现按时、按需和按量的节水自动喷灌。本系统选用TLP521—4光电耦合器驱动继电器输出,其目的是为了在驱动执行设备时提高控制接口的抗干扰能力。图6为该接口的电路原理图。

在系统初始化时,将AT89C52的I/0口输出电平置成高电平,光耦TLP521—4不导通,防止在AT89c52复位、上电时继电器出现误动作。

图2 控制系统接口电路图

5 界面设计

通过C#程序编写窗口并将串口传输过来的数据实时显示在C#编写的窗口上的,不过能力有限所以增添了手动输入弥补,并可以从数据库中调用对应数据对其进行判定,以实现智能感应窗状态的改变。首先用visual studio 2013建立窗口界面编辑环境。通过工具箱向窗口上拖拽需要的控件完成窗口的大致规划,然后将label和button控件的名称修改成对应的变量的名称和选项名称。

5.1 主界面textBox程序

private void TMP_label_KeyPress(object sender, KeyPressEventArgs e) { if (!Char.IsNumber(e.KeyChar) && e.KeyChar != (char)8) //判定是否是数字与是否为删除键(ASCII码值中删除键对应数字8)

{ e.Handled = true; //当if判定为true时,e.Handled也为true所以不会对文本框进行赋值

} }

图3 Form1主界面

5.2 选择界面label控件程序

public partial class Form2 : Form { public Form2() { InitializeComponent(); } private string string1; public string String1 { set { string1 = value; } } public void SetValue() { this.label1.Text = string1; } //主窗口和选择界面通过InitializeComponent()函数连接,然后在选择界面窗口中定义一个public string String1然后运行程序时,主界面会对String1进行赋值,然后选择界面窗口可以对其进行调用,用其对label进行赋值。

6 软件设计

6.1设计原理

(1)明确任务,弄清软件所承担的任务细节。

(2)软件结构设计,合理的软件结构是设计出一个性能优良的单片机应用系统软件的基础。

(3)模块化程序设计,是单片机应用中最常用的程序设计技术。将一个完整的程序分解成若干个功能相对独立的较小的程序模块,对各个程序模块分别进行设计、编制和调试,最后将各个调试好的程序模块进行联调。

(4)编写程序。根据系统功能和操作过程,列出程序的功能流程图。在完成流程图的设计之后,便可编写程序了。

6.2 温度传输软件

此模块的软件设计主要是要确保接收到正确的温度数据,所以在程序中要加

一些数据头进行校验。

1)发送温度程序:

while(1)

{

„„

//温度转换,获得温度

SBUF=0xaa;

//为了防止无线接收模块受到干扰,数据不对

while(!TI);

//所以加上两个数据头,只有在正确接收TI=0; 到它俩后,才开始接收我们需要的数据

SBUF=0x55;

while(!TI);

TI=0;

SBUF=table3[a]; //将测得的温度值的各位及小数点逐位的发送出去while(!TI); //百位

TI=0;

„„

//依次发送其他各位

}

2)接收温度程序

void receive() {

while(!RI);

RI=0;

i=SBUF;

if(i==0xaa)

//判断是否接收到0xaa,接收到的话再执行下去

{

while(!RI);

RI=0;

i=SBUF; if(i==0x55) //再继续判断是否接收到0x55,接收到的话就可以继续接收正write_com(0x80); 确的数据

while(!RI);

RI=0;

a=SBUF;

//接收百位

write_data(a); //液晶显示百位

SBUF=a;

//再把百位发送给电脑

while(!TI);

TI=0;

delay(100); //延时

„„

//个位、十位小数点依次发送

} } 6.3 上位机软件设计

本设计使用的方法,利用TComm控件实现串口通信。TComm控件可以实现DTR/DSR、RTS/CTS硬件流控制,是比较完善的串口控件。TComm控件的串口通信参数设置与MSComm类似默认情况下。TComm控件接收和发送数据支持字符串和字节两种传输模式。在接收和发送数据前需要初始化串口,用SetPortOpen()方法打开串口,退出程序时用CloseComm()方法关闭串口。

//打开串口、接收和发送数据的语句

Comm1->PortOpen=true; //打开串口

mReceive->Text = Comm1->Input; //接收数据 mTransmit->Text= Comm1->Output; //发送数据 // 接收下位机温度及将获得的数据绘制成曲线的程序

C++Builder提供了一个功能强大的可视化控件TChart,非常便于数据的图形化显示。通过设置组件属性,可以生成点图、线图、饼图、柱状图、区域图,能够显示一维序列或二维序列,可以自由设定刻度线和坐标。给序列添加一个数据只需调用AddX、AddY、AddXY方法,非常方便。因为需要得到温度的实时曲线图,所以在定时器timer的OnTimer事件中编写程序,关键的语句如下: if (Comm1->PortOpen)

//判断串口是否打开

{

mReceive->Text = Comm1->Input //把接收到的温度放到一个memo里

Buf = Trim(Comm1->Input); //删除string首部和尾部空格的字符串

ReceiveStr = ReceiveStr + Buf;

do

{

Dot= ReceiveStr.Pos();

if (Dot==0)

break;

ReceiveData[i] = StrToFloat( ReceiveStr.SubString(1,Dot-1)); //数据放进数组

ReceiveStr =ReceiveStr.Delete(1,Dot);

//留下未处理的数据

Chart1->Series[0]->AddXY(i,ReceiveData[i],i,clRed); //把接收到的温度绘成曲线

i=i+1;

//接收下一个数据

}

While (1); //直到找不到空格

ReceiveStr = "";

}

//存储接收到的数据和对应的时间 关键的语句如下:

FILE *fp;

fp=fopen(".data.txt","a"); //把数据存放到data.txt的文件里

fprintf(fp,"%s%s ",mReceive->Text, TimeToStr(Time())); fclose(fp);

7 总 结

温室大棚自动控制系统是近年来逐步发展起来的一种资源节约型高效农业发展技术,它是在普通日光温室的基础上,结合现代化计算机自控技术、智能传感技术等高科技手段发展起来的,因此我们组选择了以温室大棚控制系统作为课题进行课程设计。本系统通过采用温湿度传感器、光照传感器,对温室内环境的温度、湿度、光照强度进行采集,将采集的信息传输给单片机单片机通过比较输入温度与设定温度来控制通风或浇水。温室大棚自动控制系统是配备有温室环境控制系统的资源集约型高效农业生产方式,它在调控温室内小气候环境以适应作物生长发育要求的同时,不仅实现了作物的反季节生产,还提高了作物的质量以及作物生产的效率。近年来随着传感器技术、计算机技术、网络技术、智能控制技术以及生物技术等高新技术和手段的飞速发展,带来了温室环境控制方面的一场革命。温室环境控制系统正在不断吸收相关领域新的理论和方法,结合温室作物种植的特点,不断创新,逐步完善。

由于课程设计的需求,我们查阅大量资料,并在同学的帮助下学习了visual studio 2013软件的使用,并且学习了用C#制作界面,更深入的熟悉了多种传感器的功能,但是串口传输的问题始终没有解决,我们还需学习更多更深入的知识。

参考文献

[1]李全利、迟荣强编著。单片机原理及接口技术[M]。北京:高等教育出版社,2004 [2]刘守义编著。单片机应用技术[M]。 西安:西安电子科技大学出版社,2002 [3]陈杰、黄鸿编。传感器与检测技术[M]。北京:高等教育出版社,2002 [4]何希才编著。传感器及其应用 [M]。 北京:国防工业出版社,2001 [5]胡宴如编著。模拟电子技术基础[M]。 北京:高等教育出版社,1998 [6]康华光编著。电力电子技术[M]。北京:高等教育出版社,2004 [7]杜深慧编著。温湿度检测装置的设计与实现[M]:北京:华北电力大学,2004 [8]何立民编著。单片机应用系统设计[M]。北京:北京航空航天大学出版社,2006 [9]陈健、刘九庆编著。温室环境工程技术[M]。哈尔滨:东北林业大学出版社,2002 [10]梅丽凤、王艳秋编著。单片机原理及接口技术[M]。北京:清华大学出版社,2004

第7篇:蔬菜温室大棚温湿度监控系统

系统背景及实施意义 随着大棚技术的普及,温室大棚数量不断增多,对于蔬菜大棚来说,最重要的一个管理因素是温湿度控制。温湿度太低,蔬菜就会被冻死或则停止生长,所以要将温湿度始终控制在适合蔬菜生长的范围内。传统的温度控制是在温室大棚内部悬挂温度计,工人依据读取的温度值来调节大棚内的温度。如果仅靠人工控制既耗人力,又容易发生差错。温室大棚的温度控制成为一个难题。现在,随着农业产业规模的提高,对于数量较多的大棚,传统的温度控制措施就显现出很大的局限性。 为此,在现代化的蔬菜大棚管理中通常有温湿度自动控制系统,以控制蔬菜大棚温度,适应生产需要。它以先进的技术和现代化设施,人为控制作物生长的环境条件,使作物生长不受自然气候的影响,做到常年工厂化,进行高效率,高产值和高效益的生产。 苏州木兰开发的蔬菜温室大棚温湿度监控系统是专为蔬菜种植温室研制的温湿度智能监控系统,能够自动监控室内温湿度。本方案结合了蔬菜栽培温室的特点,采用温湿度传感器,克服了传统模拟式温湿度传感器的不稳定、误差大、容易受干扰、需要定期校准等严重缺陷,本产品测量数据准确,精度高,运行稳定,质量可靠,在蔬菜温室大棚具有广阔的应用前景。

三、系统组成、工作原理及方案介绍 在蔬菜温室里安放木兰公司生产的ML-T220温湿度传感电子标签及相应的读卡设备。标签会将采集到的温湿度信息,如蔬菜大棚里的温度湿度等,通过无线方式不停地向外发送信息,这样安装在附近的读卡器就能接收到这些信息,并将接收到的的信息传到管理中心的主机。如果温室当前的温湿度不利于蔬菜生长,主机就会按照使用人员指定的方式输出多种报警来提醒大棚管理员做出相应的操作,从而实现塑料大棚蔬菜的智能化管理。 监控系统安装后,操作人员可根据传感器实时温湿度数据对温室内部采暖、通风等设备进行操作,有效解决了现代化智能连栋温室运行费用高,耗能大等缺点。监测系统还可根据蔬菜生长条件设置警报值,当温湿度异常时进行报警,提醒工作人员注意。本套系统防水防尘,可以长时间运行于温室等高温高湿环境。并采用无线传输技术,保证在温室这样的多钢结构建筑中信号的稳定传输。 工作原理如下图所示 温湿度检测模拟图:

四、系统功能、特点、优势 SHT1x数字温度传感器具有电阻温度系数大,感应灵敏,电阻率高,元件尺寸小,电阻值随温度变化而变化基本呈线性关系,在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高。(如果用户有特殊的需求,可以自己指定传感器) 系统功能及优势:

◆系统优越性 系统结构清晰,高度集成化,安装、操作简单,适用于各类使用环境,操作界面充分考虑客户个性化需求,系统运行稳定性好。 ◆自动记录 实时更新并自动记录温湿值,所有温湿度历史记录及相关数据真实可靠,存储方式专用

◆易于查询 查询任何该蔬菜温室内的固定测点及移动测点的温湿度历史数据记录、温湿度历史曲线、温湿度预警信息、温湿度超限信息、超限处理措施及整改提示、监测点环境情况评估、监测点故障、监测点地理位置等信息。

◆完整精确且灵活记录打印 将预订的时间点自动记录所有测点的温湿度值及报警信息,形成可查询、打印的历史记录、历史曲线、报表。

◆灵活的报警功能 报警方式有电脑声光报警、就地测点声光报警、预设地点(值班室)声光报警、手机短信报警、电子邮件报警等。

◆传感器在线标定 需要标定系统测试精度时无须拆卸传感器,只需通过软件设定即可。

◆系统可扩充性强 测点可在一定范围内任意增加。

◆安装简单 接线方便可靠。

◆低功耗 低功耗设计:独有的自备电源管理方案,配有小容量UPS电源。 系统特点:

◆远距离 : 识别的最远距离是 80m (正常的距离是 0 ~50米,50~80米的距离要另外配置天线),识别距离可调。

◆防冲突性 : 先进的防碰撞技术,可同时识别 200 个 / 秒以上标识。

◆高速度 : 最高识别速度可达 200 公里 / 小时。

◆安全性 : 加密算法与认证,确保数据安全,防止链路窃听与数据破解。 ◆方向性 : 可实现有方向性和无方向性的识别。

◆高可靠 : -40 ℃ -85 ℃,防冲击。

◆成本性 : 全部采用 0.18uM 的芯片,成本更低。

◆功耗性 : 超低功耗,更健康、更安全。

◆传输性 : 全球开放的 ISM 微波频段,无须申请和付费。

◆高抗干扰性 : 对现场各种干扰源无特殊要求高抗干擾性 : ◆温度特性:±0.1℃(如果要求的温度范围更宽,则要特殊定)

◆湿度特性:±2%H(如果要求的湿度范围更宽,则要特殊定制)

◆测量时间间隔:至少需要1.5S(如果需要更快,则要特殊定制开发)

五、系统硬件设备介绍

1、 温湿度传感电子标签ML-T220 由苏州木兰公司研制生产的2.4G远距离ML-T220温湿度传感电子标签,ML-T220传感标签以SHT1x数字温度传感谢器作为测温元件,它具有电阻温度系数大,感应灵敏,电阻率高,元件尺寸小,电阻值随温度变化而变化基本呈线性关系,在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高。 温度传感标签除识别与定位功能外,还可通过感温装置获取实时温度数据,并将被监测的物体温度数据通过电子标签传递给监控管理系统,从而实现对监控过程中温度预警。 ML-T220温湿度传感电子标签的领先技术和出众特点使得其在温室大棚、冷链、医疗、仓库管理、电力故障检测等需要检测温湿度的地方提供了一种全新的检测理念。 技术参数

1.电气特征 静态电流 小于2µA 工作电流 小于15mA 电池寿命 3-5年(使用寿命20年)

2.微波链路特性 信号调制方式 GFSK 通訊速率 双向1024Kbit/s 工作频率 2.45GHz 最大輸出功率 0dbm 位误码率 10-9

3.物理特征 外壳材料 高温改性 ABS 塑料 标签类型 只读型 外型 132×67×50mm 重量 25克 颜色 多种顏色 防护等级 IP34 安装方式 插入或放于物品內部

4.工作环境

1) 对现场各种干扰源无特殊要求

2) 工作温度:-30℃ ~ +65℃ 3) 工作湿度:小於 85 % 4) 存储温度: -40 ℃ ~ +80℃ 5) 震动:10 ~ 2000 Hz,15g三个轴 6) 抗电磁干扰:10V/m 0.1 ~ 1000MHz AM 调幅电磁波 产品特点 ※ 远距离 : 识别的最远距离是 80m (正常的距离是 0 ~50米,50~80米的距离要另外配置天线),识别距离可调。 ※ 防冲突性 : 先进的防碰撞技术,可同时识别 200 个 / 秒以上标识。 ※ 高速度 : 最高识别速度可达 200 公里 / 小时。 ※ 安全性 : 加密算法与认证,确保数据安全,防止链路窃听与数据破解。 ※ 方向性 : 可实现有方向性和无方向性的识别。 ※ 高可靠 : -40 ℃ -85 ℃,防冲击。 ※ 成本性 : 全部采用 0.18uM 的芯片,成本更低。 ※ 功耗性 : 超低功耗,更健康、更安全。 ※ 传输性 : 全球开放的 ISM 微波频段,无须申请和付费。 ※ 高抗干扰性 : 对现场各种干扰源无特殊要求。

2、 2.4G远距离读卡器ML-M5000 是由的ML-M5000(双读头)读写器,拥有自主技术专利的优越的双读头设计,确保了快、多、准的数据处理。针对工业环境而设计,抗干扰、抗粉尘,完全适应潮湿环境下远距离、大流量、高速度的可靠识别。优秀的防爆防水功能,满足恶劣环境下正常运行。该读写器由9~12V的直流供电,防冲突抗干扰,信号传输能力强,使用寿命长达15年,能够满足恶劣的工业环境。 技术参数 1.工作环境 1)抗干扰和防雷设计,满足工业环境要求 2)使用温度:-40℃~+80℃ 3)保存温度:-60℃~+80℃ 4)抗电磁干扰:10V/m 0.1-1000MHz AM调幅电磁波 2.主要技术参数 1)电气特征 参数 规格 电 源 +9V到+12V DC(MAX 1000mA) 通信接口 RS485波特率:2400-38400, 通讯检错CRC16循环冗余校验 可靠性 MTBF≥70000小时 工作寿命 15年 2)微波链路特性 参数 规格 信号调制方式 GFSK 频率 2.4 - 2.45 GHz 发射功率 ≤3dBm(可用软件进行调整) 天线极化 垂直 读写区域 全向范围(若需定向可选择定向天线) 微波通讯距离 2~50m 微波通讯检错 CRC16循环冗余校验 通讯加密 面谈 位误码率/B.E.R 10-7 3)主要性能参数 ※ ML-M5000读写器是专用于RFID的识别和编程; ※ 采用DC9V~12V/1000mA的供电可以4S钟同时识别100张卡不漏数据(非常可靠的数据,符合本安要求); ※ 读卡距离的距离是5-50m,写卡的距离是2~15米; ※ 能识别移动速度200公里/小时以内快速移动的电子标签; ※ 工作的频率在2.4GHz-2.5GHz ISM微波段; ※ 数据速率是1Mbps,射频功率是-20dBm~0dBm且可调,最大峰值功率1毫瓦; ※ 在-40℃-85℃的工作环境的接受灵敏度是-90dBm; ※ 开发接口与其他设备连接是RS485,异步通讯速率2400BPS-19200BPS; ※ 通过发命令的方式调节读写器的接收距离,以及相关的技术参数。

六、系统软件功能介绍 蔬菜大棚温湿度控制系统的功能介绍:

1、系统能对大棚环境温湿度进行采集和显示(现场观温,软件记录)

2、能通过上位机端远程设定蔬菜的生长期适宜温湿度

3、管理人员可以随时查询采集过来的温湿度历史记录、温湿度预警信息、温湿度超限信息、超限处理措施及整改提示、监测点环境情况评估、监测点故障、监测点地理位置等信息。(以数据方式和动态曲线方式显示)

4、一台上位机控制多个大棚 蔬菜大棚温湿度控制系统工作过程

5、管理人员在上位机软件设置要控制的大棚编号和温湿度上限和下限值,通过串口发送出去。

6、自动记录 实时更新并自动记录温湿值

7、系统优越性 系统结构清晰,高度集成化,安装、操作简单

8、完整精确且灵活记录打印 软件功能界面如下: 温湿度监控系统软件实时显示图 软件实测温度曲线图

1、将过去以人的经验进行依据进行管理的传统方式转变化依靠先进的传感器、采集器、控制器、通信网络、电脑终端等实现更加精准的自动化管理,全面提升管理水平,提高综合效益。

2、通过综合管理系统实现温室大棚内自动监测,包括棚内温湿度、土壤温湿度、棚内光照度、棚内二氧化碳浓度,棚内通风换气系统、棚内补光灯自动调控、棚内土壤灌溉控制等。所有数据通过局域网方式传输到监控中心的电脑上。

3、所有的传感器参数通过485总线连接到现场的控制柜里,控制柜通过触摸屏设定各种参数的控制值,超出每一种参数的设定报警值,控制柜中的相应控制输出就会控制后端相应的设备。譬如光线不够,系统实现对灯光的控制,以延长光照时间,促进植物生长,二氧化碳浓度高了,方便打开/关闭通风系统等。

4、同时现场的控制柜内会输出局域网端口信号与网络光端机接口对接,在5公里外的监测的电脑上装上软件,就可以实现对所有传感器的监测数据实时显示出来,并可以以实时曲线、历史曲线方式查看任一时间内的数据变化趋势,所有数据自动存储、记录,并可以excel格式导出永久保存。

总之通过测控系统,将实现对棚内环境和设备实现控制与调节,全面提高对温室大棚的有效管控,提高自动化水平和工作效率。

第8篇:农业大棚智能检测环境系统

龙源期刊网 http://.cn

农业大棚智能检测环境系统

作者:王峰萍 王佳

来源:《现代电子技术》2012年第14期

摘 要:介绍了以 STC89C52单片机为核心的光照和温度控制系统的工作原理和设计方法。系统由TSL2561光传感器和 DS18B20温度传感器采集数据传输给控制器,通过外围设备 LCM12864显示现场光照度和温度值,并设计上位机程序,通过串口通信实时获取光照度和温度,所采集的数据放入到Access数据库当中,然后从数据库读出光照度和温度的值,通过曲线显示到PC机上,进行实时曲线监控。同时,系统具有温度和光强报警功能。

关键词:STC89C52; VC++; Access; 照度和温度控制系统; DS18B20; TSL2561

第9篇: 智能农业温室大棚管理系统项目计划书

一、项目背景

近年来,农业温室基础设施发展迅速,但是在自动监控方面仍存在着诸多问题。温室监控区域较大,需要大量的传感器节点构成大型监控网络,通过各种传感器采集诸如温度、空气湿度、光照度、土壤湿度、EC值、pH值等信息,实现自动化监控。传统温室监测与控制系统多采用有线连接,布线复杂,往往造成温室内线缆纵横交错、使用不便、安装维护困难、可靠性差等问题。

无线传感器技术被认为是满足温室应用需求且代替有线连接的最好方式。惠企物联科技结合最新的ZIGBEE无线技术,将传感器整合到无线传送网络中:通过在农业大棚内布置温度、湿度、光照、等传感器,对棚内环境进行检测,从而对棚内的温湿度,光照等进行自动化控制。通过更加精细和动态监控的方式,来对农作物进行管理,更好的感知到农作物的环境,达到“智慧”状态,提高资源利用率和生产力水平。

二、现存问题

 首先是成本较高。一般来讲,一套智能化的控制系统成本主要包括硬件成本、运行成本和维护成本。硬件成本包括各仪器仪表、通信线缆等。整个系统也不能自由组合或者裁剪应用于不同的对象,使得难以得到推广和普及。同时,由于系统复杂、布线繁多、故障率高而且使得故障后的维修成本极大。另外,系统庞大造成的运行成本也不是一笔小费用。  其次是布线复杂。温室中有大量分散的传感器和执行机构,这些设备可能随着作物的改变而进行调整,同时错综复杂的线缆也需要重新铺设,工作量较大。为了科学、合理地实现大面积温室环境参数的自动检测与控制,电子检测装置和执行机构的设置不仅数量大而且分布广,连接着各个装置与机构的线缆,也因此纵横交错。当温室内生产的果蔬作物更替时,相应的电子检测装置和执行机构的位置常常需要调整,连接着各个装置与机构的线缆有时也需要重新布置。这不仅增大了温室的额外投资成本和安装与维护的难度,有时也影响了作物的良好生长。

 第三,故障解决难。当数据无法正常接收时,检查人员不知道是线路问题还是节点故障。另外,目前的控制系统多采用基于现场总线的分布式模式,当总线出现故障时,虽然各控制节点尚能正常工作,但是上位机却无法正常管理整个网络,专家控制策略无法实施。

三、项目意义

(1)实现广范围的测量,需求传感器节点多

当前温室生产的首要特点就是监控区域很大,普通单个连栋温室都有几千平方米,而一个园区温室群的面积可能会在几百亩以上,因此需要大量的传感器节点构建传感器网络,在每个温室中采集诸如空气温度、空气湿度、光照强度、土壤湿度、营养液EC值、pH值以及室外天气参数等信息,除此以外,目前对作物生理参数的检测也逐渐受到人们的重视,因此将会有更多的传感器节点被用于温室生产。另外,用于驱动温室中执行机构的控制节点的数量也不能忽略。由此可见,温室对其监测与控制系统的首要需求就是网络容量大。 (2)检测点位置灵活变动 温室中大量分散的传感器,但随着作物的生长而需要不断调整位置;或者当温室内生产的作物更替时,相应的电子检测装置和执行机构的位置也常常需要调整;另外,温室的利用结构也会经常根据用户需要而不断改变,这就要求系统中各个节点能根据需要随意变换位置而不影响系统工作。 (3)节点数目可随意增减

作物生长阶段不同,环境因子对作物的影响可能也不同,生长初期可能对温度比较敏感,而后期可能对光照比较敏感,这就要求系统可以随意改变节点的类型和数量。除此以外,随着作物的生长,用户可能还需要对植物的生理参数进行监测而需要不断增加传感器节点。在某些科研温室中,也经常需要改变传感器节点的类型和数量,以达到精确监测与控制。上述这些情况都需要所用的监控系统的节点能随意增减。 (4)系统可靠性

系统故障而造成的经济损失不可估量。如果系统出现问题而未能被及时发觉和修复,那么可能对作物造成致命的伤害,尤其在一些恶劣的天气例如高温和寒冷气候条件下,这将直接影响产量和收益。另外,温室内湿度高、光照强、具有一定的酸性,都会导致线缆的腐蚀、老化,从而降低系统的可靠性和抗干扰性,这对于检查系统故障造成困难。例如,当数据无法正常接收时,检查人员不知道是线路问题还是节点故障,这对及时发现和解决故障带来不便。因此,温室测控系统必须要可靠。

四、项目介绍

4.1 ZIGBEE技术介绍

ZIGBEE技术是IEEE(美国电子和电气工程师协会)研发的新一代无线通讯技术。可应用在固定、便携或移动设备上的,低成本、低功耗的低速率无线连接技术;2001年8月,美国HONEYWELL等公司发起成立了ZigBee联盟,他们提出的ZigBee技术被确认为IEEE 802.15.4标准;现联盟内有众多的成员企业。

ZIGBEE技术现已被非常的应用,诸多的芯片厂家,如TI,三星,飞利浦等等,都生产出了与该协议技术兼容的芯片,并被大量的应用。

ZIGBEE属于微波段2.4GHZ频率,可实现远距离(0~1000米)传送给路由器;一般有3部分组成:ZIGBEE传感器标签、 ZIGBEE路由器、 ZIGBEE协调器组成,需外接2.4~3.7V的电源,当标签检测到现场的数据后,通过电磁波的传导,远距离的无线传输给路由器,路由器在已同样的原理传输给协调器,协调器一方面可以将数据通过串口传送给电脑,以供系统分析控制,一方面可以通过内置的单片系统处理、分析、控制所接受的数据。整个传输过程均通过无线传输,传送速率在250K/s,且在传送过程中对数据的加密保护,实现了快速、安全的现场数据采集。

ZIGBEE在无线传输的过程中,可以自动的实现自组网、多跳、就进识别的功能,当现场的单个路由出现问题时,其他路由会自动的寻找其他的线路,不会耽误系统的运行; 4.2系统简介

温室大棚对环境的要求非常高,温度、湿度、光照、CO

2、等一系列的参数均对其影响重大。优秀的温室大棚管理,即对于以上环境变量的严格管理。

在本系统中,我们采用不同的传感器来实现对环境的监控,像无线温度传感器、无线湿度传感器、无线光照度传感器、无线CO2传感器等。以无线温度传感器为例,该传感器采用3大模块组成:

1、温度传感器模块;

2、单片机系统模块;

3、无线发送模块。温度传感器模块检测到现场的温度数据后,将数据交由单片机处理,单片机通过模拟转数字-数字转模拟的处理,最终驱动无线发送模块将数据无线发出。此无线温度传感器的传输距离可达120米。

无线温度传感器将数据向外发送,安装在室内的或室外的路由器接受该数据,并将数据整理后,发送给ZIGBEE协调器,协调器会将数据整理并通过串口上传电脑,电脑即根据现场的数据,与温度标准值进行比较,如若超出标准值,电脑则控制温室内外的:天窗、侧窗、内遮阳保温幕、外遮阳幕、风机、等开启。同时,温室内的传感器时时检测现场数据,当现场温度达到标准值后,电脑即关闭控制。

4.3系统硬件组成

系统硬件按照控制的流程分3大部分:数据采集部分、数据传输部分、控制部分。

4.3.1数据采集部分

 温度传感器:该传感器采用3大模块组成:

1、温度传感器模块,采用美国进口的DS18B20模拟头,精度等级在± 0.5℃;

2、单片机系统模块;

3、无线发送模块。

4、长待机电池。温度传感器模块检测到现场的温度数据后,将数据交由单片机处理,单片机通过模拟转数字-数字转模拟的处理,最终驱动无线发送模块将数据无线发出。每只传感器都带有一个ID号,而此ID号是有24位的字母、数字组成,可以实现无限的序号组合,即可实现全球唯一ID号;每只标签的ID号与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。 此无线温度传感器的传输距离可达120米。

 湿度传感器:该传感器采用3大模块组成:

1、湿度传感器模块,采用美国进口的SHT11模拟头,精度等级在± 3%RH;

2、单片机系统模块;

3、无线发送模块。

4、长待机电池。湿度传感器模块检测到现场的湿度数据后,将数据交由单片机处理,单片机通过模拟转数字-数字转模拟的处理,最终驱动无线发送模块将数据无线发出。每只传感器都带有一个ID号,而此ID号是有24位的字母、数字组成,可以实现无限的序号组合,即可实现全球唯一ID号;每只标签的ID号与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。 此无线湿度传感器的传输距离可达120米。

 光照度传感器:该传感器采用3大模块组成:

1、温度传感器,采用美国德州仪器的传感器,可测量0~20万lus;

2、单片机系统模块;

3、无线发送模块。

4、长待机电池。光照度传感器模块检测到现场的温度数据后,将数据交由单片机处理,单片机直接将接受到的传感器数字信号处理,并驱动无线发送模块将数据无线发出。每只传感器都带有一个ID号,而此ID号是有24位的字母、数字组成,可以实现无限的序号组合,即可实现全球唯一ID号;每只标签的ID号与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。 此无线光照度传感器的传输距离可达120米。

 CO2传感器:该传感器采用美国(Telaire)公司产品,该传感器采用红外光谱形式,0-2000PPM 的量程能满足植物研究的所有需求。传感器对科研型温室高温、高湿不敏感。此传感器采用有线传输。该只传感器与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。

 雨量传感器:本仪器反斗部件翻转灵敏,性能稳定,工作可靠。承雨口采用不锈钢皮整体冲拉而成,光洁度高,滞水产生的误差小。仪器外壳用不锈钢制成,防锈能力强,外观质量佳。此传感器采用有线传输。该只传感器与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。

 降雨感知传感器:探头为美国德州仪器 TI 公司产品,主要用于探测是否有降雨,该产品具有判断降雨和结露的不同情况,具有工作可靠,价格便宜等特点。此传感器采用有线传输。该只传感器与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。 

风速风向传感器:风速风向传感器”选用美国Davis(戴维斯)公司产品(Davis6410)。“风速风向传感器”内部装有精密旋转运动部件,这些机械部件的稳定性非常好,能在恶劣环境下保持传感器的测量精度。,外壳高强度特殊工程塑料具有极好的抗紫外老化作用。此传感器采用有线传输。该只传感器与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。

 土壤湿度传感器:采用水利部认证传感器,该传感器采用先进的“时域反射原理”,杆式设计,感应部分 48cm,适用于测量任何类型土壤的体积含水量,测量精确,性能稳定可靠,此传感器采用有线传输。该只传感器与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。

 水暖水温传感器与土壤温度传感器:采用美国DALAIS 公司温度传感器,外套“密封不锈钢铠甲”。特性:一致性好,精度高,密封性好,此传感器采用有线传输。该只传感器与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。

 液面湿度传感器: 主要测量植物表面的叶面蒸发程度及植物表面的湿度情况,适用于高档花卉。例:一品红,该系列传感器适用于农业、园林、气象、环保等领域对温度和湿度的测量,经过绝缘封装等加工工艺,可在高温高湿等恶劣环境中长期稳定地工作。此传感器采用有线传输。该只传感器与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。

以上的诸多品种传感器,可直接安放在温室内,或温室外。其中最为常用的传感器为温度传感器、湿度传感器、光照传感器,在本系统中针对此3种传感器,我们采用无线的传输方式,用无线模块将数据送至无线路由器。其他种类传感器因考虑用量较少,用无线传输方式成本较高,暂时用有线传输数据。

4.3.2数据传输部分

 无线路由器:识读标签;微波2.4~2.5GHz微波频段;吊挂式或固定支架安装,防尘防水,与标签的读写距离0~300米。

无线路由器的信号覆盖到无线传感器的接收范围内时,路由器即能采集到标签过来的数据信息;

因现场需要检测不同位置的环境,会安装较多的传感器,路由器接收的数据具备冗长性,通过数据融合,将多个无线传感器数据整理成更精准的数据,无线发送给协调器;

路由器除接收并发送无线传感器的数据外,还可以作为其他路由器的上位路由,其他路由可以借此路由进行与协调器的通讯。

 无线协调器:识读中继器,接收中继传送过来的信息,并将数据用串口上传工控机;识别距离0~300米可调;微波2.4~2.5GHz频段;吊挂式或固定支架安装,工业RS485串口,防尘防水。

协调器是最终连接电脑的设备,它前端采集路由数据,后端向电脑传送数据。当现场数据较大,较多时,亦不会产生数据的拥堵。

4.3.3控制部分

 工控机:采用工业PC机,较强的功能与性能,具备工业级别的串口通讯、I/O口输入输出。

内置强大的软件控制功能:稳定的数据采集、基于实际应用的数据分析、专家数据库、精准的控制逻辑。

 PLC控制:采用西门子公司的S7系列PLC;多路稳定的I/O控制、工业级别的串口通讯、精准的控制时序、

 驱动控制:电机、气缸、电磁阀

 现场执行单元:内遮阳,外遮阳,顶开窗,侧开窗,湿帘外开窗,湿帘水泵,湿帘风机,2组风机,内循环风机,补光灯,喷雾,微喷等设备。(甲方单独配置)

4.4系统软件

本系统软件着重分析了温室中的:空气温度、空气湿度、土壤温度、光照度,4大参数,这是温室环境控制中最重要的4个参数。

4.4.1空气温度控制

4.4.1.1现场数据采集

在温室内安放多个无线传感器,因传感器无线发送数据,所以不用担心布线的繁杂,可以将传感器安放在温室内的任何一个地方,并且可以随意的调整位置。传感器还内存有ID号,每个传感器的ID是全球唯一,是代表该传感器的身份。传感器安放好后,传感器的ID号、采集的数据、所在位置等信息会一并的传给路由。

温度管理一般把一天分为午前、午后、前半夜和后半夜4个时段来进行温度调节。午前以促进光合作用、增加同化量为主;午后光合作用呈下降趋势;日落后以促进体内同化物的运转;夜温以抑制呼吸、减少消耗、增加积累; 传感器内置单片控制系统,因此可以设置传感器检测和外发数据的周期,就可以设置传感器外发数据的周期为1次/小时、1次/分钟、或1次/30秒等,一来可以根据现场的实际需求而定,二来可以为传感器节省电能,使用的时间更长久。

4.4.1.2数据传输

传感器将采集到的数据无线发送给室内的路由器,路由器接收并转化传感器的数据,标签是利用电磁波形式传递数据,路由接收后,解调该数据。 在同一时间会有多个标签向路由发送数据,路由会将接收到的数据进行融合,整理成较精准的数据发出。如:

路由器除接收并发送无线传感器的数据外,还可以作为其他路由器的上位路由,其他路由可以借此路由进行与协调器的通讯。如图:

协调器是最终连接电脑的设备,它前端采集路由数据,后端向电脑传送数据。工业RS485串口连接电脑,防尘防水。 4.4.1.3控制时序

A、温度高于标准值:每种植物都有不同的温度生长曲线,植物在不同的时间段都会有不同的适宜生长温度,如在每一天中,植物对于温度的需求就有4种,这是因为其处于不同的时段,会有不同的转化机能。当温室内的空气温度高于标准值时,系统会自动比较在某时段标准值与实际值的差异,进而来控制不同设备进行降温。

 如:ID号为“123456789”的传感器,检测到现场的温度数据为35.4℃时, 数据经由无线路由,无线协调器,最终将数据上传给工控机。

 系统为保证该温度值不是瞬间的值,会在第一次接收到该ID号的数据后延时0~90秒,再取值比较,借以准确的判断该值是一个趋势值。

 系统会调出在该段时间的标准值27℃,并与现场数据比对,判断比现场的温度高8.4℃,即会控制降温设备开启。

 控制降温设备的开启顺序:系统在一定的时间内(0~99秒可调)判断当前温度值不能降低到目标值时,会顺序开启降温设备;当现场温度与目标温度相差较大时,系统控制跳跃开启其中的某项设备。

天窗:分段开启顶开窗系统;通过室外自然温室调整温室内的温度,依此原理,直至顶开窗系统为 100%。

侧窗:再分段开启侧窗通风系统;依此原理,直至侧开窗系统为 100%。

强制降温过程:自然通风不能降低温室内的温度时,系统自动关闭自然通风相关设备,采用强制通风的方式来控制室内温度。延时后,关闭天窗,其次关闭侧窗。 湿帘外翻窗:开启湿帘外翻窗。 一组风机:开启第一组风机。 湿帘水泵:开启湿帘水泵。 二组风机:开启第二组风机。

循环风机:在一定的时间内判断当温室内的温室不均匀时,开启循环风机。 喷林或喷雾:开启屋顶喷淋系统。

报警:判断温度降不到目标值,则计算机会开启温度过高报警,提示用户需增加降温设备。 系统会时时检测现场温度,当现场温度趋于目标温度时,系统即关闭降温设备。

B、温度低于标准值:

 如:ID号为“123456789”的传感器,检测到现场的温度数据为20℃时, 数据经由无线路由,无线协调器,最终将数据上传给工控机。

 系统为保证该温度值不是瞬间的值,会在第一次接收到该ID号的数据后延时0~90秒,再取值比较,借以准确的判断该值是一个趋势值。

 系统会调出在该段时间的标准值27℃,并与现场数据比对,判断比现场的温度低7℃,即会控制升温设备开启。

 控制升温设备的开启顺序:系统在一定的时间内(0~99秒可调)判断当前温度值不能升温到目标值时,会顺序开启升温设备;当现场温度与目标温度相差较大时,系统控制跳跃开启其中的某项设备。

内遮阳保温幕:拉下内遮阳保温幕,不使室内温度外泄。 外遮阳幕:若外界光照较强,可打开外遮阳幕,通过光照升温。 热风炉、水暖空调、暖气:打开加热装置,是室内温度升温。

报警:判断温度降不到目标值,则计算机会开启温度过高报警,提示用户需增加降温设备。

系统会时时检测现场温度,当现场温度趋于目标温度时,系统即关闭升温设备。

4.4.2空气湿度控制

4.4.2.1现场数据采集

在温室内安放多个无线传感器,因传感器无线发送数据,所以不用担心布线的繁杂,可以将传感器安放在温室内的任何一个地方,并且可以随意的调整位置。传感器还内存有ID号,每个传感器的ID是全球唯一,是代表该传感器的身份。传感器安放好后,传感器的ID号、采集的数据、所在位置等信息会一并的传给路由。

湿度传感器内置单片控制系统,因此可以设置传感器检测和外发数据的周期,就可以设置传感器外发数据的周期为1次/小时、1次/分钟、或1次/30秒等,一来可以根据现场的实际需求而定,二来可以为传感器节省电能,使用的时间更长久。

4.4.2.2数据传输

传感器将采集到的数据无线发送给室内的路由器,路由器接收并转化传感器的数据,标签是利用电磁波形式传递数据,路由接收后,解调该数据。

在同一时间会有多个标签向路由发送数据,路由会将接收到的数据进行融合,整理成较精准的数据发出。如:

路由器除接收并发送无线传感器的数据外,还可以作为其他路由器的上位路由,其他路由可以借此路由进行与协调器的通讯。如图:

协调器是最终连接电脑的设备,它前端采集路由数据,后端向电脑传送数据。工业RS485串口连接电脑,防尘防水。

4.4.2.3控制时序

A、湿度高于标准值:

 如:ID号为“123456789”的传感器,检测到现场的湿度数据为80%RH时,数据经由无线路由,无线协调器,最终将数据上传给工控机。

 系统为保证该湿度值不是瞬间的值,会在第一次接收到该ID号的数据后延时0~90秒,再取值比较,借以准确的判断该值是一个趋势值。

 系统会调出在该段时间的标准值65%RH,并与现场数据比对,判断比现场的温度高15%RH,即会控制除湿设备开启。

 控制除湿设备的开启顺序:系统在一定的时间内(0~99秒可调)判断当前湿度值不能降低到目标值时,会顺序开启除湿设备;当现场湿度与目标湿度相差较大时,系统控制跳跃开启其中的某项设备。

侧窗:分段开启侧窗通风系统,进行除湿,依此原理,直至侧开窗系统为 100%。 除湿机控制:开启除湿机进行除湿。

报警:判断温度降不到目标值,则计算机会开启湿度过高报警,提示用户需增加除湿设备。

系统会时时检测现场湿度,当现场湿度趋于目标温度时,系统即关闭除湿设备。 B、湿度低于标准值:

 如:ID号为“123456789”的传感器,检测到现场的湿度数据为40%RH时,数据经由无线路由,无线协调器,最终将数据上传给工控机。

 系统为保证该湿度值不是瞬间的值,会在第一次接收到该ID号的数据后延时0~90秒,再取值比较,借以准确的判断该值是一个趋势值。

 系统会调出在该段时间的标准值65%RH,并与现场数据比对,判断比现场的温度低15%RH,即会控制加湿设备开启。

 控制加湿设备的开启顺序:系统在一定的时间内(0~99秒可调)判断当前湿度值不能升到到目标值时,会顺序开启加湿设备;当现场湿度与目标湿度相差较大时,系统控制跳跃开启其中的某项设备。

加湿机控制:开启加湿机进行加湿。需设置相应的目标值,系统就会自动运行。判断时间保证了不是判断瞬间湿度值的超标,而是判断湿度度整体趋势的变化;在一定的时间内湿度值都超标,才启动控制条件。稳定判断时间保证温室设备启动后,不判断瞬间达到目标值,而是稳定一段时间后才判断。避免了控制条件很快反复上升;也避免设备电机频繁启动,从而更好的保护电机. 报警:判断温度降不到目标值,则计算机会开启湿度过高报警,提示用户需增加除湿设备。

系统会时时检测现场湿度,当现场湿度趋于目标温度时,系统即关闭加湿设备。

4.4.3土壤温度控制

4.4.3.1现场数据采集 在温室内安放多个有线传感器,传感器时时的通过线缆向电脑发送数据。

4.4.3.2控制时序

土壤温度低于标准值:

 该传感器是数字传感器,内存有0~99的ID号,现场变送出数字信号传送给电脑。现场的温度数据为15℃时,系统为保证该湿度值不是瞬间的值,会在第一次接收到该ID号的数据后延时0~90秒,再取值比较,借以准确的判断该值是一个趋势值。

 系统会调出在该段时间的标准值25℃,并与现场数据比对,判断比现场的温度低10℃,即会控制升温设备开启。

 控制升温设备的开启顺序:系统在一定的时间内(0~99秒可调)判断当前湿度值不能提高到目标值时,会顺序开启升温设备;当现场温度与目标温度相差较大时,系统控制跳跃开启其中的某项设备。

内遮阳保温幕:拉下内遮阳保温幕,不使室内温度外泄。 外遮阳幕:若外界光照较强,可打开外遮阳幕,通过光照升温。 热风炉、水暖空调、暖气:打开加热装置,是室内温度升温。

报警:判断温度升不到目标值,则计算机会开启温度过低报警,提示用户需增加升温设备。

系统会时时检测现场温度,当现场温度趋于目标温度时,系统即关闭升温设备。

4.4.4光照度控制

4.4.4.1现场数据采集

在温室内安放多个无线光照传感器,因传感器无线发送数据,所以不用担心布线的繁杂,可以将传感器安放在温室内的任何一个地方,并且可以随意的调整位置。传感器还内存有ID号,每个传感器的ID是全球唯一,是代表该传感器的身份。传感器安放好后,传感器的ID号、采集的数据、所在位置等信息会一并的传给路由。

传感器内置单片控制系统,因此可以设置传感器检测和外发数据的周期,就可以设置传感器外发数据的周期为1次/小时、1次/分钟、或1次/30秒等,一来可以根据现场的实际需求而定,二来可以为传感器节省电能,使用的时间更长久。

4.4.4.2数据传输

传感器将采集到的数据无线发送给室内的路由器,路由器接收并转化传感器的数据,传感器是利用电磁波形式传递数据,路由接收后,解调该数据。

在同一时间会有多个标签向路由发送数据,路由会将接收到的数据进行融合,整理成较精准的数据发出。如:

路由器除接收并发送无线传感器的数据外,还可以作为其他路由器的上位路由,其他路由可以借此路由进行与协调器的通讯。如图:

协调器是最终连接电脑的设备,它前端采集路由数据,后端向电脑传送数据。工业RS485串口连接电脑,防尘防水。 4.4.4.3控制时序

光照度低于标准值:每种植物都有不同的温度生长曲线,植物在不同的时间段都会有不同的适宜生长光照度,如在每一天中,植物对于光照度的需求就有多种,这是因为其处于不同的时段,会有不同的转化机能。当温室内的光照度高于标准值时,系统会自动比较在某时段标准值与实际值的差异,进而来控制不同设备进行调整。

 如:ID号为“123456789”的传感器,检测到现场的光照度数据为50lux时,数据经由无线路由,无线协调器,最终将数据上传给工控机。

 系统为保证该光照度值不是瞬间的值,会在第一次接收到该ID号的数据后延时0~90秒,再取值比较,借以准确的判断该值是一个趋势值。

 系统会调出在该段时间的标准值300lux,并与现场数据比对,判断比现场的温度低250lux,即会控制设备开启调控。

 控制光照设备的开启顺序:系统在一定的时间内(0~99秒可调)判断当前光照值不能升到目标值时,会顺序开启补光设备;当现场光照度与目标光照度相差较大时,系统控制跳跃开启其中的某项设备。

外遮阳幕打开:徐缓的打开外遮阳棚,使室外的阳光能照射进来 内遮阳幕打开:打开外遮阳棚,使室外的阳光能照射进来 补光灯:打开补光灯,进行补光。

报警:判断光照度降不到目标值,则计算机会开启光照度过高报警,提示用户需增加光照度设备。

系统会时时检测现场光照度,当现场光照度趋于目标温度时,系统即关闭光照设备。

4.4.5风速对外拉幕的保护

当室外风速超过保护值时,则系统自动启动外拉幕的风速保护功能。条件级别保证外拉幕在非正常情况下(例:大风),优先自动收拢外拉幕,避免外拉幕遭到毁灭性破坏。判断时间保证了不是判断瞬间风的超标,而是判断风整体趋势的变化;在一定的时间内风都超标,才启动控制条件。稳定判断时间保证温室设备启动后,不判断瞬间达到目标值,而是稳定一段时间后,才判断。避免了控制条件很快反复上升;也避免设备电机频繁启动,从而更好的保护电机。

4.4.6风向及风速对天窗的保护

大风、雨雪保护:系统不是判断瞬间风速的超标,而是判断风整体趋势的变化,以进行大风时的关闭通风窗的保护。风向传感器能判断出是迎风还是背风,以进行不同级别的保护。 4.4.7 CO2施肥

通过定时控制设置,可设多组 co2 施肥时间规律的选择 4.4.8 专家数据库 系统内置最新的农业专家数据库,根据不同作物的生产特性和要求可以自动调用相对应的最佳控制方案和参数。

4.4.9 数据报表、绘制曲线:

记录的数据可以导出“EXECL”报表。同时可以生成全日、全周、全月的变化趋势曲线图。

五、项目扩展

5.1 GSM无线短信报警功能:(选配项)

系统可实现“GSM 无线短信报警”,可以将“温室的报警信息”以短信的方式迅速发到相关人员的“手机或PDA”上,请求人工干预。

不同的温室、不同的管理员手机号,均可以通过灵活的设定将他们组合关联起来。因此,任何一个温室出现报警都能迅速发到和该温室相关的一人或多人的手机号。 5.2远程监控功能(选配项)

通过连接宽带互联网,可以实现互联网远程登陆访问功能,方便异地监控。

六、项目总结

本方案立足物联网的ZIGBEE应用技术,结合温室环境的实际应用,将先进的信息技术应用到传统的农业,解决了农业低成本、布线的繁杂、高故障率等问题。实现了温室内:传感器节点的简易扩展、快速的数据传送、稳定的系统控制。

上一篇:四年级语文关联词练习下一篇:如何提升医院服务质量