数字地球信息技术

2024-06-05 版权声明 我要投稿

数字地球信息技术(精选4篇)

数字地球信息技术 篇1

二维地理信息和三维虚拟现实是用于对客观世界中地理背景环境进行呈现的不同技术,其基于遥感、测绘等手段获取的海量地理空间数据,采用要素符号化、可视化仿真、空间计算分析、人机交互等各类技术,为用户提供直观而且形象的信息理解手段,在地理测绘、全球资源变换与监控、城市规划、军事指挥作战、航空管制监视等领域,发挥着越来越重要的作用,对实现信息化时代“数字地球”战略,快速、完整、形象地了解我们所处的世界,具有重要意义。

二维和三维地理信息软件依托不同的技术和背景发展而来,两者具备不同的特点:二维的平面场景具有宏观性、整体性、抽象性的优点,但缺少真实感和空间特征。三维视景软件以立体造型技术向用户再现地理空间现象,不仅能够表达空间对象间的平面关系,而且能描述和表达它们之间的立面(立体)关系。对空间对象进行三维空间分析和操作也是三维地理信息所特有的功能,[1]但其容易在场景漫游时产生空间迷失感等问题。因此两者的有机结合和优势互补是地理空间环境仿真的必然需要,也是当前的发展趋势。[2]

目前,二三维一体化技术的应用方式一般采用来二维地理信息系统(GeographicInformationSystem,GIS)基础软件和三维GIS基础软件相集合的方式进行应用系统开发,在一定程度上实现二三维系统的整合。[3]系统可以根据用户选择,组合或切换显示二维矢量图形和三维虚拟仿真图形,并在两者的图形窗口之间传递控制信息,来实现操作漫游、同步控制等内容。这种基于简单集成的显示方法,解决了部分需求,但也存在着一些问题,例如资源的冗余使用问题,地理和空间数据需按照二三维不同模式分别进行处理;重复的接口开发,不同的显示方式提供了不同的软件接口,各应用软件需要针对不同接口提供独立的功能开发工作;内容和状态难以统一,二三维功能之间基本相互独立,内容缺少直接的关联性,人机交互和图形状态的一致性管理措施较难完整的实现。

文章从工程应用需求出发,针对传统上依托于二三维组合形式构造的地理信息系统所存在的这些问题,提出了一种二三维一体化的数字地球引擎技术,通过构建统一的内核和数据模型,[2]融合二三维表现场景,实现二三维地理信息的无缝融合。

1一体化系统目标

一体化数字地球引擎技术,实现的目标是能够在内核结构和模型层上,形成融合二三维为一体的数据和场景表现架构,以便通过有机结合对象的元数据模型、场景空间坐标系、对象的多样化呈现模式等内容,形成一致的用户界面和接口。

二三维的一体化,要能够有机整合多方面的因素,例如,在地形表现形态上,应支持二维平面图、立体俯视图、三维数字地球等模型;在空间坐标体系上,能够采用椭球体球心坐标系、等经纬度投影坐标系,以及墨卡托等各类典型的地理投影;在对象表现形式上,可以使用二维矢量图、三维实体模型、三维抽象符号等多种目标呈现风格。同时在内核通过统一的对象元数据模型,保持在不同场景视图和呈现模式下,具备数据模型和状态的一致性,不同视图场景的交互操作中,对象模型的属性和状态变更,能够及时反馈到其他的视图场景中,并对用户提供一致的操作接口。通过有机灵活地组合上述要素,按需构建各类表现层元素和视图场景,能够形成具备真实一体化特征的二三维系统。

2一体化系统设计原则

2.1数据模型的统一

二三维一体化系统需要在内核层次达到统一的目的,首先应当具备的能力应是数据结构和模型的一体化,包括地理空间数据一体化应用、图形对象的一体化存储和管理等方面。[3]基于统一数据存储访问和管理的模型框架,对外部环境和用户来说,可以使用一致的接口进行资源和对象的访问和处理。对二维矢量显示和三维虚拟仿真来说,也使用一致的数据对象模型作为图形呈现和仿真的基础,在系统运行时,可以统一地动态管理和复用各类二、三维地理空间和图形对象数据资源。[4]这样,能够减少数据管理的冗余、模型对象的不一致、系统资源的消耗等问题的产生。

2.2空间和呈现多样性

基于一体化统一管理的空间数据模型,地理空间和图形数据采用相同的大地坐标系进行描述,而场景视图和图形对象的呈现可以采用不同的空间形态和风格来表示。如在场景视图的空间形态上,可以采用基于平面地形的二维图或俯视图,或者基于球心坐标系的三维图。在图形对象的呈现风格上,可选择使用矢量图形、抽象符号化、三维仿真模型等不同的方式,并结合颜色属性等内容的组合。

从可视化角度来说,呈现的一体化不再通过不同的呈现方法来区分二维和三维,如二维采用矢量图形来表示,三维通过三维模型来仿真,而是基于对象元数据与表现形式的分离设计,使得不同的对象呈现风格与二三维空间形态可以任意组合。例如,矢量符号的表现形式可以关联在二维矢量地形图中,也可关联到三维虚拟仿真场景中,按照这样的思路,基于元数据模型实现一体化的呈现方法,使得系统具备灵活性和多样性。

2.3多视图协同控制

空间场景除了提供不同视图中的表现,同样需要提供用户人机交互的能力,用以操作和编辑空间场景中的对象和内容,那么,不可避免的一个重要问题是如何保证对象在不同场景和视图中内容和状态的一致性,例如:观察相机及漫游操作器的一体化控制,在三维场景漫游到某一地区时,可以同样体现在对应二维平面视图中,以保证多视图协同显示时保持观察目标区域的一致性。[5]又如通过人机交互编辑图形对象时,在一类视图操作产生的结果,应能够体现到其他视图中。基于一体化的数据模型,简化了交互控制一体化的工作,使得数据模型和对象状态在二维和三维下具备一致性,因为操作目标的统一,使得对象状态和内容的变更能够及时反应到不同的视图中。

2.4平台接口一体化

传统二维和三维集成的模式,实现的一体式二三维态势显示框架,用户需要针对二维和三维的接口分别进行编程和开发,并且需要进行不同对象、状态之间的协同控制,为系统的设计和实现带来了较多的复杂性。对于二三维一体化的系统模型来说,多视图及多呈现模式,是空间场景的不同表现方法,而用户看到的是一个统一的实体,系统能够提供一致的平台和接口,简化用户在二维视图与三维视图的呈现、二三维一体化控制等方面所需完成的任务,系统能够在内部完成二维、三维等不同场景视图和对象的管理、控制和一致性工作。

3一体化系统设计模式

3.1框架结构模型

依据二三维一体化系统的设计原则,根据系统组成要素从数据到呈现过程中的不同作用,将系统框架结构进行分离设计,构造模型—呈现—空间—控制的四元层次关系模型,各层次专注于本身功能的设计和实现,互相之间通过相对的独立性保持低耦合度,通过对四元层次内容的不同组合关系,形成一体化的场景图模型,为用户呈现所需的地理空间视图,如图1所示。

(1)模型层代表对象的元数据,比如各类地理空间数据资源、图形对象元数据等内容,系统基于统一的内核元数据管理技术,不具体区分是二维或三维场景的资源,而将它们作为统一的空间数据和对象数据来对待。

(2)呈现层表示对于对象元数据,所提供的不同显示方法和风格,每一类对象,都可以选择使用纹理、矢量、模型等不同的方法表现,更具体的,每种方法还可以拥有不同的风格属性,如矢量图形可以选择贴地属性等。

(3)空间层代表需要呈现给用户的空间形态,包括空间坐标系、地形和图形对象的空间形态等,如采用平面坐标系还是球心坐标系,地形是否具备立体特征,对象采用平面还是三维表示方法等。

(4)控制层则居于灵活的设计模式,为各层次内容的交互组织和通信提供支撑框架,提供消息事件管理和场景调度控制。

一体化系统架构的目的就是将这些不同层次内容灵活地组合在一起,通过合理的集成协作关系形成一体化的软件模型结构,而不是针对不同的二维或三维应用类别,分别建立独立的软件场景和框架模型。

3.2一体化场景图

对于大多数图形系统来说,场景数据的组织和管理都是一个不可忽视的命题,场景图是图形系统的核心数据结构,通过图形对象之间的关联关系或者空间结构关系,将整个系统的对象进行层次化的组织和管理。依托于设计良好的场景图,系统在数据组织、剪裁、渲染的过程中,能够达到较好的性能。传统上,二维和三维的场景图视图需要各自维护独立的场景图层次结构,在这些场景图中,对象模型和呈现模型被单独建立,如图2所示。在一体化系统中,通过将分离的场景图进行融合,形成统一的场景图结构,以便使得对象的元数据模型在场景图中能够统一管理,而对象呈现模型则是对象元数据模型的不同分支,在视图的更新和渲染时,通过对统一场景图进行遍历,选择合适的呈现分支,构成动态的场景图结构。

3.3访问设计模式

依据一体化场景图,系统基于访问器设计模式,通过对场景图的遍历访问,实现在用户视图的显示要求之下,对元数据模型的呈现模式的选择。访问器设计模式具有符合单一职责、优秀的扩展性和灵活性的特点,能够很好地适应场景图的动态构建过程和对象功能及接口的扩充,[6]如图3所示。

系统通过呈现访问器,将用户视图的空间形态和呈现风格设置通知到场景图的每一个节点,对象元数据模型在访问器的遍历过程中,根据传递的视图空间坐标形态、呈现风格的不同,动态创建和反馈对象的呈现节点,每个分支节点代表了一类用户视图的显示要求。通过这样的方法,构成了基于统一对象和场景图模型的多视图动态呈现框架。同时,该模式也可用于系统消息事件的通知、对象状态的变更管理等,以保证一体化系统在整个系统中状态的一致性。

4技术应用与评估

我们将一体化数字地球引擎技术和框架在新一代二三维一体化战场态势显示系统工程中进行了应用,产生了较好的效益。与之前基于简单组合模式的软件系统相比,一体化系统具有以下的优势和特点:

(1)系统资源的有效使用:由于采用一体化的数据模型作为内核,二维和三维可以共享地理信息数据资源和图形资源,而原先基于组合式的软件框架,两者的数据模型互相独立,导致占用了过多的内存等系统资源,限制了系统在大规模图形态势对象上的支持能力。

(2)软件结构的清晰性:更具结构化和层次化的数据模型和图形呈现框架,避免了组合式模式的使用中,二三维模块为了形成一致的用户界面和协同控制,使得相互之间需要额外的交互和控制流程,导致互相之间藕合度高、结构不够简洁、软件维护难度大的问题。

(3)用户接口的统一性:基于一体化的数据模型,用户可以通过统一的接口管理地理空间数据、图形数据和对象属性,而不需为了适应二维场景和三维场景不同的用户接口界面,各自维护一套应用开发过程,从而降低了应用软件研制的复杂度和开发成本。

(4)图形表现的灵活性:模型、呈现与空间形态相分离的设计模式,有利于根据不同的应用需求和场景,实现灵活、多样且便于扩展的应用功能,更加便于系统在实现和维护中适应用户在软件功能和表现需求的变化。

5结束语

数字地球信息技术 篇2

1、完全弹性介质:介质受到外力作用产生形变,当外力消失后介质立刻恢复到受力前的形状,称为完全弹性介质。

2、黏弹性介质:岩土固体既有弹性,又表现出像粘性流体那样的粘性,称这样物体为粘弹性体,实际的岩土固体接近于粘弹性体。

3、各向异性介质:介质沿各个方向上的弹性性质存在差别。

4、双向介质:岩石往往由两部分组成,一部分是构成岩体的骨架、称为基质,另一部分是由各种流体充填的孔隙。由于波经过岩石基质和流体孔隙传播的速度是不一样的,因此从波传播来说,这种岩石实际上是由两种相态构成的,我们称这种岩石为双相介质。

5、球面扩散:在均匀各相同性的完全弹性介质中,某点激发的地震波以球面的方式向外传播,球面波中波的振幅与波的传播距离成反比,随距离的增大而减小,波前面越大单位面积上的能量越小,这就是波的球面扩散。

6、频散:是指面波在介质中的传播是频率的函数,即速度随频率而变。

7、地震子波:震源激发出来的脉冲,经过一定的传播距离,形成具有几个相位,一定延续时间,相对稳定的波形。

8、地震波的能量:地震波在介质中传播的能量的强度

9、均方根速度:把水平层状介质情况下的反射波时距曲线近似的当作双曲线,求出的波速就是这一水平状介质的均方根速度。

10、视速度:地震波在空间介质内是沿射线方向以真速度V传播的,但地震勘探的观测大多是在地表沿测线进行,因测线的方向与波的射线方向常常不同,沿测线“传播”的速度也就不同于真速度,称为视速度V*。(简答回答就是沿测线方向的地震波的传播速度)

11、叠加速度:根据共反射点时距曲线求得的速度叫做叠加速度。

12、层速度:指在均匀层状地层中地震波传播的速度。它直接反映地层的岩性,能用来划分地层

13、动校正:用来消除地震波到达各检波点的正常时差,故亦称为正常时差校正。

14、静校正:用来消除由于地形起伏、激发井深,低降速带的影响造成的时距曲线畸变的影响的校正。

15、正常时差:第一种定义,界面水平情况下,对界面上某点以炮检距x进行观测得到的反射波旅行时间同以零炮检距(自激自收)进行观测得到的反射波旅行时之差。

第二种定义,在水平界面情况下,各观测点相对于爆炸点纯粹是由于炮检距不同而引起的反射波旅行时间差。

16、反滤波:消除地震激发的信号在传播过程中收到的滤波作用的处理方法

17、大地滤波作用:大地并不是一个完全理想的弹性介质,在弹性波传播过程中,其高频成分容易被吸收,起振动强度容易被衰减,从而对震源激发出来的地震子波起到改造的作用。

18、含氢指数:单位体积的任何岩石或矿物中氢核数与同样体积的淡水中氢核数的比值,称为该岩石或矿物的含氢指数,用H表示。

19、地震相:由特定地震反射参数所限定的三维空间中的地震反射单元,它是特定沉积相或地质体的地震响应。

20、同相轴:地震记录上各道振动相位相同的极值(俗称波峰或波谷)的连线称

为同相轴。

21、波组:至少由两个同相轴构成的反射波组合,振幅,相位基本一致。

22、波系:至少由两个波组构成的反射波系。

23、电阻率:用来表示各种物质电阻特性的物理量,单位面积,单位长度介质的电阻。

24、视电阻率:在地下存在多种岩石的情况下用电阻率法测得的电阻率,不是某一种岩石的真电阻率,而是各种岩石电阻率的一种综合反应,称为视电阻率。

25、高侵剖面:在压力差的作用下,泥浆滤液向渗透层侵入,使侵入带(冲洗带和过渡带)大于原状地层的电阻率的现象。

26、低侵剖面:在压力差的作用下,泥浆滤液向渗透层侵入,使侵入带(冲洗带和过渡带)低于原状地层的电阻率的现象。

27、密度界面:不同密度物质层的分界面。

29、周波跳跃:在声波测井中,声波时差比临近的值高出一个或几个波长,并出现周期性增大的现象。

30、布格重力异常:对观测重力值经过地形校正、布格校正(高度校正和中间层校正)和正常场校正之后的重力异常。

31、化极磁异常:通过将观测到得地磁异常进行化极(化到地磁极)处理后得到的异常结果。

32、磁化率:表征物质受磁化的难易程度的物理量,数值上等于磁化强度与磁场强度的比值。

33、极化率:用来表征体极化介质的激电性质的物理量,等于二次电位差与总电位差的比值。

34、地磁要素:第一种定义:设以观测点为其坐标原点,x,y,z三个轴的正向分别指向地理北、东和垂直向下。则该点的地磁场总强度T矢量在直角坐标系三个轴上的投影分量分别为北向分量(X),东向分量(Y)和垂直分量(Z),T在xoy水平面内投影称水平分量H,过H的磁子午面与地理子午面的夹角称为磁偏角D,地磁场总强度T和水平面的夹角称为磁倾角I。

第二种定义:表示地球磁场方向和大小的物理量。磁偏角、磁顿角、总磁场强度(T)及共各个分量,统称为地磁要素。

简答

1、影响视电阻率、视极化率的因素

影响视电阻率的因素:a、各地质体的真电阻率 b、地下不同电性体的实际分布情况(电性体的大小,埋深,形状等)c、供电电极和测量电极的相对位置 d、地形起伏

影响视极化率的因素:a、各地质体的真极化率 b、充放电时间 c、各种方法中的不同装置以及电极的排列方式 d、上层覆盖的电阻情况 e、地质体的电阻率 f、地形起伏 影响电阻率、极化率的因素

影响电阻率的因素:a、岩石中胶结物和矿物颗粒的电阻率、形状及相对含量 b、岩矿石的湿度和孔隙度 c、岩石所处的外界温度 d、在交变电场下,交变电流的频率也会对电阻率的情况。简述电磁法的物理实质并简述TEM和CSAMT的异同点

电磁法的实质是利用电磁波在不同的介质中的响应来区分介质的一种方法以地壳中的岩矿石的导电性、导磁性和介电性为物性基础,根据电磁感应原理,通过观测和研究电磁场的空间和时间分布规律,来寻找有用矿产资源和解决地质、环境工程问题。

TEM与CSAMT的区别在于TEM是时间域的电磁法,而CSAMT是频率域的电磁法,TEM接收的是随时间变化的信号,而CSAMT接受的是随频率变化的信号,TEM通过观测不同延迟时间的信号来反映不同深度介质的电性情况,而CSAMT根据不同频率的电磁波有不同的趋肤深度来达到测深的目的。相同点在于它们都是感应类的方法,都使用人工源作为场源。试电磁法的基本原理,简述时域与频域电磁法的异同

电磁勘探方法是是根据电磁感应原理,利用电磁波与介质的互相作用来进行勘探的一种地球物理方法。时间域电磁法与频率域电磁法相同点在于它们都是感应类的方法,都是利用介质与电磁波的互相作用规律来进行勘探的方法,不同点在于时间域的电磁法通过改变观测时间来达到测深的目的,观测的是各种频率与介质互相作用结果的总和,频率域的电磁法根据不同频率的电磁波有不同的趋肤深度来达到测深的目的,观测到的是介质与某个特定频率的电磁波互相作用的结果。简述复杂形体重磁异常正演方法及每类方法的特点

复杂形体重磁异常正演从形体角度出发可以分为三度体和两度体;按求解域可以分为空间域和频率域。三度体分为空间域(有限元单元法和边界单元法)和频率域(谱正演法)

二度体分为空间域(有限元单元法和边界单元法)和频率域(谱正演法)。特点:a、有限单元法是一种求解重磁异常的基本方法,其优点是适用于任意测网,能够模拟变物性的情况,可以根据物性的分布不同,采用不同的切割方法。缺点是

计算量相对较大。b、也能使用于任意测网,计算量小。但缺点是在模拟变物性方面不如有限单元法。c、谱正演法是在有限单元法和边界单元法的基础上产生的,缺点是只适用于形体以上的平面规则网的正演计算。何为地球正常重力值,给出地球正常重力值一般公式并简述其随时空的变化规律

正常重力值:引入一个与大地水准面十分接近的正常椭球体代替实际地球,椭球体的表面是光滑的,内部密度分布均匀或成层分布、各层的密度是均匀的,各层的界面都是共焦点的旋转椭球面,在这种情况下求得的重力位就是正常重力位,求得的正常重力值就是正常重力值。变化规律:a、随高度的增加而减小 b、赤道小两极大,从赤道向两极逐渐增加 c、正常重力值沿纬度方向的变化率与纬度有关,在纬度45度处变化率最大。d、正常重力值只与计算点的纬度有关,沿经度方向没有变化。简述正常磁场水平强度H和垂直强度Z随时空变化规律

地球磁场水平强度H等值线是大致沿纬度线排列的曲线簇,在磁赤道附近最大,约为40000NT,随着纬度向两极的增高逐渐减小到零,在磁南北极处H为零。除了在两磁极处外,全球各点的H均指向北。

地磁场垂直强度Z等值线大致与等倾线分布相似,几乎与纬度线平行,在磁赤道上Z为零,由磁赤道向两极逐渐增大,在磁极处达到(正负60000—70000NT),约为磁赤道附近水平强度值的两倍;在磁赤道以北Z>0,表明垂直分量向下,在磁赤道以南,Z<0,表明垂直分量向上。简述选择法重磁异常反演的步骤

选择法又称试错法,其原理是根据实测重力异常的特征,结合工区的其他地质、地球物理资料,确定引起异常的初始地质体模型,然后进行正演计算,将理论异常与实测异常进行对比,当两者偏差较大时,修改初始模型,在进行正演对比,反复进行下去,直至理论与实测异常的偏差达到误差要求范围为止,我们把最后的理论的模型就作为所求的解。试分析比较自然r测井与自然电位测井的优缺点

自然电位的缺点:受岩性、地层温度和泥浆中所含离子成分及泥浆滤液电阻率与地层水电阻率之比,地层厚度、井径扩大和泥浆侵入的影响。

自然电位测井的优点:简单、安全、成本低,是最早使用的测井方法,是一种简单使用而意义重大的测井方法。

自然伽马测井: 优点:(1)裸眼井和套管井中均可以进行

(2)油基泥浆、高矿化度以及干井中均可以进行

(3)碳酸盐岩剖面和水化学沉积剖面不可缺少。缺点:(1)测速慢,成本高。

(2)如果岩石本身组成中含放射性物质,如含火山碎屑等,则无法正确判断泥质含量。简述油气水层在碎屑岩储集层上的测井曲线特征

在视电阻率测井曲线中,含水层多出现低侵,含油层为高侵; 在各种侧向测井曲线中,含油层的深侧向电阻率大于浅侧向电阻率,含水层的深侧向电阻率小于浅侧向电阻率;

在声波测井曲线中,含气层会出现周波跳跃,而油水层则无此反应;

在补偿中子测井曲线中,气层往往使石灰岩孔隙度减小,而油水层则不行; 在密度测井曲线中,气层往往使石灰岩孔隙度增大,而油水层则不行。简述测井中的储层四性关系

含油性是储层评价的最终目的和核心;岩性是储层评价的基础;物性反映储层储集性能、产能;电性是区分油气水层的研究手段。储层的“四性”关系研究是测井解释的基础,一般情况下是根据岩心分析数据,分层段重点研究储层的岩性、电性、含油气性以及物性之间的相互关系,为后续解释模型的建立打下了坚实的基础。研究中主要进行岩性与物性、岩性与电性、岩性与含油气性、物性与电性、物性与含油气性、电性与含油气性这6种关系的研究,通过交汇图的方式,可以建立泥质含量、孔隙度、渗透率和含油气饱和度的解释模型

通过四性关系研究,解决如下问题:①定性地划分储层有效厚度、隔层及两者之间的过渡岩层;②建立渗透率、孔隙度、含油饱和度图版;③综合判断产油、产气、产水层。分析比较感应测井和侧向测井测量地层电阻率时的各自特点和适用条件

当侵入较深时,侵入带对感应测井和侧向测井的影响方式不同。侧向测井电流线成水平圆盘状从井轴向四面发射,而感应测井电流线是绕井轴的环流。因此,对于侧向测井,泥浆、侵入带和地层的电阻是串联的,而对感应测井,它们则是并联关系。

感应测井值受两个带中电阻率较低的带的影响较大,而侧向测井值受电阻率较高的带影响较大。因此,如果Rxo>Rt时,采用感应测井确定Rt较侧向测井优越;如果Rxo

介质在受到正压力的作用下形成纵波,纵波质点的振动方向与波的传播方向一致。

①在球腔壁上作用单位正压力(纵波激发)时,弹性介质中产生的纵波质点位移规律是按指数衰碱的正弦振动,衰减快慢决定于系数ε的大小;

②振动的强度随波传播距离r的增大而反比地减小,在地震勘探中称为波的球面扩散;

③纵波质点位移的方向,同波传播的方向是一致的,地震勘探中把质点位移的振动方向称为极化方向,由于纵波仅在波传播的方向振动,因此是线性极化波. 简述横波形成和传播特点

介质在受到剪切力的作用下形成横波。横波介质的振动方向与波的传播方向垂直。

(1)在球腔壁上加上单位切应力后,横波的质点位移是衰减的正弦振动,衰减快慢决定于系数因素;

(2)横波的振幅也随波的传播距离,增大而减小,亦具有球面扩敢;

(3)横波亦为线性极化波,因为其质点是在一维空间内振动,但由于在球坐标内a同r是互为正交,故波的质点位移振动方向有别于纵波。它同波的传播方向r垂直。

在研宄中,通常把横波看作是由两个方向的振动所组成,一个是质点振动在垂直平面内的横波舟分量,称为sv波,另一个是质点振动在水平平面内的横波分量,称之为sH波. 简述地震反射界面的地质意义

地震的反射界面是波阻抗差异界面,多数情况下,它并不是地质界面。产生地震反射的物性界面在地质上具有波阻抗差异的地质界面和不整合面,具有一定时代地层的意义,相应地也给地震反射赋予了年代的含义,这是利用地震剖面绘制某年代地层层面构造图的前提,是研究地质构造的基础

16、简述影响地震波能量的主要因素

激发条件的影响,包括激发条件,激发强度,震源与地面的耦合状况等。地震波在传播过程中受到的影响,包括球面扩散,地层吸收,反射,透射,入射角大小以及波形转换等造成的影响。

接受条件的影响,包括接受仪器设备的频率特性对波的改造及检波器与地面耦合状况等

地下岩层界面的形态和平滑程度等也会对波的能量有所影响。

综述

1、固体矿产勘探中的主要地球物理方法,及其可能解决的地质问题

地球物理勘探作为固体矿产勘探手段特别在隐伏矿、盲矿、深部勘探中将起到越来越重要的作用。主要方法有:电力勘探、磁法勘探、直流电法、交流电法、井中物探、放射性勘探和地震勘探。

磁法勘探:直接寻找磁铁矿床、块状硫化物矿床、圈定基性和超基性岩体和其它磁性岩体,以及推断断裂构造等。

重力勘探:密度大的矿体(如各种致密块状金属),密度小的非金属矿床(盐类矿床),研究地壳深部构造,圈定侵入体,勘探与石油天然气有关的局部构造。

电法勘探:可用于寻找金属矿床、石墨矿床、黄铁矿化、石墨化岩石分布区的地质填图,水文地质和工程地质调查,金属硫化物矿床、煤田的勘探。

激发激化法:主要用于寻找良导性金属矿和浸染状硫化物矿床。电磁法:寻找良性导电矿体、探测隐伏断裂带

放射性勘探:探测放射性矿体,磷矿体、圈定花岗岩体

地震勘探:主要用于解决地质构造方面的问题,在煤田和石油勘探中广泛应用,在金属矿勘探方面也有应用。

2、灾害地质中的主要地球物理方法,及其可能解决的地质问题

(1)探地雷达:

可用于勘察岩溶坍塌,地裂缝,滑坡,活动断裂,孤石体及小型不良地质体,地下洞室,煤田自然区,陷落柱等地质灾害。(2)电法勘探

电法勘探是当前国内地质调查,找矿,找水和解决岩土工程问题的重要勘探方法。它利用岩矿石间电磁学性质及电化学性质的差异,通过观测和研究人工建立的或天然存在的电磁场空间和时间分布规律,来勘查地质目标和解决地质问题。在解决地质灾害中,电法是使用频率最高,应用面最广和解决问题较好的方法。可用于勘探地下隐伏岩溶裂隙发育带、溶洞、暗河、断层破碎带、古河道、滑坡、泥石流、煤炭采空区、多年冻土等地质问题。(3)地震勘探

浅层高分辨率地震勘探,面波勘探等技术针对工程地质问题的地震勘探技术,这些技术勘察对象广,施工周期短,费用低,解决问题的准确性和精度高。a 浅层地震勘探:浅层地震勘探在岩溶坍塌灾害勘察中可以取得较好的地质效果,它可用于查明岩溶区的基岩地质条件和覆盖层地质条件,圈定出潜在岩溶塌陷危险区或地段。还可以用于隐伏断层、破碎带、溶洞、古河道、暗河、勘探滑坡、地裂缝、多年冻土等。

b面波勘探:可用于冻土勘察,滑坡调查,泥石流调查,地下空洞调查,探测煤矿巷道顶板离层。

(4)声波检测:是通过探测声波在岩土内的传播特征来研究岩土性质和完整性的一种物探方法。声波检测在灾害地质中的作用,归结为两方面:一是灾害地质体的调查,查明其构造及其有关物理力学参数;二是对地质体灾害防治工程施工过程中的监测及检测。

(5)重力勘探:在灾害地质调查中微重力方法可用于探测近地表岩溶,洞穴,探测废矿山巷道以及规模较小的断裂,断层等地质构造,探测煤矿陷落柱及地下采空区。由于方法本身的局限性,如受各种干扰因素的强烈影响,野外作业复杂及探测目标重力异常微弱等,在一定程度上限制了该方法的应用。

(6)氡气测量:可用于查明断裂构造、预报滑坡、探测岩溶塌陷、地裂缝、地下采空区、煤田自燃区、煤矿断层裂隙带、岩溶陷落柱。

3、简述弹性波场的特征及可能应用

地震波就是在地球介质中传播的振动,将地球介质考虑为弹性介质时,地震波近似为弹性波。地震震源激发后,在地球介质中产生的振动之和就是波场。震源的性质及地球介质中的弹性参数分布决定了波场的特点。

(1)在陆地地震勘探时,广泛使用浅井,炸药震源,这是主要激发出纵波,但是由于震源附近地表介质的不均匀性,炸药包和它在井中安置的不对称性,也会产生一定强度的横波和面波。当采用非炸药震源时,激发的波场更加复杂,一般波场中均包含体波,面波及声波等。

(2)震源激发的振动形状对波场的总形态有重大影响,它会改变不同类型和不同形式的波所应起的振动之间的关系。

(3)由于吸收的影响,波在传播过程中它的振幅逐渐减小,主频逐渐降低。应用:

反射波法:根据地震剖面中的反射波同相轴比较精确的获得地下岩层的分层构造,从而圈定油气圈闭以及石油、天然气、煤矿的勘探。利用全球地震台网记录到的天然地震记录中的透过波、折射波、反射波等信息可以进行全球速度结构层析成像。利用大尺度范围内接受到的反射波、折射波可以探测地壳的精细构造。

在水文、工程、环境、考古中的应用 寻找金属矿藏中的应用。面波勘探:浅层工程勘探 折射波勘探:工程勘探确定工程建设中的基岩埋深及起伏,探测覆盖层的厚度以及基岩的岩性变化,也用于考古工作。

4、常用测井方法中,岩性测井系列以及各曲线的实质和主要作用

岩性测井系列又称泥质指示测井系列,主要用于划分泥质和非泥质地层,以及确定储集层的泥质含量。包括自然电位(SP)和自然伽马(GR)测井。一般,自然电位测井和自然伽马测井曲线用于指示岩性,识别储集层以及计算储集层的泥质含量非常有效。自然电位测井主要用于淡水泥浆砂泥岩剖面;而自然伽马测井主要用于碳酸盐剖面,膏岩剖面以及盐水泥浆砂泥岩剖面。

由于自然电位和自然伽马都可以在进行其他方法测井时附带测井,不必另外占用井场的测井时间。因此,一般裸眼井的测井系列中应同时包括自然电位和自然伽马,除非自然电位和自然伽马不适用于该地区。

自然伽马能谱测井(NGS)和岩性密度测井(LDT)是适用更广泛,效果更好的岩性测井方法,但由于技术较复杂,测井成本较高,目前一般只在SP和GR使用较差的情况下,或一般有特殊要求的井中使用。

计算题

1、激发极化效应可以在时间域与频率域测量,试写出时间域极化率与频率域频散率的计算公式,并写出各自的测量方法。

2、已知某区目的层段储集层的孔隙度Φ=25%,地层水电阻率Rw≈0.1Ω.m,试计算该区标准水层电阻率。如果油水层含水饱和度界限为sw=50%,a=b=1,m=n=2,计算油层的最小电阻率值为多少。

3、重力异常就是引力位在垂直方向上的导数,请写出引力位公式并推导重力异常以及重力异常在X、Y、Z方向上的导数

4、请写出磁偶极子磁位的表达式,并写出磁异常三个分量的表达式

5、已知地震时间序列S(T)={-------},滤波因子H(t)={----}计算褶积滤波结果 褶积的离散形式为

计算题参考答案:

1、激发极化是由电流在地下物质中所激发的一种电现象,表现为可观测到的延迟的电压响应,把这种向地下岩矿石供电以及断电过程中,由于电化学作用引起的随时间缓慢变化的附加电场的现象称为激发极化效应。时间域中极化率是参数,观测断电前的总场和断电后某一时刻的二次场,计算二次场与总场的百分比U2T,t100%;频率域观测参数是频散率,分别或同时测量两个频率的电UT,tUDUG100%极化率是二次场,信号弱,需要大电流供电,频散率观测UG位差,计算两个频率电位差的变化量与高频电位差的百分比,的是总场,信号强。二者的物理实质是等价的。

3、假设地质体与围岩的密度差(即剩余密度)为,地质体内某一体积元为dvddd,其坐标为Q,,,它其剩余质量dmdvddd。

又令计算点的坐标为Px,y,z,则剩余质量元dm到计算点的距离为xyz22212,那么地质体的剩余质量对计算点的单位质量所产生的引力位为

Vx,y,zGvdvddd。G12222vxyz由于选择的z方向就是重力的方向(铅垂向下),所以重力异常就是剩余质量的引力位沿z方向的导数,即表达式为

g(x,y,z)V(x,y,z)z1 Gdddzv1z G21dddvzddd G3v

 Gvxyz22zddd232同时,重力异常垂向一阶导数的表达式为

g(x,y,z)Gzv Gvz3zddd332zz1ddd

6262 Gv33zddd22 Gvx2zxy2yz2252ddd

4、设磁偶极子的磁化强度为mmx,my,mz,计算点坐标为Px,y,z,场源点

的坐标为Q,,,而计算点和场源点的距离矢量可表示为

rxiyjzk,则磁偶极子磁位的表达式为

1mrU(x,y,z)3dv4vr

mxmymz1xyz dv4vr3

磁异常场三个分量的表达式为

0U(x,y,z)H(x,y,z)ax4x0U(x,y,z)H(x,y,z) ay4y0U(x,y,z)Z(x,y,z)a4z将磁位表达式代入可得

mx[2x2y2z2]50rHax(x,y,z)dv 4Vmy[3xy]mz[3xz]r5r5my[2y2x2z2]50rHay(x,y,z)dv

3.4 湘教版数字地球学案 篇3

学习目标

在获取和应用数字地球的相关知识的过程中,理解数字地球的含义,锻炼学生搜集地理信息的能力,以及对地理知识进行分析、提取、整理的技能。

激发学生运用信息技术探究,解决地理问题的兴趣,提高学生对环境、资源、人口问题的整体认识,形成全球意识。

学习重点1、2、理解数字地球的定义,特点 理解数字城市的意义

学习难点 明确3S技术的概念和区别

一、数字地球的含义

1、概念:数字地球是 的地球——地球的。数字地球将有关地球上每一点的信息,按地球的地理坐标加以整理,然后构成一个全球的。

2、建立数字地球的关键技术、、、、、。

二、数字地球与我们的生活

典型例题

1、阅读下列材料,回答:

1999年,首届“数字地球”国际会议在北京召开。专家认为,“数字地球”是地图测绘、航空卫星遥感、探空和深钻的深化,是对地测绘系统(EOS)、全球定位系统(GPS)与地理信息系统(GIS)的综合,实现地球圈层间的物质流、能量流与信息流数据的集成,从而对全球化问题进行广泛研究。

以农业为例,它对农业信息遥感、太空农业等方面具有广阔的研究前景。一些国家利用资源卫星进行农业资源调查、作物长势和产量监测等。例如,美国利用资源卫星在估计本国小麦产量的同时,还对其他国家小麦产量进行估测,根据所得数据制定生产布局、储运、加工等计划,确定对外贸易策略,由此每年可获利数亿美元。

(1)根据材料推断,“数字地球”相关技术在“我国农业可持续发展”方面可作哪些工作?(2)在全球问题的研究中,除农业外,还有哪些领域可以利用“数字地球”的相关技术?

解析:“数字地球”是信息革命的产物,随着信息产业的高速发展和相关技术的不断创新,人类地域的信息联系将日趋紧密,并逐步真正形成一个“地球村”。信息产业的发展,将成为地理科学密切关注、运用、研究的重要领域。本题主要考查学生对“数字地球”有关技术的初步认识,大概了解“数字地球”在测绘、遥感、全球定位、地理信息等方面运用的情况。解答本题时,要重在阅读理解所给材料中的重要信息,然后结合我国农业可持续发展进行分析。要弄清“数字地球”技术在“我国农业可持续发展”应用中的作用,就要先分析影响农业生产的自然条件、社会经济条件和农业技术改革对我国农业的影响,其次,要分析“数字地球”相关技术对这些影响因素所能产生的良性影响,消除不良影响,实现农业的可持续发展。现代在全球问题的研究中,可以运用“数字地球”相关技术解决好多问题。如全球温室效应;海平面上升;臭氧层破坏;地震分布带;矿产监测;地形遥感;全球生态环境监测;全球气候预报;生物分布、生产结构监测等。答案:(1)利用遥感技术进行农业资源利用状况调查;合理布局农业;监测预报气候变化,提高抗灾能力;预测农产品的分布与产量,制定农业生产计划,确定对外贸易战略;监测和预报农业环境污染状况,提出解决措施等。(2)全球性问题监测,如全球温室效应、海平面上升、臭氧层破坏、酸雨分布及影响程度;地形遥感;地震分布;全球生态环境监测;全球气候预报;生物分布;生产结构监测等。

基础练习

一、选择题

1、关于数字地球的理解正确的是

A、数字地球是通过数字对真实地球的一种反映 B、数字地球是地理信息系统技术的延伸

C、数字地球只有通过网络才能实现全球信息共享

D、数字地球的核心思想是用数字来统一处理地球问题

2、数字地球要实现全球信息共享只有通过 A、网络 B、电视 C、电脑 D、电话

3、下列说法正确的是 A、“数字地球”是魏格纳提出的 B、“数字地球”是20世纪50年代原苏联最先提出的 C、数字地球的基础是全球网络与分布式存储 D、现在的国际互联网完全能满足数字地球的需求

4、虚拟环境是一种

A、仿真视景 B、模糊视景 C、真实视景 D、梦幻视景

5、目前世界上商用卫星的分辨率已达到 A、0.61米 B、0.71米 C、0.81米 D、0.91米

6、数字地球实现以后,科学家们可以 A、制定可持续发展的对策 B、控制全球气温升高 C、控制人口增长速度 D、控制全球贫富差距

7、数字地球在建设大型水库方面的作用有 A、提供当地的地质条件

B、虚拟大型水库建成后库区周围和上下游的环境变化 C、提供当地的人口迁移规模 D、提供水库的水量和水的流速

8、数字地球可以使普通百姓

①周游世界各地②接受远程教育③进行网上购物④网上求医 A、①②③④ B、②③④ C、①②③ D、①③④

二、综合题

9、什么是数字地球?数字地球的核心思想有哪些?。

能力测试

一、选择题

1、数字地球的核心思想有

①用数字化手段统一处理地球问题 ②最大限度地利用信息资源,并使普通百姓能够通过一定方式方便地获得他们想了解的有关地球的信息

③用数字统一处理地球上的所有问题

④使普通百姓能够通过一定方式方便地获得他们想了解的有关宇宙的信息 A、①② B、③④ C、①③ D、②④

2、数字地球的最大特征与依据是 A、虚拟现实技术B、摄影技术 C、航天技术D、航空技术

3、数字地球是 A、数字化的地球

B、能包容自然和人类大多数数据和信息的虚拟地球 C、无环境污染的地球 D、安全稳定的地球

4、下列说法正确的是

A、数字地球只有在安全稳定的国际环境下才能实现全球信息共享 B、数字地球是一个看不见摸不着的地球,对人类社会的发展意义不大

C、现在的国际互联网由于用户量的剧增和自身技术的限制,无法满足数字地球的需求 D、数字地球是人类对目前所生活地球的一种理想化境界

5、有关数字地球的应用,正确的是 A、可以控制犯罪的发生

B、可为国家大型工程决策提供重要的参考数据 C、可以控制降水发生的时间和地点 D、可以控制地质灾害的发生

二、综合题

数字地球信息技术 篇4

PS合成教程:背景是地球通讯数字影像的科...

。为了突出科技类主题,画面的背景等都是用一些地球及通讯数字影像等较作为渲染。画面的色调以蓝色为主可以更好突出通讯高科时代的含义。

最终效果

1、首先创建一个新文档,然后使用渐变工具填充一个线性渐变效果,颜色为#000000到#245574,如图所示,

2、创建一个新图层,然后使用柔角画笔,在右上角和左下角画两个白色的大圆点,然后设置图层混合模式为叠加,如图所示。

上一篇:管理意义及作用下一篇:工程倒塌