18b20温度传感器

2022-07-22 版权声明 我要投稿

第1篇:18b20温度传感器

船舶摇摆能量回收型温度无线传感器设计

摘要:目前的無线传感器节点主要是以传统的化学电池作为供电电源,体积大,污染大,且电池的寿命限制了整个系统的使用寿命。现对能量回收型温度无线传感器进行研究,拟建立一种基于电磁感应的能量回收装置模型,回收船载环境中的摇摆能量,使其更加适应船载环境,大大延长其使用寿命。

关键词:无线传感器;船载环境;能量回收;电磁感应

0 引言

无线传感器结合了微型传感器技术、通信技术和集成电路技术等,能对环境或对象进行实时监测、感知和信息采集,并具有远程无线传输功能,无需器件的连接,能降低整个监测系统搭建的复杂程度和维护成本[1]。无线传感器节点通常采用便携式电源供电,电能耗尽后,无线传感器也将失效,电池的寿命往往限制着无线传感器的寿命。因此,无线传感器的设计通常要求降低其功耗[2]。这种设计可以在一定程度上延长无线传感器的使用时间,可是无法补充电池能量这一根本问题仍然没有解决,这仍是限制无线传感器发展和应用的重要因素。

在很多无线传感器的应用场合,存在着许多可转化、可利用的能量,回收这些能量并给无线传感器供能是一种切实有效的方法,例如利用压电效应回收环境中的振动能量[3]等等。当无线传感器应用在舰船上时,在海上航行的舰船必然会因受到海浪的冲击或推动而发生一系列复杂的船体摇摆运动[4],这种摇摆能量在舰载环境中几乎无处不在,并且具有较高的能量密度。因此,研究一种装置将船载环境中的摇摆能量回收并转化为电能供应给无线传感器节点是一种切实有效可行的方法。

本文将对采集摇摆能量的器件进行设计,并将设计的器件和无线传感器结合起来,同时对无线传感器进行低功耗设计,以进一步延长其使用寿命。

1 总体设计

无线传感器节点中的器件和微机电系统在工作时必须有稳定的电流,但由于船体的摇摆运动是无规律、不规则的,所以收集到的电能也是不稳定的,无法直接供给设备使用,必须将其转换为稳定的电能之后才能正常使用。本设计的总体构思如下:将船舶的摇摆动能进行回收,稳压处理后向蓄电池充电,再由蓄电池向设备供电,同时对无线传感器做低功耗设计,进一步延长其使用寿命。本文提出的无线传感器系统框架如图1所示。

2 能量收集装置设计

环境中能量回收技术按照原理划分主要有三种类型:电磁式[5]、静电式[6]和压电式[7]。它们通过特定的机械结构将环境中的机械动能收集转化为电能,能有效改善传统无线传感器不能长期供能的缺点。船载环境中摇摆动能普遍存在,频率低且幅度较大,因此本设计拟采用基于电磁感应的电磁式能量回收技术来回收摇摆能量。

电磁式摇摆能量收集装置的结构模型如图2所示,该结构包括顶盖、外壳、磁珠、弧面支架和线圈。线圈固定在弧面支架下,磁珠能在弧面支架上自由滚动,当船舶摇摆时,磁珠在弧面支架上滚动,线圈感应到磁场变化产生感应电流。

目前,凌力尔特公司的芯片LTC3588集成了一个低损失全波桥式整流器和一个高效率降压型转换器,能实现对电能的整流、稳压和控制,并且可以对蓄电池进行充电。电路结构如图3所示。

3 传感器模块(传感+处理)设计

传感器模块负责检测舰船船舱中的温度数据,采用定制的低功耗温度变送器。拟选用热电偶探头温度传感器WZPT-01,Pt100进行冷端温度补偿。温度变送器电路如图4所示。

AD7124-8是低功耗、低噪声、24位模数转换器(ADC),系统的典型无噪码声分辨率约为15位,片内集成了系统需要的大部分构建模块,因而能够简化热电偶系统设计。

4 无线传输模块设计

无线传感器网络组网常用的技术有Zigbee、LoRa、NB-IOT等。其中NB-IOT基于现有蜂窝组网,在舰船环境无法使用。而LoRa是一种基于扩频技术的超远距离无线传输方案,在同样的覆盖距离下,其相比Zigbee更加节能,而且信号经过扩频调制后频谱特征接近噪声,在信号安全和抗干扰方面有优势。LoRa模块低功耗通信距离远,通信距离可达十几千米,解决了低功耗和远距离不能兼得的难题。所以,无线传输模块选用国内某公司的RHF76-052 LoRaWAN模块,其采用SX1276系列LoRa专用基带芯片,MCU采用ST公司超低功耗STM32L052 ARM芯片。其中SX1276负责LoRa的物理层基带部分(信号接收发送、调制解调),STM32L052负责LoRa通信协议的MAC层部分(数据成帧、帧检查、介质访问、差错控制)、传感器模块控制与数据采集以及电源管理,框图如图5所示。

变送器输出电压通过RHF76-052模块的MCU转换为数字信号,再根据传输协议数据打包后送SX1276发送。

无线传感器节点中,无线通信模块的功耗占整个节点功耗的大部分,降低无线通信模块的功耗是实现无线传感器低功耗的一个重要环节。在保证数据正常传输的情况下,应尽可能降低或简化不必要的控制信息,通过减少传输数据量来降低能耗;同时,通过节点“侦听—休眠”状态的改变来降低空闲侦听所带来的能量消耗。具体流程如图6所示。

5 结语

本文首先分析了船载环境的特点,确定摇摆动能是船舶在航行中分布广泛的一种能量;然后设计了能量回收装置,将装置通过LTC3588芯片与无线传感器结合起来,并且对传感器模块和无线传输模块进行了设计分析;最后通过对无线通信模块进行低功耗设计,进一步延长无线传感器的使用寿命。

[参考文献]

[1] 张超,徐姣.振动能量回收功能的无线传感器[C]//第十届全国振动理论及应用学术会议论文集,2011:995-1002.

[2] 张永梅,杨冲,马礼,等.一种低功耗的无线传感器网络节点设计方法[J].计算机工程,2012,38(3):71-73.

[3] 汪泽浩.一种基于压电陶瓷晶体的振动能量回收装置的研究[D].杭州:浙江大学,2015.

[4] 程家军,李春枝,陈颖.舰载环境振动摇摆特性测试分析[J].装备环境工程,2015,12(1):114-119.

[5] 王满州.电磁式振动能量收集装置研究[D].杭州:浙江工业大学,2017.

[6] CHIU Y,KUO C T,CHU Y S.MEMS design and fabrication of an electrostatic vibration-to-electricity energy converter[J].Microsystem Technologies,2007,13(11):1663-1669.

[7] 任朝阳,曹自平,朱洪波.振动能量采集供电的无线传感器设计和制作[J].功能材料与器件学报,2015,21(4):51-55.

收稿日期:2020-02-19

作者简介:李振扬(1995—),男,湖南湘乡人,在读硕士研究生,研究方向:机械电子。

通信作者:赵立宏(1967—),男,湖南衡阳人,硕士,教授,主要从事机械电子、测控技术的教学与研究工作。

作者:李振扬 赵立宏

第2篇:基于无线传感器网络的变电站设备温度监测系统设计

摘 要 本文通过引入无线传感器网络技术,对变电站设备温度监测系统进行了设计,它能对重要的电力电气设备的温度进行在线监测,具有较高的现实意义和使用价值。

关键词 无线传感器网络,变电站设备,温度监测,节点

1引言

变电站设备是电力生产的重要设备,它们在电力系统中的地位异常重要,但变电站设备在正常的运行应用过程中,极容易因为装置设备老化或者是温度过高等问题,发生运行故障事故,这会对于电力系统的安全稳定运行会产生不利影响。基于无线传感器网络的变电站设备温度监测系统,就是为了保证变电站设备安全运行而设计的。该系统能够实现温度数据的采集、融合和传输,是保证整个电力系统安全稳定运行的重要手段。

2系统的测温原理

本系统使用在线式红外测温仪对变电站敏感设备进行温度测量。测温仪采用固定安装的方式,以使被测设备辐射出的红外能量易于被红外测温仪的物镜接受为安装原则。首先,变电战运行过程中,被测设备辐射出的紅外能量通过测温仪的物镜汇聚到红外探测器上;然后,探测器将辐射能转换成电信号,又通过前置放大器、主放大器将信号放大、整形、滤波后,经过A/D转换电路处理,输入微处理器;最后,微处理器在内部经过线性化处理、温度补偿和发射率修正后,把温度值通过无线传感器网络上报给监控室的主控计算机。

3系统的总体方案

基于无线传感器网络的变电站设备温度监测系统包括硬件系统和软件系统两部分。硬件系统主要包括:温度采集节点(主要部分是温度采集传感器)、汇聚节点和监控室的主控计算机组成。软件系统包括汇聚节点和温度采集节点的程序设计。

数据采集节点的温度传感器负责测量现场温度,微处理模块负责对采集数据进行预处理,并通过nRF905射频收发器芯片将处理数据上报给汇聚节点。汇聚节点按照一定的频率间隔陆续监听各个采温节点上报的设备温度,并将其与该设备设定的报警温度阈值进行比较,若正常则继续监听下一个采温节点上报的设备温度;否则,将该异常数据以通过RS485总线的方式上报给监控室的主控计算机,并同时通过nRF905射频收发器芯片对采温节点下达温度跟踪采集上报的命令,采温节点的微处理器在收到命令后,将控制安装在变电站监测设备上的温度传感器对设备温度进行跟踪采集。监控室主控计算机通过RS485串行总线的方式自动周期地从汇聚节点读取所接收的测温数据,并对数据进行分析,发现超过警戒的温度或温度发生异常波动的则及时报警。此外,测温数据还可以在主控计算机中长期存储以供查询,在设备发生故障时,技术人员可以对设备温度的走势进行分析以辅助故障处理。

4系统的硬件设计分析

4.1温度采集节点的硬件设计

1.微处理器模块

微处理器模块采用MSP430F149 为主芯片,其电路部分主要包括与无线通信单元的接口、与温度数据采集单元的接口和与拨码开关的接口等,具有功耗低、处理能力强、体积小、性能稳定以及方便高效的开发环境等特点,并且其运行温度范围能够适应变电站的工作环境,非常适合于开发低功耗、小型化的远程智能监控终端设备。

2.温度采集模块

本系统将在电力电气设备的易发热部位装设由摄像机、数字云台、红外测温仪等组成的温度采集模块,该模块能够自动保存每次温度采集的记录,精度较高,满足使用要求。

3.无线通信模块

该模块采用单片射频收发器芯片 nRF905, 其电路部分主要包括与 MSP430F149 接口电路、晶振电路和天线部分电路三部分,最高发射速率50 kb/s,10 dB 发射功率条件下,配置外置鞭状天线的有效通信距离为300 m 左右。

4.电源模块

电源模块采用TPS60100 芯片,通过锂一次电池供电提供3.3V 电压。

4.2汇聚节点的硬件设计

汇聚节点硬件设计要满足以下功能:(1)通过无线通信模块汇聚温度采集节点采集到的温度信号;(2)将采集到的温度信号进行分析处理,并嵌入到RS485总线上,等到主控计算机采集;(3)将节点地址、节点参数以及温度采集节点上报的温度数据进行存储,以防丢失。

根据汇聚节点电路要实现的功能,本文将汇聚节点的硬件组成框架设计成如图1所示,由微处理模块、无线通信模块、串行通信模块、存储模块和电源模块五部分。

图1 汇聚节点的硬件组成框架

汇聚节点的微处理模块和无线通信模块与数据采集节点的相应模块原理相同,故不作重复介绍。下面将对其它模块进行介绍。

1.串行通信模块

该模块设计了标准的RS485 总线接口,一方面将汇聚节点处理好的温度数据传输给主控计算机,另一方面根据主控计算机的控制命令对模块进行控制。

2.存储模块

该模块采用AT24C02存储器,工作电压为5V,主要用于存储数据采集节点和汇聚节点的地址和配置信息,以及最近一次的温度数据。存储这些信息一方面是为了防止温度数据遗失,另一方面则是为了给汇聚节点与主控计算机的通信提供依据。

3.电源模块

微处理模块和无线通信模块的供电电压是3.3 V,串行通信模块和存储模块的供电电压是5 V。因此,本模块使用了两个电源芯片 LM2575 和 LM1117-3.3,以分别提供 5 V和3.3 V 电压。

5系统的软件设计分析

5.1数据采集节点的软件设计

数据采集节点的任务就是解析汇聚节点的命令、采集温度数据、根据时隙优先级计算定时时间、发送数据到汇聚节点。其程序流程主要如下:

Step1:关闭看门狗定时器WDT并进行系统初始化;接着打开WDT,置无线通信模块为接收模式,等待并接受汇聚节点发来的组网信号,接着等待汇聚节点的应答信号。若一直没收到则返回组网,若收到,则开始接受汇聚节点的温度采集命令。

Step2:进入采温周期的循环,即先监听汇聚节点的采集温度命令(同时也是同步信号),各个数据采集节点在接收到这个采温同步命令之后,解析出自己的时隙,启动定时器开始一个采样周期。

Step3:采样周期结束后,各个温度数据采集节点根据同步信号的时隙安排将采集好的温度数据发送给汇聚节点。

Step4: 无线通信模块在发送完温度数据之后,设置nRF905为掉电模式,MSP430F149休眠,等待下一个汇聚节点的采集温度命令。

5.2汇聚节点的软件设计

汇聚节点在系统中起着承上启下的作用,其程序流程主要如下:

Step1:对系统进行初始化,初始化完成之后程序进入周期循环,置nRF905为发送模式并连续发生三次组网信号。若有节点申请加入,则返回一个应答信号;若没有节点申请加入,则直接进入下一阶段。

Step2:汇聚节点对在网的各个温度数据采集节点发送采集温度的命令;接着设定等待时间,这段时间是温度数据采集节点的采样时间,采样定时时间到,关闭串口中断,接收各个节点返回的温度数据。

Step3:若汇聚节点三次没有收到在网的温度数据采集节点返回的任何数据,则默认该节点已退出网络。

Step4:汇聚节点处理完温度数据之后,打开串口中断,响应串口命令,直到定时时间到,重新发送组网信号。

6结束语

总之,基于无线传感器网络的变电站设备温度监测系统具有功耗小、采样精度高、系统稳定性好等特点,值得在实践领域进行广泛推广应用。

参考文献

[1] 王海伦,蔡志宏,范一鸣.电气设备温度监测的无线传感器网络节点设计[J]. 传感器与微系统, 2011, 30(7): 97-99

[2] 沈楚焱,杨鹏,史旺旺.基于无线传感器网络的预装式变电站测控系统[J].机电 工程, 2012, 29(10) :1213-1216

作者:童凡杰

第3篇:基于低功耗广域传感器网络的变电站关键设备温度在线监测系统研究

摘要:变电站作为电力系统的重要组成部分,其关键设备的温度关系着系统是否正常运行,一般情况下采用人工巡检测量的方法监测温度,费时费力,而且有些内部设备不能进行测量。现通过研究低功耗广域网通信技术在变电站关键设备温度监测、管理、运行、维护等方面的应用,提出了一种基于低功耗广域传感器网络的变电站关键设备温度监测系统,其目的是实现变电站内高压进线、变压器、高压断路器柜、隔离开关、电缆搭头和电容器室等设备的在线温度监测、报警等功能。

关键词:低功耗广域通信;物联网;变电站;温度监测;智能化管理

0 引言

物联网是涉及多学科、知识高度集成的前沿热点研究领域,其快速发展对无线通信技术提出了更高的要求,专为远距离、低功耗、密集终端通信而设计的低功耗广域网也快速兴起[1]。本文在变电站高压断路器柜等关键设备温度监测领域,采用低功耗广域网通信技术进行温度监测系统的构建,充分利用其覆盖广、连接多、速率低、成本低、功耗小等特点,提高电力测温系统性能,并降低运维成本。

本系统采用低功耗广域物联网技术(LoRa)[2]对变电站的高压进线、变压器、高压断路器柜、隔离开关、电缆搭头和电容器室等关键设备的温度实现智能化管理,实现温度信息的在线监测、实时显示、预警报警等综合智能化信息管理,更加智能、无漏警、无虚警地实现告警信号采集与处理,满足智能变电站的设备运行管理要求。

目前电力无线测温通常采用ZigBee通信技术[3],其特点是通信距离短、功耗低,通过MESH多跳组网,实现终端数据到通信中继或通信基站的数据传输。ZigBee通信技术采用2.4 GHz工作频段,会对Wi-Fi信号产生干扰,目前电力系统在推广专用Wi-Fi通信网络,所以采用ZigBee技术的无线测温设备会导致其与其他采用Wi-Fi网络通信的电力设备产生通信干扰,不仅影响测温数据的正常传输,还会影响到其他设备的正常通信[4]。

本系统首次将长距离、低功耗(LoRa)物联网技术在智能变电温度监测领域进行规模应用和实践研究,通过研究长距离、低功耗传感器网络的结构、传输协议和路由算法,填补长距离、低功耗物联网络技术在智能变电监测领域大规模集成应用的空白,验证其网络传输可靠性和数据安全性。

1 低功耗广域无线测温系统架构

本系统由无线温度传感器、传感网络通信基站、温度管理平台等组成,可以实时监测高压设备工作温度。系统测量的设备温度数据可在温度管理平台进行综合比较分析,如当前数据与历史数据、当前设备温度数据与环境温度数据、同类设备相间温度数据的实时比较。通过多数据的融合分析,可有效提高数据的准确性和可靠性。系统结构如图1所示。

该系统中,无线温度传感器采用低功耗MCU控制和处理技术,抗干扰能力强。设备天线采用特殊定制的平板天线,避免了普通鞭状天线在高压环境下容易尖端放电的缺陷,适宜在高压环境下运行;传感网络通信基站,负责自动接收无线温度传感器所发送的温度数据,并可通过以太网/3G/4G上传到监测管理中心。基站收到温度管理平台的召唤数据指令后,可上传监测点温度数据。通信基站采用单跳星型网络与温度传感器通信,实现对传感器的温度数据采集和命令发布。单基站的传感器管理容量大(可管理上万个无线传感器)[5-6],系统扩展性强。温度管理平台具有在线采集并分析现场温度的功能,保障了电力设备稳定运行。

2 系统技术特点

系统中的无线测温终端与通信基站采用星型网络结构,终端与基站间采用低功耗广域通信技术,该技术以低功耗和长距离通信为特点,实现终端大容量、广域无线通信覆盖。本文主要介绍无线测温传感器的低功耗技术、低功耗广域网络的抗干扰技术以及系统的无线通信安全技术。

2.1 低功耗设计

无线传感器网络的节点数量大、电池小、能量有限,而传感器网络覆盖区域大,如何设计合适的通信机制并实现能源高效利用是无线传感器网络设计面临的难题[7]。

首先终端传感器的功耗需要降低,在硬件和软件协同方面系统地研究无线传感器的低功耗设计策略。在硬件方面主要是对低功耗射频唤醒机制、动态功率管理和动态电压调节技术以及射频器件、微处理器等器件的选择和电源管理策略等方面进行研究,在软件方面主要是对低功耗传感网络协议、节点级低功耗数据融合算法等方面进行研究。通过软硬件低功耗设计,实现节点休眠功耗1 μAh,平均功耗低于5 μAh,如果供电电池为500 mAh,则节点寿命可达10年以上,即可满足大多数工业应用需求。无线测温传感器功能框架如图2所示。

我们针对变电站高压带电设備无线温度传感器的低功耗设计技术进行了大量研究。由于高压带电设备的无线温度传感器具有无法随意更换电池以及电力检修周期较长等特点,本设计在长寿命一次性电池供电和环境获取能源技术、超低功耗路由算法、动态心跳占空比等方面进行了深入研究,设计的低功耗传感节点满足电力无线传感器网络对监测周期的要求和节点功耗最低化的要求。

2.1.1 低功耗射频唤醒机制研究

传感器节点主要包括传感器模块、无线通信模块和处理器。处理器和传感器模块的功耗由于工艺进步变得很低,无线通信模块功耗还是很高的,因此需要重点研究通信模块的节能。本设计提出了一种低功耗唤醒机制,通过采用低功耗的射频唤醒电路,感知其他节点唤醒请求,从而唤醒通信模块和MCU来响应其他节点的请求,满足无线传感器网络的低功耗与实时性要求。

2.1.2 动态功率管理和动态电压调节技术研究

系统的技术指标包括驱动能力、稳定性、处理速度、线性度等,如果是非关键指标,可以根据传感器需求,降低技术指标来减少系统功耗。

根据明确的技术指标,系统通过对动态功率管理和动态电压调节技术在无线传感网络系统中的应用研究,具体在降低电源电压,减少系统电路门数,降低时钟频率以及系统中静态功耗低的CMOS芯片器件的应用等方面,实现信号获取单元及处理单元消耗功率的降低,即从硬件角度降低网络化传感器的功耗。

无线传感节点的其他功耗器件,如无线收发单元、处理器、内存等,可以通过动态功率管理技术使其运行在节能模式下,也可以减少能量消耗。

另外,传感器的工作负荷是随时间变化的,因此可以采用动态电压调节技术,动态地改变微处理器的工作电压和频率,使其刚好满足当时的运行需求,从而在性能和能耗之间取得平衡。根据节点的负载确定节点处理器速率,再根据这个处理速率来确定下个时隙处理器的工作电压和工作频率,以实现降低无线传感节点能耗的目的。

2.1.3 传感器数据融合算法与边缘计算研究

通过对变电站内多种关键设备温度信息实现自动融合,实现设备运行温度、温升和相同设备相间温差等信息的综合分析处理,可更加智能、无漏警、无虚警地实现告警信号采集与处理,并可降低通信频率以降低传感器功耗[8]。基于对传感器网络中数据的研究,结合网络管理实时性的要求,通过对不同融合策略的分析,本设计在满足系统寿命周期和实时管理要求的条件下,实现了对相似数据和异常数据的识别判断,对相似数据的合并或捎带传输,对异常数据的剔除,避免了发送无效数据,提高了数据准确性,并降低了传感节点的功耗。

2.2 抗干扰技术

本系统采用线性扩频通信技术(CSS)和跳频-正交频分复用(FH-OFDM)扩频通信技术,实现变电站监测网络所需的长距离、低功耗和大容量终端管理功能。CSS技术具有较强的抗频偏能力、抗衰落能力、抗截获能力,并且处理增益大、传输距离远、系统功耗低,在复杂的环境中也可以进行可靠通信[9]。

CSS不但具有上述特点,而且由于自身独有的脉冲压缩特性,能够有效将传统的幅度调制、频率调制和相位调制结合到一起,形成一种高效的多维度多址技术,能够充分利用珍贵的频谱资源,低能量传送信息,满足低速低功耗无线网的需求。同时,由于线性扩频信号的产生和匹配处理主要是通过声波滤波器(SAW)来完成,声波的传播速度只有电磁波的约十万分之一,所以在声波滤波器上很容易进行信号的采样和处理,这也很大程度上降低了物理层的复杂度和功率消耗[10]。

系统同时在正交频分复用系统的基础上引入跳频技术,实现子载波跳频通信。系统中跳频通信的实现采用数字化方式,OFDM作为一种多载波调制技术,能够将频域高速数据流通过串并变换,在多个正交的子载波上进行传输,对系统的频谱利用率提高很大。

2.3 通信安全技术

无线通信安全是物联网通信领域的重要研究内容[11],低功耗广域网络(LoRa)需要在通信技术和通信加密协议两方面实现通信安全保障。LoRa融合了数字扩频、数字信号处理和前向纠错编码技术,采用线性扩频(CSS)技术构建通信网络,满足现在室内外通信对系统提出的抗干扰能力强、通信可靠稳定性好、发射功率低、系统电池持续时间长等要求。本通信系统终端设备发射功率很低,具有良好的电磁兼容性:即不仅具有抗干扰、抗噪声能力,同时由于其频点选择范围宽(能够避开其他通信设备频点)、发射功率低,也不会对其他设备通信造成干扰,十分适合在通信条件复杂的室内外环境中进行可靠通信。

本系统无线传感网络通信采用LoRaWAN协议[12],该协议是物联网国际标准,具有完备的通信安全机制,包括双向认证、完整性校验和保密机制。双向认证作为网络连接的过程,发生在通信终端与网络服务器之间,确保了只有真正的和已授权的通信终端才能与真实的网络相连接。LoRaWAN协议的MAC和应用消息是经过认证、完整性保护和加密处理的,这种保护和双向认证机制共同确保了网络通信来自合法的设备。

LoRaWAN为终端设备和服务器之间的数据交换提供端对端的加密机制,在网络服务器和应用服务器之间采用双层加密认证机制,密钥采用AES128加密技术。通信终端加入网络或进行网络通信时,由终端64位EUI与网络服务器的网络秘钥和应用服务器的应用秘钥共同绑定,它们分别对应用层数据和MAC协议帧加密;信息收发密钥是由终端与网络服务器、应用服务器独立产生,抗干扰能力强。

应用秘钥是服务器和通信终端的根密钥,双方共同拥有,且不参与通信交换,因此攻击者无法通过窃听无线电而破解。因为双方具备相同的两个密钥,而AES128是对称加密机制,服务器和通信终端都可以有效使用该机制。同时为防止网络重播攻击,LoRaWAN在协议中采用绑定通信终端与任意或非重復的随机数方式进行验证加密,确保验证信息不被重复使用,以对抗网络非法重复攻击。

3 结语

本系统采用低功耗广域物联网所建立的大数量设备温度在线监测系统,是物联网技术在变电监测领域的一次创新性规模应用。系统从高压进线、变压器、高压断路器柜和电容器室等关键设备上采集温度数据信息,通过物联网和管理平台进行数据传递和信息交换,为变电站设备运行提供数据支持,有效提高了电网运行自动化、信息化管理水平,同时降低了现有电力设备温度监测的安装成本和后期运维费用。

[参考文献]

[1] 赵静,喻晓红,黄波,等.物联网的结构体系与发展[J].通信技术,2010(9):106-108.

[2] RAZA U,KULKARNI P,SOORIYABANDARA M.Low Power Wide Area Networks:An Overview[J].IEEE Communications Surveys & Tutorials,2017,19(2):855-873.

[3] 张颖超,吴嘉伦,李俊.基于Zigbee电力电缆接头远程温度监测系统研究[J].电测与仪表,2014(16):103-107.

[4] 吴江一.变电站设备无线温度监测系统的研究与应用[D].保定:华北电力大学,2014.

[5] PETAJAJARVI J,MIKHAYLOV K,ROIVAINEN A,et al.On the coverage of LPWANs:range evaluation and channel attenuation model for LoRa technology[C]// 2015 14th International Conference on ITS Telecommunications (ITST),2015:55-59.

[6] MIKHAYLOV K,PETAEJAEJAERVI J,HAENNINEN T.Analysis of Capacity and Scalability of the LoRa Low Power Wide Area Network Technology[C]// European Wireless 2016, 22th European Wireless Conference,2016:119-124.

[7] COSTA M,FARRELL T,DOYLE L.On energy efficiency and lifetime in low power wide area network for the Internet of Things[C]//2017 IEEE Conference on Standards for Communications and Networking (CSCN), 2017:258-263.

[8] 張万生,万稳战.数据融合在厂用变电站智能辅助系统管控平台中的研究与应用[J].电气技术,2014(2):48-52.

[9] 陈治国,袁雪莲,张文杰.基于Chirp信号跳频调制的超宽带通信系统设计[J].通信技术,2007,40(9):15-17.

[10] 孙嘉.Chirp超宽带通信的调制和时间同步技术研究[D].成都:电子科技大学,2009.

[11] Internet of Things:Privacy and Security in a Conn-ected World[Z].Federal Trade Commission,2015.

[12] LoRaWANTM 1.1 Specification 2[Z].LoRa Alliance,Inc., 2017.

收稿日期:2020-04-16

作者简介:杨博(1991—),男,河南新郑人,硕士,工程师,研究方向:电力物联网。

金佳奔(1991—),男,江苏无锡人,工程师,研究方向:变电设备智能运检。

张煦(1986—),男,湖南隆回人,硕士,工程师,研究方向:电力系统规划。

作者:杨博 金佳奔 张煦 顾晓峰

第4篇:2011基于18B20温度传感器论文

基于单片机18B20的温度计设计

摘要:文章主要介绍有关18B20温度传感器的应用及有关注意事项,经典接线原理图。 1. 引言:

温度传感器的种类众多,在应用与高精度、高可靠性的场合时DALLAS(达拉斯)公司生产的DS18B20温度传感器当仁不让。超小的体积,超低的硬件开消,抗干扰能力强,精度高,附加功能强,使得DS18B20更受欢迎。对于我们普通的电子爱好者来说,DS18B20的优势更是我们学习单片机技术和开发温度相关的小产品的不二选择。了解其工作原理和应用可以拓宽您对单片机开发的思路。

2. DS18B20的主要特征: * 全数字温度转换及输出。 * 先进的单总线数据通信。 * 最高12位分辨率,精度可达土0.5摄氏度。 * 12位分辨率时的最大工作周期为750毫秒。 * 可选择寄生工作方式。 * 检测温度范围为–55°C ~+125°C (–67°F ~+257°F) * 内置EEPROM,限温报警功能。 * 64位光刻ROM,内置产品序列号,方便多机挂接。 * 多样封装形式,适应不同硬件系统。 3. DS18B20引脚功能:

•GND 电压地 •DQ 单数据总线 •VDD 电源电压

4. DS18B20工作原理及应用:

DS18B20的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰力更强。其一个工作周期可分为两个部分,即温度检测和数据处理。在讲解其工作流程之前我们有必要了解18B20的内部存储器资源。18B20共有三种形态的存储器资源,它们分别是:

ROM 只读存储器,用于存放DS18B20ID编码,其前8位是单线系列编码(DS18B20的编码是19H),后面48位是芯片唯一的序列号,最后8位是以上56的位的CRC码(冗余校验)。数据在出产时设置不由用户更改。DS18B20共64位ROM。

5. 控制器对18B20操作流程:

1、 复位:首先我们必须对DS18B20芯片进行复位,复位就是由控制器(单片机)给DS18B20单总线至少480uS的低电平信号。当18B20接到此复位信号后则会在15~60uS后回发一个芯片的存在脉冲。

2、 存在脉冲:在复位电平结束之后,控制器应该将数据单总线拉高,以便于在15~60uS后接收存在脉冲,存在脉冲为一个60~240uS的低电平信号。至此,通信双方已经达成了基本的协议,接下来将会是控制器与18B20间的数据通信。如果复位低电平的时间不足或是单总线的电路断路都不会接到存在脉冲,在设计时要注意意外情况的处理。

3、 控制器发送ROM指令:双方打完了招呼之后最要将进行交流了,ROM指令共有5条,每一个工作周期只能发一条,ROM指令分别是读ROM数据、指

定匹配芯片、跳跃ROM、芯片搜索、报警芯片搜索。ROM指令为8位长度,功能是对片内的64位光刻ROM进行操作。其主要目的是为了分辨一条总线上挂接的多个器件并作处理。诚然,单总线上可以同时挂接多个器件,并通过每个器件上所独有的ID号来区别,一般只挂接单个18B20芯片时可以跳过ROM指令(注意:此处指的跳过ROM指令并非不发送ROM指令,而是用特有的一条“跳过指令”)。ROM指令在下文有详细的介绍。

4、 控制器发送存储器操作指令:在ROM指令发送给18B20之后,紧接着(不间断)就是发送存储器操作指令了。操作指令同样为8位,共6条,存储器操作指令分别是写RAM数据、读RAM数据、将RAM数据复制到EEPROM、温度转换、将EEPROM中的报警值复制到RAM、工作方式切换。存储器操作指令的功能是命令18B20作什么样的工作,是芯片控制的关键。

5、 执行或数据读写:一个存储器操作指令结束后则将进行指令执行或数据的读写,这个操作要视存储器操作指令而定。如执行温度转换指令则控制器(单片机)必须等待18B20执行其指令,一般转换时间为500uS。如执行数据读写指令则需要严格遵循18B20的读写时序来操作。数据的读写方法将有下文有详细介绍。 6. DS28B20芯片ROM指令表

Read ROM(读ROM)[33H] (方括号中的为16进制的命令字) Match ROM(指定匹配芯片)[55H] Skip ROM(跳跃ROM指令)[CCH] Search ROM(搜索芯片)[F0H] Alarm Search(报警芯片搜索)[ECH] 7. DS28B20芯片存储器操作指令表:

Write Scratchpad (向RAM中写数据)[4EH] Read Scratchpad (从RAM中读数据)[BEH] Copy Scratchpad (将RAM数据复制到EEPROM中)[48H] Convert T(温度转换)[44H] Recall EEPROM(将EEPROM中的报警值复制到RAM)[B8H] Read Power Supply(工作方式切换)[B4H] 8.写程序注意事项

DS18B20复位及应答关系

每一次通信之前必须进行复位,复位的时间、等待时间、回应时间应严格按时序编程。

DS18B20读写时间隙:

DS18B20的数据读写是通过时间隙处理位和命令字来确认信息交换的。 写时间隙:

写时间隙分为写“0”和写“1”,时序如图7。在写数据时间隙的前15uS总线需要是被控制器拉置低电平,而后则将是芯片对总线数据的采样时间,采样时间在15~60uS,采样时间内如果控制器将总线拉高则表示写“1”,如果控制器将总线拉低则表示写“0”。每一位的发送都应该有一个至少15uS的低电平起始位,随后的数据“0”或“1”应该在45uS内完成。整个位的发送时间应该保持在60~120uS,否则不能保证通信的正常。 读时间隙:

读时间隙时控制时的采样时间应该更加的精确才行,读时间隙时也是必须先由主机产生至少1uS的低电平,表示读时间的起始。随后在总线被释放后的15uS

中DS18B20会发送内部数据位,这时控制如果发现总线为高电平表示读出“1”,如果总线为低电平则表示读出数据“0”。每一位的读取之前都由控制器加一个起始信号。注意:必须在读间隙开始的15uS内读取数据位才可以保证通信的正确。 在通信时是以8位“0”或“1”为一个字节,字节的读或写是从高位开始的,即A7到A0.字节的读写顺序也是如图2自上而下的。

9.接线原理图:

本原理图采用四位数码管显示,低于100度时,首位不显示示例27.5,低于10度时示例为9.0,低于零度时示例为-3.7。

结束语:基于DS18B20温度测量温度准确,接线简单,易于控制,加以扩展可以应用到各种温度控制和监控场合。

参考文献:

DALLAS(达拉斯)公司生产的DS18B20温度传感器文献

程序:

#include

#define uchar unsigned char #define uint unsigned int

sbit sda=P1^7; sbit dian=P0^7;//小数点显示 uint tem;

uchar h; uchar code tabw[4]={0xf7,0xfb,0xfd,0xfe};//位选 uchar code tabs[12]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xff,0xbf};//数码管数据

//

0

4 5 6

8 9

- uchar code ditab[16]= {0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x04,0x05,0x06,0x06,0x07,0x08,0x08,0x09,0x09}; //查表显示小数位 ,1/16=0.0625,即当读出数据为3时,3*0.0625=0.1875,读出数据为3时对应1,查表显示1,为4时显2 uchar data temp[2]={0};//高位数据与低位数据暂存 uchar data display[5]={0};//显示缓存

void delay(uchar t)//t为1时延时小于5us { while(t--); } void delay1()//4us {} void delays(uchar m)//1ms { uchar i,j; for(i=0;i

for(j=0;j<110;j++); } void reset()//初始化 { uchar x=1; while(x) {

while(x)

{

sda=1;

sda=0;

delay(50);//延时500us以上

sda=1;

delay(5);//等待15us-60us

x=sda;

}

delay(45);

x=~sda; }

sda=1; } void write_s(uchar temp)//写入一个字节 { uchar i; for(i=0;i<8;i++) {

sda=1;

sda=0;

delay1();

sda=temp&0x01;

delay(6);

temp=temp/2; } sda=1; delay(1); } uchar read_s()//读出一个字节的数据 { uchar m=0,i; for(i=0;i<8;i++) {

sda=1;

m>>=1;

sda=0;

delay1();

sda=1;

delay1();

if(sda)

m=m|0x80;

delay(6); } sda=1; return m; } uint read_1820()//读出温度 { reset(); delay(200); write_s(0xcc);//发送命令

write_s(0x44);//发送转换命令

reset(); delay(1); write_s(0xcc);

write_s(0xbe); temp[0]=read_s(); temp[1]=read_s(); tem=temp[1]; tem<<=8; tem|=temp[0]; return tem; } void scan_led()//数据显示—数码管 { uchar i; for(i=0;i<4;i++) {

P0=tabs[display[i]];

P1=tabw[i];

delays(7);

if(i==1)

dian=0;

P1=tabw[i];

delays(2); } } void convert_t(uint tem)//温度转换{ uchar n=0; if(tem>6348) {

tem=65536-tem;

n=1; } display[4]=tem&0x0f; display[0]=ditab[display[4]];

display[4]=tem>>4;

display[3]=display[4]/100;

display[1]=display[4]%100;

display[2]=display[1]/10;

display[1]=display[1]%10; if(!display[3]) {

display[3]=0x0a; } if(!display[2])

display[2]=0x0a; if(n)

// 取百位数据暂存

// 取后两位数据暂存// 取十位数据暂存

{

n=0;

display[3]=0x0b; } } void main() { delay(0); delay(0); delay(0); P0=0xff; P1=0xff; for(h=0;h<4;h++)//初始化为零

{

display[h]=0; } reset(); write_s(0xcc); write_s(0x44); for(h=0;h<100;h++)//显示0保持

scan_led(); while(1) {

convert_t(read_1820());//读出并处理

scan_led();//显示温度

} }

第5篇:第3课 电子温度计---温度传感器 教学设计

《电子温度计---温度传感器》

教材分析

本课内容分为两部分。第一部分是温度传感器以及应用,以多功能电子钟还能显示温度为切入点,引出温度计在日常生活中国的普遍应用,进而认识温度传感器以及典型应用。第二部分介绍湿度传感器及相对湿度,要求了解日常生活中各类环境中适宜的相对湿度范围。本课的核心是温度传感器及其应用。

学情分析

学生对温度的认识有着直接的生活经验,可以安排对电子温度计产品功能的差异性进行适当的探讨。对于湿度传感器,学生理解的不多,主要侧重让学生了解不同环境中较为适宜的相对湿度数据范围。

预设教学目标

1.认知温度传感器极其应用; 2.了解湿度传感器。

教学重点

认知温度传感器极其应用,了解湿度传感器

教学难点

认知温度传感器极其应用,了解湿度传感器

课时安排: 1课时 预设教学过程:

一、导入

同学们,在上节课的学习中,我们了解了红外线传感器,实际上我们生活中这样的传感器还有很多,你知道还有些什么吗?

大家说了很多,今天老师给大家带来了其中一样,大家看看这是什么,你知道它使用的是什么传感器吗? (出示课题:电子温度计——温度传感器)

二、温度传感器

这是在我们生活中常见的电子温度计,它使用的是温度传感器,那么温度传感器是做什么的呢?大家一起看看书上的介绍。能够探测物体温度及其变化并转换成电信号的电子器件叫作温度传感器。

大家思考一下,温度传感器的作用很明显和红外线相同是用来探测温度的,那么它能用在什么方面呢?

小组讨论,并进行汇报

师:温度控制,还有探测环境,在一些环境中也可以搭配红外做报警装置等等。它的用途也是相当广泛的。

三、湿度传感器

在天气预报中,经常会出现温度和湿度的预报,这是因为对种植业来说,湿度和温度同样重要。湿度指的是什么有同学知道吗?

原来我们的空气,是有一定的水汽,水汽的多和少对环境还是很有影响的,这也是很多铁制品,在放置一段时间后,会生锈的原因,那么怎么样的湿度是适宜的呢,我们一起来看看书上的介绍。

学生观察书上的介绍,了解适宜的湿度数据。

温度不控制,对生活的影响大家很容易感受到,那么湿度如果不控制,对我们的生活是否有影响呢?请学生上网搜索相关知识,组内交流,进行汇报。

四、总结

通过今天的学习,我们简单的了解了温度和湿度传感器,相对于温度我们比较熟悉,湿度我们是第一次了解,但大家可以发现,它在我们的生活中,其实也有非常重要的影响。课后希望大家通过自己的观察、调查等相关的途径,更加客观清楚的认识这两种传感器,了解它们的技术应用,在生活实践中体验到它们带给我们的方便和巨大作用。

教后反思:

学生对温度的认识有着直接的生活经验,建议可安排对电子温度计产品功能的差异性进行适当探讨。如电子温度计与电子体温计,虽然名称类似,但应用领域不同,测量范围也有差异。

除了教材上“实践园“提供的实验外,建议增加利用实验器材对常规物品(如木块和铁块)的温度测量对比,并探讨实验结果与生活经验产生冲突的原因。

对于湿度传感器,侧重让学生了解不同环境中较为适宜的相对湿度数据范围。

第6篇:温度传感器课程设计

温度传感器简单电路的集成设计

当选择一个温度传感器的时候,将不再限制在模拟输出或数字输出装置。与你系统需要相匹配的传感器类型现在又很大的选择空间。市场上供应的所有温度感应器都是模拟输出。热电阻,RTDs和热电偶是另一种输出装置,矽温度感应器。在多数的应用中,这些模拟输出装置在有效输出时需要一个比较器,ADC,或一个扩音器。因此,当更高技术的集成变成可能的时候,有数字接口的温度传感器变成现实。这些集成电路被以多种形式出售,从超过特定的温度时才有信号简单装置,到那些报告远的局部温度提供警告的装置。现在不只是在模拟输出和数字输出传感器之间选择,还有那些应该与你的系统需要相匹配的更广阔的感应器类型的选择, 温度传感器的类型:

图一:传感器和集成电路制造商提供的四中温度传感器

在图一中举例说明四种温度感应器类型。一个理想模拟传感器提供一个完全线性的功能输出电压(A)。在传感器(B)的数字I/O类中,温度数据通常通过一个串行总线传给微控制器。沿着相同的总线,数据由温度传感器传到微控制器,通常设定温度界限在引脚得数字输出将下降的时候。当超过温度界限的时候,报警中断微控制器。这个类型的装置也提供风扇控制。

模拟输出温度传感器:

图2 热阻和矽温度传感器这两个模拟输出温度探测器的比较。

热电阻和矽温度传感器被广泛地使用在模拟输出温度感应器上。图2清楚地显示当电压和温度之间为线性关系时,矽温度传感器比热阻体好的多。在狭窄的温度范围之内,热电阻能提供合理的线性和好的敏感特性。许多构成原始电路的热电阻已经被矽温度感应器代替。

矽温度传感器有不同的输出刻度和组合。例如,与绝对温度成比例的输出转换功能,还有其他与摄氏温度和华氏温度成比例。摄氏温度部份提供一种组合以便温度能被单端补给得传感器检测。

在最大多数的应用中,这些装置的输出被装入一个比较器或A/D转换器,把温度数据转换成一个数字格式。这些附加的装置,热电阻和矽温度传感器继续被利用是由于在许多情况下它的成本低和使用方便。 数字I/O温度传感器: 大约在五年前,一种新类型温度传感器出现了。这种装置包括一个允许与微控制器通信的数字接口。接口通常是12C或SMBus序列总线,但是其他的串行接口例如SPI是共用的。阅读微控制器的温度报告,接口也接受来自温控制器的指令。那些指令通常是温度极限,如果超过,将中断微控制器的温度传感器集成电路上的数字信号。微控制器然后能够调整风扇速度或减慢微处理器的速度,例如,保持温度在控制之下。

图3:设计的温度传感器可遥测处理器芯片上的p-n结温度

图4。温度传感器可检测它自己的温度和遥测四个p-n结温度。

图5。风扇控制器/温度传感器集成电路也可使用PWM或一个线性模式的控制方案。

在图4中画是一个类似的装置:而不是检测一个p-n结温度,它检测四个结和它的自己内部的温度。因此内部温度接近周围温度。周围温度的测量给出关于系统风扇是否正在适当地工作的指示。

在图5中显示,控制风扇是在遥测温度时集成电路的主要功能。这个部分的使用能在风扇控制的二个不同的模式之间选择。在PWM模式中,微处理控制风扇速度是通过改变送给风扇的信号周期者测量温度一种功能。它允许电力消耗远少于这个部分的线性模式控制所提供的。因为某些风扇在PWM信号控制它的频率下发出一种听得见的声音,这种线性模式可能是有利的,但是需要较高功率的消耗和附加的电路。额外的功耗是整个系统功耗的一小部分。

当温度超出指定界限的时候,这个集成电路提供中断微控制器的警告信号。这个被叫做过热温度的信号形式里,安全特征也被提供。如果温度升到一个危险级别的时候温控制器或软件锁上,警告信号就不再有用。然而,温度经由SMBus升高到一个水平,过热在没有微控制器被使用去控制电路。因此,在这个非逻辑控制器高温中,过热能被直接用去关闭这个系统电源,没有为控制器和阻力潜在的灾难性故障。

装置的这个数字I/O普遍使用在服务器,电池组和硬盘磁碟机上。为了增加服务器的可靠性温度在很多的位置中被检测:在主板(本质上是在底盘内部的周围温度),在处理器钢模之内,和在其它发热元件例如图形加速器和硬盘驱动器。出于安全原因电池组结合温度传感器和使其最优化已达到电池最大寿命。

检测依靠中心马达的速度和周围温度的硬盘驱动器的温度有两个号的理由:在驱动器中读取错误增加温度极限。而且硬盘的MTBF大大改善温度控制。通过测量系统里面温度,就能控制马达速度将可靠性和性能最佳化。驱动器也能被关闭。在高端系统中,警告能为系统管理员指出温度极限或数据可能丢失的状况。

图6。温度超过某一界限的时候,集成电路信号能报警和进行简单的ON/OFF风扇控制。

图7.热控制电路部分在绝对温标形式下,频率与被测温度成比例的产生方波的温度传感器

图8。这个温度传感器传送它的周期与被测温度成比例的方波,因为只发送温度数据需要一条单一线,就需要单一光绝缘体隔离信道。

模拟正温度感应器

“模拟正量”传感器通常匹配比较简单的测量应用软件。这些集成电路产生逻辑输出量来自被测温度,而且区别于数字输入/输出传感器。因为他们在一条单线上输出数据,与串行总线相对。

在一个模拟正量传感器的最简单例子中,当特定的温度被超过的时候,逻辑输出出错:其它,是当温度降到一个温度极限的时候。当其它传感器有确定的极限的时候,这些传感器中的一些允许使用电阻去校正温度极限。

在图6中,装置显示购买一个特定的内在温度极限。这三个电路举例说明这个类型装置的使用:提供警告,关闭仪器,或打开风扇。

当需要读实际温度时,微控制器是可以利用的,在单线上传送数据的传感器可能是有用的。用微处理器的内部计数器,来自于这个类型温度感应器的信号很容易地被转换成温度的测量。图7传感器输出频率与周围温度成比例的方波。在图8中的装置是相似的,但是方波周期是与周围温度成比例的。

图9。用一条公共线与8个温度传感器连接的微控制器,而且从同一条线上接收每个传感器传送的温度数据。

图9,在这条公共线上允许连接达到八个温度传感器。当微控制器的I/O端口同时关闭这根线上的所有传感器的时候,开始提取来自这些传感器的温度数据。微控制器很快地重新装载接收来的每个传感器的数据,在传感器关闭期间,数据被编码。在特定时间内每个传感器对闸口脉冲之后的时间编码。分配给每个感应器自己允许的时间范围,这样就避免冲突。

通过这个方法达到的准确性令人惊讶:0.8 是典型的室温,正好与被传送方波频率的电路相匹配,同样适用于方波周期的装置。

这些装置在有线电线应用中同样显著。举例来说,当一个温度传感器被微控制器隔离的时候,成本被保持在一个最小量,因为只需要一个光绝缘体。这些传感器在汽车制造HVAC应用中也是很有效,因为他们减少铜的损耗数量。 温度传感器的发展:

集成电路温度传感器提供各式各样的功能和接口。同样地这些装置继续发展,系统设计师将会看见更多特殊应用就像传感器与系统接口连接的新方式一样。最后,在相同的钢模区域内集成更多的电子元件,芯片设计师的能力将确保温度传感器很快将会包括新的功能和特殊接口。

总结

通过这些天的查找资料,我了解了很多关于温度传感器方面的知识。我的大家都知道温度的一些基本知识,温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。利用温度所创造出来的传感器即温度传感器是最早开发,应用最广的一类传感器。并且从资料中显示温度传感器的市场份额大大超过了其他的传感器。从17世纪初人们开始利用温度进行测量。在半导体技术的支持下,在本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。

这些天,我通过许多的资料了解到两种不同材质的导体,如在某点互相连接在一起,对这个连接点加热,在它们不加热的部位就会出现电位差。这个电位差的数值与不加热部位测量点的温度有关,和这两种导体的材质有关。这种现象可以在很宽的温度范围内出现,如果精确测量这个电位差,再测出不加热部位的环境温度,就可以准确知道加热点的温度。由于它必须有两种不同材质的导体,所以称它为“热电偶”。我查找的资料显示数据:不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度也各不相同。热电偶的灵敏度是指加热点温度变化1℃时,输出电位差的变化量。对于大多数金属材料支撑的热电偶而言,这个数值大约在5~40微伏/℃之间。

热电偶传感器有自己的优点和缺陷,它灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。由于热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。 温度传感器是五花八门的各种传感器中最为常用的一种,现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。

温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6~300K范围内的温度。

非接触式温度传感器的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可以用来测量运动物体、小目标还有热容量小或温度变化迅速(瞬变)对象的表面温度,也可以用于测量温度场的温度分布。资料显示,最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法、辐射法和比色法。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体所测温度才是真实温度。如果想测定物体的真实温度,就必须进行材料表面发射率的修正。而材料表面发射率不仅取绝于温度和波长,而且还与表面状态、涂膜和微观组织等有关连,因此很难精确测量。在自动化生产中我发现往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。最为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,这样才能提高有效发射系数。至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即是介质温度)进行修正而得到介质的真实温度。 现在,我通过这些天的努力,了解了很多温度传感器及其相关的一些传感器的知识。他们在我们生活中的应用及其广泛,我们只有加紧的学习加紧的完成自己所学专业的知识,了解相关的最新信息,我们才能跟上科技前进的步伐。

参考文献:

【1】刘君华.智能传感器系统.西安电子科技大学出版社,1993.3 【2】张富学.传感器电子学.国防工业电子出版社,1992.6 【3】王家桢等.传感器与变送器[M].北京清华出版社1996.5 【4】张正伟.传感器原理与应用[M].中央广播电视大学出版社,1991.3 【5】樊尚春.传感器技术及应用.北京航空航天大学出版社,2004.8 【6】赵负图.现代传感器集成电路.人民邮电出版社,2000.8 【7】谢文和.传感器技术及应用.高等教育出版社,2004.7 【8】赵继文.传感器与应用电路设计[M].科技出版社,2002.6 【9】陈杰,黄鸿.传感器与检测技术.高等教育出版社,2002.3 【10】黄继昌,徐巧鱼,张海贵等.传感器工作原理及应用实例.人民邮电出版社,1998.6

第7篇:半导体温度传感器

温度传感器的论文温度传感器设计论文

简述半导体温度传感器设计

摘要:传感器属于信息技术的前沿尖端产品,尤其是温度传感器被广泛用于工农业生产、科学研究和生活等领域,数量高居各种传感器之首。半导体传感器是利用某些半导体的电阻随温度变化而变化的特性制成的。半导体具有很宽的温度反应特性,各种半导体的温度反应区段不同。

关键词:半导体 温度传感器

一、温度传感器原理

温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。温度传感器是最早开发,应用最广的一类传感器。温度传感器的市场份额大大超过了其他的传感器。在半导体技术的支持下,相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。

1、接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。

2、非接触式温度传感器的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬

)对象的表面温度,也可用于测量温度场的温度分布。 非接触测温优点:测量上限不受感温元件耐温程度的限制,因而对最高可测温度原则上没有限制。对于1800℃以上的高温,主要采用非接触测温方法。随着红外技术的发展,辐射测温逐渐由可见光向红外线扩展,700℃以下直至常温都已采用,且分辨率很高。

二、智能温度传感器发展的新趋势

进入21世纪后,智能温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。

1、提高测温精度和分辨力 在20世纪90年代中期最早推出的智能温度传感器,采用的是8位A/D转换器,其测温精度较低,分辨力只能达到1℃。目前,国外已相继推出多种高精度、高分辨力的智能温度传感器,所用的是9~12位A/D转换器,分辨力一般可达0.5~0.0625℃。

2、增加测试功能 新型智能温度传感器的测试功能也在不断增强。智能温度传感器正从单通道向多通道的方向发展,这就为研制和开发多路温度测控系统创造了良好条件。智能温度传感器都具有多种工作模式可供选择,主要包括单次转换模式、连续转换模式、待机模式,有的还增加了低温极限扩展模式,操作非常简便。对某些智能温度传感器而言,主机(外部微处理器或单片机)还可通过相应的寄存器来设定其A/D转换速率,分辨力及最大转换时间。 智能温度控制器是在智能温度传感器的基础上发展而成的。

3、可靠性及安全性设计 传统的A/D转换器大多采用积分式或逐次比较式转换技术,其噪声容限低,抑制混叠噪声及量化噪声的能力比较差。新型智能温度传感器普遍采用了高性能的Σ-Δ式A/D转换器,它能以很高的采样速率和很

,再利用过采样、噪声整形和数字滤波技术,来提高有效分辨力。Σ-Δ式A/D转换器不仅能滤除量化噪声,而且对外围元件的精度要求低。

三、半导体温度传感器测温原理及其关键技术

硅基IC电路中,可实现温度传感功能的元器件主要有集成电阻器、二极管、双极晶体管、MOS晶体管。当然,还有各种利用MEMS工艺制造的热敏电阻器、热电偶等,但目前基本上还与CMOS工艺不兼容。

1、双极晶体管温度传感器

二极管的电流包括扩散电流和耗尽层、表面层里的产生复合电流,后者在双极晶体管的基极互相抵消,所以,正向偏置的双极晶体管的集电极电流IC基本上都是纯扩散电流,若利用高精度电流源,令2个匹配晶体管的集电极电流相同,ΔVBE将和绝对温度成正比。但这样得到的温度电压曲线起点是绝对零度,对于-50~150℃的测温范围,电压输出不是0~5V,对于后端A/D来说,需要额外的电平移动电路。通过构造Vf=aVptat-VBE1和Vref=VBE1+aVptat可以得到任意的过零点TZ以及几乎不随温度变化的恒压源。采用BJT的优点是低成本、长期稳定性、高灵敏度、可预测性较高,以及相关温度的时间非依赖性。缺点是受自生成熟、工艺容差的影响,以及热循环后信号有小漂移和小数量级的非线性。为了工艺兼容,需要采用寄生三极管技术实现,主要有2种结构:纵向双极晶体管,横向双极晶体管。

2、CMOS温度传感器

利用CMOS构建温度传感器一般有2种途径。其一是利用MOS管的亚阈值区构造MOS管的PTAT,灵敏度可达1.32mV/℃,但对偏置源的依赖有100mV/V,且高

,因对阈值电压VT依赖大,在高性能要求时,必须有大范围的微调和校准,不具备长期稳定性;另一途径是通过强反型状态下,MOS管的载流子迁移率μ与VT和温度的关系加以测量。基于此有5种设计方案:即只基于μ随温度的改变;只基于VT随温度的改变;同时考虑VT和μ2个变量;利用MOS器件的零温度系数点,以及利用逻辑门延时随温度增加的原理来构建的数字环振。CMOS温度传感器和基于寄生BJT的温度传感器相比的主要优势在于模型精确,受封装影响小,在AC电源下衬底漏电小,且占用芯片面积小等优势,但其主要的缺点是受工艺波动的影响要大于后者,所以,产业界目前仍普遍采用CVBT技术。

3、半导体温度传感器

输出方式采用模拟输出的温度传感器需要外加线性化电路及校准,因此,会使成本增加。而数字化接口或频率输出能使性能更可靠,即使在量产时仍能保持其精确度。频率输出通常采用的方法是做一个环形振荡器或张驰振荡器。前者会受VDD变化的影响,而后者理论上与VDD无关。两者都基于相同的原理,通过对电容器的充放电产生振荡,充放电电流来源于某个温度敏感元件。为了数字接口输出,有通过片上计数器实现,其主要缺点是面积大;另一种方案是采用片上集成A/D,然后,通过I2C等总线协议输出。

结论

温度传感器市场在不断变化的创新之中呈现出快速增长的趋势。该领域的主要技术将在现有基础上予以延伸和提高,随着新一代温度传感器的开发和产业化,竞争也将变得日益激烈。

参考文献

缪家鼎, 徐文娟, 牟同升. 光电技术. 杭州: 浙江大学出版社

张英,王海容, 蒋庄德. 半导体吸收式光纤温度传感器的研究. 压电与声光,

Szekely V.Marta C.Kohari Z CMOS sensors for on-line thermal monitoring of VLSI circuits

第8篇:光纤温度传感器 毕业论文

摘 要

本文从光纤和光纤传感器以及光纤温度传感器的发展历程开始详细分析国内外主要光纤温度测温方法的原理及特点,比较了不同方法的温度测量范围和性能指标以及各自的优缺点。通过研究发现了当前的光纤温度传感器的种类和特点,详细介绍了光纤温度传感器的原理,种类和各自的特点和优缺点。可以根据这些传感器各自特点将各种传感器应用到不同的领域,本文也简要分析了各种光纤温度传感器的运用范围和领域。

本文还通过图文并茂的方式比较详细地分析了介绍了空调器的基本结构,工作电气原理和基本的热力学过程。

本文对毕业设计主要内容和拟采用的研究方案也做出了详细地介绍分析。

关键词:光纤,光纤传感器,光纤温度传感器,运用领域,空调器,空调器原理

Abstract

1 引言:

光纤温度传感器是一种新型的温度传感器.它具有抗电磁干扰、耐高压、耐腐蚀、防爆防燃、体积小、重量轻等优点,其中几种主要的光纤温度传感器:分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器更有着自己独特的优点。与传统的传感器相比具有一下优点:灵敏度高;是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。它将在航空航天、远程控制、化学、生物化学、医疗、安全保险、电力工业等特殊环境下测温有着广阔的应用前景。

在本论文中将详细分析当前光纤温度传感器的主要种类和各自的原理,特点和应用范围。

2 论文要求:

(1)详细分析国内外主要光纤温度测温方法的原理及特点,比较不同方法的温度测量范围和性能指标。

(2)掌握空调器的工作电气原理和基本的热力学过程。

3 毕业论文综述:

70年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。1977年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。从这以后,光纤传感器在全世界的许多实验室里出现。 从70年代中期到80年代中期近十年的时间,光纤传感器己达近百种,它在国防军事部门、科研部门以及制造工业、能源工业、医学、化学和日常消费部门都得到实际应用。从目前的情况看,己有一些形成产品投入市场,但大量的是处在实验室研究阶段。光纤传感器与传统的传感器相比具有一下优点:灵敏度高; 是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境 下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤 遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。

目前,世界各国都对光纤传感器展开了广泛,深入的研究,几个研究工作开展早的国家情况如下:美国对光纤传感器研究共有六个方面:这些项目分别是:光纤传感系统;现代数字光纤控制系统;光纤陀螺;核辐射监控;飞机发动机监控;民用研究计划。以上计划仅在1983年就投资12-14亿美元。美国从事光纤传感器研究的有美国海军研究所、美国宇航局、西屋电器公司、斯坦福大学等28个主要单位。美国光纤传感器开始研制最早,投资最大,己有许多成果申请了专利。

英国政府特别是贸易工业部十分重视光纤传感器技术,早在1982年有该部为首成立了英国光纤传感器合作协会,到1985年为止,共有26个成员,其中包括中央电器研究所、Delta控制公司、帝国化学工业公司、英国煤气公司、

1 Taylor仪器公司、标准电信研究所及几所主要大学。

德国的光纤陀螺的研究规模和水平仅次与美国居世界第二位,西门子公司在1980年就制成了高压光纤电流互感器的实验样机。

日本制定了1979-1986年“光应用计划控制系统”的七年规划,投资达70亿美金。有松下、三菱、东京大学等24家著名的公司和大学从事光纤传感器研究。从1980年7月到1983年6月,申请光纤传感器的专利464件,涉及11个领域。主要应用于大型工厂,以解决强电磁千扰和易燃、易爆等恶劣环境中信息测量、传输和生产全过程的控制问题。

我国光纤传感器的研究工作于80年代初开始,在“七五”规划中提出15 项光纤传感器项目,其中有光纤放射线探测仪、光纤温度传感器及温度测量系统、 光纤陀螺、光纤磁场传感器、光纤电流、电压传感器、医用光纤传感器、分析用 传感器、集成光学传感器等。预计“七五”期间的研制成果可达到美、日等国 80年代初、中期水平。

半导体吸收型光纤温度传感器基本上是80年代兴起的,其中以日本的研究最为广泛。在1981年,Kazuo Kyuma等四人在日本三菱电机中心实验室,首次研制成功采用GaA、和Care半导体材料的吸收型光纤温度传感器。由于人们对半导体材料认识的不断深入,以及半导体制造和加工工艺水平的不断提高,使人们对采用半导体材料来制作各种传感器的前景十分看好。在90年代前后, 出现了研究以硅材料作为温度敏感材料的光纤温度传感器。在1988年,Roorkee 大学R.P.Agarwal等人,采用CIrD(化学气象淀积)技术,在光纤端面上淀积多 晶硅薄膜,试制了硅吸收型光纤温度传感器。同年,Isko Kajanto等人采用SOI结构,以光纤反射的方式,制作了单晶硅吸收型温度传感器。目前,以GaAs 和CdTe直接带隙半导体材料的吸收型光纤温度传感器,已接近实用化。

国内对半导体吸收型光纤温度传感器的研究起步较晚,兴起于90年代后期。 主要集中在清华大学,华中理工大学,东南大学等高校。他们对该种类型的传感 器结构,特性和系统结构进行了详细的分析和实践。但大量的研究只集中在GaAs半导体作为感温材料的传感器上,与国外在该领域的研究水平仍有较大差别。

4 光纤温度传感器的特点:

光纤温度传感器与传统的温度传感器相比具有很多优点:光波不产生电磁干扰,也不怕电磁干扰,易被各种光探测器件接收.可方便地进行光电或电光转换.易与高度发展的现代电子装置和计算机相匹配.光纤工作频率宽.动态范围大,是一种低损耗传输线,光纤本身不带电.体积小质量轻,易弯曲,抗辐射性能好,特别适合于易燃、易爆、空间受严格限制及强电磁干扰等恶劣环境下使用。国外一些发达国家对光纤温度传感技术的应用研究已取得丰富成果.不少光纤温度传感器系统已实用化.成为替代传统温度传感器的商品。所有与温度相关的光学现象或特性.本质上都可以用于温度测量.基于此.用于温度测量的现有光学 技术相当丰富。对于光纤温度传感器的研究占到将近所有光纤传感器研究的20%。光纤温度传感器的研究.除对现有器件进行外场验证、完善和提高外,目前有以下几个发展动向:大力发展测量温度分布的测量技术.即由对单个点的温度测量到对光纤沿线上温度分布.以及大面积表面温度分布的测量:开发包括测量温度在内的多功能的传感器:研制大型传感器阵列.实现全光学遥测。 光纤测温传感器是用光纤来测量温度的。有两种方法可实现。一是利用被测表面辐射能随温度的变化而变化的特点;利用光纤将辐射能量传输到热敏元件上,经

2 过转换再变成可供纪录和显示的电信号。这种方法独特之处就是可以远距离测量;另外一种方法是利用光在光导纤维内传输的相位随温度参数的改变而改变的特点,光信号的相位随温度的变化是由于光纤材料的尺寸和折射率都随温度改变而引起的。

5 光纤传感器的基本原理

在光纤中传输的单色光波可用如下形式的方程表示E=

式中,、频是光波的振幅:w是角频率;为初相角。该式包含五个参数,即强度率w、波长

、相位(wt+)和偏振态。光纤传感器的工作原理就是用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已知调制的光信号进行检测,从而得到被测量。当被测物理量作用于光纤传感头内传输的光波时,使的强度发生变化,就称为强度调制光纤传感器;当作用的结果使传输光的波长、相位或偏振态发生变化时,就相应的称为波长、相位或偏振调制型光纤传感器。

5.1强度调制

5.1.1 发光强度调制传感器的调制原理

光纤传感器中发光强度的调制的基本原理可简述为,以被测量所引起的发光强度变化,来实现对被测对象的检测和控制。其基本原理如图所示。光源S发出的发光强度为的光柱入传感头,在传感头内,光在被测物理量的作用下强度发生变化,即受到了外场的调制,使得输出发光强度产生与被测量有确定对应关系的变化。由光电探测器检测出发光强度的信号,经信号处理解调就得到了被测信号。

5.1.2 发光强度调制的方式 利用光纤微弯效应;

利用被测量改变光纤或者传感头对光波的吸收特性来实现发光强度调制; 通过与光纤接触的介质折射率的改变来实现发光强度调制; 在两根光纤间通过倏逝波的耦合实现发光强度调制;

利用发送光纤和接收光纤作相对横向或纵向运动实现发光强度调制,这是当被测物理量引起接收光纤位移时,改变接收发光强度,从而达到发光强度调制的目的。这种位移式发光强度调制的光纤传感器是一种结构简单,技术较为成熟的光纤传感器。

3

5.1.3 发光强度调制型传感器分类

根据其调制环节在光纤内部还是在光纤外部可以分为功能型和非功能型两种。强度调制式光纤传感器的特点 解调方法简单、响应快、运行可靠、造价低。缺点是测量精度较低,容易产生偏移,需要采取一些自补偿措施。

5.2相位调制 光纤传感器的基本原理

通过被测量的作用,使光纤内传播的光相位发生变化,再利用干涉测量技术把相位转换为光强变化,从而检测出待测的物理量。如图5-40其中图a、b、c分别为迈克尔逊、马赫-泽得和法布里-珀罗式的全光纤干涉仪结构。

5.3 波长调制光纤传感器的基本原理

波长调制传感器的基本结构如图5-41。

6 光纤温度传感器

6.1几种光纤温度传感器的原理和研究现状

光纤温度传感器按其工作原理可分为功能型和传输型两种。功能型光纤温度传感器是利用光纤的各种特性f相位、偏振、强度等)随温度变换的特点,进行温度测定。这类传感器尽管具有”传”、”感”合一的特点.但也增加了增敏和去敏的困难。传输型光纤温度传感器的光纤只是起到光信号传输的作用.以避开测温区域复杂的环境.对待测对象的调制功能是靠其他物理性质的敏感元件来实现的。这类传感器由于存在光纤与传感头的光耦合问题.增加了系统的复杂性,且对机械振动之类的干扰较敏感.下面介绍几种主要的光纤温度传感器的原理和研究现状。

6.1.1分布式光纤温度传感器

分布式光纤测温系统是一种用于实时测量空间温度场分布的传感器系统。分布光纤传感器系统最早是在1981年由英国南安普敦大学提出的.1983年英国的Hartog用液体光纤的拉曼光谱效应进行了分布式光纤温度传感器原理性实验.1985年英国的Dakin在实验

4 室用氩离子激光器作为光源进行了用石英光纤的拉曼光谱效应的分布光纤温度传感器测温实验.同年Hartog和Dakin分别独立地用半导体激光器作为光源,研制了分布光纤温度传感器实验装置:此后。分布光纤温度传感器得到了很大的发展.研究出了多种传感机理.有的还使用了特种光纤。分布式光纤温度传感器是基于瑞利散射、布里渊散射、喇曼散射三种分布式温度传感器。分布式光纤传感器从最初提出的基于光时域散射fOTDRl的瑞利散射系统开始.经历了基于0TDR的喇曼散射系统和基于0TDR的布里渊散射系统.使得测温精度和范围大幅提高。光频域散射fOFDR)的提出也很早,但只有到了近期.伴随着喇曼散射和布里渊散射研究的深入.使OFDR和它们结合才显示出了它的优越性。基于0TDR和OFDR的分布式温度光纤传感器已经显示出了很大的优越性.所以基于OTDR0FDR的分布式温度光纤传感器仍将是研究的热点.尤其是基于OFDR的新的分布式光纤传感器将是一个重要的发展方向。土耳其Gunes Yilmaz研制出10km、温度分辨率为1℃、空间分辨率为1.22m的分布式光纤温度传感器。在国内,中国计量学院、重庆大学、浙江大学等单位根据应用的需要.先后开展了分布式光纤温度传感器的研究。中国计量学院1997年研制了一种用于煤矿、隧道温度自动报警的分布式光纤温度传感器系统,该系统光纤长为2km.测温范围为一50℃~150℃.测温精度为2℃.温度分辨率为O.1℃:2005年设计制造出31km远程分布式光纤温度传感器.测温范围0℃~100℃,温度测量不确定度为2℃.温度分辨率为0.1℃,测量时间为432s.空间分辨率为4m。 6.1.2 光纤光栅温度传感器

光纤光栅温度传感技术主要研究Bmgg光纤传感技术。根据Bragg光纤光栅反射波长会随温度的变化而产生”波长移位”的原理制成光纤光栅温度传感器。1978年.加拿大渥太华通信研究中心的K.O.HiU等人首先发现掺锗石英光纤的光敏效应.采用注入法制成世界上第一只光纤光栅(FBG),1989年,Morev首次报导将其用于传感。英国T.A1lsoD利用椭圆纤芯突变型光纤研制出温度分辨率为O.9℃、曲率分辨率为0.05的长周期光纤光栅曲率温度传感器。意大利A.Iadicicco利用非均匀的稀疏布拉格光纤光栅fThFBGsl同时测量折射率和温度.该传感器的温度分辨率为0.1℃.在折射率1.

45、1.33附近的折射率分辨率分别为10-s、104。中科院上海光机所利用光纤光栅的金属槽封装技术将光纤光栅温度传感器的灵敏度提高到O.02℃:哈尔滨工业大学把光纤光栅粘贴在金属半管上.使其分辨率达到0.04℃:黑龙江大学光纤技术研究所提出了一种光纤光栅fFBGl的Ti合金片封装工艺,使温度灵敏度达到0.05℃。 6.1.3 光纤荧光温度传感器

光纤荧光温度传感器是目前研究比较活跃的新型温度传感器。荧光测温的工作机理是建立在光致发光这一基本物理现象上。所谓光致发光是一种光发射现象.就是当材料由于受紫外、可见光或红外区的光激发.所产生的发光现象。出射的荧光参数与温度有一一对应关系.通过检测其荧光强度或荧光寿命来得到所需的温度的。强度型荧光光纤传感器受光纤的微弯曲、耦合、散射、背反射影响,造成强度扰动,很难达到高精度:荧光寿命型传感器可以避免上述缺点,因此是采用的主要模式.荧光寿命的测量是测温系统的关键。美国密西西比州立大学用一种商用的环氧胶做温度指示f含有多环芳烃化合物:PAHs)。PAHs在用紫外光激发时发荧光.荧光的强度随环氧胶周围温度的升高而减小.该传感器可监测20℃~100℃范围内的温度。日本东洋大学根据Tb:Si0,和Tb:YAG的光致发光(PL)谱与温度有关.将其制成光纤温度传感器。在300~1200K的温度下.Tb:Si0,

5 的PL峰值在540nm时的光强随温度的升高单调减小.Tb:YAG晶体的PL谱的形状随温度变化。韩国汉城大学发现lOcm长的Ybn、E一双掺杂光纤在915nm处.两荧光强度的比值在20℃~300℃间与温度成指数关系.这种双掺杂系统对于测量苛刻环境的温度非常有用。清华大学电子工程系利用半导体GaAs材料对光的吸收随温度变化的原理。研制出测温范围:O℃~150℃;分辨率:0.5℃的光纤温度传感器。燕山大学设计了一种利用荧光波分和时分多路传输技术.通过检测红宝石晶体的荧光强度实现温度测量的系统.该系统的测温范围:30℃~160℃:分辨率:0.5℃。海南大学用激光加热基座法生长出端部掺Cr的蓝宝石荧光光纤传感头.该传感器的测温范围:20℃~450℃:分辨率:1℃。中北大学用一种镀有陶瓷薄膜的蓝宝石光纤作为传感器的瞬态高温测试系统.该系统的测温范围:1200℃~2000℃。分辨率:1℃。 6.1.4 干涉型光纤温度传感器

干涉型光纤温度传感器是一种相位调制型光纤传感器。它是利用温度改变Mach—Zehnder干涉仪、Fabry—Perot干涉仪、Sagnac干涉仪等一些干涉仪的干涉条纹来外界测量温度。英国的Samer K.Abi Kaed Bev用长周期光纤光栅做成Mach—Zehnder干涉型光纤温度传感器.其温度分辨率为O.7℃。燕山大学研制出基于白光干涉的Fabrv—Perot光纤温度传感器.其测温范围为一40℃~100℃.分辨率为0.01℃。哈尔滨工程大学研制出数字式Mach—Zehnder干涉型光纤传感器.其测温范围为35cC~80℃,压力、温度、位移分辨率分别为0.03kPa、0.07℃、2.5斗m。

干涉式光纤温度传感器工作示意图

6.1.5 基于弯曲损耗的光纤温度传感器

基于弯曲损耗的光纤温度传感器利用硅纤芯和塑料包层折射率差随温度变化引起光纤孔径的变化、光纤的突然弯曲引起的局部孔径的变化的原理测量温度。乌克兰采用EBOC伍ngIish—Bickford Optics Com—pany)生产的多模阶跃塑料包层硅纤芯光纤HCN~H,已做出基于弯曲损耗的光纤温度传感器.其测温范围一30℃~70℃.灵敏度达到O.5℃。法国研究出测温范围一20℃~60℃。灵敏度为0。2℃的基于弯曲损耗的光纤温度传感器。国内主要是对光纤的弯曲损耗与入射波长、弯曲半径、弯曲角度、弯曲长度、光纤参量和温度等的关系做了一些研究。实验装置图如图1所示。

6.2 几种光纤温度传感器的特点及各自的研究方向

分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器分别具有独特的优点和一定的不足,因此它们的研究方向不同。 6.2.1 分布式光纤温传感器

分布式光纤温传感器具有其他温度传感器不可比拟的优点。它能够连续测量光纤沿线所在处的温度.测量距离在几千米范围.空间定位精度达到米的数量级。能够进行不问断的自动测量.特别适用于需要大范围多点测量的直用场合。目前对分布式光纤温度传感器研究的重点:实现单根光纤上多个物理参数或化学参数的同时测量:提高信号接收和处理系统的检测能力.提高系统的空间分辨率和测量不确定度:提高测量系统的测量范围.减少测量时间:基于二维或多维的分布式光纤温度传感器网络。 6.2.2 光纤光栅温度传感器

光纤光栅温度传感器除了具有普通光纤温度传感器的许多优点外.还有一些明显优于其它光纤温度传感器的方面。其中最重要的就是它的传感信号为波长调制。这一传感机制的好处在于:测量信号不受光源起伏、光纤弯曲损耗、连接损耗和探测器老化等因素的影响:避免了一般干涉型传感器中相位测量的不清晰和对固有参考点的需要:能方便地使用波分复用技术在一根光纤中串接多个布喇格光栅进行分布式测量:很容易埋人材料中对其内部的温度进行高分辨率和大范围地测量。尽管光纤光栅温度传感器有很多优点.但在应用中还需考虑很多因素:波长微小位移的检测;宽光谱、高功率光源的获得;光检测器波长分辨率的提高;交叉敏感的消除;光纤光栅的封装;光纤光栅的可靠性;光纤光栅的寿命。 6.2.3 光纤荧光温度传感器

光纤荧光温度传感器于其它光纤温度传感器相比有自己独特的优点:由于荧光寿命与温度的关系从本质上讲是内在的.与光的强度无关.这样就可以制成自较准的光纤温度传感器.而一般的基于光强度检测的光纤温度传感器f如辐射型1则因为系统的光传输特性往往与传输光纤和光纤耦合器等相关而需经常校准:测量范围广,特别在高温情况下多用光纤荧光温度传感器。目前国外的研究主要围绕着荧光源的选择.主要为下面几个方面:蓝宝石和红宝石发光、稀土发光及半导体吸收。

6.2.4 干涉型光纤温度传感器

7 干涉型光纤温度传感器的温度分辨率高:动态响应宽:结构灵巧。研究干涉型光纤温度传感器的主要工作放在减小噪声干扰和信号解调上。 6.2.5 基于弯曲损耗的光纤温度传感器

基于弯曲损耗的光纤温度传感器具有结构简单、体积小、成本低、测量方便不需要解调等优点。但是它还存在着很多的不足:测量精度低;由于它是强度调制型光纤传感器,光源的稳定性对其影响很大;使用寿命短等缺点。在今后的研究中主要从光纤的选择、测量条件的提高等方面开展工作。

7 光纤温度传感器的应用

光纤温度传感自问世以来.主要应用于电力系统、建筑、化工、航空航天、医疗以至海洋开发等领域,并已取得了大量可靠的应用实绩。 7.1.1 光纤温度传感器在电力系统有着重要的应用 电力电缆的表面温度及电缆密集区域的温度监测监控;高压配电装置内易发热部位的监测;发电厂、变电站的环境温度检测及火灾报警系统;各种大、中型发电机、变压器、电动机的温度分布测量、热动保护以及故障诊断;火力发电厂的加热系统、蒸汽管道、输油管

道的温度和故障点检测:地热电站和户内封闭式变电站的设备温度监测等等。 7.1.2 光纤温度传感应用于建筑、桥梁上

光纤光栅温度传感器很容易埋人材料中对其内部的温度进行高分辨率和大范围地测量.因而被广泛的应用于建筑、桥梁上。美国、英国、日本、加拿大和德国等一些发达国家早就开展了桥梁安全监测的研究.并在主要大桥上都安装了桥梁安全监测预警系统。用来监测桥梁的应变、温度、加速度、位移等关键安全指标。1999年夏,美国新墨西哥Las Cmces lO号州际高速公路的一座钢结构桥梁上安装了120个光纤光栅温度传感器.创造了单座桥梁上使用该类传感器最多的记录。

7.1.3 光纤温度传感在航空航天业的应用

航空航天业是一个使用传感器密集的地方.一架飞行器为了监测压力、温度、振动、燃料液位、起落架状态、机翼和方向舵的位置等,所需要使用的传感器超过100个.因此传感器的尺寸和重量变得非常重要。光纤传感器从尺寸小和重量轻的优点来讲.几乎没有其他传感器可以与之相比。 7.1.4 传感器的小尺寸在医学应用中是非常有意义的 光纤光栅传感器是现今能够做到最小的传感器。光纤光栅传感器能够通过最小限度的侵害方式对人体组织功能进行内部测量。提供有关温度、压力和声波场的精确局部信息。光纤光栅传感器对人体组织的岗厂阴,等:光纤温度传感器的研究和应州损害非常小.足以避免对正常医疗过程的干扰。 7.1.5 光纤光栅传感器永久井下测量的应用

因其抗电磁干扰、耐高温、长期稳定并且抗高辐射非常适合用于井下传感.挪威的Optoplan正在开发用于永久井下测量的光纤光栅温度和压力传感器。

8 空调器的工作电气原理和基本的热力学过程

8.1 空调器基本结构

8 是由制冷(热)、空气循环、电气控制三大系统组成。 制冷系统: 用于制冷剂循环及气/ 液态变换。制冷剂系统的工作与否受控于电气系统。空气循环系统: 用于驱动空气进行循环,过滤室内空气,以及对制冷系统中蒸发器、冷凝器提供空气热交换条件,调节室内的温度等。电气控制系统: 用于控制冷系统与空气循环系统的工作与否。

8.1.1 制冷系统的结构和工作过程制冷系统的结构

由压缩机、冷凝器、过滤器、毛细管、蒸发器等首尾连接组成。其中,制冷剂的循环流通由压缩机负责,制冷剂气态转换由蒸发器负责,制冷剂液态转换由冷凝器负责,制冷剂压力变换由压缩机和毛细管负责,过滤器负责滤除制冷剂中微量脏物。对于制冷而言,其工

作过程以图1 所示窗式空调器为例说明如下:当接通电源后,压缩机及风扇开始运转,蒸发器内的低压气态制冷剂,通过管路被压缩机吸入,并压缩为高压、高温气态,再经过排气管排入冷凝器对室外空气放热自身降温变成液态。液态制冷剂经过滤器、毛细管节流后进入蒸发器,由蒸发器蒸发为气态,并在蒸发过程中自身吸热对室内空气降温,冷却后的空气由离心风扇吹向室内,室内的空气又由风扇的吸气端吸回。这样,空气不断循环,周而复始,室内的空气就得到了降温并维持在一定温度内,实现制冷目的。

8.1.2 制热系统的结构和工作过程制热系统的结构

对于制热而言,其工作过程可用图2 所示的冷暖空调制冷(热)系统来说明。 它是

在单冷空调制冷系统的基础上增加了单换阀和辅助毛细管。制热时除制冷剂走向(箭头)与制冷时相反外,且室外侧热交换器作蒸发器用于吸热,室内侧热交换器作为冷凝器用于放热。

8.1.3 制冷(热)系统各器件的功能与作用 现说明如下:

( 1) 压缩机: 压缩机运转后,产生吸排气功能,并由低压管口(粗)吸气、高压管口(细)排气,推动制冷剂在制冷管路中循环流通。同时对低压管吸入的制冷剂进行压缩变为高压高温后由高压管口排出。

( 2) 冷凝器: 对压缩机排出的高压、高温气态进行制冷,在流经冷凝器的过程中,逐步散热降温而冷凝为液态/中温/高压制冷剂,实现制冷剂从气态到 液态的转换,以把制冷剂携带的热量散发到空气中,实现热量的转移。

( 3) 毛细管; 是一根直径4 mm、长l m左右的细铜管,接于过滤器(或冷暖机单向阀)与蒸发器之间,对冷凝器流出的中温高压液态制冷剂进行节流降压,使蒸发器中形成低压环境。

( 4) 过滤器: 滤除制冷剂中微量脏物,保证制冷剂在制冷管路中的循环流通。 ( 5) 蒸发器: 经毛细管降压节流输出的制冷剂,在流经经蒸发器管路过程中逐步沸腾蒸发为气体,并在蒸发过程吸收外界空气的热量,使周围空气降温。

8.2 空气循环系统的结构和工作过程

图3 是窗机空气循环系统示意图。它由室内侧、室外侧空气循环两部位组成。两者的核心器件均是多绕组风扇电机。风扇电机的转速受控于功能开关(又称主令开关),风速设置不同,功能开关对风扇电机调速绕组抽头供电不同,调速绕组线圈匝数不同,它与运转绕组串联后的匝数不同,从而使风扇转速不同。

8.3 电气控制系统的结构和工作过程

电气控制系统的核心器件是压缩机和风扇电机,如图4 所示。这两个器件的CR 运行绕组在得到交流220 V 电源后,CS 启动绕组瞬间有启动电流流过就开始运转,把电能变换为机械能。压缩机运转产生的机械能带动制冷系统工作以实施制冷(热);风扇电机运转产生的机械能,带动扇叶旋转以实现空气循环。

( 1) 压缩机工作控制

这里,以图4(a)所示的窗机置于高冷状态为例说明。由图可见,这时功能开关1 端

分别与4 端、8 端接通,对压缩机、风扇电机提供供电回路。其中压缩机供电回路如下:交流220 V 电源插头L 端→功能开关1端、8 端→温控器开关的C 端、L 端→F1 过载保护器的1 端、2 端→压缩机的C 端。此时分为两路:一路经R 端→C 启动电容的1 端(运转电流);另一路径S 端子→C 启动电容2 端、1 端(启

动电流),最后至电源插头的N 端。这样,在压缩机接通电源后,就启动运转,空调开始制冷。当制冷达到设置温度时,温控器断开压缩机供电电路,压缩机停止运转,终止制冷。当室内温度上升到高于设置温度时,温控器再次自动接通压缩机供给回路,压缩机再次运转制冷,以后重复上述过程。至于过载保护器,它紧贴在压缩机外壳上以感知压缩机温度。在压缩机启动或运转中,电流过大或压缩机过热时过载保护器会呈现高阻(相当于断开),从而切断压缩机供电回路,达到保护压缩机的目的。

9 毕业设计主要内容和拟采用的研究方案

9.1 光纤温度传感器的设计

根据光纤弯曲损耗的理论分析,光纤温度传感器结构由三大部分组成:温度敏感头、传输与信号处理部分,具体结构示意图如图3 所示。 9.1.1 温度敏感头

温度敏感头是温度传感器中最主要的部件,是将所测量温度转换成直接能够测量的参数,在这里,是转换成光纤的损耗大小,同等状态下,损耗大,探测器接收到的光功率小,反之,接收到功率就大。传感头主要由多模光纤与金属构件组成,如图3 所示,将光纤施加一定的张力后直接加载在多边形金属构件上,固定好后将光纤两端头引出,在引出光纤的两端制作连接器,外加光纤保护措施,传感头主要工序就已经完成了。金属零件随温度高低不同产生形变也不一样,加载在

13 零件上光纤弯曲损耗大小随之改变金属件受到温度越高,形变越大,在光源输出光功率稳定情况下,光纤弯曲损耗增加时,探测器接收到的光功率就会减小,反之,接收到的光功率增大。当传感头处的温度场发生变化时,通过探测器将接收到的不同光信号转换成电信号,进一步处理、计算,输出外界的温度值大小。金属零件在热变形时,其变形量不仅与零件尺寸、组成该形体的材料线膨胀系数α、环境温度t 有关,而且与形体结构因子(取决于几何参数)有关,计算比较复杂,在这里采用传统的公式模拟来计算:

Lt=L[1+α (t-20°C)] (5) 式中,Lt—温度t 时的尺寸;L—20℃时的尺寸;α—线膨胀系数,其数学表达式比较复杂,可选用平均线膨胀系数,经过查表可知。为了提高传感器的灵敏度,温度敏感头金属材料需选用膨胀系数较大的,且膨胀系数在整个温度测量区间要较稳定,有较好重复性;温度敏感头的结构形状也是要考虑的另一个因素,不同的形状,对灵敏度影响很大。要提高传感头对温度的响应时间,需要选用导热系数较高的材料,比热越小越好,在温度突变时,能快速响应。经过课题组反复计算与试验,选用成本较低、加工容易、导热较快,并且满足使用范围的金属材料铝。通过试验,传感器在-40°C~+80°C温度范围内均可精确工作。 9.1.2 传输部分

光纤在这里不仅要作为转换器件使用,同时也作为光信号传输载体,选用对弯曲损耗更敏感的多模光纤,一般地采用62.5/125μm 标准的多模光纤。由于加载光纤时要施加一定的张力控制,使得光纤缠绕在金属零件上,光纤本身就比较容易损坏,敏感头处光纤长时间受到一定内应力作用,必须对光纤的涂层进行加固耐磨处理,增加传感器使用的可靠性。 9.1.3 信号处理部分信号处理部分

主要由发光管、探测器的驱动电路与数字电路处理两部分组成,发光管、探测器的驱动电路技术已经非常成熟。数字电路处理主要使用价廉物美的单片机,CPU使用美国ATMEL 公司生产的AT89C52 单片机,是一块具有低电压、高性能CMOS 8 位单片机,片内含8k bytes 的可反复擦写的只读程序存储器(PEROM)和256bytes 的随机存取数据存储器(RAM),全部采用ATMEL 公司的高密度、非易失性存储技术生产,与标准MCS-51 指令系统及8052 产品引脚兼容,片内置通用8 位中央处理器(CPU)和Flash存储单元,功能强大。A/D 转换采用AD 公司生产的12 位D574A 芯片,转换时间位25μs,数字位数可设定为12 位,也可设为8 位,内部集成有转换时钟、参考电压和三态输出锁存,可以与微机直接接口。为了方便在现场使用,光纤温度传感器扩展了LCD 显示接口,同时还扩展了一个RS-232 通信口,用于同上位机进行通信,将现场采集的数据传送到上位机,进一步分析处理。整个监控程序采用模块化设计,主要的功能模块有:系统初始化,A/D 采样周期设定,数字滤波,数据处理,串行通信,中断保护与处理,显示与键盘扫描程序等。程序采用单片机汇编语言来编写,使用广泛、运算的速度快等特点,有效的利用单片机上有限的RAM 空间,其中,由于温度的变化引起光强的变化不是线性的,因此我们采用查表法对其测量值进行线性补偿。

9.2 试验检验与数据处理

已经制作好的温度敏感头通过试验测试。 第一步,在温度敏感头的一端光纤连接器上加载稳定的短波长的光源,另一端接

14 相匹配的光功率计,将温度敏感头置入恒温槽中; 第二步,设置恒温槽温度,观察光功率计值的变化情况,要满足在测量的整个工作区间光功率都有变化;

第三步,定点测量,设定几个或更多温度点,记录下,温度与光功率对应值,反复多次试验,观察温度敏感头的重复性。光纤温度传感头通过试验测试,将温度与光功率相对应数据制成表格,具体见表1 所示,曲线图见图4。

通过上述试验表明,传感头满足使用要求,重复性非常好,加载发光管与探测器驱动电路以及信号处理电路,整体调试传感器,观察温度与传感器输出的电压值关系,重复操作上述试验第

二、第三步,具体的温度与电压相对应值见表2,曲线图见图5。

通过观察上述两个曲线,形状基本一致,重复性较好,表明传感器整体性能满足要求。将几个特殊点电压值送到单片机进行处理,采用直线插值拟合或者最小二乘法曲线拟合,输出温度值。通过实测检验,与标准温度值误差最大值为±1°C,基于金属热膨胀式的光纤温度传感器设计是成功的,传感器整体测试精度较高。

9.3 设计方案

系统原理如图1 所示,采用可见光将光束直接射入2根经端面处理且并排放置的光纤中,同时为使2 根光纤输出的光强近似相等且最大,采用2 个不同焦距的透镜来增强光的耦合程度。根据马赫2曾德干涉原理,在出口处2 路光纤并排紧密放置,发生干涉。随后由CCD 传感器接收,并 在监视器上观测温度变化时条纹的变化规律。一方面通过温度标定得到温度与条纹数的对应关系, 另一方面使用MATLAB 对采集到的干涉图像进行处理,通过程序自动判别条纹数。从而得到温度的变化值,实现光纤温度传感测量。

1 马赫2泽德干涉型光纤温度传感器装置

9.3.1 实现方法与现象 (1) 平台的搭建

为了得到较好的效果,实现中应注意以下问题: ①耦合问题:在光纤传感系统中,各部件采用耦合效率较高的凸透镜耦合,如图2 所示。将激光器放在凸透镜的焦点上,使其为平行光,然后再用另一个凸透镜将平行光聚集到光纤端面上。整个耦合系统调整组装较容易,使用方便。

图2 光路耦合示意图

②光路准直:搭建实验平台时要注意使整个光路平行于平台,这就需要利用光屏十字法来校准光路。首先确定激光束与实验平台平行;其次在光路上分别加上透镜,调整光具座使透镜前后的光斑落在十字的中心位置。并且依据透镜焦距,使光纤的端面尽量位于透镜的焦点上。如 图3 所示。

图3 光路准直示意图

(2) 产生的现象

根据前面论述的方案,通过光路调整等一系列过程,得到干涉图像如图4 所示。通过使光纤的感温部分受热,可以在监视器上观察到条纹的变化。当温度升高时,条纹几近匀速地向右移动;当温度降低时,条纹向相反的方向移动。这样的变化较为规律,但是对于温度检测电路来说,要求温度变化可测,从而得到定量的关系;对于图像检测而言,条纹要尽量清晰,明暗对比强烈,才能在图像处理时减少不必

要的误差。

图4 干涉条纹图像

9.3.2 信号检测及处理 1 温度标定

(1) 方案: 为使感温部分的光纤均匀受热,选择2 个5 cm的薄铜片将光纤夹入其中。使用电烙铁为其加热,使其温度变化范围加大,条纹移动明显。对于其他不感温光纤,将其固定在绝热平台上,减小热源的影响。

(2) 电路设计:本文使用热敏电阻标定温度与干涉条纹数之间关系,由于热敏电阻随温度变化呈指数规律,即其非线性是十分严重的。当进行温度测量时,应考虑将其进行线性化处理。测温电路如图5 所示。

图5 测温电路

本系统中所用的热敏电阻为负温度系数。其特性可

以表示为:Rt = Rt0 exp B1T-1T0(1)式中: Rt 、Rt0分别为温度T 和T0 时的电阻值。根据式(1)以及压阻变换关系可以得到下面这个最终的根据电压的变化从而测得温度变化的表达式:1T=1BlnUtUt0+1T0(2) (3) 数据处理

在测量过程中,为找到合适的电压测量点,选择时间为参考因素,以60 s 为一个阶段,测量一次热敏电阻两端电压,记录电压值,并根据公式得对应的温度,求得Δt。同时记录在这些点间的条纹移动数量,记为Δn。根据Δt 和Δn 可得到温度与条纹之间的函数关系。 (4) 结果分析

设条纹变化数为Δy ,温度变化数为Δx ,则根据实验数据可以得到这样一个近似线性的函数关系式:Δy = 8. 30Δx。即温度升高1 ℃,条纹移动8. 30 个。如果标定起始温度,根据这一关系,即可得到变化后的温度值。 9.3.3 干涉条纹图像采集与处理

采用MVPCI 专业图像采集卡采集干涉条纹图像,采集程序如图6 所示。并对图像做如下处理(见图7) : 对CCD 采集下来的图像(见7 (a) ) 需调用imfilter 函数进行图像滤波(滤波结果见图7 ( b) ) 。并使用阈值操作将图像转换为二值图像(见图7 (c) ) ,从而很好地将对象从背景中分离出来。通常温度的判断基于处理后的条纹图像,因此需采用边缘检测来提取图像的特征。在MATLAB 中使用专门的边缘检测edge 函数,调用Sobel 算子进行检测。结果如图7 (d) 所示。

采集流程图

图7 干涉条纹图像采集与处理

9.3.4 条纹记数程序设计

(1) 设计思路:根据边缘检测后条纹的图像质量,提取图像质量较好的横坐标为80 的一行元素的像素值,对其进行扫描,得到像素值为1 的位置,即条纹边缘的位置;由于边缘提取得到的条纹是原来条纹的轮廓,所以2 个边缘构成一个亮或暗条纹。因此需要将提取出来的边缘位置与原图像进行对比,从而对条纹精确定位;判定离标定位置最近的亮条纹的分布情况,找到条纹移动规律;计算条纹移动周期,借鉴光学测量中的相位展开原理,将图像变换为近似线性的曲线,从而得到条纹移动过总的像素值,除以周期,即得条纹移动个数。程序模块流程图如图8 所示。

(2) 结果分析:通过上面的程序计算,得到距离标志位32 最近的亮条纹位置R 的变化情况(见图9) 。可看出, R 的值是有规律地在变化,表明R 存在周期性。通过程序中得到的r (条纹边缘像素) 计算周期,即T = 22 。根据相位展开的相关原

图8 条纹记数程序流程图

理,把像素值小于32 ,且与其前相邻一个像素的差大于某一值时,将其加上一个周期,转换为类似线性的函数,如图10 所示。由图(10) 可以得到移动条纹总的像素值M = 820 ,除以展开周期T = 22 , 即可以判别移动条纹个数N =M/ T = 37 。由于确定的判别像素间距,程序在条纹小范围左右徘徊的状态时难以判别,会产生误差。因此,程序计算得到的数据与前面测温时数出来的条纹个数41~46 (120 s) 近似,说明此程序的处理较为正确。此时,根据前面温度检测得到的结果,即条纹数与温度变化的关系Δy = 8. 30Δx ,得到温度变化值Δx =Δy/ 8. 30 = N/ 8. 30 = 4. 46 ℃,对照前面热敏电阻计算的温度变化值5. 27 ℃,结果较为一致。说明此程序可以用来判定条纹个数,对应温度变化与条纹数的关系,就可以得到温度变化值,从而实现光纤温度传感测量。

20 图9 距标定位最近的亮条纹分布图

图10 展开后的图像

10 结束语

11 毕业设计(论文)参考文献

[1]张志鹏, W A. Gambling,著,光纤传感器原理,中国计量出版社,1991 [2]王玉田. 光电子学与光纤传感器技术[M] . 北京: 国防工业出版社, 2003. [5]廖延彪. 光纤光学[M] . 北京:清华大学出版社,2000. [6]许忠保, 叶虎年, 叶 梅. 半导体吸收式光纤温度传感器[J ] . 半导体光电, 2004 , 25 (1) : 62264. [7]赵仲刚, 杜柏林, 逢永秀, 等. 光纤通信与光纤传感[M] . 上海: 上海科学技术文献出版社, 1993. [8]张福学,传感器应用及其电路精选.电子工业出版社,1991 [9]强锡富,传感器,哈尔滨工业大学,2001.5 [11]关荣峰,等,半导体光纤温度传感器特性研究,光电工程,V61240997 [13]王廷云,罗承沐,申烛,半导体吸收式光纤温度传感器,清华大学学 报(自然科学版),2001 [14]黄玲.无线传感器网络简述 [J] [15]传感器世界.2005.11(10)

[16]UDD E , SEIM J . Fiber optic sensor for inf rast ructure applications [ Z ] . Final Report SPR 374 , February 1998 ,Oregon Department of Transportation :53286.

21

第9篇:数字线缆式温度传感器的应用之粮库分散式温度监控系统

数字线缆式温度传感器的应用之粮库分散

式温度监控系统

目 录 第一部分:概述

(1)粮食仓储概述………………………………………………………………03 (2)粮仓粮库环境温湿度监控系统应用背景…………………………………04 (3)粮仓粮库环境综合监控管理系统…………………………………………04 第二部分:系统组成结构

◇上位管理主机…………………………………………………………………05 ◇数据通讯部分…………………………………………………………………06

◇现场控制监测点………………………………………………………………06 第三部分:控制模式

◇控制方式………………………………………………………………………06 第四部分:功能特点

(1)粮库环境温湿度监测………………………………………………………07 (2)O

2、CO2浓度监测•…………………………………………………………8

(3)数据存储功能………………………………………………………………8

(4)设备联动控制功能…………………………………………………………8

(5)防火自动报警功能…………………………………………………………8

(6)现场报警功能………………………………………………………………8

(7)远程传输和网络管理功能…………………………………………………8 第五部分:监测软件数据平台

(1)友好的用户登陆管理界面…………………………………………………8

(2)实时历史、曲线报表数据分析…………………………………………8

(3)多种形式的报警功能………………………………………………………8

(4)远程控制……………………………………………………………………8

(5)监控终端……………………………………………………………………8 第六部分:相关产品图片、系统拓展图及软解界面……………………9-13

第一部分:概 述 (1)粮食仓储概述

我国现有14亿人口,粮食储藏好坏是关系到人民健康、市场供给、国家稳定的大事。随着人口增长迅速、耕地逐年减少、人类对社会物质生活的需求愈来愈高。粮食的利用与保护得到社会的更加重视,人类必须杜绝粮食浪费与霉烂现象发生,珍惜粮食。

因此粮仓粮库环境应保持通风、干燥,内外整洁有序。粮库中应采取防鼠、防蝇、防虫、 防盗等设施,杜绝有害虫类的滋生。

(2)粮仓粮库温湿度环境监控系统应用背景 建国以来,经过六十多年的发展,我国粮食仓储技术得到了长足发展,在某些领域已经达到世界先进水平,但就整体而言,我国粮食仓储技术与发达国家相比,仍与一定的差距。目前,大部分粮仓库仍为人工监控管理,如降仓温通风是仓房日常管理中,尤其是低温储粮管理中的一项操作较为频繁、辛苦的工作,经常需要在半夜开机:由于粮食呼吸,储粮稳定性较差,保管员需不断翻动粮面,通风降温散湿,因此国家需要投入大量人力。粮情,粮仓温度靠人工监测,保管员需要频繁巡查,工作强度大,并且监测结果不精确。 (3)粮仓粮库温湿度环境监控系统

粮仓粮库环境综合监控系统可以实时全面的掌握粮库内的温湿度变化,一旦发现异常及时做出正确处理,保证粮食长期安全存储。本系统采用世界上先进的微电脑技术、PLC技术、传感器技术、自动控制技术,带有LCD显示和键盘操作,能够自动监测粮仓粮库内的粮情、温度、湿度,并能与粮仓粮库内的加热、制冷、除湿、通风等设备进行联动,控制加热、制冷、除湿、通风等设备进行工作,也可根据人工设定的数值定时控制设备或根据需要进行人工开启,使仓内粮温、水分、仓内气体的有效浓度与配比维持稳定状态,保证粮食仓储的安全。

第二部分:系统组成部分

盛世宏博Honsor粮仓粮库环境综合监控系统主要包括:上位管理主机、数据通讯部分、现场控制监测点、数据采集终端等。

◇上位管理主机

可选用物联网感知应用平台或者是为客户专门定制的操作监测平台。能够实现监测、查询、运算、统计、控制、存储、分析、报警等多项功能,并能与粮仓内设备联动,自动计算和控制加热、制冷、降湿、通风等设备运行工作。

◇数据通讯部分

可根据需要选择有线传输与无线传输方式,对于仓内布线不方便的粮库,可以采用无线通讯方式,利用GPRS/3G、射频或Zigbee无线通讯。

◇现场控制监测点

现场控制监测点主要由线缆式温度传感器、数字温湿度变送器、数据采集仪、通讯转换器、配电控制柜及安装附件组成。所有监测点的温湿度测量值最终转换为数字信号,被传送到上位管理主机,通过配套的数据管理软件对数据进行分析、处理、存储、打印等。 第三部分:控制方式

◇自动控制-----根据设定的参数,智能控制箱按照预先编制的程序自动运行。

◇手动控制-----根据需要,可以选择现场手动控制方式,启动各种模式。

◇集中监控-----监控中心室能够实时显示并自动记录粮仓粮库内的监测数据以及外围设备的工作状态,远程设定每台控制箱的工作参数,自动报警。

◇3G互联网监控------通过安装配套的物联网监控软件,或者视频监控软件,可以通过英特网实时了粮库内的环境变化信息及设备的运行状态等。 第四部分:系统功能特点 (1)粮库环境温湿度监测

通过,线缆式数字温度传感器、温湿度传感器监测粮仓粮库内的环境温湿度,并能对数据进行采集、分析运算、控制、存储、发送等。 (2)O

2、CO2浓度监测

--粮食是生命的有机体,具有呼吸功能。为了解储藏条件是否适宜,常需要了解粮食在储藏期间的生理状态,需要测定储粮的呼吸系数。

--在粮仓内部署二氧化碳或氧气浓度传感器,实时监测粮库中的气体含量,当浓度超过系统设定的阙值范围时,通过有线或无线传输技术将相关数据传送到用户监控终端,由相关工作人员做出相应调整。 (3)数据存储功能

具有大容量数据存储功能,现场可显示、查询监测数据和设备工作参数。 (4)设备联动控制功能

--降温、散湿、通风是仓房日常管理中的一项操作较为频繁、辛苦的工作,经常需要在半夜开机,由于粮食呼吸,储粮稳定性较差,保管员需不断翻动粮面,通风降温散湿。实现仓窗、制冷、制热、通风等设备自动开关,对提高工作效率、降低劳动强度意义重大。

--上位机控制平台可根据粮库环境的要求,对已设置的温湿度数学模型进行分析,自动计算和控制加热、制冷、降湿、通风等设备状态,也可根据人工设定的数值定时控制设备或根据需要进行人工开启。 (5)防火自动报警功能

可提供现场声光报警,监测系统报警,并通过电话语音拨号报警或发送报警短信通知相关人员。

(6)现场报警功能

用户可设定某些参数指标的上限和下限,根据温湿度实测值与人工设定的超限值进行对比分析,若实测值超过设定的范围,则通过屏幕显示报警或现场声光报警。 (7)远程传输和网络管理功能

可联网远程传输现场监测到的各种信息,上级部门可随时调用、检查粮库环境的各项数据、报表,提供集中式系统管理及数据检索功能,可与其它信息系统共享数据,支持TCP/IP协议。

第五部分:监测软件数据平台

我公司自主研发的粮仓粮库温湿度系统软件,实时采集粮仓粮库现场数据,经传感器数据模块传送至ZigBee节点或RS485节点上,然后通过光纤、GPRS/3G网络传输到数据平台,按照相关设定进行分析运算、控制、存储等功能,并进一步与粮仓内设备(如通风、制冷、制热、熏杀等)联动完成相应控制。 (1)友好的用户登陆管理界面

--规定用户使用权限,不同用户提供不同的操作权限,非用户不能登陆系统,保证系统安全,操作简单而富有人性化。

(2)实时历史、曲线报表数据分析

--系统将采集到的数据信息以实时曲线的方式显示给用户,并根据需要按照日、月、季、年参数变化曲线生成历史报表。便于对粮仓粮库的运转情况进行分析并做出改进,提高粮食仓储的效率与安全。

(3)多种形式的报警功能,适合不同场合需要

--工作人员根据粮仓粮库内的具体情况,设置温度、湿度等参数限值。在监测时,如发现有监测结果超出设定的阈值时,系统会自动发出报警提醒工作人员,报警形式包括:声光报警、电话报警、短信报警、E-MAIL报警等。 (4)远程控制

--现场采集设备将采集到的数据通过有线、无线、GPRS/3G网络传输到中控数据平台,用户从终端可以查看粮仓粮库现场的实时数据。并使用远程控制功能,通过继电器或采集输出模块对粮仓粮库内的相关设备进行自动化控制,如自动通风系统、自动制冷制热系统、自动除湿系统等。 (5)监控终端

--监控终端通过可视化、多媒体的人机界面实现以下主要功能:

①粮仓内粮情、温湿度、CO2浓度全面显示,可查询,包括各种参数以及历史数据等; ②向粮仓内监控终端发出调度命令、调整设备运转状况,确保粮仓内环境维持稳定状态,保证粮食仓储安全。

相关产品图片、拓展图及软件界面: 1.多通道线缆式温度巡检采集器

(5)系统拓展图(无线) (6)软件界面

上一篇:初中生物试验总结下一篇:春暖花开作文600字