风力发电综述

2022-11-09 版权声明 我要投稿

第1篇:风力发电综述

永磁同步风力发电系统控制技术综述

【摘 要】随着经济和科技水平的快速发展,风力发电机的维护系统使得风力发电机出现故障的隐患减小。此系统的应用有效延长了金风的永磁直驱发电机的使用寿命,提高了金风的永磁直驱发电机的可靠性和安全性。金风的永磁直驱发电机维护系统能够有效维护发电机的正常运行,降低了金风的永磁直驱发电机意外停机的风险,提高机组的运行效率,同时还能够降低金风的永磁直驱发电机装备的维护成本。在对其拓扑结构分析的基础之上对矢量控制技术和直接转矩控制技术应用于永磁同步风力发电机进行了详细的分析。最后,指出了永磁同步风力发电系统控制技术未来可能的研究重点和发展趋势。

【关键词】风力发电;永磁同步风力发电机;控制技术

引言

风能发电系统的研究中,风力发电机一直是国内外学者研究的重点。对于风力发电机而言,高效率、低成本以及高供电质量一直是其设计的主要目标。与其它电机相比,永磁電机具有更高的功率密度和效率,因而永磁风力发电机更能满足在风力发电应用上的需求。然而,由于永磁风力发电机的低速应用特征,通常需要采用极对数较大的设计方案,导致了磁钢用量增加,磁钢间漏磁增多等问题。除此之外,由于稀土材料价格较高,会使得风力发电机制造和后期维护成本较高,不利于风力发电的大规模建设和发展。

1风力发电机组故障诊断的研究现状

就目前发展而言,风力发电机的维护系统使得风力发电机出现故障的隐患减小。此系统的应用有效延长了金风的永磁直驱发电机的使用寿命,提高了金风的永磁直驱发电机的可靠性和安全性。金风的永磁直驱发电机维护系统能够有效维护发电机的正常运行,降低了金风的永磁直驱发电机意外停机的风险,提高机组的运行效率,同时还能够降低金风的永磁直驱发电机装备的维护成本。随着金风的永磁直驱发电机的广泛使用,社会对金风的永磁直驱发电机系统故障诊断技术给予巨大的关注。实时监控发电机设备故障并及时维护能够提高金风的永磁直驱发电机的可靠性,降低机器的运行成本。令人可喜的是国外和其他研究人员对于如何减少金风的永磁直驱发电机故障问题,对线圈中转子电流的谐波和搜索线圈电压的方法以及分析定子绕组的损坏作出了研究。对于金风的永磁直驱发电机来说,常用的、有效的方法是定子电流的频谱分析,该分析方法对于监测和诊断电动机存在的缺陷有着很大的作用。电流的频谱分析被用来感应电动机绕组出现的故障、机械的不平衡以及定子缺陷的诊断和监测。许多专家在小波分析理论的基础上提出了双功率风力发电机定子绕组故障的分析方法。许多学者使用金风的永磁直驱发电机时将动力转换成为连续小波变换。通过用频率大小除以分量的大小、机器的损伤程度和频率分布来识别风向和风力的等级。金风的永磁直驱发电机的轴承降低了生产成本,减少了对振动传感器的损坏。

2控制策略综述

2.1交替极永磁风力发电机结构设计

考虑到电机的功率输出和容错能力,该新型拓扑定子采用交流五项设计,在风力发电系统中,通过整流逆变电路转换为与电网同步的三相电压。同时,为了提高该交替极永磁风力发电机在故障状态下的容错运行能力,电枢绕组采用了隔齿绕的绕线方式,即在每相线圈之间保留一个容错齿。转子与定子同轴内置于定子内部,并采用内置式永磁转子结构以保证转子在运行中的结构强度。转子永磁体采用了“V型”排布的交替极结构,提高了永磁磁势和永磁体利用率。由于交替机拓扑用铁心极替代原有一半的永磁极,这拓宽了“V型”永磁结构中的两块磁钢夹角设置范围,有利于降低电机反电势中非工作谐波占比。在传统“V型”永磁结构下,由于所有永磁体相邻排布,“V型”磁钢夹角的调节范围受到相邻磁钢限制,制约了对电机反电势谐波畸变率的优化。

2.2无传感器直接转矩控制

同样地,为了减少传感器的使用,提高风力发电系统的可靠性,不少学者对永磁同步风力发电机直接转矩控制无传感器控制技术做了许多研究。提出了无位置传感器情况下两种转子检测的方法,但是并未将其应用至实践中。一种永磁直驱型风力发电系统的无风速传感器直接转矩控制策略,直接控制电机的转矩和定子磁链来实现永磁同步发电机的最优控制,不需要转速外环,避免了风速的测量和风速测量不准确等问题,但是对发电机转速的测量精度提出了更高的要求。将SVM和无位置传感器技术相结合用于直接转矩控制系统。提出一种利用RBF神经网络进行风速估计并考虑损耗转矩的最大风能跟踪控制策略。

2.3自抗扰控制

为了解决风力发电系统非线性、不确定性、强干扰的问题,一种以实现最大功率跟踪控制为目标,实时跟踪电机转速的基于最佳叶尖速比的自抗扰控制(ADRC)策略,该方法不依赖系统数学模型,将永磁同步风力发电机存在的所有干扰看作系统总干扰,利用扩张状态观测器对系统的总干扰进行估计,然后通过反馈控制器进行干扰补偿。将ADRC和PI相结合,不足之处在于这种控制技术还未对系统进行无传感器方面的研究。

2.4故障诊断分析

永磁直驱发电机故障监测和诊断系统主要包括对风机运行状况的分析,为了使风力发电机减少故障发生率,施工人员和维护人员采用了一种独特的故障诊断方法,这种方法不仅节省了设备的维护成本,而且还满足了现有金风的永磁直驱发电机的使用需求。作为管理维护发电机的工具,风力发电机的监测和故障诊断系统需要进一步改善,现场施工人员还应该创建综合风力发电场,减少工作人员的工作量。由于发电机的独特性,相应部门应当采用适当的措施对金风的永磁直驱发电机实施维护和管理。

3发展趋势

一是研究可靠性高的复合控制算法,将矢量控制和直接转矩控制有效结合起来,扬长避短,可以同时满足稳态精度和动态响应的要求;二是针对多极永磁同步风力发电控制技术的研究,随着永磁同步风力发电系统容量的不断扩大,永磁同步风力发电机向多极化发展是必然的趋势;三是对先进控制引入后的简化处理,虽然目前已成功将诸如模型预测控制、自抗扰控制等先进控制技术与矢量控制和直接转矩控制相结合,但是无一例外其计算过程非常复杂且难以理解;四是针对新型变流器拓扑结构,控制技术与多电平变换器结合的研究;五是针对基于观测器的算法,使算法受电机参数影响更小,提高系统的可靠性。

结语

在永磁同步风力发电系统控制技术中,矢量控制通过将发电机直轴电流设定为零,对其电磁转矩和磁链进行控制,但坐标变换引起计算复杂,对数字信号处理能力要求较高;直接转矩控制技术直接以转矩为被控制量,给定定子磁链幅值,通过调节空间电压矢量来直接改变定子磁链和转子磁链之间的夹角,进而直接控制转矩,但是要重视电机参数对算法的影响。

参考文献:

[1]刘细平,于仲安,梁建伟.风力发电技术研究及发展[J].微电机,2007,40(4):76-79.

[2]魏伟,许胜辉.风力发电及相关技术综述[J].微电机,2009,42(4):66-69.

[3]刘细平,黄筱霞.一种双定子低速稀土永磁同步风力发电机设计研究[J].微电机,2006,39(8):25-27.

[4]曹江华,杨向宇,姚佳.双转子永磁同步风力发电机设计与应用[J].微电机,2008,41(2):65-67,85.

[5]林显军,程小华.开关磁阻风力发电技术[J].电机与控制应用,2011,38(9):46-50.

[6]张建忠,程明.新型直接驱动外转子双凸极永磁风力发电机[J].电工技术学报,2007,22(12):15-21.

[7]王文博.直驱式外转子永磁同步风力发电机及计算机辅助设计[D].广州:广东工业大学,2011.

(作者单位:国投哈密风电有限公司)

作者:史旭春

第2篇:基于风力发电的风功率预测综述

摘 要:随着风力发电的快速发展,风电的穿透功率不断增加,随之带来的系统安全性和电能质量问题也日益凸显。可靠的风功率预测可以有效地提高电力系统的运行稳定性,改善电能质量。本文综述了当前各种风功率预测的方法包括物理方法、统计方法、学习方法等以及他们各自的适用场合,并展望了未来风功率预测的发展方向。

关键词:风功率预测;预测方法;发展方向

前言

由于风能是清洁、安全的可再生能源,风力发电在全世界已经进入大规模发展阶段。但由于风电的间歇性和随机性等缺点,随着风电装机容量的逐年增加,风电场穿透功率不断加大,无疑会对电力系统的电能质量造成一定的影响,尤其是大规模风电入网对系统的电能质量,诸如线路的潮流、无功补偿电压和频率带来很多不利影响[1],并且影响系统旋转备用容量的大小,从而限制了风电的进一步发展。有效的风功率预测方法可以方便调度进行合理的用电安排,提高系统运行的可靠性,一定程度上可以改善风电并网后的系统运行。

1风电场功率预测分类

按照不同的分类标准,风电场功率预测方法分类方式不同。

1.1按预测时间尺度分类

风电场功率的预测,按时间分为长期预测、中期预测、短期预测和特短期预测。

(1)长期预测:以“年”为单位,主要应用于风电场设计的可行性研究,可预测风电场建成之后每年的发电量。这种方法主要是根据气象站提前20年或30年的长期观测资料和风电场测风塔至少一年的测风数据,经过统计分析,再结合风机的功率曲线来预测风电场每年的发电量。

(2)中期预测:以“天”为预测单位。中期预测主要是提前一周对每天得功率进行预测,主要用于安排检修。一般是利用数值天气预报系统的数据进行预测。主要用于安排检修或调试。

(3)短期预测:以“小时”为预测单位。一般是提前1-48小时对功率进行预测,目的是便于电网合理调度,保证供电质量。一般是基于数值天气预报模型和历史数据进行预测。

1.2按预测模型对象分类

按照预测对象的不同,一般可以分為基于风速的预测和基于功率的预测。按预测对象范围的不同,可分为对单台风机功率的预测、对整个风电场功率的预测和对一个较大区域(多个风电场)的预测。

1.3按预测模型原理分类

按预测模型的原理不同,可分为物理方法、统计方法和学习方法。

1.3.1物理方法

物理方法主要是通过数值天气预报系统提供的气象数据转化成当地风电场中各个风机的风速,然后利用厂家提供的风机功率曲线进行预测。

1.3.2统计方法

统计方法是利用各种历史数据和实时数据,建立系统输入与输出间的函数关系,通过建立的函数关系实现风电场功率预测。统计方法主要包括卡尔曼滤波法、自回归滑动平均法、时间序列法、灰色预测法等。该方法短时间预测精度较高,随着时间增加,预测精度下降。统计方法一般需要大量的历史数据进行建模,对初值较敏感,进行平稳序列预测精度较高,对不平稳风和阵风的预测精度较低。

1.3.3学习方法

学习方法包括小波分析法、神经网络法和支持向量机法。神经网络法的优点明显,它具有自组织、自学习和自适应的能力,对复杂的非线性映射能力具有很好的组织能力,广泛应用于各个行业中。同样,风功率预测中利用神经网络法将NWP中和SCADA系统中与风功率有关的数据作为输入,将风功率作为输出就可以进行风电场输出功率的预测。比较分析得知神经网络预测法较统计方法预测精度高,但该方法需要大量原始数据,训练速度较慢,存在过学习、维数灾难、局部极值和泛化能力较差等问题,如何应用人工神经网络法构造出适宜实际应用的风电功率预测模型还比较困难,输入数据和模型结构没有明确一句。文献[2, 3]采用支持向量机法进行风电功率预测,结果较为理想。文献[4]应用最小二乘向量机法( LS-SVM) 建立预测模型,并与时间序列法、神经网络法比较,发现LS-SVM 方法具有更高精度。支持向量机法运算精度受所选核函数结构影响较大,对于风电功率预测,核函数选取的准确性和完善性还有待进一步研究。目前学习方法被不断整合入预测软件的开发,有利于提升对阵风、非平稳风等突变类型的预测研究。

1.4组合预测方法

组合预测方法是Bates 和Granger 在1969 年提出的一种预测方法[5],基本思想是将不同的预测方法和模型通过加权组合起来,充分利用各模型提供的信息,综合处理数据,最终得到组合预测结果。风电功率组合预测方法,就是将物理方法、统计方法、学习方法等模型适当组合起来,充分发

挥各方法优势,减小预测误差[6]。文献[6]分别利用BP 神经网络、径向基神经网络、支持向量机及三种方法的加权组合,对风电功率进行预测,结果表明应用组合预测模型,可以大大减少较大误差预测点,提高预测精度。

组合预测方法的一个关键问题是如何找到合适的加权平均系数,使各单一预测方法有效组合起来。目前应用较多的方法有等权重平均法、最小方差法、无约束( 约束) 最小二乘法、Bayes 法等。

1.5区域预测方法

区域风电功率预测是指将同一区域中的各风电场视为一整体进行风电功率预测。其主要原理在于同一区域内各风电场的气象信息具有很大相关性,受气象条件影响的规律也基本一致。在实际预测时可通过相应方法将预测区特征信息与历史区域风电功率特征信息进行关联分析,利用相似度高的样本来提高预测精度。

区域预测方法适用于电网层面上的关于节点的风电功率预测和整体调度,不计较单一风电场发电量,实际操作性较强,有利于减少局部因素的影响,提高预测精度。当然为了获取区域单一风电场发电功率,需要进行场间的相关性分配,过程较为繁琐复杂。

2国内外研究现状

国外很多国家对于风功率预测的研究已经有近20年了,目前有多套成熟的商用风功率预测软件。1990年丹麦国家实验室的物理预测模型Prediktor是全球第一个风电功率预测软件,之后丹麦技术大学开发了WPPT系统,两者目前整合为Zephry系统。德国奥尔登堡大学开发了Previento系统,德国太阳能研究所拥有风电功率管理系统(WPMS)。美国的AWS Truewind公司开发了eWind系统。其余;其余还包括西班牙的Sipreolico、爱尔兰的Honeymoon系统。这些风电预测系统都具有较为相似的预测框架,多是基于气象部门提供的数值天气预报数据,采用计算流体力学(CFD)或者中尺度气象模型(如MM5)进行物理降尺度,以此作为输入量,再采用综合的物理、统计和学习方法进行预测。系统短时预测误差为10% ~15%,主要原因在于数值天气预报的误差和模型的系统误差。早期风电功率预测系统多基于单一的物理方法、统计方法或学习方法,输入信号为数值天气预报数据,随着电力系统自动化技术和通信信息技术的发展,现在的预测系统多以数值天气预报和实时数据作为输入量,采用综合方法进行预测,提高了预测准确性。

我国风力发电技术起步较晚,对于风电场预测系统的研究也不如国外成熟。2008年12月我国首个风电预测系统WPFS Ver1.0投入运行,由中国电力科学研究院研究开发而成。该系统运用物理和学习方法使得预测误差低于20%。另一套投入试运行的预测系统,由内蒙古电力集团开发,预测误差在22% 左右。我国其他地区( 如宁夏、甘肃等) 也在积极探讨风电功率预测系統的开发。

3 风功率预测的研究发展方向

风电功率预测是比非常复杂的非线性系统问题。成熟的预测系统应该在以下两方面进行处理:首先,对系统模型的输入数据的真实有效性,如果出现数据丢失和失真,应该找个有效可行的方法对数据进行处理。再好的模型,如何输入的数据偏差过大,那么预测的结果误差必然很大。此外,模型选择的方法的适用性。上述的各种预测方法很多都已经应用于实际。如何对某一风电场或者是某一区域风电场建立适宜的预测模型也是不同的。一种方法进行深入的优化处理往往也会取得比较好的预测精读。具体来说,有以下改进方形:

(1)提高输入数据的准确性,剔除奇异值,对误差较大的点进行平滑处理。预测时,不能只利用风速历史数据,应考虑大气温度、湿度、空气密度以及地形等对风速,乃至风功率的影响。

(2)选择适宜的风功率预测方法,并且在采用风电功率预测方法时应综合利用各种方法,可扬长避短,提高预测精度,保持预测精度的稳定性,避免局部最小化等问题。

(3)提过数值天气预报系统的预测准确度,对恶劣天气出现的较大偏差加强应对处理能力。改善数值天气预报系统的分辨率,减小气象信息数据误差。提高风机厂家提供的风电功率曲线参数拟合准确性。

(4)在可能的区域里,采用区域预测方法来提高预测精精度。

4结束语

随着我国风力发电的迅猛发展,风功率短期预测是提高风电穿透功率的重要途径之一。同时,有效地风功率预测还可以更加合理的安排调度计划,改善电网调峰能力,提高系统运行的安全性和可靠性水平。本文介绍了目前常用的风电功率预测方法,并简单论述了风电功率预测的发展方向。

参 考 文 献:

[1] 杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5.

[2] 戚双斌,王维庆,张新燕. 基于SVM 的风速风功率预测模型[J]. 可再生能源,2010,28( 4) .

[3] 戚双斌,王维庆,张新燕. 基于支持向量机的风速与风功率预测方法研究[J]华东电力,2009,37( 9) .

[4] 杜颖. 风电场风速及发电功率的概率预测研究[D].重庆: 重庆大学,2008.

[5] BATES J M,GRANGER C W J. The combination of forecasts.Operational Research

Quarterly,1969,20( 4) : 451-468.

[6] 张国强,张伯明. 基于组合模型预测的风电场风速及风电机功率预测[J]. 电力系

统自动化,2009,33( 18) .

作者:邹磊

第3篇:分散式风力发电并网关键技术研究综述

【摘 要】随着经济增速放缓,社会用电量减少,风电消纳问题日益突出,目前我国的集中风电发展受到很大限制?相较于集中式风电,分散式风电有诸多优点?在化石能源和水资源较为贫瘠的地区,可利用分散式风电补偿负荷突然增长,免去扩容输配电设备所产生的费用;在负荷集中的周边地区修建分散式风电场,可减小用电压力,推迟电网的扩建,增加政策制定的弹性并缓解资金压力?本文介绍了国内外分散式风电的发展现状,针对分散式风电并网对于配电网特性的影响和分散式风电运行的关键技术进行了综述,列举了目前的各项研究成果,并对未来发展进行展望?

【关键词】分散式风电;配电网;接入;运行控制风

力发电能够给我国的新能源发电技术奠定扎实的基础保证,属于我国发电方式中最为成熟的一种技术,所以该项技术在我国受到了广泛运用,但当前在实际的风电并网运用后产生了很多急需改进的影响因素,如对电网调度造成的影响?对电力系统稳定性造成的影响等,这些问题都会影响到日常用电情况?

1国内外分散式风电的定义

我国的分散式风电接入项目是指距离负荷较近,不经过长距离输送,所发电力直接接入周边电网就地消纳的风电项目?分散式风电与分布式风电的发展模式略有不同?前者的发展模式为同一监控?当地消纳,主要目的在于解决区域负荷增长;后者发电的风电装机容量小?电压等级低?所发电量自发自用,剩余电量才接入电网,主要目的在于解决用户本身的负荷要求?国际上没有明确定义分散式风电?虽然强调风电的分散接入,但是没有对风电的容量进行限定?总的来说,提倡在电压水平相对不高的电网节点接入,以提高利用效益?在决定适合接入的电压等级前,需综合考虑当地的已有负荷情况和中长期范围内将兴建的电源规划,此外,还要考虑当地的资源,探索风电场适宜的开发规模?丹麦?德国等可再生能源比例较高的国家,存在直接接入低电压等级电网的风电,这些风电规模不大,且不经过远距离传送,与国内对分散式风电的定义十分相近?而西班牙?美国等风能开发方式,则接近我国此前的集中开发方式?因为存在风电资源分布与大型负荷不匹配的问题,所以采用集中兴建大型风电场,再利用输电网络统一外送到电量需求大的地方?

2风电并网对于电网的影响意义

2.1对于电网调度造成的影响

在传统电网配置方面,大部分电网处于较为宽阔的地带,所以电网进行建设阶段对整体的线路构架及电网后续的使用维修实施难度较大?且由于部分电网的建设相对缺乏资金投入,所以传统电力在构建过程中设备智能化的程度较低,这样的问题就会影响到风电并网对于电网调度造成的诸多因素?此外,虽然当前已对传统电网有进一步的改进,使大部分电网水平在当前的运行性状态下有所保证,但由于人们的生活质量不断提升,对电力的使用消耗也在不断加大,传统的电网线路不稳定等诸多问题在当前的电力使用阶段十分常见?由于部分农村以及偏远地区的经济情况有所限制,在当前的经济状态下网架承载的能力也需随着居民的使用情况不断提升,只有这样才能保证农村的正常用电消耗?

2.2分散式风电机组接入对配网特性的影响

分散式风电的渗透率不断增长会对配电网的特性产生很大影响?如正常运行时风速的随机波动性引起输出功率的变化给电网带来波动与闪变?风速低于切出风速时风机从额定运行状态退出?短路电流水平增大引起的电压暂降特征的改变等?虽然分散式风电并网产生了一些负面影响,但同时也有积极的一面?当电网中关联负载较大时,它能及时提供电能,缓解传输线路上的输电压力,从而降低电网出现故障的可能性?风电机组还能提供一定的无功支撑,增强母线节点稳定电压的能力?

2.3对于电能表造成的影响

一般情况下电能表出现故障的问题主要为:机械作用力的因素?主要是在电能表运输阶段可能会造成的各方面机械作用力的影响,如外界的晃动及碰撞等问题,这些机械作用力不仅会直接影响到电能表的日常工作,还会在一定程度破坏电能表的内部零件,最终使其造成不可恢复的损害;电力干扰因素?是指设备出现故障属于非可见的因素,对于电能表所造成的伤害与前面的外在因素相比同样存在严重危害?通常电能表的检查工作在实际开展阶段需检测该设备是否能够正常工作并运转,但当电能表运转期间内部具有各种的电磁及电力波动干扰,就会使整体的设备功率加大,最终影响到电能表的正常运转,在无限的运转中失去控制,造成最终的经济损失?

3提升风电并网性能的相关措施

3.1全面完善电网的日常调度

3.1.1建立完善电网调度的运行考核制度

电网运行期间构建完备的电网调度运行考核体系十分关键,体系的构建能直接将智能电网在电网调度期间的管理状态进行及时反馈,并能给后续控制管理工作提供每日的基础数据?数据的展现可更好地反馈出电网的日常问题,所以想要更好地将电网调度体系运用到智能电网中,制定相对应的考核制度并在该基础上结合奖惩方式促进相关人员不断提高自己的调度技术以及工作水平,激发员工探究技术的积极性与主动性?

3.1.2加强电网调度的运行管理内容

想要进一步降低电网调度基础结合到实际的智能电网阶段,就需加强对电网调度基础的运行管理内容,并达到提升智能电网使用效率的目的,给智能电网的后续运行状态提供保证?在智能电网的实际运行状态中结合电网调度的技术,应根据安全生产的要求进行内容划分,并从实际的电网调度工作进行工作管理的提升?就加强电网调度的运行管理内容来说,可分两方面内容:第一,需在整体管理工作模式中细化并完善相对应的管理制度体系,对整个智能电网公司内部都能够有安全的严格控制系统管理,保证在电网调度运行发展阶段能得到有效的规避由于信息安全出现的诸多问题?此外,还要根据电网调度内部的实际情况对当前电网调度运行进行科学合理的内容安排,结合当前电网运行情况积极开展,提高电网系统运行阶段的实际质量和效果?第二,更加重视电网设备的安全稳定,定期加强电网可发挥保护作用的相关配置因素,降低电网调度运行日常运行事故所占比例?电网调度运行安全工作的管理人员还需做好电网调度的日常经济运行控制工作,从细节入手,对电网的整体运行管理作出保证?

3.2加强对于电力系统的内外监测

电力系统的内外检测不仅需具备全面应用的在线检测技术,还需对电力系统的振动进行数据统计,想要达到这样的要求就需运用时域仿真模式?时域仿真模式一般都是运用在分析电力系统的小扰动或暂态稳定中,在机电振荡方面对于该种模式也有所研究?该种方式主要能够满足对于数据进行理论的数据分析,在此基础上运用计算机设备等相关的仿真软件进行数据的整合,将电力系统在受到扰动时能够通过模型样子反馈出来,从而分析出机电振荡期间的频率特性以及阻尼?

4结语

分散式风电具有良好的经济性和环保性,避开了大规模风电并网所遇到的风电消纳困难?随着国家投入力度的不断加大和分散式风电自身优势的逐渐显现,可以预见即将迎来一个快速发展阶段?虽然分散式风电并网会造成配网的电压波动?产生谐波?使继电保护失去选择性等影响,但随着风功率预测技术?监控与集中控制技术?无功控制技术?孤岛检测技术等研究的不断深入,这些问题都将逐步得到解决或改善?

参考文献:

[1]白鸿斌,王瑞红.风电场并网对电网电能质量的影响分析[J].电力系统及其自动化学报,2012,24(1):120-124.

[2]李征,蔡旭,郭浩,等.分散式风电发展关键技术及政策分析[J].低压电器,2014(9):39-44.

[3]王彩霞,李瓊慧.促进我国分散式风电发展的政策研究[J].风能,2013(9):46-52.

作者:王进

第4篇:风力发电技术综述

摘要:风能是目前全球发展最快的可再生绿色能源, 风力发电系统是将风能转化为电能的关键系统, 它直接关系到风力发电的性能与效率。它主要对风力发电的发展现状和前景、风电系统的控制技术、风力发电机及其风电系统和风力发电中的关键技术作了简单的介绍。

关键词:风力发电;控制技术;并网技术;低电压穿越

引言

在全球生态环境恶化和化石能源逐渐枯竭的双重压力下,对新能源的研究和利用已成为全球各国关注的焦点。 风能作为一种可再生的清洁能源, 受世界各国的重视程度越来越高, 也越来越多的被应用到风力发电中。除水力发电技术外, 风力发电是新能源发电技术中最成熟、 最具大规模开发和最有商业化发展前景的发电方式。由于它可以在改善生态环境、 优化能源结构、 促进社会经济可持续发展等方面有非常突出的作用, 目前世界各国都在大力发展和研究风力发电及其相关技术。

1. 国内外风力发电的现状和前景

1.1 国外风力发电发展现状

20 世纪80 ~90 年代, 风力发电技术得到了飞速的发展并且逐渐成熟。风力发电凭借它自身的优点, 已经延伸到了电网难以达到的地方,给他们带来了很多方便。据全球风能理事会(GWEC)发布的全球风电市场装机数据显示, 全球风电产业 2011 年新增风电装机容量达四万一千兆瓦。这一新增容量使全球累计风电装机达到二十三万八千兆瓦。这一数据表明全球累计装机实现了两成多的年增长, 新增装机增长达到6%。到目前为止, 全球七十多个国家有商业运营的风电装机, 其中二十二个国家的装机容量超过 1GW。据估计到 2030 年, 欧洲风电装机可达三百亿瓦, 可满足欧洲百分之二十的电力需求。

1.2国内风力发电发展现状

我国风力资源储量丰富,分布广泛。陆上可开发的储量为2.53亿kW,海上可开发的储量为7.5亿kW。“大规模、高集中开发,远距离和高电压输送”是我国风电发展的重要特征。近年来,我国风电发展迅猛,2006~2010 年风电总装机容量从260万kW增长到4 182.7万kW,2010年新增风电装机1 600万kW,累计装机容量和新增装机容量均居世界第一。预计2020年我国风电累计装机可以达到2.3亿kW。这意味着未来十年中,风电总装机容量

平均每年需新增1 800万kW。预计每年需新增机组及其配套变流器约9 000台。

2. 风电系统的控制技术

风力发电系统的运行方式有三种:独立型、并网型和联合型。并网型风力发电系统由风力机控制器、 风力机、 传动装置、 励磁调节器、 发动机、 变频器和变压器等组成。

风力发电机组包括风力机、 发电机、 变速传动装置及相应的控制器等, 用来实现风能与电能的能量转换。风力发电的关键问题是风力机和发电机的功率和速度控制。

风电机组中将风能转换成机械能的能量转换装置是风力机, 它由风轮、 迎风装置和塔架等组成。按结构不同, 风力机可分为水平轴式和立轴式两种;按功率调节方式不同, 风力机可分为定桨距失速、 变桨距和主动失速 3 种。

风电机组中的发电机将机械能转化为电能, 发电机在并入电网时必须输出恒定频率(一般为 50 Hz)的电能。按照发电机转速的不同, 发电机可分为恒速和变速两类, 其中变速需要通过变频器来实现。变频器采用电力电子变流技术和控制技术, 将发电机发出的频率变化交流电转换为与电网频率相同、 能与电网柔性连接的交流电, 并且能实现最大风能跟踪控制。按照拓扑结构的不同, 变频器可分为交-交型、 交-直-交型和矩阵型三种;按照变频器容量的不同可将变频器分为部分容量和全部容量(全额)两种。

变速传动装置可将风轮的低转速转换为发电机的较高转速, 按传动链类型将其分为齿轮箱驱动和直接驱动两种, 其中前者包括单级和多级两种齿轮箱驱动。

3. 风力发电机及其风电系统

实现恒速或变速风力发电系统有许多种方案,所选发电机的类型主要取决于风电系统的形式。

传统的恒速/变速风电系统共有四种:基于SCIG 的恒速风电系统[1]、基于WRIG 的受限变速风电系统[2]、基于ESC- SCIG 的变速风电系统[3]和基于MMG 的变速风电系统[4]。

现代风电系统一般采用变速恒频技术,这种技术通过变流装置或改造发电机结构来实现。现代变速恒频风电系统共有六种:基于SCIG 的风电系统[5]、基于DFIG 的风电系统[6]、基于直驱式EESG 的风电系统[7]、基于直驱式PMSG 的风电系统[8]、基于半直驱PMSG 的风电系统[9]和基于PMBDCG 的风电系统[10]。

近年来, 一些具有商业化潜力的新型风力发电机及其风力发电系统不断涌现。新型变速恒频风电系统主要有以下八种:基于 SRG 的风电系统[11]、基于 BDFIG 的风电系统[12]、基于CPG 的风电系统[13]、基于HVG 的风电系统[14]、基于DWIG 的风电系统[15]、基于

TFPMG 的风电系统[16]、基于DSPMG 的风电系统[17]和基于EVT 的风电系统[18]。

4. 风力发电中的关键技术

4.1并网技术的研究和最大风能的捕获

并网技术是通过对全功率电力变换器的控制算法来实现控制目的。并网控制方面,文献

[19]提出了直流侧并网的新方法。 在直流电容与 DC/AC 之间安装并网开关。并网前并网开关断开,DC/AC 通过限流电阻对电容进行充电, 此时发电机在风力机的带动下转速从 0 上升。 当电容充电达到交流电网线电压幅值时闭合并网开关,同步风力发电机并网。 正常情况下,发电机转速从低到高逐渐上升,并在某一转速下并入电网。当由于某种原因, 发电机在高转速下脱网需要重新并网, 由于此时电容已经充电且直流母线电压高于网侧交流线电压幅值, 因此只要将并网开关闭合就可实现并网。

直驱式永磁同步风力发电机经电力电子变换器并入电网以后的控制目标是风速小于额定风速时实现最大风能捕获, 风速超过额定风速时使系统以额定功率输出[20]。

最大风能捕获的目的就是通过适当的控制,使风力机转速随风速变化,始终沿着最佳功率曲线运行,从而使风能转化最大化。 最大风能追踪可以有变桨距调节,也可以通过调节发电机功率来调节转速以保持最佳叶尖速比实现。 出于可行性、经济性和可靠性的考虑,当前使用的主要是通过控制发电机输出功率以调节其电磁功率,进而调节发电机转速。

具体实现时, 在发电机有功和无功功率解耦控制的基础上,根据有功功率给定的提取方法的不同,又有有速度传感器和无速度传感器的控制方法之分。有速度传感器的控制方法是根据风力机最佳功率曲线和风力机转速实时计算发电机输出功率给定。而无速度传感器的控制方法又有扰动法[21,22,23]、参数估计法、查表法和人工在智能法几类。

4.2低电压穿越的研究

电网电压跌落时, 由于受变流器通流能力的限制,网侧逆变器注入电网功率减小。而此刻机侧整流器的功率并没有改变,造成直流侧的过电压。如果维持直流侧电压稳定,则必然造成逆变器过电流。过电压和过电流都将导致电力电子器件的损坏, 为了保护变流器不被损坏, 风力发电机组将在电压跌落时退出运行。电网穿透率小时,风力发电机组在电压跌落时退出运行还是可以接受的。

然而,随着风力发电规模的不断扩大,若风电机组在电压跌落时仍然采取被动保护式脱网, 则会增加整个系统的恢复难度,甚至使故障更加严重,最终导致系统其他机组全部解列。 目前在风力发电技术发展领先的一些国家,如丹麦、德国等已相继制定了新的电网运

行准则, 定量给出了风电系统离网的条件(如最低电压跌落深度和跌落持续时间),只有当电网电压跌落低于规定曲线以后才允许风力机脱网,当电压在凹陷部分时,发电机应提供无功功率。这就要求风电系统具有较强的低电压穿越能力,能方便地为电网提供无功支持。 因此必须研究低电压穿越的措施, 实现电网电压跌落时风力发电机不脱网运行。

文献[24]通过在逆变器交流侧加装无功补偿装置和低通滤波器来应对电网电压不对称跌落对系统所造成的影响, 使逆变器只能感受到电网的正序电压,保持其对称工作状态,从而实现低电压穿越;文献[25-28]通过直流侧加卸荷负载以消除电压跌落时直流侧的功率拥堵, 避免直流侧的过电压和逆变器的过电流,实现低电压穿越。这些方法都要增加专门的元件,降低了系统的可靠性和经济性,使控制变得复杂。

结论

风电作为我国今后大力重点发展的 3 类新能源之一, 在今后将具有广阔的发展和应用前景, 风力发电在摆脱对化石能源的过度依赖、 缓解中国能源紧缺、 改善生态环境和扩大社会效益等方面将做出较大的贡献。本文对风力发电的发展状况,如传统的恒速/变速风电系统、现代变速恒频风电系统和新型变速恒频风电系统进行了简单介绍。随着风电技术的不断变革以及机组制造工艺的持续改进, 将来风力发电的竞争力必定逐渐提升, 其发展前景广阔。

参考文献:

[1]程明,张运乾,张建忠.风力发电机发展现状及研究进展[J].电力科学与技术学报,2009,24(3):2 -9.

[2]李辉,薛玉石,韩力.并网风力发电机系统的发展综述[J].微特电机,2009,37(5):55 -61. [3]杨培宏,刘文颖.基于 DSP 实现风力发电机组并网运行[J].可再生能源,2007, 25(4):79 -82.

[4]吴聂根,程小华.变速恒频风力发电技术综述[J].微电机,2009,42(8):69 -72.

[5]荆龙.鼠笼异步电机风力发电系统优化控制[D].北京:北京交通大学,2008.

[6]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报,2003,23(11):122 -125.

[7]周扬忠,胡育文,黄文新.基于直接转矩控制电励磁同步电机转子励磁电流控制策略[J].南京航空航天大学学报:自然科学版,2007,39(4):429 -434.

[8]张岳,王凤翔.直驱式永磁同步风力发电机性能研究[J].电机与控制学报,2009, 13(1):78 -

82.

[9]陈昆明,汤天浩,陈新红,等.永磁半直驱风力机控制策略仿真[J].上海海事大学学报:自然科学版,2008,29(4):39 -44.

[10]夏长亮,张茂华,王迎发,等.永磁无刷直流电机直接转矩控制[J].中国电机工程学报, 2008, 28(6):104 -109.

[11]胡海燕,潘再平.开关磁阻风力发电系统综述[J].机电工程,2004,21(10):48 -52.

[12]刘伟,沈宏,高立刚,等.无刷双馈风力发电机直接转矩控制系统研究[J].电力系统保护与控制,2010,38(5):77 -81.

[13] 桓毅, 汪至中.风力发电机及其控制系统的对比分析[J].中小型电机, 2002, 29(4):41 -45.

[14]杜新梅,刘坚栋,李泓.新型风力发电系统[J].高电压技术,2005,31(1):63 -65.

[15]李勇,胡育文,黄文新,等.变速运行的定子双绕组感应电机发电系统控制技术研[J].中国电机工程学报,2008,28(20):124 -130.

[16]董萍,吴捷,陈渊睿,等.新型发电机在风力发电系统中的应用[J].微特电机, 2004, 32(7):39 -44.

[17]张建忠,程明.新型直接驱动外转子双凸极永磁风力发电机[J].电工技术学报,2007, 22(12):15 -21.

[18]袁永杰.开关磁阻四端口机电换能器及在风力发电中的应用研究[D].哈尔滨:哈尔滨工业大学,2008.

[19] 徐科,胡敏强,杜炎森,等.直流母线电压控制实现并网与最大风能跟踪[J].电力系统自动化,2007,31

(11):53-58.

[20] 吴迪,张建文. 变速直驱永磁风力发电机控制系统的研究[J]大电机技术,2006(6): 51-55

[21] 王生铁,张润和,田立欣. 小型风力发电系统最大功率控制扰动法及状态平均建模与分析[J]. 太阳能学报,2006,27(8):828-837.

[22] 闫耀民,范瑜,汪至中. 永磁同步电机风力发电系统的自寻优控制[J]. 电工技术学报,2002,17

(6):82-86.

[23] 房泽平,王生铁.小型风电系统变步长扰动 MPPT 控制仿真研究[J].计算机仿真,2007,24

(9):241-244.

[24] MARIUS F, CRISTIAN L, GHEORGHE-DANIEL A, etal . Voltage Sags Ride-Through of Motion SensorlessControlled PMSG for Wind Turbines[C]. Industry Applications Conference, 2007.

[25] 李建林,胡书举,孔德国,等. 全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化,2008,32(19):92-95.

[26] 胡书举,李建林, 许洪华. 直驱式 VSCF 风电系统直流侧Crowbar 电路的仿真分析[J].电力系统及其自动化学报,2008,20(3):118-123.

[27] 李建林,胡书举,孔德国,等. 全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化,2008,32(19):92-95.

[28] 胡书举,李建林,许洪华. 变速衡频风电系统应对电网故障的保护电路分析[J].变流技术与电力牵引,2008(1):45-51.

第5篇:风力发电现状及复合材料在风力发电上的应用

班级:材料工程111 学号:205110137 姓名:张宇

摘要:本文对中国风能现状及资源分布,近年来中国风力产业的发展状况以及复合材料在风电叶片上的应用进行论述。

关键词:风力发电;发展状况;复合材料;风电叶片

Abstract:This review concerns about the stituation and resource distribution of windy energy in China,the development status of chinese wind power-generation enterprises and the application of composites in wind power-generation.

Key words:Wind power-generation;Development status;Composites;Wind turbine blade 引言

社会经济的持续发展导致能源消耗不断增加,我们正面临日益严峻的能源形势。全球范围的石油、天然气能源逐渐枯竭,环境恶化等因素迫使我们寻找更加清洁、可持续发展的新能源,风力发电应运而生。中国风能资源非常丰富,主要集中在三北地区及东部沿海风能丰富带。

风力发电产业市场巨大,竞争激烈。据估计,2006到2010年之间,我国风电叶片的需求量大约在7000多片,2011到2020年的需求量则将达到惊人的50000片。巨大的市场前景使得目前风机行业的竞争空前激烈。整机方面,目前国际市场格局已初步成型。2005年全球超过75%的市场份额被丹麦Vestas、西班牙Gamesa、德国Enercon和美国GE WIND四家企业占据,新进入企业的生存空间不大;国内的整机生产企业中,新疆金风、浙江运达、大连重工集团、东方汽轮机厂等几家的市场前景被业界看好,这其中又以新疆金风科技在国内品牌中的市场份额最大。叶片市场的情况与整机基本类似,单是丹麦LM Glasfiber公司一家就占据了国际市场40%以上的份额,其产品被GE WIND、西门子、Repower、Nordex等公司全部或部分采用;另外Vestas和Enercon公司也拥有各自的叶片生产部门。国内的叶片生产企业主要有中航保定惠腾、连云港中复连众复合材料集团等。

风电叶片作为风力发电机组系统最关键、最核心的部件之一.叶片的设计及其采用的材料决定着风力发电机组的性能和功率,也决定着其电力成本及价格。复合材料在风力发电上的应用,实际上主要是在风电叶片上的应用。风电叶片占风力发电整个系统成本的20%到30%。制造叶片的材料工艺对其成本有决定性影响,因此材料的选择、制备工艺的优化对风电叶片十分重要。

1.中国风能资源及其分布

1.1中国风能资源

据有关研究成果预测,我国风能仅次于俄罗斯和美国,居世界第三位,理论储32260GW,陆地上离地10m高可开发和利用的风能储量约为2.53亿kw(依据陆地上离地10m高度资料计算),近海(水深不超过10米)区域,离海面10米高度层可开发和利用的风能储量约为7.5亿kW,共计10亿kW,风能资源非常丰富。

1.2中国风能资源分布

风能资源丰富的地区主要分布在东南沿海及附近岛屿以及“三北”(东北、华北、西北)地区。另外,内陆也有个别风能丰富点,海上风能资源也非常丰富。“三北”地区包括东北3省、河北、内蒙古、甘肃、青海、西藏和新疆等省自治区近200km宽的地带,风功率密度在200~300W/m2以上,有的可达500W/m2以上,可开发利用的风能储量约2亿kW,约占全国陆地可利用储量的79%。该地区风电场地形平坦,交通方便,没有破坏性风速,是我国连成一片的最大风能资源区,有利于大规模的开发风电场。包括山东,广西和海南等省市沿海近10km宽的地带,年有效风功率密度在200W/m2以上,沿海岛屿风功率密度在500W/m2以上,风功率密度线平行于海岸线,可开发利用储量为0.11亿kW,约占全国陆地可利用储量的4%。东南沿海及其岛屿是我国风能最佳丰富区。我国有海岸线1800km,岛屿6000多个,大有风能开发利用的前景。

2.近年来中国风电产业发展

2.1产业发展现状

2000至2009年10年间,中国风能产业飞速发展,风能累计装机的容量平均的怎张速度高达72.8%。从2005年起,总装机容量的增长速度超过了100%。截止到2009年12月31日,中国(不含台湾省)风电累计装机超过1000MW的省份超过9个,其中超过2000MW的省份4个,分别为内蒙古(9196.2MW)河北(2788.1 MW)辽宁(2425.3MW)吉林(2063.9MW)内蒙古2009年当年新增装机5545MW,累计装机9196.2MW,实现150%的大幅度增长。

从风电零部件制造方面来看,据统计,2004年中国仅有6家风力涡轮机制造商,2009年这一数字已提高到80家以上。已开始生产的内资叶片企业52家,轴承企业16家,齿轮箱企业10家,变流器企业12家,塔筒生产企业则有近100家。其中,叶片制造企业中复连众、中材科技年供货已超过500套,中航惠腾年供货超过2000套;轴承制造企业洛轴、瓦轴、天马等已具备批量主轴轴承生产供应能力齿轮箱制造企业中南高齿年产超过3000台,大重减速机超过2000台、重齿超过1000台;

从风电整机制造方面来看,2009年,华锐风电、金风科技和四川东汽继续保持市场前“三甲“的位置,华锐新增装机34.5万kW,金风新增装机272.2万kW,东汽新增装机203.5万kW。联合动力以装机容量768MW,占中国新增市场5.6%的优势,排名全国第四。随着国产整机产能释放及零部件配套能力增强,产业链瓶颈将消除,产业发展迅速;风电设备市场呈现寡头垄断格局,避免了市场无序竞争,有利于领头企业做大做强。2009年我国新增风电装机及累计装机排名前10名制造企业市场份额。内资变流器制造企业供应能力增强,质量获得客户认可。可见,国内风电零部件产业发展的繁荣景象。

2.2国家的优惠政策

中国颁布的政策主要从两个方面扶持风电行业,一方面是通过财政补贴、电网全额收购、确定风电并网价格,以保证风力发电项目合理盈利,从经纪商进行促进;另一方面是在国内市场启动的同时,扶持风机制造业发展,为中长期的风电产业发展奠定基础。归纳为一下四大点:

(1) 风电全额上网

2006年1月1日开始实施《可再生能源法》。该法要求电网企业为可再生能源电力上网提供方便,并全额收购符合标准的可再生能源电量,以使可再生能源电力企业得以生存,并逐步提高其能源市场的竞争力。

(2) 财税扶持

考虑到现阶段可再生能源开发利用的投资成本比较高,《可再生能源法》还分别就设立可再生能源发展专项资金为加快技术开发和市场形成提供援助,为可再生能源开发利用项目提供有财政贴息优惠的贷款,对列入可再生能源产业发展指导目标的项目提供税收优惠等扶持措施作了规定。

(4) 上网电价

当前风电定价采用特许权招标方式,导致一些企业以不合理的低价进行投标。风电特许权招标先后作出了三次修改,总的看来,电价在招标中的比重有所减少;技术、国产化率等指标有所加强;风电政策已由过去的注重发电专项了注重扶持中国企业风电设备制造。目前,有关部门正在抓紧研究风电电价调整的具体办法,调整的原则将有利于可再生能源的开发,特许权招标的定价方式有可能改变,2008年1月第五期风电特许权招标采取中间价方式,就是一个最新的尝试和探索,避免了恶性低价的竞争局面,有助于风电电价开始向理性回归,有利于整个风电产业的发展。

(4) 国产化率要求

2005年7月国家出台了《关于风电建设管理有关要求的通知》,明确规定了风电设备国产化率要达到70%以上,为满足要求的风电场建设不许建设,进口设备要按章纳税。2006年风电特许权招标原则规定:每个投标人必须有一个风电设备制造商参与,而且风电设备制造商要向招标人提供保证供应复合75%国产化率风电机组承诺函。投标人在中标后必须并且只能采用投标书中所确定的制造商生产的风机。在政策扶持下,2007年风机国产化率已经达到56%,2010年风机国产化率也达到85%以上。

2.3风电产业发展趋势

我国海上资源丰富,发展海上风电,将依托于风能资源丰富的海域,同时以“建设大基地、融入大电网”的方式进行整体规划和布局。目前,我国海上风电开发已经启动,国内对大容量风电机组的需求也在增加,国内风电制造企业纷纷开发大容量海上风电机组。华锐、金风、东汽、联合动力、湘电、明阳等都已开始5MW及以上风力发电机组研发。相信随着整机及零部件技术的不断进步,大容量海上风电的规模化化发展。

3.复合材料在风电叶片上的应用

风力发电装置最核心的部分是叶片,叶片的结构与性能将直接影响到风力发电的效率及性能。风电叶片的成本占整个风力发电装置成本的20%左右,因此采用廉价、性能优异的复合材料成为了许多企业研究的方向。现在使用比较多的复合材料有玻璃纤维增强聚酯树脂、玻璃纤维增强环氧树脂,局部采用玻璃纤维或者碳纤维增强环氧树脂作为主承力结构。

3.1碳纤维增强复合材料及其优点

碳纤维是由有机纤维经碳化及石墨化处理而得的微晶石墨材料。碳纤维是一种力学性能优异的新材料。它的比重不到钢的1/4。碳纤维树脂复合材料抗拉强度一般都在3500MP以上,是钢的7~9倍。抗拉弹性模量为材料的强度与其密度之比可达到2000MPa/(g/cm3)以上,而A3钢的比强度仅为59MPa/(g/cm3)左右,其比模量也比钢高。材料的比强度愈高,则构件自重愈小,比模量愈高,则构件的刚度愈大。碳纤维的轴向强度和模量高、无蠕变。耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小,耐腐蚀性好,纤维的密度低,X射线透过性好。但其耐冲击性较差,容易损伤,在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。因此,碳纤维在使用前须进行表面处理。

使用碳纤维增强复合材料能大幅度减少叶片的重量 ,而且比一般的玻璃纤维的增强体模量高3到8倍,可以用于大型风机叶片。碳纤维复合材料具有优异的抗疲劳特性,与树脂混合后能够抵抗恶劣的天气条件。

3.2TM玻璃纤维增强复合材料

TM玻璃纤维具有高强度、高模量的性能,具有较高的抗拉强度、弹性模量、耐疲劳强度、耐性和耐化学腐蚀性。其密度为2.59-2.63g/cm3,拉伸强度为3000~3200MPa,模量为84~86GPa。是大型风电叶片的首选,但是其密度相比于上述的碳纤维增强体要高,所以其缺点是重量太大。TM玻璃纤维中不含硼和氟,是一种环保型的材料。

4.结论

我国是最早利用风能的国家,国家对风能这种清洁的可再生能源的高度重视,新型复合材料在风电叶片上的应用有利于风电产业的发展,我国风电业将进入一个崭新的大规模高速发展阶段。

参考文献 [1] 钟方国,赵鸿汉.风力发电发展现状及复合材料在风力发电上的应用[J]. 纤维复合材料,2007,(4):17-24. [2] 杨文宏,高克强,薛忠民等.复合材料风电叶片用增强材料[C]. //玻璃钢/复合材料学术年会. 2010. [3] 戴春晖,刘钧,曾竟成等.复合材料风电叶片的发展现状及若干问题的对策[J]. 玻璃钢/复合材料,2008,(1):53-56. [4] 秦明,张坤,郭靖.中国风电产业发展综述[C]. //经济发展方式转变与自主创新-中国科学技术协会年会. 2010. [5] 李祖华.风力发电现状和复合材料在风机叶片上的应用(1)[J]. 高科技纤维与应用,2008,(2)::8-33. [6] 钟方国,赵鸿汉.风力发电发展现状及其复合材料的应用[J]. 热固性树脂, 2006:16-21.

第6篇:世界风力发电发展态势及我国风力发电所需的关键原料

据专家估算:全球风能1700太瓦,大洋、高山和保护区域的风力是采集不到的,除去这些以及一些风力达不到开发要求的地区,依然有40~85太瓦的风能,目前世界只利用了0.02太瓦的风能。风力发电是风能利用的主要形式,风力发电成本低于其他新能源,并有进一步降低成本的可能;风力发电是最清洁最安全的,目前世界风力发电发展速度超过其他新能源发展,未来风力发电很可能成为全球电力的主要来源之一。据我国专家估算,我国可开发利用风能至少十几亿千瓦,快速推进风力发电是我国实现减排目标的必要途径之一。

根据美国发布的可再生能源标准(RES),到2012年美国可再生能源占10%,2025年占25%。2004~2008年美国新安装风力发电机新增风电年均增长率为29%。2008年新增风电占新增可再生能源的42%。美国政府承诺长期支持风力发电,投资数十亿美元制造风电涡轮机和建设智能电网, 2009~2029年安装风力发电机将每年新增风力发电能力4亿瓦~16亿瓦,到2030年风力发电总容量累计增加到305亿瓦,届时风力发电满足电力需求的20%。欧盟风力发电装机总容量56535兆瓦。丹麦风力发电占本国电力的20%,西班牙占13%,葡萄牙占12%,爱尔兰9%,德国8%。德国规划到2020年可再生能源发电占25~30%,德国于1991年制定法律鼓励发展可再生能源,主要是风力发电,德国风力发电涡轮机生产能力占世界22%,未来几年内将在海岸建大型风力发电场。

2006年我国风电装机总容量仅2588兆瓦,2008年增加到12121兆瓦,年均增长率为116%。据中国风能协会预测, 2010年我国风电总装机容量达20亿瓦,2020年达到80亿瓦,2030年达到180亿瓦,2050年达到500亿瓦。我国政府将强力支持建设智能电网,解决风电输送问题,未来风电将成为我国电力的主要来源之一。

一台大型风力发电涡轮机需要稀土2吨,铜5吨,铝3吨,钢300吨; 3兆瓦大型风机转子叶片长约54米,玻璃纤维/碳纤维混合增强复合材料叶片最轻的达13.4吨,单只叶片需要玻璃纤维和碳纤维约6吨。2009年我国风电装机总容量已经达到22亿瓦,根据我国风电发展规划,到2020年风电装机总容量达到80亿瓦,需新增风电装机容量58亿瓦,若以3兆瓦风力发电涡轮机计算, 2010~2020年期间我国需要新安装大型风力发电涡轮机19333台,累计需要稀土金属4万吨,铜10万吨,铝6万吨,钢600万吨,玻璃纤维和碳纤维约36万吨。到2030年风电装机总容量达到180亿瓦,需新增风电装机容量122亿瓦,已3兆瓦风力发电涡轮机计算,2020~2030年我国需要新安装大型风力发电涡轮机40666台,累计需要稀土金属约8.2万吨,铜20.33万吨,铝12.19万吨,钢1219.98万吨,玻璃纤维和碳纤维约73.2万吨,所需稀土主要是钕,用于生产稀土永磁材料。2009年我国风电装机总容量已经超过2010年的规划目标,估计我国风力发电规模会远远超过规划目标,2010~2020年期间我国风力发电行业对稀土金属实际需求量很可能是按规划估算需求量的2倍以上,对玻璃纤维和碳纤维实际需求量是估算的2倍多。为此建议国土资源部相关部门应充分调查我国风力发电行业现状和发展计划,准确的估算我国风力发电行业对稀土金属等产品的需求量,以保证正确控制稀土金属及其氧化物生产总量,为风电行业发展提供足够的高质量的矿物原料。

第7篇:风力发电

引言:我国是一个风能资源比较丰富的国家据探明风能理论储量为32.26亿kW,而陆地可开发利用风能为2.53亿kW,近海可利用风能为7.5亿kW,居世界前列.随着我国经济的持续快速增长,对能源的需求与传统化石能源对环境污染的矛盾越来越突出,发展新 的清洁可再生能源成为解决矛盾的有效方法.在目前许多新能源的开发利用中,风力发电凭借其技术的优势和单机容量的高速增长使得风能成为目前世界上增长速度最快最具有竞争力的可利用新能源。[1]本文主要介绍风电场并网对电力系统的影响。

一、对调峰、调频与备用的影响

大规模风电并网的重要制约因素是电网可为风电提供的调峰能力,必须利用全网的调峰、调频能力进行统一平衡,时,常规机组减少出力为风电提供空间。电接入电网功率。风电的反调峰特性,例如,东北电网受冬季火电机组供热影响,反调峰特性,使得系统调峰异常困难,进入制风电出力,最多时限制近

二、对电压与无功功率控制的影响风电机组类型不同,无功功率特性差异很大。早期的风电场多采用的是固定转速风电机组—异步发电机,吸收系统无功且无功不可控,功控制。风机的无功功率不可控,必然导致电压忽高忽低,无功补偿装置频繁投切。风电对系统的电压要求很高(电压偏差不得超过应用的变速风电机组—双馈异步电机和直驱风电机组在1.0,不向系统吸收无功,解决了部分无功电压问题,但不具备恒电压调节能力。区域性无功电压调节问题还需要通过安装SVC等动态无功补偿装置、输电通道动态无功补偿设备以及频繁投切的低容低抗来实现。[5]风电功率波动影响主网潮流分布,同时电压波动使无功补偿设备频繁投切。风电场的利用小时数很低一般在电场送出线路长时间会处于轻载状态,电压必然偏高,低抗将长时间投入运行。

三、对电能质量的影响有相当一部分风电机组直接并入配电网,由此带来的电能质量问题尤为突出。电压波动和闪变:风力发电机组大多采用软并网方式,但是在启动时仍会产生较大的冲击电流。当风速超过切出风速时,乎同时动作,这种冲击对配电网的影响十分明显。都会导致风机出力的波动,而其波动正好处在能够产生电压闪变的频率范围之内(低于Hz),因此,风机在正常运行时也会给电网带来闪变问题,影响电能质量。电给系统带来谐波的途径主要有两种。接和电网相连的固定转速风电机组,定的谐波,不过过程很短,发生的次数也不多,通常可以忽略。但是对于变速风电机组则不然,变速风电机组通过整流和逆变装置接入系统,谐波的范围内,则会产生很严重的谐波问题,逐步得到解决。另一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振,行中,曾经观测到风电场出口变压器的低压侧产生大量谐波的现象。才能保证全额接受风电和电网安全稳定运行。风电功率具有不确定性,将导致负荷峰谷差增大,使得系统调峰异常困难。火电机组固有的调峰能力大为下降,2008 年冬季以后,多次因低谷调峰问题被迫限400 MW。[6]

需后期改造以配备相应的补偿装置来进行无10%),但它本身就是一个无功干扰源。目前普遍—永磁同步机能够保证风机功率因数AVC 等系统手段来实现。风电场提高电压控制手段一般通过2 100~2 400 h,机组出力小于额定功率

如果整个风电场所有风机几不但如此,风速的变化和风机的塔影效应一种是风力发电机本身配备的电力电子装置。软启动阶段要通过电力电子装置与电网相连,如果电力电子装置的切换频率恰好在产生随着电力电子器件的不断改进,当风电功率增加5%的概率最大,所以风[6]谐波污染:风这一问题也在

[4][2]

[5]25 对于直会产生一在实际运系统调峰裕度必须大于风加之风电的风机会从额定出力状态自动退出运行。

四、 对发电计划与调度的影响

风能的不可控性使得对风电不可能像对其他传统电源一样可以进行可靠预测。风电场并 网以后,电网的可用调峰容量减去用于平衡负荷波动的备用容量后,剩余的可用调峰容量都能够用于为风电调峰,但如果整个电网可用于风电的调峰容量有限,则风电场的实际运行就会受到一定的限制,在电网无法完全平衡风电场的功率波动时,需要限制风电注人电网的功率。[4]由于当前我国电网中风电的比例不高,因此在电网调度工作中一般不把风电纳入电网调度.且由于尚未开展风电功率预测的研究与应用,因此风电功率的波动对于电网而言完全是随机的,最严重的情况就等于整个风电装机容量大小的风电功率在短时间内的波动,虽然发生这种情况的概率较小,但是在实际运行中仍无法排除发生这种情况的可能性由于系统需要有与风 电场额定容量相当的备用容量,在风停时替代风电场,这使得风电上网成本增加。 目前,我国相关省区电网调度根据风由各省自行平衡,基本上不安排风电的发电调度计划。

结语

随着气候的变迁,环境的恶化资源的短缺发展新的清洁可再生能源已成为一种趋势合理地开发和利用风能成为解决矛盾的一种方法,的成果,对我国电网进一步的改造和开发新技术以支撑风电的大规模并网.的快速稳步发展。

参考文献:

[1]裴哲义,董存,辛耀中。我国风电并网运行最新进展[2]张洋 ,风电场无功补偿容量及其控制方法的研究[3]陈向民,姚强。风力发电前经济技术分析[4]胡斌,杨鹏举。关于风电接入系统若干问题的思考[5]吴雄飞。大型风电并网系统电压稳定性研究[6]电监会.我国风电发展情况 调研报告

只要结合我国的实际情况,[J] 新能源 [D].长春[J] 科技创新导报[J] 中国电力教育[J ]宣称供电公司[D].北京 :国家电力监管委员会借鉴国外已有以支持国民经济 第11期

:东北电力大学,2010 NO.35

2010

,2005. 36期 2009.

电场实际发电出力对网内其他电厂出力进行调整, 年第 ,

第8篇:风力发电

风电场建设施工

时间2010-07-07

一、风电场建设施工前期准备

1项目报建风电场项目可行性研究报告经批准后

按照《工程建设项目报建管理办法》规定具备条件的

需向当地建设行政主管部门报建备案。

2编制风电场建设计划

2.1 风电场建设单位在风电场可行性研究报告已获批准

建设资金筹措计划已基本落实

风电场设计已开始进行时

要尽快组织力量编制建设计划

科学、有序的安排工程项目和有关工作高效协调进行

以控制和掌握风电场建设大局

落实风电场分期建设计划和总体规划。

2.2 编制风电场建设计划

要在保证质量和安全的前提下

以工程进度计划为主

完成包括建设准备工作计划、投资计划、物资供应计划、运输计划、劳动培训计划、成本计划等配套计划的编制。

3委托建设监理

3.1 风电场建设涉及到风力发电、输变电、建筑、道路等工程

是一项多专业多学科的系统工程

建设单位要依靠自身的力量管理好风电场建设是比较艰巨和吃力的工作

3.2 委托有相应资质、满足专业需求的监理单位

代表建设单位

依据国家有关法律法规和工程建设监理合同、工程建设的各有关合同

对风电场工程项目实施监理。

4项目施工招标

4.1 建设单位根据建设风电场目标项目的建设地点、投资目标、任务数量、质量标准及工程进度等等

通过发布广告或邀请函的形式使自愿参与工程施工的承包商按建设单位的要求投标

建设单位根据投标报价高低、技术水平、施工能力、工程经验、企业管理水平、财务状况和企业信誉程度等对其进行全面分析、综合评价、择优选定中标单位 并与其签订合同。

4.2 施工招标文件主要内容

4.2.1 投标邀请书

4.2.2 合同条款

4.2.3 协议书、履约担保证件和工程预付款保函

4.2.4 投标报价书、投标保函和授权委托书

4.2.5 工程量清单

4.2.6 投资审查资料

4.2.7 技术条款

4.2.8 招标图纸

4.3 开标、评标和决标通过评审

建设单位最后与潜在的中标单位就工程实施过程中有关问题和价格问题进行谈判从中确定中标单位。经报请有关主管部门批准后

发出中标通知书。

5 签订施工合同

5.1 中标通知书发出30天内

中标单位应与建设单位依据招标文件、投标书等签订工程的承包合同。

5.2 签订施工合同

必须按照《建设工程施工合同示范文本》的合同条件

明确约定合同条款对可能发生的问题

要约定处理原则和解决办法。

5.3 建设单位在合同正式签订前

应将双方协商一致的合同草案报建设行政部门或其授权单位审查

通过审查后无误后

双方可以正式签订合同。

6 征地风电场建设用地

需要按规定办理报批手续并缴纳和支付规定项目的费用。

7 现场四通一平为使风电场项目施工顺利进行

施工单位应在正式施工开工前

解决现场用电、用水、道路、通信及施工现场场地平整的问题。

二、风电场工程施工

1 工程施工许可证

1.1 根据我国《建筑法》的规定

包括风电场建设工程在内的建筑工程

建设单位应当在其开工前向工程所在地的县级以上建设行政主管部门申请领取施工许可证。

1.2 未取得施工许可证或开工报告而擅自施工的

责令改工。

2 工程施工管理

2.1 质量控制坚持质量第一

预防为主

防检结合的原则

2.2 进度控制根据项目工程条件

全面分析

审核施工承包单位编制的施工进度计划的合理性和可行性

并实施监督

以确保工期目标的实现

2.3 投资控制严格审核施工承包单位的施工图预算和工程项目个阶段的资金使用计划

2.4 过程协调通过现场协调或定期协调会方式解决施工过程中存在的问题

3 工程施工监理

3.1 依据监理合同确定监理组织确定风电场项目总监理工程师及相应专业人员摸清

任务具体内容

3.2 制定监理规划及进行准备工作

3.3审查施工组织设计提出个专业的书面审查意见

3.4 工程投资、质量和进度目标动态控制

3.5 质量评定填写质量综合评定监理意见

3.6 工程验收

4 工程施工质量管理

4.1 建设单位必须把工程发包给具有相应资质等级的单位

4.2 建设单位必须对工程的重要设备和材料实行采购招标

4.3 建设单位应将施工图设计文件报县级以上政府建设行政主管未经审查批准不得使用

4.4 建设单位只有在工程验收合格后方可将其交付使用

三、风力发电机组的运输、安装与调试

1 风力发电机组的运输

1.1 一般情况下采购我国自己生产的风力发电机组在采购合同中都明确由生产厂代为组织运输且直达风电场工地现场

1.2 在采用公路汽车运输方案时建设单位应对道路路况做全面了解

2 风力发电机组的安装

2.1 安装前检查并确认风力发电机组基础已验收符合安装要求

2.2 确认风电场输变电工程已经验收

2.3 以制造厂技术人员为主组织安装队伍并明确安装现场的唯一指挥人选

3 风力发电机组的调试

3.1 按风力发电机组生产厂安装及调试手册规定逐一进行调试

3.2 按手册要求编写调试报告

四、风力发电机组试运

1 风力发电机组试运行严格依据风力发电机组试运行的条件

2 试运行时间:按风力发电机组生产厂要求或生产厂与建设单位预先商定的条件

3 风力发电机组通过试运行后经分析评估符合要求生产厂和建设单位双方签署试运行记录后方可验收

4 编制风力发电机组性能质量评估报告提供专项测试、复查记录及评估意见后验收方可结束

5 验收意见和报告应归档保存以备风电场项目竣工验收需要并作为该风力发电机组技术档案的正式资料备查

第9篇:风力发电技术

风力发电技术和风能利用方式

1973年发生石油危机以后,西方发达国家为寻求替代石化燃料的能源,在风力发电技术的研究与应用上投入了相当大的人力和资金,充分综合利用空气动力学、新材料、新型电机、电力电子技术、计算机、自动控制及通信技术等方面的最新成果,开创了风能利用的新时期。

德国、美国、丹麦等国开发建立了评估风力资源的测量及计算机模拟系统,发展了变桨距控制及失速控制的风力机设计理论,采用了新型风力机叶片材料及叶片翼型,研制出了变极、变滑差、变速恒频及低速永磁等新型发电机,开发了由微机控制的单台和多台风力发电机组成的机群的自动控制技术,从而大大提高了风力发电的效率和可靠性。

风电场是大规模利用风能的有效方式,20世纪80年代初在美国加利福尼亚州兴起。而海岸线附近的海域风能资源丰富,风力强,风速均匀,可大面积采获能量,适合大规模开发风电。然而在海上建造难度也大:巨大的基座必须固定入海底30m深度,才能使装置经受得住狂风恶浪的冲击;水下的驱动装置和电子部件必须得能防止高盐度海水的腐蚀;与陆地连接还得需要几公里长的海底电缆。

2.2风电装机容量

德国的风力发电装机容量已达610.7万kW,占德国发电装机容量的33%,居世界第1位。西班牙风电装机容量283.6万kW,居世界第2位。美国风力发电装机容量已达261万kW,居世界第3位。丹麦风电技术也很先进,装机容量234.1万kW。印度风电增长很快,到2000年累积装机容量已达到122万kW。日本的风电装机容量46万kW,运行较稳定的是海岸线或岛上的风力发电站,已达576台风电设备。

2.3各国的风力发电政策

目前风电机组成本仍比较高,但随着生产批量的增大和技术的进一步改进,成本将会继续下降 (见表1) 。许多国家建立了众多的中型和大型风力发电场,并形成了一整套有关风力发电场的规划方法、运行管理和维护方式、投融资方式、国家扶持的优惠政策及规范、法规等。

表1世界风电装机容量(万kW)和发电成本(美分/kW·h)

年份19831985198719891991199319951997199819992000

容量149414417121629847876410151393184

5成本15.310.97.26.66.15.65.35.15.04.94.8

数据来源:丹麦BTM咨询公司

欧洲发展风电的动力主要来自于改善环境的压力,将风电的发展作为减少二氧化碳等气体排放的措施。德国、丹麦、西班牙等国都制定了比较高的风电收购电价,保持了稳定高速的增长,1996年以后年增长率超过30%,使风电成为发展最快的清洁电能。丹麦风电技术的发展策略是政府不直接支持制造厂商,而是对购买风电机组的用户提供补贴。英国的《可再生能源责任法规》要求到2010年,每个电力供应商必须使可再生能源的电力供应量达到总电量的10%。

美国政府为鼓励开发可再生能源,在20世纪80年代初出台了一系列优惠政策。联邦政府和加利福尼亚州政府对可再生能源的投资者分别减免了25%的税赋,规定有效期到198

5年底,另外立法还规定电力公司必须得收购风电,并且价格应是长期稳定的。这些政策吸引了大量的资金采购风电机组,使刚刚建立起来的丹麦风电机组制造业获得了大批量生产和改进质量的机会。到1986年这3个风电场的总装机容量达到160万kW。2002年美国德州的风电容量为118万kW。德州政府规定,到2009年可再生能源的发电容量至少应达到200万kW,并拟订了110.4万kW的风电建设计划。

印度是一个缺电的发展中国家,政府制定了许多鼓励风电的政策,如投资风电的企业,可将风电的电量储蓄,在电网拉闸限电时,使有储蓄的企业能够得到优先供电。

澳大利亚的发电能源主要依靠煤炭。政府为改善电能结构,制定了一项强制性的可再生能源发电计划,太阳能——风力电站将成为可再生能源利用的重要组成部分。

3我国风力发电的开发现况

我国拥有丰富的风能资源,若采用10m高度的风速测算,陆地风能资源理论储量为32.26亿kW,可开发的风能资源储量为2.53亿kW。我国近海风能资源约为陆地的3倍,由此可算出我国可开发的风能资源约为10亿kW。

风能资源富集区主要在西北、华北北部、东北及东南沿海地区。20世纪70年代末80年代初, 我国通过自主开发研制,额定容量低于10kW小型风力发电机实现了批量生产, 在解决居住分散的农牧民和岛屿居民的用电方面有着重要意义。在国家有关部委的支持下,额定功率为200、250、300、600 kW的风力发电机组已研制出来,并在全国11个省区建立了27个风电场,浙江、福建、广东沿海及新疆、内蒙古自治区都有较大功率的风力发电场。东部沿海有丰富的风能资源,距离电力负荷中心又近,海上风电场将成为新兴的能源基地。国家计委在20世纪90年代中期制定了“光明工程”和“乘风计划”, 1997年当年装机超过10万kW,到2001年底总装机容量约40万kW。

我国风电技术还处于发展初期,较欧美落后,关键原材料或零部件主要依靠进口。风电机组是风电场的核心设备,主要依靠进口机组,在风电场的建设投资中是主要部分,占总投资的60%~80%。为鼓励风电的开发,我国对300kW以上机组免征进口税。风电随着技术的发展和批量生产,成本会继续下降。

上一篇:管理专业实习心得体会下一篇:九上unit2任务型阅读