矿井通风系统设计

2023-01-29 版权声明 我要投稿

第1篇:矿井通风系统设计

矿井通风系统优化设计初探

【摘 要】近年来,随着矿井开采时间的延长、开采水平的延伸及深度的增加,矿井通风能力已严重不足,现有通风系统已不能满足矿井安全生产的需要, 必须采取措施优化改造矿井通风系统,以保证通风系统达到安全、可靠、稳定、高效的目的,为井下安全生产保驾护航。文章分析了通风系统优化设计的基本原则,提出了通风系统优化设计的对策建议,主要包括:制定通风系统的改造方案、系统的优化设计、应用计算机软件系统等,以期为同仁们提供参考借鉴。

【关键词】矿井;通风系统;优化设计  通风系统是保障矿井安全生产和井下工人的劳动安全、身体健康的重要措施。所谓矿井通风系统,是指依靠通风动力向矿井回采工作面、掘进工作面及其他用风作业地点供给新鲜空气、排出污浊空气的通风网路。近年来,随着矿井开采时间的延长、开采水平的延伸及深度的增加,矿井通风能力已严重不足,现有通风系统已不能满足矿井安全生产的需要,存在着进风距离长、通风阻力大、通风困难、内部漏风量大、地温高,主扇效能低、耗能大、通风费大大增加等各种各样的危险因素,致使矿井存在严重的安全隐患,对煤矿的安全生产构成了严重威胁。因此,当前必须采取有效的措施,优化改造矿井通风系统,以保证通风系统达到“安全、可靠、稳定、高效”的目的,为井下安全生产提供保障。笔者现结合工作实践,分析了通风系统优化设计的基本原则,并提出了礦井通风系统优化设计的对策建议,以期为同仁们提供参考借鉴。

1.通风系统优化设计的基本原则

矿井通风系统的优化设计应本着“安全可靠、技术先进、经济合理、便于管理”和充分利用原有通风系统的原则,结合矿井的开拓与开采需要,贯彻党的技术经济政策,遵守《煤矿设计规范》、《煤矿安全规程》等法律法规,符合国家颁布的矿山安全规程、技术操作规程、设计规范和有关的规定,建立一个科学的通风系统,保证生产所需充足、稳定的风量,减少在运行后对通风系统的调节次数,使得整个网络运行保持相对稳定的状态。

2.通风系统优化设计的对策建议

2.1 制定通风系统的改造方案

矿井通风系统优化设计是一项系统而复杂的工程,必须制定切实可行、经济合理的改造方案,才有可能实现预期的效果,这是通风系统优化设计的前提和保障。不同的矿井实际情况千差万别,不同的时期情况也有很大的差别,因此,在进行矿井通风系统优化设计之前,首先要从实际出发,彻底了解清楚现在煤矿生产及通风系统的实际情况。对生产中通风现状及存在的问题进行全面调查和具体的分析,摸清矿井生产能力、矿井开拓方式、采区布置,矿井通风的阻力分布、漏风情况和风机性能,以及瓦斯、地质、气候条件等方面的情况,在了解矿井生产和通风基本情况以及整个矿井发展的远景规划的基础上,制定科学的改造方案。实现有计划、有步骤的改造,充分利用原有的通风系统、井巷和通风设备,发挥各个系统的通风能力,改善矿井通风条件。此外,由于矿井的产量经常波动、采区的更替以及地质条件变化的原因,在制定改造方案时,应对通风能力留有一定的余地,选取一定的备用系数。

2.2 系统的优化设计

风井作为特殊运输通道,承担着综采设备下井任务,风井改造和新风井选择应实现矿井回风路线短,通风阻力小;有利于井下开拓、准备和回采巷道的布置等目标。风道断面的大小直接影响着通风能力及其经济性,各矿可根据积累的资料计算出不同风量时的通风断面,选取最优的经济断面;为减少局部风阻,应尽量避免断面的突然变化,转弯处内外侧要做成圆弧形,尽量避免井巷直角转弯或大于90°的转弯。根据矿井通风所需的风量、总阻力、自然风压等科学选择和合理布局风机,以缩短通风路线,降低通风阻力,从而满足矿井通风的需要。风机应具有结构紧凑、运转平稳、维护方便等特点,以保证风机在整个运转期间高效运转。通风系统改造期间,加强对矿井通风管理工作,配备相应的通风技术人员和检测仪器等,随时检查通风设施和风流情况,一旦发现问题,及时整改。

2.3 应用计算机技术

计算机技术的应用是优化矿井通风系统的一个重要手段和方法, 当前以计算机作为辅助手段来对矿井通风系统进行改造已是大势所趋。矿井通风的优化设计是一个非常繁杂的工作,利用3D图形技术、Visual C++语言等计算机技术研究开发适合煤炭生产企业使用的矿井通风计算机模拟系统,可简化工程量,通过再现通风网络现状,加强对通风系统的检测,预测网络变化情况,从而给出最佳的优化设计方案。

3.结语

矿井通风系统是矿井的一个重要组成部分,被称为矿井的“心脏”与“动脉”。由于采矿活动会影响该系统的稳定性,一旦系统失效不仅会导致生产停滞,而且会引起安全事故发生,后果十分严重。通过优化通风系统,可以降低矿井的通风阻力,将足够的风量送往井下用风地点,从而提高矿井通风可靠性、稳定性,增强矿井抗灾能力,为矿井安全生产提供可靠的保障,同时也降低了矿井通风费用,产生巨大的综合经济效益。矿井通风优化设计的优劣直接关系到整个矿井的安全生产、灾害防治及经济效益,因此我们一定要实事求是,根据不同矿井的实际情况优化设计通风系统,为井下安全生产保驾护航。

【参考文献】

[1]国家安全生产监督管理局.国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出社,2004.

[2]卢义玉,李晓红.矿井通风与安全[M].重庆:重庆大学出版社,2006.

[3]谢贤平,赵梓成.矿井通风系统优化决策模型研究与应用[J].中国矿业,1993,2(4):76-79.

[4]赵梓成,谢贤平.矿井通风系统优化研究方向[J].有色金属,1991,(1):39-42.

[5]贾廷贵.五龙矿通风系统优化改造研究[D].辽宁工程技术大学硕士论文,2005.

作者:段保华 尚成 王根卿 房本义

第2篇:矿井主要通风机风量测试系统设计

摘要 在分析了传统矿用主要通风机在测试风量数据时存在的如布线困难、数据处理不及时等问题的基础上,提出应用GPRS技术来解决这些问题的实现方法。详细介绍了GPRS应用于该系统的设计与实现方法,并对系统软硬件设计做了详尽描述。

关键词 矿井主要通风机 风量 GPRS

目前在采集矿用主要通风机风量参数时所选用的仪器仪表,多采用有线方式进行数据传输[1-3]。有线传输方式有着速度快、稳定可靠的优点,但其在矿硐布线的过程中需要架设仪器、铺设电缆,难度较大,不利于人工现场作业;通常所测得的数据大多只能直接打印输出,在分析和处理数据的时候还需要手工重新录入,即浪费了人力、物力,又给后续工作带来很大不便[4]。

针对以上风机风量参数测试中传统仪器测量存在的诸多缺陷,本系统将从数据传输方式、系统构成上进行相应的改进。首先,将有线传输改为无线传输,GPRS模块由于具有永远在线、自由切换、传输速率高、计费灵活便宜等优点而有着极为广泛的应用[5,6]。因此选用GPRS无线传输技术作为系统的传输方式。其次,对于系统整体结构而言,改变以往单一仪器工作的方式,将测得的风速数据通过无线传输技术送到远程中心计算机当中,从而构成一个测试系统,这样既可以对采集的数据进行相应的分析处理操作,又可以永久保存,随时调取打印,还能通过互联网能实现资源共享。

1 系统设计

为了得到准确的矿用主要通风机风量值,要对矿硐中同一截面多点位置的风速进行采集,本系统在GPRS网络成熟发展和高密度的网络覆盖的基础上,利用现有的资源,以最低的投资,建立一个矿用主要通风机风量无线传输系统。

系统主要包括现场部分、公共网络部分和远程测试中心三部分,且具有三层网络结构。现场部分主要由风速传感器、数据采集板、GPRS无线传输板组成。数据采集板通过不断唤醒风速传感器测量风速数据,并在数据采集板中的控制部件单片机进行处理、存储。当数据的发送时间到时,数据采集板就立即通过标准串行口电路将数据送到GPRS无线传输板上,经过对数据的打包、封装发送到中国移动的GPRS网络及Internet网络上,最终将采集到的风速数据以无线传输方式发送到远程测试中心计算机上,从而完成数据的永久保存、打印输出,并可通过局域网实现共享。

2 系统硬件设计

本系统所设计的系统硬件由数据采集板、GPRS无线数传板、串行通信模块和电源模块四部分组成。系统硬件结构图如图1所示。

系统硬件完成的功能是当数据采集板完成对风速数据的采集与处理工作后,将获得的风速数据通过标准串行口模块输送到GPRS无线数传板上,并在GPRS无线数传板内置的嵌入式处理器进行处理以及协议的封装,然后发送到GPRS网络以及Internet网络上,最终由远程测试中心计算机通过查询方式接收传来的风速数据,同时完成风速数据的显示、存储和输出。

2.1 数据采集板片选及硬件电路图

数据采集板选用的风速传感器是采用三杯式光电风速传感器,当风吹动三杯时,带动光码盘旋转利用发射管和接收管光电作用使之产生与风速相对应的电脉冲信号。将获得的电脉冲信号经过放大,整形送数据采集板中的多路接口电路,进行风速的采样,然后由单片机按一定的时间进行循环扫描,得到各路风速值,从而完成数据采集板的风速数据采集工作,并将采集到的风速值通过标准的串口电路模块送到GPRS无线数传板中。

(1)单片机控制模块:

在数据采集板中选用AVR系列的ATmega128L-8AU单片机作为数据采集板的控制核心部件。数据采集板上的单片机控制模块需用引脚电路图如图2所示。

(2)风速传感器及数据信号转化模块

本系统选用三杯式风速传感器,使用环境在-20oC~50 oC。该风速传感器探头引线桔黄色“+”为+5V电源,蓝为“-”为接地和灰“信号”为产生脉冲信号端。风速传感器产生10个脉冲对应风速为1.0m/s。

每个风速传感器所产生的脉冲信号通过74LS04进行TTL电平转换后直接接到Atmega128的INT0-INT7和PD4口上。分别对应关系为1-8号风速传感器接到Atmega128的专门用于信号输入的端口INT0-INT7;9号风速传感器接到Atmega128的PD4。从而完成9路风速数据的采集过程。其数据信息转化模块硬件电路及接口电路如图3所示。

(3)串口通信模块

在系统串口通信模块中,串行口采用9芯标准RS-232C接口,所用到的引脚为2号接收数据RXD端和3号发送数据TXD端。由于RS-232C的电平与TTL电平不兼容,在单片机的串口和单片机接口之间加入了电平转换芯片MAX232。

(4)电源模块

电源模块采用AC-DC,可以外接220V电源,该电源模块将220V电源转换为系统所需的+12V和+5V电源。

2.2 GPRS无线传输板片选及硬件电路图

GPRS无线数传板的功能是接收地面测试中心发送的指令,并进行相应的处理,然后通过串行通信模块送入单片机控制模块中进行数据处理,串行通信模块具有电平转换和串口通信的功能,SIM卡的功能是存储数据和在安全条件下完成客户身份鉴定和客户信息加密算法的全过程。

(1)单片机控制模块

单片机控制模块仍然采用AVR系列的ATmega128L-8AU单片机作为GPRS无线传输板的控制核心部分。其完成的功能有两种:第一,是将数据采集板上采集到的风速数据进行处理;第二,对GPRS无线传输板进行参数初始化。

(2)GPRS模块

基于提供一种简便实用的GPRS 通讯解决方案的需求,本系统选取SIMCOM公司生产的SIM300无线传输模块。它内嵌了TCP/IP 协议栈,并简化了接口设计,屏蔽了GPRS 模块的复杂接口方式和接口协议栈,取而代之的是通用的232 接口和简单的AT 命令交互界面。采用3.4V-4.5V电压供电,具有短消息服务、语音通话、数据传真等功能。对外可提供天线接口、模拟音频接口、异步串行接口、SIM卡接口等,采用AT指令进行控制,工作温度范围大,抗干扰能力强,适用于工业应用场合。

GPRS无线传输模块由SIM300无线数传模块、SIMCARD模块和SMA天线三部分组成。SIM300无线数传模块硬件电路图如图4所示。

2.3 远程监测中心设计

远程测试中心是一台与Internet网络相连的计算机,通过网络接口与数据采集终端进行GPRS数据传输。远程测试中心要求能安装并运行矿井主要通风机测控服务程序软件,能连接打印机等输出设备。同时要满足连接Internet网络的要求,并配有固定的IP地址。

3 系统软件设计

系统软件采用模块化设计,每个模块实现一个功能或一个协议,便于移植。本系统的软件设计分两个部分,(1)数据采集板的单片机数据采集处理程序、控制GPRS无线数据传输模块的数据收发程序;(2)远程测试中心主机网络应用软件。其中,下位机部分采用C语言程序实现,采用AT命令初始化和控制GPRS模块;上位机的应用软件采用C#语言程序实现,数据库采用ACCESS完成。

数据终端系统的软件设计的关键部分是单片机与GPRS模块的通信,两者间需要定义通信协议、规定数据传输的帧格式,通过AT指令实现GPRS网络的附着、PPP激活、Internet的接入及数据传输。

3.1 自定义数据帧格式

根据系统实际应用定义数据帧格式,如表1所示。

3.2 GPRS登录、数据上报以及下发采集命令功能设计

本系统中,发送帧和确认帧结构与表1相同,根据控制域C内容的不同来确定具体完成的功能。

3.2.1 GPRS登录平台功能设计

(1)GPRS登录、退出登录、在线保持(心跳)。

功能码AFN=02H。GPRS登录状态由数据域(一个字节)表示。其中,F0表示登录,F1表示退出登录,F2表示在线保持(心跳)。其格式如表2所示。

(2)GPRS登录流程

GPRS DTU(Data Terminal Unit)是GPRS技术的一种产品,它可以实现数据的透明传输及协议传换,开发用户不用十分了解DTU的传输协议,只要按照自己的协议传输就可以了,因此该系统选用GPRS DTU(以后简称DTU)进行数据传输。

登录基本流程如下:DTU在与数据中心服务器建立TCP连接后,立即发送登录认证帧(消息)。数据中心服务器接收到登录消息后进行认证,如为合法DTU,则发送相同内容的确认帧给DTU。DTU接收确认帧后确认登录完毕,从而可以进行数据传输。

(3)心跳保持流程

DTU在登录成功后,定时向数据中心发送心跳帧;数据中心接收后,回送心跳确认帧。

3.2.2 数据上报平台功能设计

(1)上报九个测试点的数据

功能码AFN=24H。数据域传输的是由9个传感器测得的风速数据,数据域定义为每个测试点的数据用2个字节表示,即用9*2=18个字节的BCD码表示。数据上报平台的格式如表3所示。

(2)测试数据在数据域中的格式

系统9个风速传感器所测得的数据,均由两个字节组成(整数+小数),且整数在前小数在后。单位为m/s,取值范围为0.1-35m/s。

3.2.3 定时下发采集命令功能设计

当系统定时下发采集命令时,功能码AFN=54H。响应帧采集9个测试点的数据。发送帧如表4所示,响应帧如表5所示。

3.3 GPRS模块参数设置

当设置连接方式时,功能码AFN=10H。本系统在对GPRS无线传输板进行参数设置时,需要设置TCP/UDP方式选择、IP地址、端口号、心跳时间和上报时间。其中,数据域中TCP/UDP方式选择为1个字节;IP地址为4个字节;端口号为2个字节;心跳时间为1个字节;上报时间为2个字节。

(1)设置连接方式

当设置连接方式时,功能码AFN=10H。则发送帧格式见表6所示。响应帧格式见表7所示。其中,响应帧格式的数据域为1字节,当数据域=5AH时表示设置成功。

(2)查询连接方式

当查询连接方式时,功能码AFN=50H。则发送帧格式见表8所示。响应帧格式见表9所示。

3.4 无线数据传输的软件流程

(1)对远程测试中心计算机进行初始化:将主机建立网络连接,分配独立的IP地址,设置好通信波特率和通信端口,然后展开网络侦听;

(2)GPRS无线数据传输模块参数设置:将端口号、通信波特率和IP地址与远程测试计算机同步,然后进行Modem拨号,将移动终端的类别设置为GPRS上网模式;

(3)GPRS无线Modem将测试中心IP地址存入数据终端的配置地址域,数据终端向远程测试中心发送配置后的数据帧,远程测试中心回应正确的数据帧,并建立无线传输连接。

(4)数据传输过程:由于GPRS网络支持TCP/IP协议,所以通过收发IP数据包来传送数据。此时,远程数据终端系统向GGSN发送的所有包含IP报文的PPP报文都会被传送给Internet网中相应的IP地址,从而完成终端系统向远程测试中心通过互联网传输数据段的过程。

4 结论

本系统集数据采集技术、GPRS无线通信技术、数据库技术于一体,实现矿用主要通风机风量测试数据的采集、无线传输等功能。系统设计具有三层网络结构,编程模块化的特点,为以后系统的扩展提供了很大的方便。

根据现场实际情况的要求对系统的技术方案进行了详细的设计。

(1)在数据传输方式上,采用GPRS无线传输方式进行数据传输。从而解决了有线传输在布线、架设上存在的缺陷,节省了人力。

(2)在系统整体结构上,采用三层网络结构,将测得的风速数据通过无线传输到远程中心计算机中,此时对测得的数据可以方便的进行相应的分析处理操作,既可以永久保存又可以随时调取打印,还可通过互联网实现资源共享。这样即解决了直接打印数据需要再次手工录入的尴尬,又解决了数据存储的困难。

参考文献

[1] 章庆丰,贾宝山,葛少成.DF-3C多路风速仪在主通风机性能测定中的应用[J].矿业安全与环保,2003,30(1):51-52

[2] 于栋,张新民.矿用主通风机风量测试方法的研究[J].煤炭工程,2007,5:84-85

[3] 徐晓宇.ST-JK06系列智能监控终端在矿井风机监控系统中的应用[J].煤矿开采,2007,12(4):95~97

[4] 杨昆,吴东旭. GPRS在矿用主要通风机风量监测系统中的应用[J].微计算机信息,2010,8(1):31-33

[5] R.J.(Bud)Bates.通用分组无线业务(GPRS)技术与应用[M].北京:人民邮电出版社,2003, 17-35

[6] 甄雁翔.基于GPRS的钻孔水文无线遥测系统[D].山东科技大学

作者:杨昆 吴东旭

第3篇:矿井通风机系统的构成及主要参数的监测系统设计

摘 要:矿井主通风机主要担负着整个矿井或矿井某一区域的通风任务,由于主通风机需要保持长期持续的运转状态,如果出现问题直接影响煤矿的安全,所以,必须通过对风机、温度、振动参数等各种参数采集与监测以达到控制风机正常运转的目的,主要包括根据实际情况对风机的选型、温度传感器的选择、风量的监测方法和风机振动情况的监测等。

关键词:风机 参数 监测

1 矿井通风系统的基本构成

该系统的主通风机有两台,它们之间没有主次之分,两台通风机轮流使用,这样就能够保证一旦主通风机出现故障时,这个通风机系统不至于瘫痪,既能使设备得到及时的保养,又能使系统可靠运行,这种结构就是双冗余结构。风压、温度、瓦斯浓度等数据是该系统控制的重要依据。

该系统主要由两部分构成,即上位机系统和下位机系统。西门子公司WinCC组态软件是上位机系统的控制软件。西门子s7-300作为下位机的处理核心,负责完成各种任务,如数据采集、数据输出和控制算法等,适用于大量的信息处理和高实时性的煤矿通风机监控系统。其中有4个变频器,主要作用是接受指令,调节风机旋转频率,达到控制目的;6个EM277扩展模块,主要作用是将数字量转化为模拟量的模拟量输入模块;两个风压传感器,主要作用是测量矿井下风量的大小;两个温度传感器,主要作用是测量电机的轴承温度和整个运行环境的温度;两个瓦斯传感器,监测巷道内的瓦斯浓度。

2 矿井主通风机的选择

2.1 按气体流动方向的不同,通风机的分类

(1)离心式风机:空气流入风机叶轮,离心力使其被轴向压缩,然后径向流动。

(2)轴流式风机:气体沿着主承轴进入到叶片通道,在旋转的过程中,形成圆柱形的气流,气体在其上面流动。

(3)混流式风机:气体在进入叶道时,不与主轴平行,而是有一定角度,这样在旋转式就形成锥形气流。

(4)横流式风机:气体以垂直于主轴的方向进入叶道,旋转时气体受到叶片作用产生压力。

对于我国的大中型矿井来说,采用较多的还是轴流式通风机,主要是原因是该系列风机具有结构简单,稳固可靠、噪声小和功能选择范围广等特点。

2.2 对旋式轴流风机具有的优缺点为:

(1)传动的效率十分高。

(2)对旋轴流式风机最高压力点值较高。

(3)静压力的效率高。

(4)对旋式轴流风机能够逆向送风。

2.3 矿井主通风机的有关参数的计算和处理

2.3.1 风量

通风机风量就是在单位时间内,气体流入通风机的体积。

2.3.2 风压

在通风机系统中,风压就是单位体积内,空气所具有的势能。风压可分为全压、动压和静压。

2.4 风机的特性曲线

随着通风机内气体流量的变化,通风的效率、风压和轴功率也发生变化,它们之间存在一定的关联。由此得到的曲线就是通风机的特性曲线(图1)。

3 矿井主通风机主要传感器的选择

能够确保煤矿生产一直处于一个安全稳定的条件下,即风机运行过程中的,必须实时监测,主要包括风机的后轴承温度、负压的大小、风速的大小等。

3.1 温度传感器

在整个煤矿通风机监测系统中,对温度的监测是其中一项参数指标。铂热电阻是热电阻中应用比较广泛的,它在复杂环境下和高温状态下工作稳定,铂热电阻制成标准温度的基准仪,其温度测量区间在-200 ℃~+600 ℃。Ptl00是该系统选用的温度传感器。

通风机电机运行时的轴承温度,它的实时数据也是必须采集的一种参数。整个温度数据采集的过程,先由温度传感器测量温度,将采集来的数据转化成可传输的信号,经过信号整定,再将模拟量转化为数据量,最后传给PLC。

3.2 风机振动参数的测量

在风机运行过程中产生振动,如果振动轻微,不会对系统产生影响。但振动的幅度太大或者振动不规律,就可能造成风机停机或损坏。在测量振动时,要选取合理的测量量,如振动位移、振动加速度和振动速度等。

根据系统的要求,选取风机主轴承的振动速度作为反映测量振动参数好坏的依据。振动速度快则噪音大,振动速度慢则噪音小。在通风机监控系统中,对风机主轴承振动的测量,分为水平和垂直振动两种。

通过历史使用经验法可以知道,如果用振动位移作为测量参量,就应该使用电涡流式传感器;如果用振动速度作为测量参量,就应该使用速度式传感器;如果用振动加速度值作为测量参量,就应该使用加速度式传感器。

3.3 风机风量的测量

风量是监测通风机运行状况好坏的一个重要指标。要测量风量主要有两个途径,一个是通过风速来测量风量,另一个是通过测压管来测量风量。

3.3.1 风速监测风量

通过测量风速的大小来确定风量的大小,所以要得到风量的测量值,只要测量出风速的大小就可以了,这样就需要使用风速传感器。

在矿井中需要测量风速的地方主要有:通风机的井口、每一个巷道和各种风口等处。这些地方的风速大小都是通过GFWl5风速传感器测量出来的,最后通过这些测量数据来计算风量的大小,调整矿井通风机的运行状态,保证矿井的安全。

3.3.2 测压管监测风量

应用测压管监测风量,其原理是只要能够测出管内一点的动压值,根据下面的计算公式就能够算出这一点的风速。这是一种十分简便可行的方法。

计算公式如下:

4 結语

该文主要介绍了矿井主通风机的主要结构特点,通过对通风机性能特性的比较,选择了对旋式轴流通风机作为该系统的矿井主通风机。该文还详细了介绍了实时监测方法的特点和功能,分析了矿井主通风机的各种实时运行参数的监测方法,选取合理的传感器构成整个风机系统。

参考文献

[1] 安赛,林柏泉.主要通风机远程监测系统的设计[J].工矿自动化,2012(1):4-7.

[2] 张红.热电偶测温系统误差剖析及处理对策[J].安徽工程科技学院学报:自然科学版,2010(2):63-66.

作者:丛高影

第4篇:讲稿矿井通风系统及通风设计

矿井通风系统

主要内容:

一、矿井通风系统——基本任务、类型及其适用条件、主要通风机的工作方式与安装地点、通风系统的选择;

二、采区通风——基本要求、采区进风上山与回风上山的选择、采煤工作面上行风与下行风、采煤工作面通风系统;

三、通风构筑物及漏风——通风构筑物、漏风及有效风量、减少漏风措施;

四、矿井通风设计——矿井通风设计的内容与要求、优选通风系统、矿井风量计算、阻力计算、通风设备选择

一、矿井通风系统

矿井通风系统是矿井通风方式、通风方法和通风网路的总称。

(一)矿井通风系统的基本任务

矿井通风系统的基本任务如下:

(1)供给井下足够的新鲜空气,满足人员对氧气的需要。

(2)冲淡井下有毒有害气体和粉尘,保证安全生产。

(3)调节井下气候,创造良好的工作环境。

(二)矿井通风系统的类型及其适用条件

按进、回风井在井田内的位置不同,通风系统可分为中央式、对角式、区域式及混合式。

1.中央式

进、回风井均位于井田走向中央。根据进、回风井的相对位置,又分为中央并列式和中央边界式(中央分列式)(见图1)。

图1 2.对角式

(1)两翼对角式

进、回风分别位于井田的两翼。

进风井大致位于井田走向的中央,两个回风井位于井田边界的两翼(沿倾斜方向的浅部),称为两翼对角式;如果只有一个回风井,且进、回风分别位于井田的两翼称为单翼对角式。

(2)分区对角式

进风井位于井田走向的中央,在各采区开掘一个不深的小回风井,无总回风巷。

两翼对角式与分区对角式通风系统如图2所示。

图2 3.区域式

在井田的每一个生产区域开凿进、回风井,分别构成独立的通风系统。

4.混合式

由上述诸种方式混合组成。例如,中央分列与两翼对角混合式,中央并列与两翼对角混合式等等。

(三)主要通风机的工作方式与安装地点

主要通风机的工作方式有三种,即抽出式、压入式和压抽混合式。 1. 抽出式

如图3所示,主要通风机安装在回风井口,在抽出式主要通风机的作用下,整个矿井通风系统处在低于当地大气压力的负压状态。当主要通风机因故停止运转时,井下风流的压力提高,比较安全。 2.压入式

如图4所示,主要通风机安装在入风井口,在压入式主要通风机的作用下,整个矿井通风系统处在高于当地大气压的正压状态。在冒落裂隙通达地面时,压入式通风矿井采区的有害气体通过塌陷区向外漏出。当主要通风机因故停止运转时,井下风流的压力降低。

图3

图4

3.压抽混合式

如图5所示,在入风井口设一风机做压入式工作,回风井口设一风机做抽出式工作。通风系统的进风部分处于正压,回风部分处于负压,工作面大致处于中间,其正压或负压均不大,采空区通连地表的漏风因而较小。其缺点是使用的通风机设备多,管理复杂。

图5

(四)矿井通风系统的选择

根据矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、矿井瓦斯涌出量、煤层自燃倾向性等条件,在确保矿井安全及兼顾中、后期生产需要的前提下,通过对多个可行的矿井通风系统方案进行技术经济比较后确定。

中央式通风系统具有井巷工程量少、初期投资省的优点,因此矿井初期宜优先采用。

有煤与瓦斯突出危险的矿井、高瓦斯矿井、煤层易自燃的矿井及有热害的矿井,应采用对角式通风或分区对角式通风。

当井田面积较大时,初期可采用中央式通风,逐步过渡为对角式或分区对角式。

矿井通风方法一般采用抽出式。当地形复杂、露头发育老窑多、采用多风井通风有利时,可采用压入式通风。

二、采区通风系统

采区通风系统是矿井通风系统的主要组成单元, 包括采区进、回风和工作面进、回风巷道组成的风路连接形式及采区内的风流控制设施。

(一)采区通风系统的基本要求

(1)每一个采区都必须布置回风道,实行分区通风。

(2)采煤工作面和掘进工作面应采用独立的通风系统。有特殊困难必须串联通风时,应符合有关规定。(串联通风,必须在被串联工作面的风流中装设甲烷断电仪,且瓦斯和二氧化碳浓度都不得超过0.5%,其他有害气体浓度都应符合《煤矿安全规程》的规定)

4

(3)煤层倾角大于12°的采煤工作面采用下行通风时,报矿总工程师批准。 (4)采煤工作面和掘进工作面的进风和回风,都不得经过采空区或冒落区。

(二)采区进风上山与回风上山的选择

上(下)山至少要有两条;对生产能力大的采区可有三条或四条上山。 1.轨道上山进风,运输机上山回风 2.运输机上山进风、轨道上山回风

比较:轨道上山进风,新鲜风流不受煤炭释放的瓦斯、煤尘污染及放热影响,输送机上山进风,运输过程中所释放的瓦斯可使进风流的瓦斯和煤尘浓度增大,影响工作面的安全卫生条件。

(三)采煤工作面上行风与下行风

上行风与下行风是相对于进风流方向与采煤工作面的关系而言的。如图6所示,当采煤工作面进风巷道水平低于回风巷时,采煤工作面的风流沿倾斜向上流动,称上行通风,否则称下行通风。

图6

优、缺点:

(1)下行风的方向与瓦斯自然流向相反,二者易于混合且不易出现瓦斯分层流动和局部积存的现象。

(2)上行风比下行风工作面的气温要高。

(3)下行风比上行风所需要的机械风压要大。

(4)下行风在起火地点瓦斯爆炸的可能性比上行风要大。

(四) 采煤工作面通风系统

1.U形与Z形通风系统(见图7)

图7 2.Y形、W形及双Z形通风系统(见图8)

图8 3.H形通风系统(见图9)

图9

三、通风构筑物及漏风

矿井通风系统网路中适当位置安设的隔断、引导和控制风流的设施和装置,以保证风流按生产需要流动。这些设施和装置,统称为通风构筑物。

(一)通风构筑物

风构筑物分为两大类:一类是通过风流的通风构筑物,如主要通风机风硐、反风装置、风桥、导风板和调节风窗;另一类是隔断风流的通风构筑物,如井口密闭、挡风墙、风帘和风门等 。

1. 风门

风门:在需要通过人员和车辆的巷道中设置的隔断风流的门

安设地点:在通风系统中既要断风流又要行人或通车的地方应设立风门。在行人

6 或通车不多的地方,可构筑普通风门;而在行人通车比较频繁的主要运输道上,则应构筑自动风门。风门表示方式、调节风门表示方法如图10所示。

图10

设置风门的要求:

(1)每组风门不少于两道,通车风门间距不小于一列车长度,行人风门间距不小于5 m。入排风巷道之间要需设风门处同时设反向风门,其数量不少于两道。

(2)风门能自动关闭,通车风门实现自动化,矿井总回风和采区回风系统的风门要装有闭锁装置,风门不能同时敞开(包括反风门)。

(3)门框要包边沿口,有垫衬,四周接触严密,门扇平整不漏风,门扇与门框不歪扭。门轴与门框要向关门方向倾斜80°至85°。

(4)风门墙垛要用不燃材料建筑,厚度不小于0.5 m,严密不漏风。墙垛周边要掏槽,见硬顶、硬帮与煤岩接实,墙垛平整,无裂缝、重缝和空缝。

(5)风门水沟要设反水池或挡风帘,通车风门要设底坎,电管路孔要堵严。风门前后各5 m内巷道支护良好,无杂物、积水和淤泥。 2.风桥

设在进、回风交叉处而又使进、回风互不混合的设施称为风桥。

当通风系统中进风巷道与回风巷道需水平交叉时,为使进风与回风互相隔开,需要构筑风桥。风桥按其结构不同可分为以下三种:

(1)绕道式风桥:开凿在岩石里,最坚固耐用,漏风少。(见图11) (2)混凝土风桥:结构紧凑,比较坚固。(见图12)

图11

图12

(3)铁筒风桥:可在次要风路中使用。

7 3.密闭

密闭是隔断风流的构筑物,设置在需隔断风流、不需要通车行人的巷道中(见图13)。密闭的结构随服务年限的不同而分为两类:

(1)临时密闭,常用木板、木段等修筑,并用黄泥、石灰抹面。

(2)永久密闭,常用料石、砖、水泥等不燃性材料修筑。

图13 4.导风板

在矿井中应用以下几种导风板:

(1)引风导风板。 (2)降阻导风板。 (3)汇流导风板。

(二)漏风及有效风量 1.漏风及其危害

矿井有效风量:矿井中流至各用风地点,起到通风作用的风量总和。

漏风:未经用风地点而经过采空区、地表塌陷区、通风构筑物和煤柱裂隙等通道直接流(渗)入回风道或排出地表的风量。

漏风的危害:使工作面和用风地点的有效风量减少,气候和卫生条件恶化,增加无益的电能消耗,并可导致煤炭自燃等事故。减少漏风、提高有效风量是通风管理部门的基本任务。

2.漏风的分类及原因

(1)漏风的分类

矿井漏风按其地点可分为:

矿井外部漏风(或称井口漏风):泛指地表附近如箕斗井井口、地面主通风机附近

8 的井口、防爆盖、反风门、调节闸门等处的漏风。

矿井内部漏风(或称井下漏风):指井下各种通风构筑物的漏风、采空区以及碎裂的煤柱的漏风。

(2)漏风的原因

当有漏风通路存在,并在其两端有压差时,就可产生漏风。漏风风流通过孔隙的流态,视孔隙情况和漏风大小而异。 3.矿井漏风率及有效风量率

矿井有效风量:风流通过井下各工作地点实际风量总和。

矿井有效风量率:矿井有效风量与各台主要通风机风量总和之比。矿井有效风量率应不低于85%。

矿井外部漏风量:直接由主要通风机装置及其风井附近地表漏失的风量总和。(可用各台主要通风机风量的总和减去矿井总回或进风量)

矿井外部漏风率:矿井外部漏风量与各台主要通风机风量总和之比。 矿井主要通风机装置外部漏风率无提升设备时不得超过5%,有提升设备时不得超过15%。

(三)减少漏风,提高有效风量

1.外部漏风

漏风风量与漏风通道两端的压差成正比,和漏风风阻的大小成反比。应增加地面主要通风机的风硐、反风道及附近的风门的气密性,以减少漏风。

2.内部漏风

(1)采用中央并列式通风系统时,进、回风井保持一定的距离,防止井筒漏风。 (2)进、回风巷间的岩柱和煤柱要保持足够的尺寸,防止被压裂而漏风,进、回风巷间应尽量减少联络巷,必须设置两道以上的高质量的风门及两道反向风门。

(3)提高构筑物的质量,防止漏风,加强通风构筑物的严密性是防止矿井漏风的基本措施。

(4)采空区要注浆、洒浆、洒水等,可提高压实程度,减少漏风。 (5)利用箕斗回风时,井底煤仓要有一定的煤量,防止漏风。 (6)采空区和不用的风眼及时关闭。

四、矿井通风设计

(一)矿井通风设计的内容与要求

矿井通风设计的基本任务是建立一个安全可靠、技术先进和经济合理的矿井通风系

9 统。矿井通风设计一般分为两个时期,即基建时期与生产时期,分别进行设计。

1. 矿井通风设计的内容 (1)确定矿井通风系统。

(2)矿井风量计算和风量分配。 (3)矿井通风阻力计算。 (4)选择通风设备。 (5)概算矿井通风费用。 2.矿井通风设计的要求

(1)将足够的新鲜空气有效地送到井下工作场所,保证生产和良好的劳动条件; (2)通风系统简单,风流稳定,易于管理,具有抗灾能力; (3)发生事故时,风流易于控制,人员便于撤出;

(4)有符合规定的井下环境及安全监测系统或检测措施; (5)通风系统的基建投资省,营运费用低、综合经济效益好。

(二)优选矿井通风系统

1.矿井通风系统的要求

(1)每一矿井必须有完整的独立通风系统。

(2)进风井口按全年风向频率,必须布置在不受粉尘、煤尘、灰尘、有害气体和高温气体侵入的地方。

(3)箕斗提升井或装有胶带输送机的井筒不应兼作进风井,如果兼作回风井使用,必须采取措施,满足安全的要求。

(4)多风机通风系统,在满足风量按需分配的前提下,各主要通风机的工作风压应接近。

(5)每一个生产水平和每一采区,必须布置回风巷,实行分区通风。

(6)井下爆破材料库必须有单独的新鲜风流,回风风流必须直接引入矿井的总回风巷或主要回风巷中。

(6)井下充电室必须采用单独的新鲜风流通风,回风风流应引入回风巷。

2.确定矿井通风系统

根据矿井瓦斯涌出量、矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、煤层自燃倾向性及兼顾中后期生产需要等条件,提出多个技术上可行的方案,通过优化或技术经济比较后确定矿井通风系统。

(三)矿井风量计算

1.矿井风量计算原则

矿井需风量,按下列要求分别计算,并必须采取其中最大值。

(1)按井下同时工作最多人数计算,每人每分钟供给风量不得少于4 m3。 (2)按采煤、掘进、硐室及其他实际需要风量的总和进行计算。

10

2.矿井需风量的计算

(1)采煤工作面需风量的计算

按瓦斯涌出量计算、按工作面进风流温度计算、按使用炸药量计算、按工作人员数量计算按工作人员数量计算、按风速进行验算。

(2)掘进工作面需风量的计算 按瓦斯涌出量计算、按炸药量计算、按局部通风机吸风量计算、按工作人员数量计算、按风速进行验算。

(3)硐室需风量计算

机电硐室、爆破材料库、充电硐室。 3.矿井总风量计算

矿井的总进风量,应按采煤、掘进、硐室及其他地点实际需要风量的总和进行计算。

(四)矿井通风总阻力计算

1.矿井通风总阻力计算原则

(1)矿井通风设的总阻力,不应超过3 000 Pa。

(2)矿井井巷的局部阻力,新建矿井按井巷摩擦阻力的10%计算,扩建矿井宜按井巷摩擦阻力的15%计算。

2.矿井通风总阻力计算

矿井通风总阻力:风流由进风井口起,到回风井口止,沿一条通路(风流路线)各个分支的摩擦阻力和局部阻力的总和,简称矿井总阻力,用hm表示。

对于矿井有两台或多台风主要通风机工作,矿井通风阻力按每台主要通风机所服务的系统分别计算。

在主要通风机的服务年限内,随着采煤工作面及采区接替的变化,通风系统的总阻力也将因之变化。当根据风量和巷道参数直接判定最大总阻力路线时,可按该路线的阻力计算矿井总阻力;当不能直接判定时,应选几条可能是最大的路线进行计算比较,然后定出该时期的矿井总阻力。

矿井通风系统总阻力最小时称通风容易时期。通风系统总阻力最大时亦称为通风困难时期。

对于通风困难和容易时期,要分别画出通风系统图。按照采掘工作面及硐室的需要分配风量,再由各段风路的阻力计算矿井总阻力。

计算方法:沿着风流总阻力最大路线,依次计算各段摩擦阻力hf,然后分别累计得出容易和困难时期的总摩擦阻力hf1 和 hf2。

(五)矿井通风设备的选择

矿井通风设备是指主要通风机和电动机。

1.矿井通风设备的要求

(1)矿井必须装设两套同等能力的主通风设备,其中一套备用。

(2)选择通风设备应满足第一开采水平各个时期工况变化,并且使通风设备长期高效率

11 运行。

(3)风机能力应留有一定的余量。

(4)进、出风井井口的高差在150 m以上,或进、出风井井口标高相同,但井深 400 m以上时,宜计算矿井的自然风压。

2.主要通风机的选择

(1)计算通风机风量Qf 。

(2)计算通风机风压。

(3)初选通风机。

(4)求通风机的实际工况点。

(5)确定通风的型号和转速。

(6)电动机选择

(六)概算矿井通风费用

吨煤通风成本是通风设计和管理的重要经济指标。

吨煤通风成本主要包括下列费用:

(1)电费(W1)。

(2)设备折旧费。

(3)材料消耗费用。

(4)通风工作人员工资费用。

(5)专为通风服务的井巷工程折旧费和维护费折算至吨煤的费用。

(6)采每吨煤的通风仪表的购置费和维修费用。

第5篇:第七章 矿井通风系统与通风设计

本章主要内容

1、矿井通风系统----类型、适应条件、主要通风机工作方式 、安装地点、通风系统的选择

2、采区通风----基本要求、进回风上山选择、采煤工作面通风系统

3、通风构筑物及漏风----风门、风桥、密闭、导风板;矿井漏风、漏风率、有效风量率、减少漏风措施

4、矿井通风设计----内容与要求、优选通风系统、矿井风量计算、阻力计算、通风设备选择

5、可控循环通风

第一节 矿井通风系统

矿井通风系统是向矿井各作业地点供给新鲜空气、排出污浊空气的通风网路、通风动力和通风控制设施的总称。

一、矿井通风系统的类型及其适用条件

按进、回井在井田内的位置不同,通风系统可分为中央式、对角式、区域式及混合式。

1、中央式

进、回风井均位于井田走向中央。根据进、回风井的相对位置,又分为中央并列式和中央边界式(中央分列式)。

2、对角式 1)两翼对角式

进风井大致位于井田走向的中央,两个回风井位于井田边界的两翼(沿倾斜方向的浅部),称为两翼对角式,如果只有一个回风井,且进、回风分别位于井田的两翼称为单翼对角式。 2)分区对角式

进风井位于井田走向的中央,在各采区开掘一个不深的小回风井,无总回风巷。

3、区域式

在井田的每一个生产区域开凿进、回风井,分别构成独立的通风系统。如图。

4、混合式

由上述诸种方式混合组成。例如,中央分列与两翼对角混合式,中央并列与两翼对角混合式等等。

二、主要通风机的工作方式与安装地点

主要通风机的工作方式有三种:抽出式、压入式、压抽混合式。

1、 抽出式

主要通风机安装在回风井口,在抽出式主要通风机的作用下,整个矿井通风系统处在低于当地大气压力的负压状态。当主要通风机因故停止运转时,井下风流的压力提高,比较安全。

2、压入式

主要通风机安设在入风井口,在压入式主要通风机作用下,整个矿井通风系统处在高于当地大气压的正压状态。在冒落裂隙通达地面时,压入式通风矿井采区的有害气体通过塌陷区向外漏出。当主要通风机因故停止运转时,井下风流的压力降低。

3、压抽混合式

在入风井口设一风机作压入式工作,回风井口设一风机作抽出式工作。通风系统的进风部分处于正压,回风部分处于负压,工作面大致处于中间,其正压或负压均不大,采空区通连地表的漏风因而较小。其缺点是使用的通风机设备多,管理复杂。

三、矿井通风系统的选择

根据矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、矿井瓦斯涌出量、煤层自燃倾向性等条件,在确保矿井安全、兼顾中、后期生产需要的前提下,通过对多种个可行的矿井通风系统方案进行技术经济比较后确定。

中央式通风系统具有井巷工程量少、初期投资省的优点。因此,矿井初期宜优先采用。

有煤与瓦斯突出危险的矿井、高瓦斯矿井、煤层易自燃的矿井及有热害的矿井,应采用对角式或分区对角式通风;

当井田面积较大时,初期可采用中央通风,逐步过渡为对角式或分区对角式。 矿井通风方法一般采用抽出式。当地形复杂、露头发育老窑多、采用多风井通风有利时,可采用压入式通风。

第二节 采区通风系统

采区通风系统是矿井通风系统的主要组成单元, 包括:采区进风、回风和工作面进、回风巷道组成的风路连接形式及采区内的风流控制设施。

一、采区通风系统的基本要求

1、每一个采区, 都必须布置回风道,实行分区通风。

2、采煤和掘进工作面应独立通风系统。有特殊困难必须串联通风时应符合有关规定。

3、煤层倾角大于12°的采煤工作面采用下行通风时,报矿总工程师批准,

4、采煤和掘进工作面的进风和回风,都不得经过采空区或冒落区。

二、采区进风上山与回风上山的选择

上(下)山至少要有两条;对生产能力大的采区可有3条或4条上山。

1、轨道上山进风,运输机上山回风

2、运输机上山进风、轨道上山回风

比较:轨道上山进风,新鲜风流不受煤炭释放的瓦斯、煤尘污染及放热影响,输送机上山进风,运输过程中所释放的瓦斯,可使进风流的瓦斯和煤尘浓度增大,影响工作面的安全卫生条件。

三、采煤工作面上行风与下行风

上行风与下行风是指进风流方向与采煤工作面的关系而言。当采煤工作面进风巷道水平低于回风巷时,采煤工作面的风流沿倾斜向上流动,称上行通风,否则是下行通风。

优缺点:

1、下行风的方向与瓦斯自然流向相反,二者易于混合且不易出现瓦斯分层流动和局部积存的现象。

2、上行风比下行风工作面的气温要高。

上行通风运煤方向 新风 污风下行通风运煤方向 新风 污风

3、下行风比上行风所需要的机械风压要大;

4、下行风在起火地点瓦斯爆炸的可能性比上行风要大。

四、工作面通风系统

1、 U型与Z型通风系统

2、Y型、W型及双Z型通风系统

3、H型通风系统

第三节 通风构筑物及漏风

矿井通风系统网路中适当位置安设的隔断、引导和控制风流的设施和装置,以保证风流按生产需要流动。这些设施和装置,统称为通风构筑物。

一、通风构筑物

分为两大类:一类是通过风流的通风构筑物,如主要通风机风硐、反风装置、风桥、导风板和调节风窗;另一类是隔断风流的通风构筑物,如井口密闭、挡风墙、风帘和风门等 。

1、风门

按设地点:在通风系统中既要隔断风流又要行人或通车的地方应设立

-+-+风门表示方式调节风门表示方式 风门。在行人或通车不多的地方,可构筑普通风门。而在行人通车比较频繁的主要运输道上,则应构筑自动风门。 设置风门的要求:

(1)每组风门不少于两道,通车风门间距不小于一列车长度,行人风门间距不小于5m。入排风巷道之间要需设风门处同时设反向风门,其数量不少于两道;

(2)风门能自动关闭;通车风门实现自动化,矿井总回风和采区回风系统的风门要装有闭锁装置;风门不能同时敞开(包括反风门);

(3)门框要包边沿口,有垫衬,四周接触严密,门扇平整不漏风,门扇与门框不歪扭。门轴与门框要向关门方向倾斜80°至85°;

(4)风门墙垛要用不燃材料建筑,厚度不小于0.5m,严密不漏风;

墙垛周边要掏槽,见硬顶、硬帮与煤岩接实。墙垛平整,无裂缝、重缝和空缝;

(5)风门水沟要设反水池或挡风帘,通车风门要设底坎,电管路孔要堵严;风门前后各5m内巷道支护良好,无杂物、积水、淤泥。

2、风桥

当通风系统中进风道与回风道需水平交叉时,为使进风与回风互相隔开需要构筑风桥。按其结构不同可分为三种。

1)绕道式风桥 开凿在岩石里,最坚固耐用,漏风少。

2)混凝土风桥 结构紧凑,比较坚固。

3)铁筒风桥 可在次要风路中使用。

3、密闭

密闭是隔断风流的构筑物。设置在需隔断风流、也不需要通车行人的巷道中。密闭的结构随服务年限的不同而分为两类:

1)临时密闭,常用木板、木段等修筑,并用黄泥、石灰抹面。

5 观察孔放水孔表示方式

2)永久密闭,常用料石、砖、水泥等不燃性材料修筑。

4、导风板

在矿井中应用以下

几种导风板。 1)引风导风板 ; 2)降阻导风板; 3)汇流导风板

二、漏风及有效风量

1、矿井漏风及其危害性

有效风量:矿井中流至各用风地点,起到通风作用的风量。

漏风:未经用风地点而经过采空区、地表塌陷区、通风构筑物和煤柱裂隙等通道直接流(渗)入回风道或排出地表的风量。

漏风的危害:使工作面和用风地点的有效风量减少,气候和卫生条件恶化,增加无益的电能消耗,并可导致煤炭自燃等事故。减少漏风、提高有效风量是通风管理部门的基本任务。

2、漏风的分类及原因 1)漏风的分类 矿井漏风按其地点可分为:

(1)外部漏风(或称井口漏风)泛指地表附近如箕斗井井口,地面主通风机附近的井口、防爆盖、反风门、调节闸门等处的漏风。

(2)内部漏风(或称井下漏风)是指井下各种通风构筑物的漏风、采空区以及碎裂的煤柱的漏风。 2)漏风的原因

当有漏风通路存在,并在其两端有压差时,就可产生漏风。漏风风流通过孔隙的流态,视孔隙情况和漏风大小而异。

3、矿井漏风率及有效风量率

1)矿井有效风量Qe

是指风流通过井下各工作地点实际风量总和。

2)矿井有效风量率: 矿井有效风量率是矿井有效风量Qe与各台主要通风机风量总和之比。矿井有效风量率应不低于85%。

3)矿井外部漏风量

--指直接由主要通风机装置及其风井附近地表漏失的风量总和。(可用各台主要通风机风量的总和减去矿井总回(或进)风量) 4)矿井外部漏风率

--指矿井外部漏风量QL与各台主要通风机风量总和之比。

矿井主要通风机装置外部漏风率无提升设备时不得超过5%,有提升设备时不得超过15%。

4、减少漏风、提高有效风量

漏风风量与漏风通道两端的压差成正比,和漏风风阻的大小成反比。应增加地面主要通风机的风硐、反风道及附近的风门的气密性,以减少漏风。

第四节 矿井通风设计

一、矿井通风设计的内容与要求

1、矿井通风设计的内容

• 确定矿井通风系统; • 矿井风量计算和风量分配; • 矿井通风阻力计算; • 选择通风设备; • 概算矿井通风费用。

2、矿井通风设计的要求

• 将足够的新鲜空气有效地送到井下工作场所,保证生产和良好的劳动条件; • 通风系统简单,风流稳定,易于管理,具有抗灾能力; • 发生事故时,风流易于控制,人员便于撤出; • 有符合规定的井下环境及安全监测系统或检测措施; • 通风系统的基建投资省,营运费用低、综合经济效益好。

二、优选矿井通风系统

1、矿井通风系统的要求

1) 每一矿井必须有完整的独立通风系统。

2)进风井囗应按全年风向频率,必须布置在不受粉尘、煤尘、灰尘、有害气体和

7 高温气体侵入的地方。

3)箕斗提升井或装有胶带输送机的井筒不应兼作进风井,如果兼作回风井使用,必须采取措施,满足安全的要求。

4)多风机通风系统,在满足风量按需分配的前提下,各主要通风机的工作风压应接近。

5)每一个生产水平和每一采区,必须布置回风巷,实行分区通风。

6)井下爆破材料库必须有单独的新鲜风流,回风风流必须直接引入矿井的总回风巷或主要回风巷中。

7)井下充电室必须单独的新鲜风流通风,回风风流应引入回风巷。 2、确定矿井通风系统

根据矿井瓦斯涌出量、矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、煤层自燃倾向性及兼顾中后期生产需要等条件,提出多个技术上可行的方案,通过优化或技术经济比较后确定矿井通风系统。

三、矿井风量计算

(一)、矿井风量计算原则

矿井需风量,按下列要求分别计算,并必须采取其中最大值。

(1)按井下同时工作最多人数计算,每人每分钟供给风量不得少于4m3; (2)按采煤、掘进、硐室及其他实际需要风量的总和进行计算。

(二)矿井需风量的计算

1、采煤工作面需风量的计算

采煤工作面的风量应该按下列因素分别计算,取其最大值。 (1) 按瓦斯涌出量计算:

Qwi100Qgwik式中:Qwi——第i个采煤工作面需要风量,m3/min

Qgwi——第

i个采煤工作面瓦斯绝对涌出量,m3/min

kgwi——第i个采煤工作面因瓦斯涌出不均匀的备用风量系数,通常机采工作面取kgwi=1.2~1.6 炮采工作面取kgwi=1.4~2.0,水采工作面取kgwi=2.0~3.0

(2)按工作面进风流温度计算:

采煤工作面应有良好的气候条件。其进风流温度可根据风流温度预测方法进行计

8 算。其气温与风速应符合表中的要求:

采煤工作面进风流气温 ℃ <15 15~18 18~20 20~23 23~26 采煤工作面风速 m/s 0.3~0.5 0.5~0.8 0.8~1.0 1.0~1.5 1.5~1.8 采煤工作面的需要风量按下式计算:

Qwi60VwiSwikwli式中

vwi—第i个采煤工作面的风速,按其进风流温度从表中取;m/s,

Swi—第i个采煤工作面有效通风断面,取最大和最小控顶时有效断面的平均值,m2 ;

kwi——第i 个工作面的长度系数。

3)按使用炸药量计算:

Qwi25Awi

式中 25——每使用1kg炸药的供风量,m3/min;

——第i个采煤工作面一次爆破使用的最大炸药量,kg。

4) 按工作人员数量计算:

Qwi4nwi

式中

4——每人每分钟应供给的最低风量,m3/min

nwi——第i 个采煤工作面同时工作的最多人数,个。

5) 按风速进行验算

按最低风速验算各个采煤工作面的最小风量:

Qwi600.25Swi

按最高风速验算各个采煤工作面的最大风量:

2、掘进工作面需风量的计算:

Qwi604Swi

煤巷、半煤岩和岩巷掘进工作面的风量,应按下列因素分别计算,取其最大值。

(1)按瓦斯涌出量计算:

Qhi100Qghikghi

式中

Qhi——第i个掘进工作面的需风量,m3/min

Qghi——第i个掘进工作面的绝对瓦斯涌出量;m3/min

kghi——第i个掘进工作面的瓦斯涌出不均匀和备用风量系数。一般可取1.5~2.0。

Qhi25Ahi

(2)按炸药量计算

式中

25——使用1kg炸药的供风量,m3/min;

Ahi——第i个掘进工作面一次爆破所用的最大炸药量,kg

(3)按局部通风机吸风量计算

QhiQhfikhfi

式中

——第i个掘进工件面同时运转的局部通风机额定风量的和。

khfi——为防止局部通风机吸循环风的风量备用系数,一般取1.2~1.3;进风巷道中无瓦斯涌出时取1.2,有瓦斯涌出时取1.3。

(4)按工作人员数量计算

Qhi4nhi

式中 nhi——第i个掘进工作面同时工作的最多人数,人。 (5)按风速进行验算

按最小风速验算,各个岩巷掘进工作面最小风量:

Qhi600.15Shi

各个煤巷或半煤岩巷掘进工作面的最小风量;

10 Qhi604Sdi

按最高风速验算,各个掘进工作面的最大风量:

Qhi600.25Shi式中

shi——第i个掘进工作面巷道的净断面积,m

2 3、硐室需风量计算

独立通风硐室的供风量,应根据不同类型的硐室分别进行计算:

(1)机电硐室

发热量大的机电硐室,按硐室中运行的机电设备发热量进行计算: 式中

Qri——第个机电硐室的需风量,m/min

——机电硐室中运转的电动机(变压器)总功率,KW

θ——机电硐室的发热系数,

ρ——空气密度,一般取1.25kg/m3 cp——空气的定压比热,一般可取1KJ/kgk Δt——机电硐室进、回风流的温度差,℃ 采区变电所及变电硐室,可按经验值确定需风量

Qri=60~80

m3/min

(2)爆破材料库

Qri=4*V/60

式中

v——库房空积,m3

(3)充电硐室

按其回风流中氢气浓度小于0.5%计算

Qri=200*qrhi

式中 qrhi——第个充电硐室在充电时产生的氢气量,m3/min。

5、矿井总风量计算

矿井的总进风量,应按采煤、掘进、硐室及其他地点实际需要风量的总和:

3Qri3600Ncp60tQm(QwtQhtQrt)km11 式中∑Qwl——采煤工作面和备用工作面所需风量之和,m3/min;

∑Qhl——掘进工作面所需风量之和,m3/min;

∑Qrl——硐室所需风量之和,m3/min;

km——矿井通风系统(包括矿井内部漏风和配风不均匀等因素)备用系数,宜取1.15~1.25。

四、矿井通风总阻力计算

(一) 矿井通风总阻力计算原则

1、矿井通风设的总阻力,不应超过2940Pa。

2、矿井井巷的局部阻力,新建矿井按井巷摩擦阻力的10%计算,扩建矿井宜按井巷摩擦阻力的15%计算。

(二)矿井通风总阻力计算

矿井通风总阻力:风流由进风井口起,到回风井口止,沿一条通路(风流路线)各个分支的摩擦阻力和局部阻力的总和,简称矿井总阻力,用hm表示。

对于矿井有两台或多台风主要通风机工作,矿井通风阻力按每台主要通风机所服务的系统分别计算。

在主要通风机的服务年限内,随着采煤工作面及采区接替的变化,通风系统的总阻力也将因之变化。当根据风量和巷道参数直接判定最大总阻力路线时,可按该路线的阻力计算矿井总阻力;当不能直接判定时,应选几条可能是最大的路线进行计算比较,然后定出该时期的矿井总阻力。

矿井通风系统总阻力最小时称通风容易时期。通风系统总阻力最大时亦称为通风困难时期。

对于通风困难和容易时期,要分别画出通风系统图。按照采掘工作面及硐室的需要分配风量,再由各段风路的阻力计算矿井总阻力。

计算方法:

沿着风流总阻力最大路线,依次计算各段摩擦阻力

hf,然后分别累计得出容易和困难时期的总摩擦阻力

hf1 和

hf2。

通风容易时期总阻力 :

12 hm1hf1hehf1(0.1~0.15)hf1(1.1~1.15)hf1hm2hf2hehf2(0.1~0.15)hf2(1.1~1.15)hf

2通风困难时期总阻力:

h

hf 按下式计算: 式中 fnhfihfiiliuisi2Qi2i

1五、矿井通风设备的选择

矿井通风设备是指主要通风机和电动机。

(一)矿井通风设备的要求:

1、矿井必须装设两套同等能力的主通风设备,其中一套作备用。

2、选择通风设备应满足第一开采水平各个时期工况变化,并使通风设备长期高效率运行。

3、风机能力应留有一定的余量。

4、进、出风井井口的高差在150m以上,或进、出风井井口标高相同,但井深400m以上时,宜计算矿井的自然风压。

(二)主要通风机的选择

1、计算通风机风量Qf Q fkQm

式中

Qf——主要通风机的工作风量,m3/s;

Qm——矿井需风量,m3/s;

k——漏风损失系数,风井不提升用时取1.1;箕斗井兼作

回砚用时取1.15;回风回升降人员时取1.2。

2、计算通风机风压

离心式通风机(提供的大多是全压曲线):

HtdminhmhdhvdHN

容易时期

困难时期

HtdmaxhmhdhvdHN

轴流式通风机(提供的大多是静压曲线):

HsdminhmhdHN

容易时期

困难时期

hm--通风系统的总阻力;

HsdmaxhmhdHN

hd--通风机附属装置(风硐和扩散器)的阻力;

hvd --扩散器出口动能损失;

HN--自然风压,当自然风压与通风机风压作用相同时取“+”;自然风压与通风机负压作用反向时取“-”。

3、初选通风机

根据计算的矿井通风容易时期通风机的Qf、Hsdmin(或Htdmin)和矿井通风困难通风机的Qf、Hsdmax(或Htdmax)在通风机特性曲线上,选出满足矿井通风要求的通风机。

4、求通风机的实际工况点

因为根据Qf、Hsdmin(或Htdmin)和Qf、Hsdmax(或Htdmax)确定的工况点,但设计工况点不一定恰好在所选择通风机的特性曲线上,必须根据通风机的工作阻力,确定其实际工况点。步骤:

1)计算通风机的工作风阻

用静压特性曲线时:

RsdminHRsdmaxHsdmaxQ2fsdminQ2fRtdRtdminHHtdminQ2ftdmaxQ2f max 14

用全压特性曲线时:

2)确定通风机的实际工况点

在通风机特性曲线上作通风机工作风阻曲线,与风压曲线的交点即为实际工况点。

5、确定通风的型号和转速

根据通风机的工况参数(Qf 、Hsd 、η、N)对初选的通风机进行技术、经济和安全性比较,最后确定通风机的型号和转速。

6、电动机选择

(1)通风机的输入功率按通风容易和困难时期,分别计算风所需的输入功率Nmin

,Nmax 。

Q(m3/s)(Hmin,Qfmin)RmaxMmaxRmin(Hmax,Qfmax)MminNminQfHsdmin1000sQfHtdmin1000sH (Pa)Nmax QfHsdmax1000sNmin

NmaxQfHtdmax1000s

(2)、电动机的台数及种类

NeNmaxke(etr) NeminNminNmaxke(etr)

当Nmin≥0.6Nmax时,可选一台电动机,电动机功率为:

当Nmin<0.6Nmax时,选二台电动机,其功率分别为:

初期:

后期按选一台电机公式计算。ηe :电机效率,ηtr:传动效率。

六、概算矿井通风费用

吨煤通风成本是通风设计和管理的重要经济指标。

吨煤通风成本主要包括下列费用:

1、电费(W1)

吨煤的通风电费为主要通风机年耗电费及井下辅助通风机、局部通风机电费之和除以年产量,可用如下公式计算:

W1(EEA)DT

E——主要通风机年耗电量,

D——电价,元/KWh;

T——矿井年产量,吨;

ηv——变压器效率,可取0.95;

EA——局部通风机和辅助通风机的年耗电量;

ηw——电缆输电效率

2、设备折旧费

3、材料消耗费用

4、通风工作人员工资费用

5、专为通风服务的井巷工程折旧费和维护费折算至吨煤的费用。

6、采每吨煤的通风仪表的购置费和维修费用。

第五节 可控循环通风概述

可控循环通风是由英国学者S.J.LEACH和A.SLACK研究提出,七十年初在英国开始应用。之后,包括中国在内的许多国家也相继对可控循环通风进行了研究和应用。

定义:在低瓦斯矿中,当采掘工作面位于矿井的边远地区,原有通风系统不能保证按需供风,而该地区的回风的风质又比较好时,可以在局部通风系统的进、回风之间安置通风设备、设施和监控设备,对回风进行合理循环控制加以再利用,以增加用风地点的实际风量。此种通风方法称为可控循环风。

循环率:

QC100%QQQc循环风机 16

第6篇:改变矿井通风系统设计与安全技术措施

305采区改变

通风设计与安全技术措施

编制人:杨海涛

2014年4月

改变矿井通风系统设计与安全技术措施

矿井概述

龙马矿业隶属于吉林省杉松岗矿业集团有限责任公司,座落于白山市靖宇县东兴乡马当村境内,行政划归靖宇县东兴乡管辖。

矿井地理座标为东经:126°59′24″~127°00′42″,北纬:42°26′46″~42°28′14″。

主要河流珠子河全长45km,在矿区下游2km汇入松花江。白山水库蓄水后,最高水位为416.5m。珠子河与松花江合成白山湖,珠子河流域面积95.5km2。靖宇水文站观测记录断面平均流速0.35m/s最大流速2m/s,最大流量244m3/s,最小流量0.1m3/s,珠子河流流经现生产矿区西及西北、北部,两岸形成陡峭的悬崖,每年的11月份开始水位下降至+406m左右。

地质构造简单,为瓦斯矿井,井田内批准开采煤层三层,即一号层、二号层、三号层,煤层自燃倾向性等级鉴定为Ⅲ级,属不易自燃煤层。发火期大于12个月。煤层没有爆炸性。

我矿准备队305上、下顺同时施工。305上顺掘进距离为365米,305下顺350米、开切眼上山100米。通风设计为采用正压通风,安设局部通风机,风机为系列化,可自动切换。局部通风机型号为FBD2X11,功率为2x11千瓦、风量410—230 m³/min。可满足掘进风量需要。矿井主通风机型号为FBCDZ№17.90×2,功率为2×90kw,矿井现在总入风量为2574m³/min,总回风量为2688 m³/min。我矿现采掘布置有206综采准备工作面、207综采面、305上顺掘进工作面、305下顺掘进工作面、306上顺掘进工作面、306下顺掘进工作面。

按采区设计方案,需要改变通风系统,为了保证矿井通风系统的平稳过渡,经矿班子研究决定成立以矿长为组长的改变矿井通风系统领导小组,并制定相应的安全技术措施,具体实施方案如下:

一、 领导小组:

长:

周家会(矿长)

副组长:

张立波(总工程师)

王志刚(通风副总)

员:

张文明(生产矿长)

尚士新(安全矿长)

于钦松(机电矿长)

翁晓春(技术副总)

杨海涛

郭立波

宋师良

赵福军

胡东坤

具体分工:

周家会对改变通风系统全面负责。

张立波对改变通风系统的现场指挥全面负责。

王志刚对改变通风系统现场具体施工全面负责。

张文明对现场调度工作全面负责。

于钦松对主通风机的安装供电系统,在线监测设备开安装。

尚士新对改变通风时通风机电系统的安全监察全面负责。

领导组下设办公室,办公室设在调度室,张文明兼任办公室主任,成员由区(队)干部、各职能科室人员组成。

二、改变系统原则:

1、保证全矿井所有工作面和峒室、变电所风量、风速、温度满足要求。

2、改变通风系统期间不出现通风死角,在计划外没有瓦斯超限

现象。

3、增加305上下顺掘进通风系统的隔离风门。

三、改变通风系统前的通风路线如下:

1、主井→305上顺局扇→+110m平巷→207入风上山→207下顺→207综采工作面→综采回风巷→回风上山→+247m回风平巷→回风斜井→地面。

4、附图1:改变通风系统前的通风路线

四、矿井改变通风系统前井下实际供风点风量分配情况如下:

1、生产布局:

206综采准备工作面、207综采工作面、305上顺工作面、305下顺工作面、306上顺工作面、306下顺工作面,主水泵房(中央变电所)。

2、实际风量

206综采准备工作面

风量562m³/min

207综采工作面

风量550m³/min

305上顺掘进工作面

风量256m³/min

306上顺掘进工作面

风量298m³/min

305下顺掘进工作面

风量288m³/min

306下顺掘进工作面

风量273m³/min

主水泵房(中央变电所)

风量120m³/min

矿井需风量为2347/m³/min,实际供风量为2560m³/min,有效风量为2489m³/min,矿井总回风风量为2655m³/min。

五、改变通风系统后的通风路线如下:

1、主井→305局扇→回风上山→付井→地面。

2、附图2:改变通风系统后的通风路线

六、矿井改变通风系统后的生产布局和井下风量情况:

1、生产布局:206综采准备工作面、207综采工作面、305上顺工作面、305上顺工作面、306上顺工作面、306下顺工作面、主水泵房(中央变电所)。

2、实际需风量:

206综采准备工作面

风量 568m³/min

207综采工作面

风量 566m³/min

305上顺掘进工作面

风量236m³/min 306上顺掘进工作面

风量 232m³/min 305下顺掘进工作面

风量 243m³/min 306下顺掘进工作面

风量248m³/min

主水泵房(中央变电所)

风量114m³/min

矿井需风量计为2207m³/min,风量不需要改变。

七、调整通风系统前的准备工作:

(1)、工作导向:

1、通整段必须严格按照措施施工,严把质量关。工程质量由通整段专人负责监督,不符合工程质量的必须重新施工。为了使工程进度有保障,避免施工地点的前后、急缓顺序不清,特对需要施工点进行编号。

2、需要做永久通风设施的地点有:

(1)305上顺联巷砌筑永久行人风门二道。

(2)305下顺联巷砌筑永久行人风门二道。

(3)305下顺副井上山砌筑永久风门二道。

3、需要拆除的永久风门有: 无

4、为了保障通风系统的正常运行和合理、简单、可靠,具体需要施工的通风设施必须按规程标准施工。

八、安全措施:

1、在未改变通风系统前由安检科、通整段、调度室对井下的所有通风设施进行一次彻底的检查,发现有不合格的通风设施立即组织人员处理,同时并对井下所有的通信设施、瓦斯监控设施进行检查,确保通信设施、瓦斯监控系统能正常运行。

2、井下所有的通风设施完工后必须由通风、安检联合验收合格后方可进行系统调整。

3、通整段加强系统调整前的瓦斯检查和管理工作,提前制定好措施。

4、在改变通风系统前必须指派专人(王福田 张洪顺)负责关闭305上顺联巷风门(徐爱国 王相波)负责关闭305下顺联巷风门,上下顺贯通后(徐爱国张洪顺)负责关闭305下顺副井上山风门,避免造成改变通风系统后井下风流短路。

5、改变通风系统后至少不少于2小时的试运行,试运行间机运段必须负责准确得记录主通风机的工作电压、电流、轴承温度等物理指标,当主通风机运转各项指标都符合规定指标后通知调度中心才能对井下送电。

6、系统调整期间,矿井下必须停止生产,通知调度室撤出井下所有人员,并在地面变电站切断井下一切动力电源,通风系统调整

后,首先要先对局扇进行观察是否有循环风,如发现出现风量不足,有循环风现象时,立即停止局扇、设好警戒。查明原因后,由瓦检员对局扇和开关附近瓦斯进行检查,只有当该地点瓦斯不超限符合规程规定方可开启风局扇。如掘进工作面需要排放瓦斯时,应注意事项:

1、排放瓦斯时,必须严格执行排放瓦斯“三联锁”制度,明确停电负责人,撤人警戒负责人和排放瓦斯负责人,严格按照三级排放的原则进行瓦斯排放。

2、采区向各地点送电时,只能送局扇的电源,且必须经检查被送电区域瓦斯在0.5%以下时方可进行。

3、排瓦斯前,必须切断排出的瓦斯流经区域的所有电源,撤出此 区域所有人员,并在各通道口设专人警戒。

4、局扇电源送电后,详细检查局扇20米范围内瓦斯在0.5%以下时,方可人工启动局扇。若发现风量不足时,必须采取措施,待风量充足后方可继续进行。

5、瓦斯排放时,必须采取风流短路的方法进行,由外到里逐段排放,确保瓦斯在全风压混合后瓦斯浓度在1.5%以下,采区回风混合在1%以下时进行,严禁“一风吹”。只有在巷道瓦斯稳定在1%以下时,待30分钟后排放瓦斯工作方可结束。

6、同一采区严禁多头同时排放瓦斯,应按照由外向里先进风后回风的顺序进行,一个采区严禁两台以上局扇同时排放瓦斯。

7、排瓦斯期间,严禁无关人员入井,严禁在井下进行与排瓦斯工作无关的工作。

8、系统调整时,必须有各级领导干部现场把关。

9、矿井通风系统调整后24小时内,各地点瓦斯检查工必须详细检查,注意通风瓦斯变化异常,有问题及时汇报、处理。

10、在井下调整系统期间,矿长必须在风机房现场指挥,主扇司机必须随时注意风机运行的各种参数变化,有问题及时汇报处理。

11、所有参加施工人员要加强个人自主保安,注意安全,安全高效的完成任务。

九:调整系统后的测试及计算

通风部门要进行全面测风和测定通风阻力、压力、矿井内、外部漏风率和等级孔的计算。必须保证矿井各项指标都符合 «规程»规定,有问题要及时汇报处理。

以上方案措施涉及的有关人员贯彻学习、落实、会审、签字后方可施工。

( 附;改变通风系统前、后的通风示意图见附图1)。

通整段

2014年4月15日

第7篇:矿井通风系统管理制度

1、矿井必须有完整的通风系统,改变全矿井一翼或一个水平的通风系统时,必须报公司总工程师批准,改变一个采区的通风系统时,必须报矿总工程师批准。

2、水平延深及采区开拓从设计上要确保通风系统合理,并在实际施工及生产过程中严格实施。

3、矿井在组织生产、安排生产布局、采掘接续时,首先要考虑通风能力,做到以风定产、定头,避免出现因生产过于集中,追求产量进度,造成不合理的通风系统、区域风量不足及违规串联通风等现象。

4、非长壁采煤法、残采、回收煤柱、地质构造复杂地段的回采,通过制订专门的措施经公司批准,可采用局部供风,但必须安装沼气自动检测报警断电装置。

5、矿井各地点所需风量,按照《煤矿安全规程执行说明》进行计算。

6、矿井开拓布局、采区设计、作业规程审查必须有通风队技术主管参加,并对矿井通风系统及通风系统改造方案提出主导意见。

7、井下各主要进、回风巷之间,通风队必须设置至少两道正反向风门,控制风流的风门、风桥、档风墙、防火墙、风筒、防尘管路、隔爆水袋等通风设施质量应符合矿井通风质量标准的统一规定,以保证通风系统的稳定性。对不符合标准的构筑的通风设施,由责任单位重新施工并承担100-500元罚款,责任人承担20-50元罚款。

8、加强通风设施的使用管理和维护。通风队每月初划分设施管理责任范围,各采掘队组对责任范围内通风设施管理负责,设施损坏按价赔偿外,对责任单位罚款50-200元。罚责任人20-50元。造成影响生产的要追究责任。

9、掘进巷道,与其它巷道贯通,在两巷相距20米前,由技术科向矿总工程师汇报并以书面形式通知施工单位和通风队,接到通知后应及时编制贯通措施,做好防止瓦斯积聚、调整系统的准备工作,因通知不及时或单位不及时调整罚100-500元。

10、每年进行一次矿井反风演习,由矿总工程师在矿井检修前组织编写《反风演习计划》,制定安全技术措施,并报公司总工程师批准。

矿井主要通风机的管理

1、矿井通风机每月由机电部门至少检查一次。做好记录,确保主扇完好,一次不查罚100元。

2、备用主扇确保完好,能随时投入运行,否则矿检查时每发现一次不完好,罚机电科50元。

3、矿长每季组织通风,机电等有关部门对矿井反风设施至少检查一次,发现问题及时整改,逾期不改的,每项罚款50元。

4、机电部门在对运转主扇和备扇进行调换时,应先报矿总工程师批准,否则,罚机电科100元(特殊情况除外)。

5、调换主扇后,要及时通知通风部门对井下风量进行测定、调整。因风量调整不及时,造成井下风量不足,一次罚通风部门50元--——200元。

6、未经通风、机电部门允许,任何人不得随意提升或降低主扇立闸门装置。否则,发现一次罚机电科50元-200元。

7、主扇机房实行24小时值班制,发现脱岗一次罚机电科30--100元。

第8篇:调整矿井通风系统安全技术措施

我矿在施工井下紧急避险系统期间,为保证全负压供风正常,杜绝微风、循环风的出现,确保全矿井通风系统安全,特编制此措施。

一、成立调整矿井通风系统协调领导小组 组 长:矿 长

副组长:总工程师、副矿长(安全)、副矿长(生产)、副矿长(机电)、副矿长(通防)

成 员:通防科长、技术科科长、安全科科长、机运科科长、施工班组长、矿调度室主任

二、调整矿井通风系统安全技术措施

1、通风队认真检查井下所有设施,保证风门灵敏、可靠,调节挡墙、调节风门控制风量符合设计要求,密闭前瓦斯符合规定。

2、通风队认真检查井上、下所有监测线路接头无明接头,鸡爪子、羊尾巴,保证线路布置合理、可靠,线路传输正常,检查井下监测探头、分站,保证监测探头监测数据准确无失真,分站运行可靠,上传数据准确无误码,井上监测监控主机、备机进行切换试验确保调整矿井通风系统期间监测监控主机正常运行。

3、通风队认真检查所有局部通风地点风筒吊挂、距迎头距离、连接部位反边是否符合规定,异径风筒连接必须设置变头,风筒上破口必须进行粘补。

4、通风队清洗井下所有巷道粉尘,确保巷道内无防尘堆积、超限。

5、机运科认真检查双回路供电线路是否能够正常切换、运转,保证通风系统进行调整期间如出现一趟供电线路掉电能及时切换到另一趟供电线路上,正常供电。

6、机运科认真检查井下所辖区域内的供电线路,确保供电线路正常运行,电器设备杜绝失爆。

7、机电队负责检查局部通风机、局部通风机开关及闭锁装置进行检查维护,确保灵敏、可靠,杜绝失爆,通风队配合检查主、备局部通风机是否能正常进行倒换。

8、施工班组负责协助当班安瓦员检查辖区域内电气设备及瓦斯电闭锁装置得检查维护,确保灵敏、可靠,杜绝失爆。

9、施工班组负责清理所辖区域内矿车、材料及杂物,保证井下所有巷道通风断面满足设计要求,确保通风系统正常、可靠。

10、安全科对井下各场所进行安全隐患排查,查出一条立即落实责任单位整改,对所查出的隐患在矿井通风系统调整前必须全部整改,保证在调整矿井通风系统期间无安全隐患。

11、在进行通风系统调整时除通风队测风员外其它人员全部撤离到离工作区域最近的主要进风流巷道中所有掘进工作面、采煤工作面人员撤离以后瓦检员负责设置全断面栅栏并悬挂禁止入内排版,设置完成立即撤离。

12、各班组长负责清点本班人数,清点人数与下井人数相符后汇报跟班矿长,由跟班矿长向汇报矿调度室本班组人员全部撤离,矿调度室确认所有人员进入安全地点后,通知井下测风员。

13、主要通风机运行20分钟后由测风员测定主要通风机运行负压和抽出风量。

14、测风员接到通知20分钟后测量井下指定地点风量,指定地点风量如满足设计要求由测风员汇报矿调度,矿调度通知各施工地点恢复生产。如不能满足设计要求立即通知矿调度采取下步方案。

15、通防科负责分析风量不满足设计要求的原因,并提出解决方案报矿总工程师。

16、方案通过后重复以上安全技术措施直至风量满足设计要求。

17、未尽事宜必须严格执行《煤矿安全规程》及相关规定。

第9篇:保障矿井通风系统 安全可靠的措施

编 制:

审 核:

安全管理科:

总 工 程师:

编 制 日期:

生产技术科 20110201

保障矿井通风系统安全可靠的措施

矿井通风管理是我矿安全生产的一项重要工作,矿井通风管理又是矿井瓦斯防治、矿井防灭火和煤尘防治的基础,选择矿井合理的通风系统是提高矿井防灾、抗灾能力的保证,因此为了保障本矿井通风系统安全可靠,特制定如下措施:

一、选择矿井合理的通风系统,并完善矿井通风系统。

1、矿井通风方式和通风方法。根据本矿井的矿井开拓方式,本矿井选择中央并列式通风方式,通风方法为抽出式。

2、采用机械通风,严禁自然通风作业。根据矿井所需风量设计,选择矿井主要通风机,并配备同等功率的备用主要通风机,测定其供风量和矿井有效风量,做到以风定产。

3、完善矿井通风系统。矿井的一个水平,一翼和每个煤层工作面都必须要有独立的通风系统,实行分区通风,严禁出现水平串联通风和采掘工作面串联通风。矿井通风系统力求简单,杜绝出现角联通风巷道。

4、加强矿井通风巷道的维修,采掘巷道布置时尽量考虑满足矿井采掘工作面通风的需要,减少矿井通风阻力,保证矿井通风系统完整,风流稳定。

5、加强巷道贯通管理,制定贯通安全措施,做好贯通后及时调整矿井通风系统的准备,并履行好审批手续。

二、加强局部通风管理

1、局部通风机安装位置合理,离回风拐弯处10米以外,保证局部通风机正常运转,保证不发与循环风。

2、局部通风机设备齐全,吸风口有风罩和整流器,高压部位有衬垫,离地面高度大于0.3米。

3、局部通风机要有专人看管,不准随意停开。如遇停电或检修局部通风机停止运转时,及时将独巷内的人员撤到全风压进风巷处,恢复供电前应检查瓦斯,并严格按照《煤矿安全规程》要求开启局部通风机。

4、局部通风机应安装风电、瓦斯电闭锁装置,不得使用1台局部通风机同时向2个作业的掘进工作面供风。

5、风筒末端到工作面的距离和出口风量符合作业规程要求,并保证工作面及其回风流中的瓦斯浓度不超限。

6、风筒接头严密,风筒无破口、无反接头,软质风筒要使用反压边,风筒吊挂要平直,做到逢环必挂。

7、风筒拐弯处设弯头,不得拐死弯处,异经风筒接头要使用过渡节,并先大后小,不得花接。

三、加强通风设施的管理

矿井通风系统中还必须在井上下适宜地点需设置必要的通风构筑物,用来引导、隔断和控制风流,达到保证井下各用风地点风量、风速满足要求。

1、永久密闭:随着矿井生产区域的逐步延深,因此对已经开采结束的巷道必须进行永久性密闭。

①永久性密闭应选择在支护良好的地点,并要求周边掏槽。 ②永久密闭一律用不燃性水泥砖建筑,要求密闭墙面平整,无裂隙、重缝和空缝,严密不漏风,墙体厚度不小于0.5米。

③密闭内有水流出的要设反水池,有自然发火煤层的采空区密闭要设置观察孔,孔口要封堵严密。

④密闭前5米内支架完好,无片帮冒顶,无杂物、积水淤泥,并在密闭前设栅栏、警标,挂上密闭观察牌。

⑤矿安全生产管理人员或跟班人员应经常对矿井永久性密闭进行检查,发现有漏风时,要及时安排人员进行处理。

2、永久风门。

①永久性风门每组不少于两道,行人风门间距不小于5米,水平通车风门间距不小于一列车长度,进、回风井和主要进、回风巷之间的联络巷需要设置风门的必须同时设反向风门。

②永久风门要尽量设在支护完好的车场或联络巷内,墙垛周边要掏槽,要硬顶硬帮。

③风门要包边沿口,有垫衬,四周接触严密,门扇平整不漏风,门扇与门框不歪扭。

④风门墙垛要用不燃性水泥砖建筑,厚度不小于0.5米,墙垛平整,无裂隙、重缝、空缝、严密不漏风。

⑤风门水沟要设反水池或挡风帘,通车风门要设底坎、电缆,管路孔要堵严实。

⑥风门能自动关闭,并设置正反联锁装置,不能自动关闭的

要设专人看管,矿井总回风和采区回风系统的风门要装闭锁装置,风门不能同时敞开。

⑦风门前后5米内巷道支护完好,无杂物、积水淤泥; ⑧加强永久性风门的检查,发现风门变形或损坏,有漏风时要及时安排人员进行处理。

四、完善矿井通风管理制度

1、根据上级主管部门及《规程》要求,矿井应建立专门的“一通三防”管理队伍,本矿井由总工程师和有关的安全生产管理人员具体抓“一通三防”工作。

2、建立健全各级领导和各业务部门的“一通三防”管理工作责任制,每月召开一次通风工作总结计划会,落实有关“一通三防”方面存在的问题。

3、矿技术负责人组织人员负责编制通风、防治瓦斯、防治瓦斯、防治煤尘、防灭火安全措施计划,并按计划执行,完善矿井通风管理的有关图纸、板牌、记录、台帐,做到各种图纸报表准确,数据齐全,上报及时。

4、通风区队人员其中包括:瓦检员、测风员等工种要进一步完善岗位责任制和操作规程,并按计划定期进行培训,并要考核,做到持证上岗。

5、凡是巷道贯通都必须制定专项措施,并做好风量调配工作。 五 其未尽事宜严格执行《煤矿安全规程》相关规定。

防治瓦斯、煤尘爆炸的

编审安 全总 编 安全技术措施 制:

核:

管 理 科:

工 程 师:

制 日 期:

生产技术科 20110203

防治瓦斯、煤尘爆炸的安全技术措施

1防治瓦斯爆炸安全技术措施 1.1造成瓦斯事故的原因:

(1)通风系统不合理、供风距离过长、采掘布置过于集中、工作面瓦斯涌出量过大而又没有采取抽放措施、通风路线不畅通等,都容易造成采煤工作面风量供给不足。

(2)正常生产期间,煤矿井下的通风设施被随意改变其状态。 (3)采掘工作面的串联通风,上工作面的污浊空气未经监测控制进入下工作面,导致与下工作面风流中的瓦斯叠加而超限。

(4)局部通风机停止运转可能使掘进工作面很快达到瓦斯爆炸的界限。

(5)对封闭的区域或停工一段时间的工作面恢复通风,未制定专门的排放瓦斯措施。

(6)气压发生变化或采空区发生大面积冒顶时。 (7)当采掘工作面推进到地质构造异常区域时。 (8)巷道冒落空洞由于通风不良容易形成瓦斯积聚。

1.2加强通风系统管理,降低矿井通风阻力,合理布置采区通风系统。

(1)加强通风设施管理,对地面矿井主要通风机及其附属设施,要加强日常检查,机电科、通风救护队要对矿井主要通风机运行情况、供电、电器、机械部分及主副闸板、风硐、扩散器等每季度进行一次检查,发现问题及时报矿有关部门进行处理。

对贯通巷道及时制定贯通措施、通风方案;新开工及收尾封闭的区域,

要提前形成通风系统,定期进行阻力测定和通风系统网络解算、优化通风系统。

(2)加强巷道维修,保证正常通风断面,防止出现局部巷道超风速问题。

(3)保护好井上、下各类通风设施,确保通风系统稳定可靠。进、回风井之间和主要进、回风巷之间的每个联络巷中,必须砌筑永久性风墙;需要使用的联络巷,必须安设2 道联锁的正向风门和2 道反向风门(安设无压风门不必设反向风门)。

(4)局部通风地点做好局扇及风筒管理,实现“

4、

3、

2、1”,推广使用风筒连接器和铁风筒切换器,使用钢丝绳或铅丝吊挂导风筒,保证风筒平、直、顺,局部通风地点工作面风量充足。

(5)重点通风工程和技术措施

①加快1110回风巷施工进度,尽快形成1110轨道巷与1110皮带巷进风1110回风巷回风的通风系统。组织进行矿井矿井通风能力核定、矿井阻力测定及瓦斯鉴定工作,进行通风系统优化。

②对回风巷和进风巷失修的地段及时安排工程进行维修、清理,保证巷道断面、减少通风阻力,提高矿井有效风量率。

③加强矿井通风设施管理,及时维修风门、风桥和挡风墙等设施,对下井职工进行安全教育,严禁随意敞撞风门和损坏通风设施,保持通风系统稳定、可靠。

④各采掘工作面按照“三条线”建设的总体要求,及时安装压风管路系统,主干管路要与地面压风机主管路连接。压风管路必须专门管理,不

得挪作它用和私自拆除。 1.2防止瓦斯积聚的措施

1)按照《煤矿安全规程》的要求做好如下通风工作 (1)矿井通风必须采用机械通风。

(2)所有没有封闭的巷道、采掘工作面和硐室必须保持足以稀释瓦斯到规定界限的风量和风速,使瓦斯不能达到积聚的条件。

(3)每个掘进工作面必须有合理的进、回风路线,尽量避免形成串连通风。

(4)采煤工作面必须保持风路畅通,每个掘进工作面必须有合理的进、回风路线,尽量避免形成串连通风。

(5)掘进工作面供风最容易出现安全问题,特别是在更换、检修局部通风机或局部通风机停止运运时,必须制定专项措施加强管理,杜绝无计划停电停风。

(6)为防止局部通风机停风造成的危险,必须使用“三专两闭锁”,局部通风机必须由指定人员负责管理,并实行挂牌制度。严格禁止非专门人员操作局部通风机和随意开停通风机。

(7)矿井的生产能力和通风能力相匹配。

2)加强瓦斯管理,严格落实瓦斯检查制度。加强局部通风管理,杜绝无计划停电停风。有计划停电停风时须制定专项安全技术措施。

3)处理局部聚积的瓦斯方法

(1)采煤工作面上隅角瓦斯积聚时应采取下列方法处理:增风吹散法、风障引流法、液压局部通风机吹散法、脉动通风技术吹散法、风筒引射导

风法、局部通风机抽排法、瓦斯抽放移动泵站抽放法等。

(2)采煤工作面瓦斯积聚时应采取下列方法处理:加大工作面的进风量法、降低回采速度、瓦斯抽放和煤壁注水等。

(3)顶板瓦斯聚积时应采取下列方法处理:加大巷道内风流速度、加大顶板附近的风速、喷浆封闭法、瓦斯抽放法、隔离法、引风吹散法等。 (4)掘进工作面局部瓦斯积聚时应采取下列方法处理:

①对于瓦斯涌出量大的掘进工作面,应优先采用长距离大孔径预抽预排瓦斯的方法,尽量使用双巷掘进,每隔一定距离开掘联络巷,构成全负压通风,以保证工作面的供风量。

②盲巷部分要安设局部通风机供风,排除盲巷内瓦斯。

③掘进工作面及其巷道中很容易出现冒落空洞或裂隙发育带,对于这些地点积聚的瓦斯应使用下列有关方法予以及时处理。

a.吊挂风帐或安设迎风板、迎风帘; b.接风筒或接小风筒、胶皮管吹风; c.背木板填黄土隔绝。 (5)排放瓦斯的时应做到:

①计算排放瓦斯量,预计排放所需时间。

②明确风流混合处的瓦斯浓度,制定控制送入独头巷道风量的方法,严禁“一风吹”。

③确定排放瓦斯流经的路线,标明通风设施、电气设备的位置。 ④明确撤人范围,指定警戒人位置。

⑤明确停电范围、停电地点及断、复电的执行人。

⑥明确必须检查瓦斯的地点和复电时的瓦斯浓度。 ⑦明确排放瓦斯的负责人和参加入员及各自担负的责任。

⑧文图齐全、清楚,通风设施、机电设备及瓦斯监测传感器等应该上图的,都要准确,不能遗漏。 1.3矿井瓦斯检查的制度

(1)采掘工作面的瓦斯浓度检查次数:低瓦斯矿井每班至少检查两次;瓦斯涌出量较大、变化异常的采掘工作面,都必须有专人经常检查瓦斯,并安设甲烷断电仪。

(2)采掘工作面CO2 浓度每班至少应检查两次,CO2 涌出量较大、变化异常的采掘工作面,必须有专人经常检查CO2浓度。本班未进行工作的采掘工作面,瓦斯和CO2应每班至少检查一次;可能涌出或积聚瓦斯或CO2的硐室和巷道的瓦斯或CO2应每班至少检查一次。

(3)井下停风地点栅栏外风流中的瓦斯浓度每天至少检查一次,挡风墙外的瓦斯浓度每周至少检查一次。

(4)在爆破过程中,严格执行“一炮三检制”,爆破工、班(组)长、瓦斯检查员每次检测瓦斯的结果都要互相核对,以3 人中检测最大瓦斯浓度值作为检测结果和处理依据。

(5)其它作业地点瓦斯和CO2检查次数由矿总工程师决定,但每班至少检查一次。

(6)瓦斯检查人员必须执行瓦斯巡回检查制度和请示报告制度,并认真填写瓦斯检查班报。每次检查结果必须记入瓦斯检查班报手册和检查地点的记录牌上,并通知现场工作人员。

(7)通风及安全管理部门的值班人员,必须审阅瓦斯检查班报表,掌握瓦斯变化情况,发现问题及时处理,并向矿调度室汇报。 1.4 矿井瓦斯检查仪器、仪表管理制度

建立健全完善可靠的安全监测系统,用好各地点的瓦斯监测设备,确保可靠运行,安全监测所使用的仪器、仪表必须定期进行调试、校正,每月至少一次。甲烷传感器、便携式甲烷检测报警仪等采用催化元件的设备,每隔7天必须使用校准气样和空气样按使用说明书的要求调校一次,每隔7天必须对甲烷断电功能进行测试。

1.5我矿2011年的掘进工作面已揭露的煤层,无瓦斯涌出异常地点、高瓦斯区域。

1.6防止瓦斯引燃的措施

(1)煤矿井下的明火、煤炭自燃、电弧、电火花、赤热的金属表面以及撞击和摩擦火花,都能点燃瓦斯。因此入井人员严禁携带烟草和点火物品,严禁穿化纤衣服入井,井下严禁拆开矿灯,严禁用灯取暖。井下不得烧焊作业,必须烧焊作业时,要制定安全技术措施,按要求审批,点火作业现场要严格落实各项防火措施和管理制度。

(2)井下电器设备要及时检查,达到完好及防爆要求。 (3)局部通风地点要实现“风电闭锁”、“瓦斯电闭锁”。

(4)井下供电做到“三无”、“四有”、“两齐”、“三全”、“三坚持”。 (5)加强放炮管理,井下严禁放明炮、糊炮,装药时按照规定要求填实炮泥和水炮泥,所有放炮作业全部使用符合煤矿安全等级的炸药和雷管。

(6)严防产生撞击和摩擦火花,严禁带电检修、搬迁电气设备、电缆。

1.7防止瓦斯事故扩大措施

⑴采掘工程图、井上下对照图、通风系统图等必须及时填绘、更改、核对。通风系统力求简单、合理、可靠,废巷必须及时封闭。实行分区通风,减少事故波及范围。

⑵建立健全矿井隔爆设施,各掘进工作面及主要进、回风巷按规定安设隔爆水槽,其它地点均符合《煤矿安全规程》第一百五十五条的规定,并加强日常管理和维护。

⑶按期对自救器进行校验,发现不合格的要及时更换。每一入井人员必须随身携带自救器,并能熟练使用。

⑷各施工地点的《作业规程》中,都要明确发生事故时的避灾路线,并贯彻到全体下井职工。

⑸井口防爆门和反风设施要加快安装速度,并保其完好有效。 ⑹瓦斯超限报警时处理程序

当采掘进工作面风流中瓦斯浓度大于1.5%或回风流瓦斯浓度大于1.0%时,应采取下列措施进行处理。

①下达命令:当监测系统出现瓦斯超限报警时,矿调度室值班人员立即命令现场班长停止工作,撤出人员,切断电源,并向矿值班领导汇报。

②现场执行:现场班长接到矿调度室值班人员命令后,必须立即组织现场人员停止工作,撤到安全地点,切断工作区域内的电源。以上工作完成后,立即向矿调度室值班人员汇报。

③现场确认:矿调度室值班人员接到现场班长执行完命令的汇报后,再命令现场班长和瓦斯检查员共同到瓦斯超限现场进行探查确认,然后立

即将探查结果向矿调度室值班人员汇报;调度室值班人员接到汇报后,立即向矿值班领导进行汇报。

④指挥处理:矿值班领导接到矿调度室值班人员汇报后,根据现场情况,按有关规定进行指挥处理。

⑤调度记录:矿调度室值班人员应将处理过程详细记录入瓦斯日报,内容应包括:时间、地点、原因、瓦斯浓度及处理情况等。 2 防治煤尘爆炸事故的安全技术措施 2.1预防煤尘引燃爆炸的措施

⑴健全防尘供水系统,保证水量充足

①防尘用水管应铺设到所有能产生和沉积粉尘的地点,井下各采区及工作面按要求铺设好供水管路并保证供水正常。在需要用水冲洗和喷雾的巷道内,主要运输巷、回风巷每隔l00m安设一个三通阀门;皮带机巷与皮带机斜井每隔50m安设一个三通阀门。

②在需要用水冲洗的巷道内,按照管路安装要求设置三通阀门,并及时安装长度不小于50m且与三通阀门接头相匹配的专用软水管。皮带机巷与皮带机斜井内应在距巷道三通阀门上应至少配备一条长度25m的冲洗巷道、消防两用软水管。

③供水管路要经常巡视检查,发现问题及时处理。 ⑵防止煤尘堆积及飞扬的措施

① 730轨道运输大巷、井底车场、730胶带运输大巷由机电科负责每年刷白一次。

② 掘进工作面及其它巷道按照巷道划分范围由负责单位及时冲洗,清理积尘。

③ 各采掘进工作面必须落实转载喷雾、净化水幕、放炮喷雾、掘进机内、外喷雾、防尘帘等各项防尘措施。皮带输送机的转载落差,均不得超出0.5m,当超过0.5m时,应安装合适的溜槽或导向板传输。

④ 采煤工作面煤层原有自然水分小于4%时,应采取煤层注水防尘措施。

⑤ 综掘工作面必须按照要求,装备除尘风机并坚持使用,综采工作面安装液压支架自动喷雾系统。

⑥ 所有采掘工作面安装水压水量观测表。 ⑶防止煤尘引燃引爆的措施 ①杜绝明火,消除电器火源。

②加强所揭露煤层自然发火情况观测,准备好应急措施。 ③严格放炮管理,防止放炮引起的煤尘事故。 ④杜绝摩擦、撞击产生的火源。

⑤加强瓦斯管理,防止瓦斯爆炸引起的煤尘爆炸。 2.2 防止煤尘爆炸事故扩大的措施。

⑴健全矿井主、辅隔爆设施,并经常检查维护,保持完好。 ⑵简化、优化通风系统,实行分区通风,避免串联通风。

⑶做好自救器的检查、校验、管理、使用培训工作,使职工能熟练使用。

⑷制定并贯彻避灾路线。

3 其未尽事宜严格执行《煤矿安全规程》相关规定。

红一矿矿井爆破安全技术措施

编审安 全总 编

管 理工 程制 日 制:

核:

科:

师:

期:

生产技术科 20110210

红一矿矿井爆破安全技术措施

爆破在煤矿生产中被广泛应用,由于在使用中的失误,使能量意外释放,导致爆破事故的频繁发生。因此我矿特制定如下安全技术措施。

炸药爆炸时的危害主要是产生爆炸地震、空气冲击波、飞石和噪声等,一旦失控,就会造成事故。要避免这些危害必须按照规程操作,确保必要的安全距离和采取相应的安全技术措施。

一、爆破安全距离

主要包括爆破安全距离、爆破冲击波和飞石的距离确定。在这里仅就爆破飞石和安全距离的确定做一个简单的介绍。爆破如果处理不当,会有些岩块飞散很远,对人员、设备和构筑物造成危害。

二、爆破事故的预防

1.严格按照操作规程进行:爆破作业人员必须取得爆破员的资格;各种爆破都必须编制爆破设计书或爆破说明书。设计书或说明书应有具体的爆破方法、爆破顺序、装药量、起爆或连线方法、警戒安全措施等;爆破过程中,必须撤离人员。严格遵守爆破作业的安全规程和安全操作细则。

2.装药、充填:装药前必须对炮孔进行清理和验收,使用竹木棍装药,禁止用铁棍装药。在装药时,禁止烟火、禁止明火照明。

3.设立警戒:爆破前必须同时发生声响和视觉信号,使危险区内的人员都能清楚地听到和看到,井下爆破应在相关的巷道上设置岗哨,地面爆破应在危险区的边界设置岗哨,使所有通道都在监视之下,并撤走爆破危险区的全部人员。

4.连线、起爆:采用导火索起爆,应不少于二人进行,而且必须用导火索或专用点火器材点火。

用电雷管起爆时,电雷管必须逐个导通,用于同一爆破网络的电雷管应为同厂同型号。爆破主线与爆破电源连接之前,必须测全线路的总电阻值,总电阻值与实际计算值的误差须小于土5%,否则,禁止联接。大型爆破必须用复式起爆线路。井下爆破必须使用防爆型起爆器作为起爆电源。

5.爆后检查;爆破后,经过一段时间,再确认爆破地点安全,经当班爆破班长同意,发出解除警戒信号,才允许人员进入爆破地点。

6.盲炮处理:拒爆产生的盲炮包括瞎炮和残炮。发现盲炮和怀疑有盲炮,应立即报告并及时处理。若不能及时处理,应设明显的标志,并采取相应的安全措施,禁止掏出或拉出起爆药包,严禁打残眼。盲炮的处理主要有下列方法:

(1)经检查确认炮孔的起爆线路完好和漏接、漏点火造成的拒爆,可重新进行起爆。

(2)打平行眼装药起爆。对于浅眼爆破、平行眼距盲炮孔不得小于0.3米,深孔爆破平行眼距盲炮孔不得小于10倍炮孔直径。

(3)用木制、竹制或其他不发火的材料制成的工具,轻轻地将炮孔内大部分填塞物掏出,用聚能药包诱爆。

三、其未尽事宜严格执行《煤矿安全规程》相关规定。

上一篇:献给教师节的诗歌下一篇:安全知识讲座讲稿