FPGA课程设计多功能数字钟讲解(共10篇)
朱安烟
(安阳师范学院 物电学院, 河南 安阳 455002)
摘要:时钟相比具有更高的准确性和直观性
因此得到了更加广泛的使用。数字钟从原理上讲是一种典型的数字电路,其中
本设计采用六位LED
24小时计时方式根据数码管动态显示原理来进行显示。用晶振产生振荡脉加以分频得到所需的钟表秒脉冲,利用纯数字电路,实现数字电子时钟功能,时间重置功能。此次数字钟的理图设计,PCB图的制作主要是基于altium designer软件,利用proteus7.7软件进行仿真,最终本设计实现24小时的时钟计时、时间重置功能。
关键词:LED数码管
时序电路
逻辑电路
时钟
校时引言
仅向。方案论证:
2.1方案一
由于是数字钟的设计,可以用单片机AT89C51来实现计数功能,相对于纯数字电路来讲它具有功耗低、体积小、使用方便等优点。但在大二下半学期初期,对单片机方面的内容知识还不够完善,加上用单片机为核心来做数字钟还需做编程,对自身来说又是一难点。不过此法可以待以后,学习知识完善后再考虑。
2.2 方案二
继而考虑到用原先学过的纯数字电路来做,以74Ls160来做为计数的芯片,用六片分别实现 数字钟的小时、分、秒、的计数,并用晶振加以分频产生数字钟所需的秒脉冲。
从以上两种方案,很容易看出,采用方案二,用此法做即可以复习回顾早期学习的数电模电知识,又避免了单片机知识不足的问题,故用此法。结果与讨论
3.1.1数字钟主要计数芯片为74ls160其引脚图如下:
这种同步可预置十进计数器是由四个D型触发器和若干个门电路构成,内部有超前进位,具有计数、置数、禁止、直接(异步)清零等功能。对所有触发器同时加上时钟,使得当计数使能输入和内部门发出指令时输出变化彼此协调一致而实现同步工作。这种工作方式消除了非同步(脉冲时钟)计数器中常有的输出计数尖峰。缓冲时钟输入将在时钟输入上升沿触发四个触发器。这种计数器是可全编程的,即输出可预置到任何电平。当预置是同步时,在置数输入上将建立一低电平,禁止计数,并在下一个时钟之后不管使能输入是何电平,输出都与建立数据一致。清除是异步的(直接清零),不管时钟输入、置数输入、使能输入为何电平,清除输入端的低电平把所有四个触发器的输出直接置为低电平。超前进位电路无须另加门,即可级联出n位同步应用的计数器。它是借助于两个计数使能输入和一个动态进位输出来实现的。两个计数使能输入(ENP和ENT)计数时必须是高电平,且输入ENT必须正反馈,以便使能动态进位输出。因而被使能的动态进位输出将产生一个高电平输出脉冲,其宽度近似等于QA输出高电平。此高电平溢出进位脉冲可用来使能其后的各个串联级。使能ENP和ENT输入的跳变不受时钟输入的影响。电路有全独立的时钟电路。改变工作模式的控制输入(使能ENP、ENT或清零)纵使发生变化,直到时钟发生为止,都没有什么影响。计数器的功能(不管使能、不使能、置数或计数)完全由稳态建立时间和保持时间所要求的条件来决定。
管脚说明: CLR:清零复位端
当输入为低电平时有效
CLK:时钟信号接收端
A~D:读入
QA~QD:输出
ENT、ENP置一时芯片正常工作
LOAD:置数端
RCO:信号输出端
GND:接地
Vcc:接高
工作方式:
3.1.2 7段LED数码管
3.1.3 32.768KHZ晶振
32.768KHZ是一个标准的频率,晶振频率的应用主要有以下几个方面的参数:尺寸、负载电容、频率偏差、应用范围。按尺寸外形来分主要分为插件和贴片的;插件的主要有2*
6、3*
8、49s 等,贴片的就有很多种了,跟据各公司的设计可的型号有很多,例如:日本KDS晶振就有49SMD、DST310S、SM—14J、DST520、DST410S等。
3.1.4 CD4060分频器
CD4060由一振荡器和14级二进制串行计数器位组成,振荡器的结构可以是RC或晶振电路,CR为高电平时,计数器清零且振荡器使用无效。所有的计数器位均为主从触发器。在CP1(和CP0)的下降沿计数器以二进制进行计数。在时钟脉冲线上使用斯密特触发器对时钟上升和下降时间无限制 引脚功能:
/CP1:时钟输入端
/CP0:时钟输出端
/CP0:反相时钟输出端
Q4~Q10,Q12~Q14:计数器输出端
/Q14:第14级计数器反相输出端
VDD:电源正
VSS:电源负
CR:清零端 3.1.5 74ls48
功能介绍:
74LS48除了有实现7段显示译码器基本功能的输入(DCBA)和输出(Ya~Yg)端外,7448还引入了灯测试输入端(LT)和动态灭零输入端(RBI),以及既有输入功能又有输出功能的消隐输入/动态灭零输出(BI/RBO)端。
由7448真值表可获知7448所具有的逻辑功能:
(1)7段译码功能(LT=1,RBI=1)
在灯测试输入端(LT)和动态灭零输入端(RBI)都接无效电平时,输入DCBA经7448译码,输出高电平有效的7段字符显示器的驱动信号,显示相应字符。除DCBA = 0000外,RBI也可以接低电平,见表1中1~16行。
(2)消隐功能(BI=0)
此时BI/RBO端作为输入端,该端输入低电平信号时,表1倒数第3行,无论LT 和RBI输入什么电平信号,不管输入DCBA为什么状态,输出全为“0”,7段显示器熄灭。该功能主要用于多显示器的动态显示。
(3)灯测试功能(LT = 0)
此时BI/RBO端作为输出端,端输入低电平信号时,表1最后一行,与 及DCBA输入无关,输出全为“1”,显示器7个字段都点亮。该功能用于7段显示器测试,判别是否有损坏的字段。
(4)动态灭零功能(LT=1,RBI=1)
此时BI/RBO端也作为输出端,LT 端输入高电平信号,RBI 端输入低电平信号,若此时DCBA = 0000,表1倒数第2行,输出全为“0”,显示器熄灭,不显示这个零。DCBA≠0,则对显示无影响。该功能主要用于多个7段显示器同时显示时熄灭高位的零。
3.2 原理设计
整体电路设计方案:
3.2.1 振荡电路设计
振荡电路由振荡器产生的脉冲,振荡器是数字钟的核心。振荡器的稳定度及频率的精度决定了数字钟的精确程度,次处有555定时器和晶振两种产生秒脉冲的方法:555振荡器做振荡源一般用于精确度要求不高的场合,由门电路组成的多谐振荡器的振荡周期不仅与时间常数RC有关,而且还取决于门电路的阈值电压VTH,由于VTH容易受到温度、电源电压及干扰的影响,因此频率稳定性较差,只能用于对频率稳定性要求不高的场合。考虑到振荡频率的精确度与稳定性固采用晶振做为振荡源来实现振荡电路,得时钟脉冲更稳定,时间走的更准37.268KHz晶振 通过cd4060分频器进行十四分频得到0.5s的脉冲信号,再进行一个SN74LS74进行二分频得到所需的秒脉冲信号:
3.2.2 校时电路设计
根据电路设计所知需要在分处和小时处需要校时,分别在分和时个位向十位进位处各加一开关,另一端接地并且在与地之间接100pf电容为防止按键抖动。
电路设计如下:
当开关处于自然位置时分十位clk端所接为高电平,当开关按下时则引入一低电平实其clk端有一个下降沿脉冲接入,使其产生了校时功能。
3.2.3显示电路设计
显示电路是用74ls48驱动七段共阴数码管来作为时钟显示器。
电路设计如下:
3.2.4 计时电路设计
数字钟的秒和分位都是从0到60循环计数的,所以可以用用异步清零法设计60进制计数器作为秒和分的计数器。用异步置数法设计小时所用的24进制计数器。秒、分位设计电路如下:
3.3 程序调试过程
在板子焊接好以后通上5V电源发现六Led灯只有三个能完整亮出来,其余的都不亮或是亮的不全,而且秒位不走,校时按键不管用。问题很多。
开始调试:
1、首先调试的是秒位为何不走,先测晶振石否起振,测量后发现晶振正常起振,然后从74ls160的clk端用示波器测试一下没有脉冲信号输入,则找74ls74的输出口也无脉冲,以次往前推,最后测量出从74ls74输入端有正确的脉冲输入,输出端却无脉冲输出。观察后没有连接错误,故用万用表测vcc.end端都有正确的电平接入,再测量两点间是否有漏焊现象,最后测出一处漏焊点使D端与Q端没有接通。重新焊接后秒位正常计时。
2、秒位正常计时,但向秒的十位进位时总是显示从8到19,查阅资料可知,在第一个160芯片到第二个160芯片中缺一个非门,充当延时作用,使个位计数到9再来一个脉冲下计数时再向前进位。加上非门进位正常了。
3、秒位向分位进位正常,但校时按键不能用,且分位向十分位不能进位,通过观察焊接对比原理图与pcb图后发现,开关接地的一端弄反了,应是开关与接电容端相侧对着的端接地。这个错误导致开关不能用,亦使分的十位端的74ls160芯片clk段一直接了地,故不能使其正常进位。修改过后则可以正常进位,且两开关都能用了。
4、显示小时位的第一个数码管一直不亮,通过测量发现led数码管没有烧坏,能正常工作,通过对比PCB图观察没有焊接错误,用万用表测量则发现驱动次led的74ls48管没有正常接地,连接跳线处有一虚焊,重新焊接后恢复正常。
5、但分向小时不能进位,由示波器观察发现74ls160芯片clk端无脉冲输入,但十分位有脉冲输出,且导线也导通了,就观察原理图发现原理图一处错误,分向时进位时是分满60向前进一个脉冲,故分的TC端不用再接到时的CLK端了。找到错误后用镊子将板上的铜线划段,则正常进位了。
6、小时进位正常但显示的不是24进制,显示的是44进制,则推测可能是跳线连接错误,将显示小时的十位 74ls160芯片接B端连接成接C端了,故使其显示44进制,通过观察、对比pcb图,最后发现果然如此。修改过后小时为正常24进制了。
7、最后一个数码管有三段老是不亮,观察连接没有错误,测量焊接也正常,最后用万用表测量发现芯片没有问题,那三段不亮的数码管烧了。
8、调试好后在后来的观察中发现从秒向分进位时有时一下进两位,自己找不出来原因。问过老师后,老师说是由于防抖电容所致。尝试着将电容先划断试了一下就没有那种情况了。但此时校时开关由于抖动缘故,按一下有时跳3、4个位,校时不稳定了。结论
此数字钟相对于机械钟来说有低功耗,高精度,数字化显示和不易损坏等特点。符合人们日常家居及办公对钟表的要求,可以作为家居、办公等用表。
参考文献
[1] 佘新平数学电子技术基础 华中科技大学出版社 2009年
[2] 许树玲 丁电宽 王晋 电子技术及实验 内蒙古大学出版社2005年
[3] 佘新平数字电路设计·仿真·测试 华中大学出版社 2010年
VHDL语言是一种标准化的硬件描述语言。设计者可以通过它编写代码,然后用模拟器验证其功能,再将设计代码综合成门级电路,最后下载到可编程逻辑器件(CPLD,FPGA)中来实现一个设计。由于VHDL语言具有支持大规模设计和再利用已有设计等优点[1],因此使用VHDL语言来设计数字系统已成为一种潮流。
本文主要研究了采用FPGA和VHDL语言,运用自顶向下设计思想设计多功能数字钟的问题。自顶向下设计是从系统级开始把系统分为基本单元,然后在把每个基本单元化分为下一个层次的基本单元,直到可以直接用EDA元件库中的元件来实现为止[2]。
2. FPGA,Quar t us I I简介
FPGA(Field Programmable Gate Array,现场可编程门阵列),是20世纪70年代发展起来的一种可编程逻辑器件,是目前数字系统设计的主要硬件基础。可编程逻辑器件的设计过程是利用EDA开发软件和编程和编程工具对器件进行开发的过程[3]。
本文采用的FPGA开发平台是Quartus II。Quartus II是Altera公司开发的功能最强大的FPGA编译工具,它是一个基于Altera器件进行逻辑电路设计的体系结构化的完整继承环境[4]。Qusrtus II用户界面丰富、友好、易用,具有详细方便的在线帮助,提供了从设计输入到器件下载编程的全部手段。
应用FPGA能够将时钟设计为:全局时种、门控时钟、多级逻辑时钟和波动时钟,多功能时钟系统能包括上述四种时钟类型的任意组合[5]。
3. 多功能数字钟的设计
设计一个多功能数字时钟,具有时分、秒计数显示、闹钟功能,能够利用按键实现对闹钟时间的设定并在当前显示时间到时能够进行闹钟提示。多功能数字钟还应具有秒表功能,能够精确到百分之一秒进行计数并且显示。能够利用按键实现“较时”、“较分”功能,随时对数码管的显示进行调整和较对。
数字钟系统如图1所示主要由系统时钟和三个功能按键、FPGA、数码管和蜂鸣器三部分组成。
3.1 主控模块的设计
在整个数字钟的设计中有很多功能模块,如何实现对各个功能模块的控制与调整,就需要一个主体控制模块对各个分模块进行控制,主控模块的功能主要是通过输入信号实现对秒表显示,闹表模块和时间设置模块以及最后的七位数码显示模块的控制,在主控模块中分别设置了“1-4”4个功能号,分别实现包括对时间显示与调整、闹钟显示与调整、秒表操作的控制。主控模块各个输入输出端口分别为:
Timepiece_EN为时间自动显示使能端;
Timeset_EN为时间调整与设置使能端;
Stopwatch_EN为秒表功能使能端;
Alarmclock_EN为闹钟显示设置使能端。
3.2 时间及其设置模块的设计
时间及其设置模块主要完成时间的自动正常运行与显示,以及在相应的功能号下实现时间的调整与设置。
对于时间模块,主要完成时间的自动增加与显示功能,即为正常的自动模式运行,时间模块主要由秒自动计时子模块(second_counter),分自动计时模块(minute_counter),小时自动计时模块(hour_counter)以及时间自动工作控制模块(timepiece_main)组成。
时间设置模块主要完成对时间的设置相关的闪烁显示控制以及时间中的小时、分钟、秒的数据的改变,它通过两个模块分别实现时间调整与设置过程中小时、分钟、秒的位的选择和秒的数值的选则。
对于小时、分钟和秒等的位的选择部分程序如下:
对小时低位以及分钟和秒的调整与位的选择程序和小时高位相似,均是判断该位是否满足需要,进行加一或复位为0,从而进行时间调整。
时间数据与时间设置数据多路选择模块用来向显示单元传输显示数据,该模块主要通过一个always模块来实现时间自动显示、时间调整与设置中显示数据的多路选择。该模块是通过判断时间设置使能端的情况来调整显示输出的时间,当时间设置使能端为高电平时,对时间进行重新设置,在数码管显示输出新设定的时间,当时间设置使能端为低电平时,则表示不需要对时间进行设置,数码管仍显示当前时间。
3.3 时间动态位选模块的设计
时间显示动态位选模块(time_disp_select)主要用来分时显示时间数据,该模块是通过三个always模块分别实现自动运行模式中时间的动态显示位选的驱动,时间设置中的时间动态显示位选驱动以及时间的动态位选。
实现自动运行模式动态位选驱动的实现流程图如图2所示。
从图中可看出,实现自动运行模式中时间的动态显示位选的驱动主要是在时钟信号的上升沿到来时,判断自动显示驱动位是否为5,当小于5时,其自动加一,当为5则复位为0。用来选择自动模式下时间的各个位。
3.4 显示模块的设计
显示模块是时间、秒表等数据用数码管显示的控制与数据传输模块,包括数据的传输以及BCD码的译码等,其主要是用来对数据进行显示。
该模块含有一个6进制计数器,在clk驱动下6进制计数器的q值从000B~101B按顺序循环变化,计数值q送comcnt信号输出,一方面送给位选择模块,使其根据q值选出对应的时、分、秒信号送给段译码器,然后经段译码器将数据送到7段L ED数码管上。comcnt信号还送给位译码模块,根据q值经位译码产生6个数码管的选通信号common[6],其中六进制计数器的时钟输入信号clk频率为1 000 Hz,由系统钟源经20 000分频获得,由于6进制计数器循环计数,所以数码管的位刷新频率为1 000/6=166 Hz,这样在6个数码管上就可以看到一个稳定的数字时间显示。
3.5 分频模块的设计
在多功能数字钟设计中,分频模块主要接收1.25MHZ时钟信号分频输出1KHZ、100HZ、1HZ的三种时钟信号:
(1)1HZ的时钟信号主要作为秒表模块和时间动态位选模块的输入信号作为秒个位的调变频率。
(2)100HZ的时钟信号主要作为闹钟模块和时间动态位选模块的输入时钟。作为时间调整时的扫描频率,且同时也作为秒表的输入时钟以达到精确计数。
(3)1KHZ主要用作时间动态位选模块的时钟输入信号主要作为数码管正常显示时的扫描频率。
由此可看出在多功能数字钟的系统中,有秒表模块、闹钟模块、时间动态位选模块均需要有不同频率的时钟信号输入,所以在设计多功能数字钟时,需要设置分频模块,将时钟输入的频率分割为1KHZ、1HZ和100HZ的不同频率,从而使利用时钟信号对各个模块的控制更简便化也更直观化,调试时更加方便有利于系统的整体实现。
3.6 秒表模块的设计
多功能数字钟的秒表模块实现秒表的基本功能,通过按键可进行电子时钟与电子秒表功能的切换,可对电子时钟的显示内容、时间对时、闹钟定时等功能进行设定和对电子秒表开始计时、暂停、继续计时及清零[7]等功能进行控制。在实际的现实中,可以通过改变自动工作模式下的时间的计数时钟的频率来实现秒表的功能,秒表模块的工作方式是当模块的输入使能端被主控模块设置为高电平,从分频模块产生的1HZ和100HZ的时钟信号输入秒表模块,由于秒表的设计要求需要其精确至0.01秒,因此需要输入100HZ的时钟信号作为精确读秒,而1HZ的时钟信号则作为秒表的低位进位,实现秒表的程序描述如下:
程序中CLK1是时间自动工作模式的时钟信号,用作秒表的个位的进位,CLK2是秒表工作模式的时钟信号,用作秒表的低位扫描,EN是秒表的使能控制,当EN为高电平时工作在秒表状态,否则工作在时间的自动模式,F_OUT为数字钟的工作时钟[8]。
3.7 闹钟模块的设计
设置闹钟模块主要是体现时间设置模块的设置功能,因为闹钟模块的实现主要是由人为的设置时间从而用闹钟模块来显示。闹钟模块实现的功能包括闹钟的设置以及闹钟时间到后的提示,闹钟模块的设置较为灵活,因为在主控模块的控制下,显示模块的数码管进行时间的小时、分钟和秒的个位与十位的显示,当时间及其设置模块收到主控模块的使能信号后完成两个功能:一是当时钟计数到点时,蜂鸣器发出嘀嘀的响声,响时为1min;二是在发声的同时,3个LED灯循环闪亮,时间也是1min[9]。
4. 程序调试与下载
VHDL语言程序调试成功后,已被载入基于10 K10LC84-4 芯片设计的真实硬件系统中实验箱上使用的元器件包括外部时钟,FPGA适配器接口,6个8段数码管,和3个按键。实验步骤:
(1)首先在Quartus II软件的Assignment菜单下Assignment Editor中对EPF10K10LC84-4芯片进行引脚配置。
(2)重新对设计顶层模块进行综合编译;
(3)利用Quartus II中Programmer对器件进行编程配置,采用的是Byte Blaster MV下载电缆,JTAG配置方式[10]。
下载到实验箱中,分别对数字钟的功能进行了测试,实验表明其时间显示和设置功能、闹钟功能和秒表功能均能正确实现。
5. 结论
本文利用EDA技术,采用自顶向下的设计方法,使用Verlog HDL语言设计了一个基于FPGA的多功能数字钟。它具有时间显示和设置、闹钟、数字秒表等功能。由于FPGA具有在线编程,裁减扩充容易等特点,使得系统的改进和完善十分容易,因此还可以根据数字钟的具体应用场合,使其不仅仅局限于时间和日期等日常需要,例如导航、报警、定位等相应功能满足越来越多行业的需求。
参考文献
[1]潘松.VHDL实用教程[M].成都:成都电子科技大学出版社,2000.
[2]夏宇闻.复杂数字电路与系统的Verlog HDL设计技术[M].北京:北京航空航天大学出版社,1998,9:5-7.
[3]黄智伟,王彦.FPGA系统设计与实践[M].北京:电子工业出版社,2005.
[4]李洪伟,袁斯华.基于QuartusⅡ的FPGA/CPLD设计[M].北京:电子工业出版社.2006.
[5]刘皖.FPGA设计与应用[M].北京:清华大学出版社,2006.
[6]侯伯亨,顾新.VHDL硬件描述语言与数字逻辑电路设计[M].西安:西安电子科技大学出版社,1999.
[7]翟王文,徐宏亮,艾学忠.实用多功能电子时钟设计[D].吉林化工学院自动化系.2001:32-33.
[8]刑建平,曾繁泰.Verlog程序设计教程[M].北京:清华大学出版社,2005.
[9]樊永宁,张晓丽.基于VHDL的多功能数字钟的设计[J].矿工自动化,2006,6:93-94.
一、《机制工艺课程设计》说明
(一)课程代码:0217032
(二)课程英文名称:Course Design of Mechanical Manufacturing Technology
(三)开课对象:机械工程学院本科各专业
(四)课程性质:《机制工艺课程设计》是在全部学完机械制造工艺学课程,并进行了生产实习的基础上进行的一门实践教学课。它要求学生全面综合运用本课程及有关先修课程的理论和实践知识进行工艺及结构的设计,也为以后搞好毕业设计进行一次预备训练。
本课程设计的任务是:
1.培养学生应用所学知识,独立分析和解决工艺问题。
2.培养学生初步具备设计一个中等复杂程度零件的工艺规程的能力。
3.培养学生依据被加工零件的技术要求,运用夹具设计的基本原理和方法,完成夹具
结构设计,初步具备设计出高效、省力、经济合理并能保证加工质量的专用夹具的能力。
4.培养训练学生的基本技能,如:计算、绘图、查找和运用有关设计资料(手册、标
准、图册和规范等)的相应能力。
(五)教学目的:本课程的目的是使学生巩固加强机械制造工艺学课程知识,弥补课堂 教学的欠缺,使所学的知识得到综合应用,另外,还培养学生初步独立设计能力。
(六)教学内容: 设计内容:
1.制定零件机械加工工艺规程; 2.设计某工序的专用夹具。基本要求:
1.学会收集和查阅资料,了解所学知识的应用情况; 2.掌握编制机械加工工艺规程的方法;
3.掌握设计机床专用夹具的基本原理,提高结构设计能力; 4.掌握识图、制图、运算和编写技术文件等基本技能。
(七)学时数、学分数及学时数具体分配:
学时数:16 学时 学分数:1 学分 学时数具体分配:
序号 单元
课
内 容 摘 要
时 内容熟悉零件及各种资料,对零件进行一 工艺分析 内容工艺设计(拟定工艺路线,选择设二 备与工装,填写工艺过程卡)
内容工序设计(确定加工余量,切削3 三 量,工序尺寸,时间定额,工序简4
图,填写工序卡片)内容撰写设计说明书 4
备注
准备阶段计算和绘图阶段
资料整理
四
内容5 五
答辩与考查 2 答辩阶段
(八)教学方式:讲授
(九)完成任务:每个学生完成以下工作:
1、机械加工工艺过程综合卡片一张;
2、课程设计说明书一份。
(十)考核方式和成绩记载说明:
(1)课程设计的成绩单独记分。课程设计成绩的评定,应以设计说明书、工艺过程综合卡和在答辩中回答问题的情况为根据,参考设计过程中的表现,由指导教师按五级记分制(优、良、中、及格、不及格)进行评定;
(2)课程设计成绩计算方法:设计说明书占40%、工艺过程综合卡占
50%、答辩占10%;
(3)要求学生在答辩前应完成规定的设计任务,装订好设计说明书;(4)通过答辩,进一步把问题弄懂、弄透;目的是使学生的认识能力有所提高。
二、课程设计内容及教学要求
内容一 熟悉零件及各种资料,对零件进行工艺分析;
内容二 工艺设计(拟定工艺路线,选择设备与工装,填写工艺过程卡);
内容三 工序设计(确定加工余量,切削量,工序尺寸,时间定额,工序简图,填写工序卡片);
内容四 编写设计说明书(要求用word编制打印);
设计说明书内容包含:
1.目录(标题、页次);
2.设计题目:原始数据及工作条件,零件图; 3.设计计算:
(1)要有详细的设计步骤和阶段,每一阶段后应有简短的结论 ;(2)对所引用的计算公式和数据要标有来源——即参考书的编号和页次;(3)为了清楚地说明计算内容,应附必要的插图。
4.对设计后的评价(简要说明课程设计的体会,本设计的优、缺点及改进意见等); 5.参考文献资料(资料的编号、作者名、书名、出版地、出版者、出版年月)。
要求每位学生在设计过程中,充分发挥自己的独立工作能力及创造能力,对每个问题都应进行分析、比较,并提出自己的见解,反对盲从,杜绝抄袭。在设计过程中必须做到:
(1)随时复习教科书、听课笔记及习题;
(2)及时了解有关资料,做好准备工作,充分发挥自己的主观能动性和创造性;
(3)认真计算和制图,保证计算正确和图纸质量;
(4)按预定计划循序完成任务。
内容五 答辩与考查
三、推荐教材和参考书目
在科技信息技术飞速发展的今天,人们在日常生活和工作中占有和接触的信息量越来越多,因此人们之间的信息交流和沟通也就变得越来越频繁,越来越重要。讲学报告、商务谈判、产品演示、来宾会见、政令下达等等都是人与人之间的交流,要更好的达到目的就需要用我们一贯使用的手段“会议”来解决问题。一只麦克风两只喇叭就能开一场大会,这是过去几十年以来一直延用的会议模式。在传统会议模式人与人的集中交流过程中,单单是一个声音的表现,已远远不能满足现代会议的要求。现代会议不但要求简洁明快地表达信息,图文声并茂地发表演讲,还要求能随时与不同区域的会议场所实现远程电视电话会议等,这些都要求借助数字会议系统来实现。数字会议系统越来越多地运用于各类机关、企业和学校等单位,它的影响也越来越大,具有广阔的发展前景。
一、标准数字会议系统的基本组成标准多功能数字会议系统,要适应并满足不同类型、不同功能会议的召开,同时还要具有专业的舞台灯光音响效果,标准的语音、网络、视频接口,强大的后期扩展升级功能,可随时方便、简单扩展远程视频会议、远程电话会议。其基本结构图如下:
标准数字会议系统主要包括:
1.会议系统(会议讨论、会议表决、同声传译、红外同声传译);
2.摄像自动跟踪系统;
3.多媒体音频系统;
4.多媒体视频系统;
5.信号处理系统;
6.集中控制系统;
7.电视电话会议系统。
二、标准数字会议系统设备器材的选型原则
1.选用国际知名品牌器材,及有雄厚实力和绝对优秀技术能力的厂家、代理商,以保证系统设计指标和系统功能的实现。
2.选用同类产品中技术最成熟、性能最先进、使用最可靠、应用典范最广泛、最具说服力的产品型号,保证设备和系统的先进性、成熟性和稳定性。
3.选用高度智能化、高技术含量的产品,系统使用开放式的架构,以标准化和模块化为设计要求,既便于系统的管理和维护使用,又可保持系统较长时间的先进性,使日后的系统升级不需要重复采购设备,减少资源浪费,降低开支。
4.选用拥有自主知识产权的品牌,为系统日后的维护、升级免去后顾之忧。
5.经济实用的原则,选用性价比高的产品。所选用的产品不但要比性能、功能、品质,还要和同类同功能同性能的产品对比价格。
6.产品要求很强的技术作为支柱。要求设备厂商在大陆地区有专业的产品售后服务和产品维修公司,以便能提供更好的技术支持能和售后服务体系。
三、标准数字会议系统实现的主要功能
随着信息技术的不断发展,一个多媒体会议室除了要满足传统简单的会议要求外,还应具有高雅格调和优美音质、清晰图像演示,并且可以根据要求随时实现多语言会议讨论系统、投票表决功能、摄像联动系统以及会议电视电话系统等。它由专业会议系统、大屏幕显示、多媒体音视频信号源、音响、切换和中央集成控制几大部分组成。通过大屏幕投影单元显示多媒体视频图像,为了更高效、实时地管理控制,需要配备一套中央集成控制设备,控制多功能会议厅内所有影音设备、信号切换、灯光、屏幕升降、音量调节等等功能,提高工作效率,简化复杂的操作。
数字会议系统一般由中央控制设备、发言设备、资料分配显示设备和应用软件组成。利用网络时分复用技术,并将语言数字化的会议系统,在同一根电缆上实现多路同时发言,多路同时讨论、投票、表决等功能。对于所有类型的会议都应能提供灵活的管理,具有多功能、高音质、数据传送保密等,可以对会议的全过程实行全面的控制。其主要功能一般有:
1.会议讨论系统。会议讨论是会议系统基本的功能。在会议讨论中,不同的会议讨论模式实现不同的管理控制功能,如发言单元发言模式有队列模式、抢答模式、自动声控模式等。
2.会议表决系统。会议表决系统是在会议讨论系统的基础上建立起来的,在会议过程中,当需要对会议中某一决议进行投票表决时,可以由会议主席发起会议表决任务,会议代表可以选择赞成、反对、弃权三种结果进行表决。通过多
媒体音视频系统或是电子表决显示屏显示出来会议表决的结果,结合会议管理软件实现网络管理功能。
3.同声传译系统。同声传译系统是在原声(发言人)音频扩放系统的基础上,通过相应设备将信号送会议翻译员工作间,经数名不同语种的翻译员同步翻译后,再通过有线或无线设备分别送至会议现场有不同语种需求的代表所戴的耳机中,会议代表调节接收装置选择所需的翻译语种。语言翻译可采用直接翻译和二次翻译的形式。同声传译系统能较好地满足多语种的国际会议需求,实现不同国家或民族的会议参加者相互之间迅速方便地交流和讨论的目的。同声传译系统包括两部分:语言翻译和同声传译。在实际应用中,同声传译与会议讨论都是相互结合在一起的。
4.红外同声传译系统。红外信号的频率为2~8MHZ的高频段,能大大提高系统的抗干扰能力,同时使同声传译系统不受场地的束缚,在会议场地内随意走动也不影响设备的使用。并且,由于红外信号不能穿透非透明的建筑物,不必担心会议内容被窃听或是受到外界的干扰。
四、数字会议系统工程的施工要求
1.管路弯曲半径应大于6倍D,电源线与控制线、视频线要分管敷设。
2.线缆在敷设时,设备端应留有一定的余量,并应做好永久性标志,以便施工、管理和维修。线缆的应尽量避免接续,接续时应采取焊接方式或采用专用接插件。
3.设备在安装之前一定要确保所有线路安装完毕,并通过了线路综合测试。
4.安装过程中应注意保护设备,包括线缆。线缆在安装过程不得造成线缆表皮损伤。
5.对嵌入式设备进行安装的时候一定掌握好设备的开孔尽寸。
6.在多媒体会议系统控制室内,所有线路要求做好标注,线路整齐明朗。
7.所有的会议设备在安装的时候,发言设备到发言设备的线缆长度不能大于2米。
8.每一线路的设备数量不能超过25台,每一线路的长度不能超过100米。
9.在安装的时候针对系统要求,准确计算出系统所需要的耗电系数(PCF)。
10.杜绝线缆在中间部分出现接头,如确实要求线路中接的情况,必须对接头进行焊接处理,并包扎结实。有条件的使用热缩管替代胶布,对接头的处理最好使用专业的接头插。
11.线路敷设工作完成后,要求按照线路的敷情况做出一份精确的线路敷设图,同时在工程档案备案。
12.所有强电要做好断电、漏电保护装置,弱电尽量避免出现交叉或是并行的现象,电器设备都要做接地保护。
13.强电的线路设计要求大于系统最大强电负荷的30%以上。
《数字逻辑》课程报告
课程名称:数字钟
姓名: 专业班级: 指导教师:
2013/05/31
1.数字钟的组成及基本原理
图A 如图A所示,数字钟电路系统由主体电路和扩展电路两大部分组成。其中主体电路完成数字钟的基本功能,即:能准确计时,以数字形式显示小时、分秒的时间;小时计时以“24进1”,分和秒的计时以“60进1”;具有校正时和分的功能。扩展电路完成数字钟的扩展功能。
1.1系统的工作原理:
振荡器产生稳定的高频脉冲信号,作为数字中的时间基准,然后经分频器输出标准秒脉冲。秒计数器满60后向分计数器进位,分计数器满60后向小时计数器进位,小时计数器按照“24翻1”规律计数。计数器的输出分别经译码器送显示器显示,计时出现误差时可以进行校时、校分。各扩展电路必须在主体电路正常运行的情况下才能进行功能扩展。
2.各单元电路的基本原理
2.1振荡器电路
振荡器是数字钟的核心。振荡器的稳定度及频率的精确度决定了数字钟的准确程度。一般来说,振荡器的频率越高,计时精度越高,但耗电量增大且分频级数多。一般有如下几种方案构成振荡器电路:
方案1:如图1-1所示为电子手表集成电路中的晶体振荡器电路,常取晶振的频
率为32768Hz,因其内部有15级2分频集成电路,所以输出端正好可得
到1Hz的标准脉冲。该方案优点是走时准确及稳定,集成度高,所需芯
片少。方案2:由集成电路定时器555与RC组成的多谐振器,电路图如图1-2。输出频
率为1000Hz。该方案的优点是起振容易,振荡周期调节范围广,缺点是
频率稳定性差,精度低,所以在本实验中不宜使用。
方案3:由集成逻辑门与RC组成的对称式多谐振荡器,可以输出频率为1MHz的脉冲。该方案的优点是精度高,集成简单,所需元器件少。
由于此次设计所提供的芯片主要是74ls00且方案三精度较高,连线简单所以选用方案三。
2-1
2-2 2.2分频器电路
分频器的功能主要有两个:一是产生标准秒脉冲信号,二是提供功能扩展电路所需要的信号。选用中规模集成芯片74ls90可以完成上述功能,用6个级联即可以得到1Hz的脉冲,该方案原理简单,易于调试,且可以得到各种频率的脉冲,适合功能的扩展。因此此次设计选用该方案。
2.3计数器电路
分和秒都是模M=60的计数器,它们的个位都是十进制计数器,而十位则是六进制计数器。时计数器是一个“24翻1”的特殊进制计数器,即当数字钟的计时器运行到23时59分59秒时,秒的个位计数器再输入一个秒脉冲时,数字钟应自动显示为00时00分00秒,实现日常生活中习惯用的计时规律。修改由于都不多于十进制,则可以用6个中规模集成电路计数器74ls90来实 现计数。该方案功能灵活,芯片统一便于调试与组装。
2.4校时校分电路
当数字钟接通电源或者计时出现误差时,均需要校正时间。对校时电路的要求是,在进行小时校正时不影响分和秒的计时,同理,在进行分校正时不影响时和秒的正常计数。其实现方法可以是将校时校分信号直接加到分、时计数器上,因此校时校分电路实际上是一个输入信号的转换开关。以下是几种方案:
方案1:简单的手动开关,如图1-4-1所示,正常工作时,s指向A,校时时只
需使s指向B。这种电路简单,但是开关的通断产生随机的机械抖动信
号,不易控制其稳定性。
方案2:如图1-4-2所示,用三个与非和一个可调电位实现信号的转换,当正常
工作时,电位器动滑头指向B,这时CP=C0;当需要校时,动滑头指向A,此时CP等于秒脉冲,两个电容可以滤去滑动中产生的干扰信号。
方案3:三个与非门和基本RS触发器。基本RS触发器可以完全消除开关的机械
抖动,是最佳的一种校时校分电路。
1-4-1
2-4-2
2.5扩展电路
随着技术的发展,这种具有基本功能的数字钟并不能满足人们的要求,所以通常要根据不同人的需要进行功能的扩展,下面按照人们常用到的数字钟功能提供了几种扩展电路方案:
方案1:仿广播电台整点报时电路。要求是:每当数字钟计时到整点(或快到整
点时)发出音响,通常按照4低音1高音的顺序发出间断声响,一最后
一声高音结束的时刻为整点时刻。
方案2:定时控制电路。定时控制电路可以使数字钟在规定的时刻发出信号,或
驱动音响电路进行“闹时”;或控制某装置电源的接通或断开实现定时控
制。具体电路图见图1-6-1 方案3:报整点时数电路。功能是:每当数字钟计时到整点时发出声响,且几点
响几声。实现这一功能的电路要经过三个阶段的工作:分进位脉冲到来
时小时计数器加1;报时计数器应记录此时的小时数;报时计数器开始
做减法计数,每减一个脉冲,音频电路鸣叫一声,直到计数器的值为零。
具体电路如图1-6-2。此方案较为复杂。
由于材料有限,本次设计选用接法较为简单但功能实用的方案1
2-6-1 闹时电路
2-6-2 报整点时数电路
3、具体电路及参数计算
3.1振荡器
选用由集成逻辑门与RC组成的时钟脉冲源振荡器,可以输出频率为1MHz的脉冲。具体方案电路如下图3-1
3-1 对称式多谐振荡器
3.2分频器
本设计采用6片74ls90级联成610分频电路得到1Hz频率脉冲,且可以得到用于扩展电路所需要的各种频率。具体接线图如下图2-2
3-2 分频电路
3.3时分秒计数器
选用6片74ls90来实现计数功能,其中分个位、秒个位及时个位是十进制,分十位和秒十位是六进制,时十位只能显示0、1、2三个数字。如图2-3-1。分计时和秒计时中当Q1、Q2全为1时,R01、R02均为高,计时器清零实现60进制。如图2-3-2,时计数中当十位Q1和个位Q2均为1时,十位个位上R01、R02 全为高,计时器清零实现24进制。
3-3-1 二十四进制计数器
3-3-2 六十进制计数器
3.4译码显示电路
本设计使用BS201和CD4511配套使用实现译码显示功能。下图为一个一码显示的配套电路,本次设计中需使用6套来显示我们所需要观察到的数字。
译码显示电路
3.5校时校分电路
本次设计采用方案3,用三个与非门和基本RS触发器来实现校分/时功能。其中基本RS触发器可以完全消除开关的机械抖动。具体电路如图3-5
3-5 校时校分电路
3.6整点报时电路
仿电台整点报时要求在快到整点时按4低音1高音的顺序发出间断声响,一最后一声高音结束的时刻为整点时刻。设4声低音(采用50HZ分别发生在59分51秒、53秒、55秒、57秒、59秒,它们的持续时间为1S。由此可见,分十位和个位的计数器的状态分别为秒十位计数器的状态为ABCDM2QQQQ=0101,ABCDM1QQQQ=1001,秒十位计数器的状态为ABCDS2 QQQQ=0101。秒个位计数器DS1Q的状态可用来控制500HZ和50HZ 的音频。表2-6-1列出了秒各位计数器的状态,由表可得只有当CM2AM2QQ=11,DM1AM1QQ=11,CS2AS2QQ=11及AS1Q=1时,音响电路才能工作。音响电路中采用射级输出端,推动8欧德蜂鸣器,三极管基极串接1K欧限流电阻,是为了防止电流过大损坏蜂鸣器,三极管选用高频功率管即可,本设计使用8085NPN型三极管,具有方向特性可以节约一个非门。整点报时的电路图如图3-6
设计题目:用VHDL语言实现数字钟的设计
班 级:电子1002班 学 号:20102625 姓 名:于晓 指导教师:李世平、李宁 设计时间:2012年12月
摘要
数字钟是一种用数字电路技术实现时、分、秒计时的钟表。本设计主要是实现数字钟的功能,程序用VHDL语言编写,整体采用TOP-TO-DOWN设计思路,具有基本的显示年月日时分秒和星期的功能,此外还有整点报时功能。该数字钟的实现程序分为顶层模块、年月模块、日模块、时分秒定时模块、数码管显示模块、分频模块、星期模块,此外还有一个库。该程序主要是用了元件例化的方法,此外还有进程等重要语句。
没有脉冲时,显示时分秒,set按钮产生第一个脉冲时,显示年月日,第2个脉冲到来时可预置年份,第3个脉冲到来时可预置月份,依次第4、5、6、7、8个脉冲到来时分别可预置日期、时、分、秒、星期,第 9个脉冲到来时设置星期后预置结束,正常工作,显示的是时分秒和星期。调整设置通过Up来控制,UP为高电平,upclk有脉冲到达时,预置位加1,否则减1。当整点到达时,报时器会鸣响,然后手动按键停止报时。
关键词:数字钟,VHDL,元件例化,数码管
1、课程设计目的
掌握利用可编程逻辑器件和EDA设计工具进行电子系统设计的方法
2、课程设计内容及要求
设计实现一个具有带预置数的数字钟,具有显示年月日时分秒的功能。用6个数码管显示时分秒,set按钮产生第一个脉冲时,显示切换年月日,第2个脉冲到来时可预置年份,第3个脉冲到来时可预置月份,依次第4、5、6、7个脉冲到来时分别可预置日期、时、分、秒,第 8个脉冲到来后预置结束,正常工作,显示的是时分秒。Up为高电平时,upclk有脉冲到达时,预置位加1.否则减1,还可以在此基础上增加其它功能。
3、VHDL程序设计
3.1整体设计思路
本设计采用top-down 模式设计,分模块进行,各功能都使用元件例化方式设计,主要有LED显示模块、时分秒定时模块、日期模块、年月模块、分频模块、星期模块,此外还创建了一个程序包,用来实现年月日、时分秒的加减调整。主要运用了过程语句、元件例化语句、信号赋值语句、和顺序语句
图3-1-1 整体结构图
图3-1-2 顶层模块引脚图
3.2各模块设计思路
3.2.1 普通计数器(时、分、秒、月、年计数器)设计
时钟模块通过调用程序包的时分秒加减过程语句实现两个六十进制,一个二十四进制,秒的进位信号作为分的计数时钟信号,分的进位信号作为时的时钟信号。时的进位信号通过管脚映射到日期模块的计数时钟信号。
定时功能在时分秒模块中,是由分计数器在到达59时产生一个脉冲,让speaker产生高电位鸣响。
年月模块主要实现月份的十二进制计数器,和100进制的年份计数器。月份的计数信号由日期模块的进位信号传递过来,年份的时钟信号由月份的进位信号产生。
图3-2-1 时分秒引脚图 图3-2-2 年月引脚图 3.2.2 可变进制计数器(天计数器)模块设计
不同月中的天的数量是不同的,例如“大月”就有31“天”,“小月”有30“天”,平年“二月”有28“天”,而闰年“二月”有29“天”。所以天计数器应该具备进制可变的性能。日期模块主要分为三个部分,预置日期加,预置日期减和产生进位信号,使月份增加。平闰年的判断是通过年月模块传输过来年份信号(两个4位的BCD码),如果高位的信号为“xxx0”且低位的信号为“xx00”(如20,84等),或高位为“xxx1”且低位为“xx10”(如32等)则判断为闰年。这种方法的包含了一百年中的所有闰年的情况。然后判断大月小月可以判断月份来确定30进制还是31进制。进位信号也是分为大月、小月、平年闰年来确定是否产生。
图3-2-3 日模块引脚图
3.2.3 LED显示模块
主要通过接受setpin的控制信号来选择显示的内容,把不同的信号赋给输出的端口,从而实现时分秒,年月日的切换。3.2.4 星期模块
通过七进制计数器实现,同时带有预置的功能,不能同年月调整联动,但是能单独调整。
图3-2-4 星期模块引脚图
4、仿真与分析
4.1 日模块
4.1.1 年份为2000年,月份为2月,有29天,初值设为2000年2月28日,仿真中日为:28、29、1、2、„
4.1.2 年份为1999年,月份为2月,有28天,初值设为1999年2月28日,仿真中日为:28、1、2、„
4.1.3 年份为2000年,月份为3月,有31天,初值设为2000年3月30日,仿真中日为:30、31、1、2、„
4.1.4 年份为2000年,月份为4月,有30天,初值设为2000年4月30日,仿真中日为:30、1、2、„
4.2 年月模块
初值设为1999年12月,lock为1时,显示年月,lock为3时,预置月,lock为2时,预置年
4.3 时分秒定时模块
lock为0时,显示时分秒,lock为5时,预置时,lock为6时,预置分,lock为7时,预置秒。当分到达59时,整点报时器响,speaker高电位,随着手动清零,恢复原位。
4.4 星期模块
初值设为星期1,仿真中显示为:1、2、3、4、5、6、7、1、„
4.5 分频模块
4.6 顶层设计模块
5、课程设计总结
本次课程设计历时两天半,经过自己不断的努力完成了数字钟的设计,程序代码的编写调试及仿真。以前只是看书或者编一些很小的程序用来仿真,觉得没怎么难,但当进行此次课程设计真正处理一个较大程序时,问题便都显现出来。虽然在这个过程中遇到了很多的问题,但是最终都得到了很好的解决。
我此次设计的程序是在课本原有数字钟程序的基础上进行添加更改得来的,最初在运行原有程序时很顺利,但是随着加的东西越来越多,程序中出现的问题也就越来越多。很多同学都觉得在已有程序上再添加东西看似简单,实则很容易混乱,理不清头绪,而且这个原有程序是用进程所写,比较麻烦。虽然这样容易出现问题,不过我觉得这是一个锻炼的好机会。、在处理分频模块时,最开始按照老师的要求设置了频率,但是当运行时,发现根本出不来,后来与同学讨论后,发现频率过大,后来改为八分频,使得分频
模块能够使用。在一开始加星期模块时,没怎么考虑,可是当加进去后才发现,星期模块不能与其他模块很好的相连,不能很好的做到与“日模块”相合,后来虽有改动,但最终没能改成功。在加定时器功能时,一开始单独为定时器列了一个模块,所写的程序也很复杂,错误百出,最后程序改好后,仿真却出不来。后来经过同学的提点,就把程序改简单了,单纯的来个脉冲就出现高电平,但后来仿真发现高电平一直在高位,没法给脉冲,最后没办法便手动脉冲。与顶层模块连接后,又发现分满59的脉冲没给,因为我的时分秒全都放在了一起,只能将定时模块挪到时分秒模块中,这样反而使得整个工程简单了一些。
在各个模块都能仿真成功后,顶层模块的程序与仿真却出现了很多问题。首先是顶层模块程序有很多警告,例如“second_waver”没有用到之类的,后来在改动的过程中,便把内变量换为了外变量,但是有些原来的警告没有了,但是新的警告又出现了,原本能够连好的U3与U4 模块均不能正常连接,后来与同学自习查找,才终于将错误找出,由于粗心大意误动了一些元件例化时的变量,使得时间拜拜浪费。最后在仿真的时候,仿真结果出不来,经过与同学商量在每个程序中都给年月日等变量均付了初值,才让仿真出来。
此次课程设计虽然只有短短的两天半的时间,但是经过前期的查找资料,后来的实验室实际操作,再到现在的报告总结,我收获了很多。其实完成一个设计,编程只是很小的一部分,最主要的在于查找资料以及调试程序,此次设计我在查找资料方面做的不是很充分,以至于设计的面很小,而且在遇到问题后不能很快的找出,以后一定要做好准备工作。此次课程设计中遇到的问题看似不大,但都是很好的问题,对我以后的设计有很大的帮助,一定会牢牢记住。
最后,此次课程设计的完成很大程度上取决于老师和同学对我的指导与帮助,这更能说明,一个较大设计的完成及实现,不是仅限于自身,我们要学会与别人交流沟通,才能做到更好。
6、参考文献
[1]李景华,杜玉远.可编程逻辑器件与EDA技术.沈阳:东北大学出版社,2000 [2] 姜如东,VHDL语言程序设计及应用,北京邮电大学出版社
[3] 康华光.电子技术基础(数字部分)[M].北 京:高等教育出版社,2001.
第一章 绪论...............1
1.1课程设计的意义..........1
第二章 电路设计方案................2.1数字电子中4的基本原理..........2.2
第三章 电路的安装与调试............3.1电路的选用..............设计小节...........致谢.................参考文献............附录A............附录B.....第一章绪论
1.1课程设计的意义
在高新技术日新月异的今天,科学技术已经成为整个社会发展的源动力,电子领域的发展更是令人目不暇接,在其推动下,现代电子产品几乎渗透了社会的各个领域,遍迹了千家万户,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。使课程设计越来越受到人们的重视,通过课程设计。可以设计出更好更新的科技产品,这将给科技的发展带来很好的积极作用,也使科技的水平得到一定的提高。同时也可以提高同学们的逻辑思维能力和创新意识。
电子技术密切联系 实际,实用性很强,开展电子技术课程设计在电子电气类我认为非常重要,不近可以学好专业知识,还可以增强动手能力,有利于我们适应未来这个竞争激烈的社会,训练我们 综合运用知识能力资料素材的查阅及收集能力,电子元气件的采购,电子电路的组装和调试能力,特别是在电路;多样化的创新方面,从理性和感性上都得到了很大的提高,经过查阅资料,选择方案,设计电路,等过程。各方面都得到了训练。
现代社会,时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。但是,一旦重要事情,一时的耽误可能酿成大祸。例如,许多火灾都是由于人们一时忘记了关闭煤气或是忘记充电时间。尤其在医院,每次护士都会给病人作皮试,测试病人是否对药物过敏。注射后,一般等待5分钟,一旦超时,所作的皮试试验就会无效。手表当然是一个好的选择,但是,随着接受皮试的人数增加,到底是哪个人的皮试到时间却难以判断。所以,要制作一个定时系统。随时提醒这些容易忘记时间的人。
钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、定时启闭电路、定时开关烘箱、通断动力设备,甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。
一.设计题目
数字电子钟
二、设计指标:
1.最大显示23时59分59秒。
2.以24小时制为一个周期
3.具有校时功能,可以对小时和分单独校时,对分校时的时候,停止分向小时进位。校时时钟源可以手动输入或借用电路中的时钟。
4.为了保证计时准确、稳定,由晶体振荡器提供标准时间的基准信号。
三、设计要求:
1.画出总体设计框图,以说明数字钟由哪些相对独立的功能模块组成,标出各个模块之间互相联系,时钟信号传输路径、方向和频率变化。并以文字对原理作辅助说明。
2.设计各个功能模块的电路图,加上原理说明。
3.选择合适的元器件,在面包上接线验证、调试各个功能模块的电路,在接线验证时设计、选择合适的输入信号和输出方式,在充分电路正确性同时,输入信号和输出方式要便于电路的测试和故障排除。
4.在验证各个功能模块基础上,对整个电路的元器件和布线,进行合理布局,进行整个数字钟电路的接线调试。
四、制作要求:
自行装配、接线和调试,并能检查和发现问题,根据原理、现象和测量的数据分析问题所在,加以解决。学生要解决的问题包括元器件和面包板故障引起的问题。
四、设计报告内容要求:
1.目的。
2.设计指标。
3.画出设计的原理框图,并要求说明该框图的工作过程及每个模块的功能。
4.元器件清单。
5.设计制作的进程,考虑时钟及控制信号的关系、测试、验证的顺序,写出自己的工作进程。
6.画出各功能模块的电路图,加上原理说明(如2、5进制到10进制转换,10进制到6进制转换的原理,个位到十位的进位信号选择和变换等)。
7.画出总布局接线图(集成块按实际布局位置画,关键的连接单独应画出,计数器到译码器的数据线、译码器到数码管的数据线可以简化画法,但集成块的引脚须按实际位置画,并注明名称。)
8.描述设计制作的数字钟的运行结果和操作。
第二章 电路的设计方案
2.1数字钟的基本组成及工作原理
数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路.由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定.通常使用石英晶体振荡器电路构成数字钟.图1.1所示为数字钟的一般构成框图.⑴晶体振荡器电路 晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定.不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路.⑵分频器电路 分频器电路将32768Hz的高频方波信号经32768()次分频后得到1Hz的方波信号供秒计数器进行计数.分频器实际上也就是计数器.⑶时间计数器电路 时间计数电路由秒个位和秒十位计数器,分个位和分十位计数器及时个位和时十位计数器电路构成,其中秒个位和秒十位计数器,分个位和分十位计数器为60进制计数器,而根据设计要求,时个位和时十位计数器为12进制计数器.⑷译码驱动电路 译码驱动电路将计数器输出的8421BCD码转换为数码管需要的逻辑状态,并且为保证数码管正常工作提供足够的工作电流.⑸数码管 数码管通常有发光二极管(LED)数码管和液晶(LCD)数码管,本设计提供的为LED数码管.2.2数字钟的工作原理
1)晶体振荡器电路
晶体振荡器是构成数字式时钟的核心,它保证了时钟的走时准确及稳定.一般输出为方波的数字式晶体振荡器电路通常有两类,一类是用TTL门电路构成;另一类是通过CMOS非门构成的电路,如图1.2所示,从图上可以看出其结构非常简单.该电路广泛使用于各种需要频率稳定及准确的数字电路,如数字钟,电子计算机,数字通信电路等.CMOS非门U1与晶体,电容和电阻构成晶体振荡器电路,U2实现整形功能,将振荡器输出的近似于正弦波的波形转换为较理想的方波.输出反馈电阻为非门提供偏置,使电路工作于放大区域,即非门的功能近似于一个高增益的反相放大器.电容C1,C2与晶体构成一个谐振型网络,完成对振荡频率的控制功能,同时提供了一个180度相移,从而和非门构成一个正反馈网络,实现了振荡器的功能.由于晶体
具有较高的频率稳定性及准确性,从而保证了输出频率的稳定和准确.2)分频器电路
通常,数字钟的晶体振荡器输出频率较高,为了得到1Hz的秒信号输入,需要对振荡器的输出信号进行分频.通常实现分频器的电路是计数器电路,一般采用多级2进制计数器来实现.例如,将32768Hz的振荡信号分频为1HZ的分频倍数为32768(),即实现该分频功能的计数器相当于15级2进制计数器.常用的2进制计数器有74HC393等.3)时间计数单元
时间计数单元有时计数,分计数和秒计数等几个部分.时计数单元以24进制计数器,其输出为两位8421BCD码形式;分计数和秒计数单元为60进制计数器,其输出也为8421BCD码.一般采用10进制计数器如74HC290,74HC390等来实现时间计数单元的计数功能.欲实现24进制和60进制计数还需进行计数模值转换.4)译码驱动及显示单元
计数器实现了对时间的累计以8421BCD码形式输出,为了将计数器输出的8421BCD码显示出来,需用显示译码电路将计数器的输出数码转换为数码显示器件所需要的输出逻辑和一定的电流,一般这种译码器通常称为7段译码显示驱动器.常用的7段译码显示驱动器有CD4511.5)校时电源电路
当重新接通电源或走时出现误差时都需要对时间进行校正.通常,校正时间的方法是:首先截断正常的计数通路,然后再进行人工出触发计数或将频率较高的方波信号加到需要校正的计数单元的输入端,校正好后,再转入正常计时状态即可.设计小节
时间过的真快,专眼间一周就过去了,这次课程设计也画上了一个圆满的句号。这次课程设计的主题是数字电子钟,在设计中需要用到振荡电路等通过 设计使我更进一步加深了对电的认识和理解。在设计中,首先是查找资料,我们主要是在图书馆和电脑上查找,先找出了一些芯片的关脚和功能,然后经过老师的检查,开始设计,但是由于时间的紧迫,这个设计没有进行仿真,比较遗憾,不过在设计的过程中还是是学到不少东西的,由于有些芯片我们在数字电子技术基础里没有学过的,我们在查找这些资料的过程中就学到很多东西,有些芯片本来我们不懂的,但是经过查资料使我对有些不是懂的芯片有了一定的了解。如果有时间,最好能够做出一个实物图就比较了解,但是时间实在太紧拉,虽然老师布置了很久,但是由于我们要考试复习就没有多少是时间去想,有点遗憾。
致谢
在本次电子技术课程设计过程中,得到了个老师和同学们的帮助,让我学到了很多东西,同时还感谢学校的图书馆给我们提供了很好的资料,让我们的设计更加能够轻松的完成,还有感谢各个网站提供的大量资料。
通过这次设计,在很高程度上弥补了我们的理论知识的不足,通过设计进一步巩固了我们的理论知识,让我们学的更扎实,对数电的认识更加形象。
基于多功能数字基带硬件平台的通用卫星模拟平台及箭遥模拟器的设计
在新一代微波统一测控系统的研制改造过程中,基于软件无线电技术的多功能数字基带得到了广泛的应用,通过软件的现场重构,可以实现不同的.测控功能.为了有效利用已有的测控设备资源,充分挖掘多功能数字基带的可扩展能力,提出了基于多功能数字基带硬件平台的通用卫星模拟平台和箭遥模拟器的设计思路并进行了联试.
作 者:瞿元新 周朝猛 丛波 QU Yuan-xin ZHOU Chao-meng CONG Bo 作者单位:中国卫星海上测控部,江苏,江阴,214431 刊 名:电讯技术 PKU英文刊名:TELECOMMUNICATION ENGINEERING 年,卷(期): 48(3) 分类号:V448.15 关键词:测控系统 多功能数字基带 通用卫星模拟平台 箭遥模拟器 软件无线电1)设计题目
简易数字频率计
2)设计任务和要求
要求设计一个简易的数字频率计,测量给定信号的频率,并用十进制数字显示,具体指标为:
1)测量范围:1HZ—9.999KHZ,闸门时间1s;
HZ—99.99KHZ,闸门时间0.1s;
HZ—999.9KHZ,闸门时间10ms;
KHZ—9999KHZ,闸门时间1ms;
2)显示方式:四位十进制数
3)当被测信号的频率超出测量范围时,报警.3)原理电路和程序设计:
(1)整体电路
数显式频率计电路
(2)单元电路设计;
(a)时基电路
(b)放大逻辑电路
(c)计数、译码、驱动电路
(3)说明电路工作原理;
四位数字式频率计是由一个CD4017(包含一个计数器和一个译码器)组成逻辑电路,一个555组成时基电路,一个9014形成放大电路,四个CD40110(在图中是由四个74LS48、四个74LS194、四个74LS90组成)及数码管组成。
两个CD40110串联成一个四位数的十进制计数器,与非门U1A、U1B构成计数脉冲输入电路。当被测信号从U1A输入,经过U1A、U1B两级反相和整形后加至计数器U13的CP+,通过计数器的运算转换,将输入脉冲数转换为相应的数码显示笔段,通过数码管显示出来,范围是1—9。当输入第十个脉冲,就通过CO输入下一个CD40110的CP+,所以此四位计数器范围为1—9999。
其中U1A与非门是一个能够控制信号是否输入的计数电路闸门,当一个输入端输入的时基信号为高电平的时候,闸门打开,信号能够通过;否则不能通过。
时基电路555与R2、R3,R4、C3组成低频多谐振荡器,产生1HZ的秒时基脉冲,作为闸门控制信号。计数公式:来确定。
与非门U2A与CD4017组成门控电路,在测量时,当时基电路输出第一个时基脉冲并通过U2A反相后加至CD4017的CP,CD4017的2脚输出高电平从而使得闸门打开。1s后,时基电路送来第二个脉冲信号,CD4017的2脚变为低电平,闸门关闭,测量结束。数码管显示即为所测频率。当555第三个脉冲送过来的时候,电路保持间歇1S,第四个脉冲后高电平加至R,使计数器复位。为下一次计算准备。
(4)元件选择。
资
料
元
件
标号
封装
数量
芯片
CD40110
GK7491AG
陶瓷熔扁平
CD4017
62F2X6KE4
陶瓷熔扁平
74LS00
陶瓷熔扁平
74LS10
陶瓷熔扁平
NE555
K104G4
双列直插型号
显示器
七段共阴数码管
电阻
300Ω
1KΩ
5.1KΩ
10KΩ
100KΩ
1MΩ
10KΩ(滑动)
电容
1000PF
0.1μF
100μF
二极管
1N4148
发光LED
开关
单刀双掷
导线
导线
若干
三极管
9014
电源
12V直流电源
4)电路和程序调试过程与结果:
a)、设计逻辑流程:
b)、理论波形图:
c)、仿真波形图:
1)、时基电路
2)、未、已经过施密特的波形:
d)、误差分析:
本实验的误差来自多方面的原因:一、时基电路NE555的滑动变阻器调节导致误差;二、闸门开放时间与信号输入时间的冲突导致测量不准确;三、整体电路的阻抗、容抗对电路信号的影响。
对于第一点,先计算相关的滑动变阻器的相应阻值大小,然后可以在关闭电源的情况下用万用表测量后才进行测量;第二点有点系统的偶然性;第三点可以尽量减少电路布局,从而减少相应的影响。
5)总结
这个电路多处使用了集成IC芯片,让电路更加简洁明了,并且提高了电路的安全性、可行性,减少了整个电路的功耗和整个电路的布线。但是此电路没有完全地符合实验要求:首先,整个电路没有施密特触发器,输入信号放大电路,数码管的小数点驱动,满位报警电路。因此我首先加入以三极管9014为核心的放大电路;然后用74LS00两个双输入与非门构成施密特触发器,对输入信号进行整形;对于报警电路,由于集成IC没有译码电路引脚,所以选择了一个8输入与非门和一个74LS00结成,这样可以充分考虑到唯一性;还有就是它的计数不是直接显示频率,而是显示一个数字,再与闸门的时候计算才可以得出真正的频率。
总体来说,电路还是存在一点小问题没有得到很好的解决,因为74LS00组成的施密特触发器没有很好地整形波,在示波器上出现脉冲波,还得于计算,可以改为以NE555组成的施密特电路。改用其他的数码管驱动,从而驱动小数点。
通过这次实验,让我认识到数字电路的万千变化,集成IC的推出,大大提高安全性和可行性。理解了科学就是力量。最主要是学习到设计电路的思想以为加强自己的焊接能力。让自己的电子技术更上一层楼。
附录:完整的电路PCB图,完整的源程序名列表(不需要把源程序打印出来,作为电子文档提交)。
附录一:
数字电子钟设计报告
目 录
1.实验目的………………………………………………………………………2 2.实验题目描述和要求 …………………………………………………………2 3.设计报告内容…………………………………………………………………2 3.1实验名称………………………………………………………………………2 3.2实验目的………………………………………………………………………2 3.3实验器材及主要器件…………………………………………………………2 3.4数字电子钟基本原理…………………………………………………………3 3.5数字电子钟单元电路设计、参数计算和器件选择…………………………3-8 3.6数字电子钟电路图……………………………………………………………9 3.7数字电子钟的组装与调试……………………………………………………9 4.实验结论………………………………………………………………………9 5.实验心得………………………………………………………………………10
参考文献 …………………………………………………………………………10
数字电子钟设计报告
一 简述
数字电子钟是一种用数字显示秒,分,时,日的计时装置,与传统的机械相比,它具有走时准确,显示直观,无机械传动装置等优点,因而得到了广泛的应用:小到人们日常生活中的电子手表,大到车站,码头,机场等公共场所的大型数显电子钟。
数字电子钟的电路组成框图如图所示
由图可见,数字电子钟有以下几部分构成:石英晶体振荡器和分频器组成的秒脉冲发生器;校时电路;六十进制秒,分计数器及24进制计时计数器;以及秒分时的译码显示部分等。
1.实验目的
※掌握组合逻辑电路、时序逻辑电路及数字逻辑电路系统的设计、安装、测试方法;
※进一步巩固所学的理论知识,提高运用所学知识分析和解决实际问题的能力; ※提高电路布局﹑布线及检查和排除故障的能力; ※培养书写综合实验报告的能力。
2.实验题目描述和要求
(1)设计一个有“时”、“分”、“秒”(24小时59分59秒)显示,且有校时功能的电子钟; 数字电子钟设计报告
(2)用中小规模集成电路组成电子钟,并在实验箱上进行组装、调试;(3)画出框图和逻辑电路图,写出设计、实验总结报告;
(4)选做:整点报时。在59分51秒、53秒、55秒、57秒输出500Hz音频信号,在59分59秒时输出1000Hz信号,音频持续1s,在1000Hz音频结束时刻为整点。3.设计报告内容 3.1实验名称 数字电子钟 3.2实验目的
·掌握数字电子钟的设计、组装与调试方法; ·熟悉集成电路的使用方法。3.3实验器材及主要器件(1)cc40192(6片)(2)cc4011(6片)(3)74LS2O(2片)(4)共阴七段显示器(6片)(5)电阻、电容、导线等(若干)
数字电子钟设计报告
3.4数字电子钟基本原理
数字电子钟的逻辑框图如图3-4所示。它由555集成芯片构成的振荡电路、分频器、计数器、显示器和校时电路组成。555集成芯片构成的振荡电路产生的信号经过分频器作为秒脉冲,秒脉冲送入计数器,计数结果通过“时”、“分”、“秒”译码器显示时间。
图
3-4
3.5数字电子钟单元电路设计、参数计算和器件选择
(一)计数器
秒脉冲信号经过6级计数器,分别得到“秒”个位、十位、“分”个位、十位以及“时”个位、十位的计时。“秒”“分”计数器为六十进制,小时为二十四进制。(1)六十进制计数
由分频器来的秒脉冲信号,首先送到“秒”计数器进行累加计数,秒计数器应完成一分钟之内秒数目的累加,并达到60秒时产生一个进位信号,所以,选用两片cc40192和一片cc4011组成六十进制计数器,来实现六十进制计数。其中,“秒”十位是六进制,“秒”个位是十进制。如图3-4-3-1所示。数字电子钟设计报告
图3-4-3-1所示(60进制计数构造)
(2)二十四进制计数
“12翻1”小时计数器是按照“01——02——03——„„——22——23——00——01——02——„„”规律计数的,这与日常生活中的计时规律相同。在此实验中,它是由两片cc40192和一片cc4011构造成的同步二十四计数器,利用异步清零端实现起从23——00的翻转,其中“24”为过渡状态不显示。其中,“时”十位是3进制,“时”个位是十进制。如图3-4-3-2所示.5 数字电子钟设计报告
如图3-4-3-2所示.(二)显示器
本系统用七段发光二极管来显示译码器输出的数字,显示器有两种:共阳极显示器或共阴极显示器。74LS48译码器对应的显示器是共阴极显示器。
(三)校时电路
当数字钟走时出现误差时,需要校正时间。校时电路实现对“时”“分”“秒”的校准。在电路中设有正常计时和校对位置。本实验实现“时”“分”的校对。对校时的要求是,在小时校正时不影响分和秒的正常计数;在分校正时不影响秒和小时的正常计数。需要注意的时,校时电路是由与非门构成的组合逻辑电路,开关S1或S2为“0”或“1”时,可能会产生抖动,为防止这一情况的发生我在原本接校时脉冲的端口接到了实验装置的“单次脉冲”端口,这样既时限内了防抖动,又可以利用手动操作来完成校时。
数字电子钟设计报告
校时电路图
(四)整点报时电路
数字钟整点报时是最基本的功能之一。实验要求的是在离整点差10秒时,每隔一秒鸣叫一次,每次持续时间为一秒,共响5次,前4次为低音500Hz,最后一声为高音1000Hz。整点报时电路如图6所示。
整点报时电路主要由控制门电路和音响电路两部分组成。
1、控制门电路部分:
由11个与非门组成。图中与非门的输入信号Q4、Q3、Q2、Q1、分别表示“分十位”、“分个位”、“秒十位”、“秒个位”的状态,下标中的D、C、B、A分别表示组成计数器的四个触发器的状态。
由上图可以看出: Y1=QC4*QA4*QD3*QA3 Y2=Y1*QC2*QA 2
(即QC4QA4=101)、分个位为9(即QD3QA3=1001)、秒十 以上二式表示当分十位为5位为5(即QC2QA2=101)时,即59分50秒时发出控制信号。
根据设计要求,数字钟电路要求在59分51秒、53秒、55秒、59秒时各鸣叫一次。
当计数器达到59分50秒时,分、秒计数器的状态为:
QD4QC4QB4QA4=0101(分十位)QD3QC3QB3QA3=1001(分个位)QD2QC2QB2QA2=0101(秒十位)QD1QC1QB1QA1=0000(秒个位)
前四声计数器状态发生在59分51秒至59分58秒之间。因此,只有秒个位的状态发生变化,而其他计数器的状态无需变化,所以可保持不变。数字电子钟设计报告
此时 QC4=QA4=QD3=QA3=QC2=QA2=1不变,将它们相与即得Y2。
而51秒、53秒、55秒、57,59秒时的秒计数器个位状态分别为
QD1QC1QB1QA1=0001(51秒)QD1QC1QB1QA1=0011(53秒)QD1QC1QB1QA1=0101(55秒)QD1QC1QB1QA1=0111(57秒)
并根据需要,前四声为低,则接如500Hz的脉冲信号。最后一声的各计数器状态分别如下:
QD4QC4QB4QA4=0000(分十位)QD3QC3QB3QA3=0000(分个位)QD2QC2QB2QA2=0000(秒十位)QD1QC1QB1QA1=0000(秒个位)
即只须将分进位信号和1KHz的脉冲信号接入即可。如图4-2-4所示
如图4-2-4所示(图中报警器用指示灯来表示)
数字电子钟设计报告
3.6数字电子钟电路图
3.7数字电子钟的组装与调试
由图中所示的数字中系统组成框图按照信号的流向分级安装,逐级级联。这里的每一级是指组成数字中的各个功能电路。
级联时如果出现时序配合不同步,或剑锋脉冲干扰,引起的逻辑混乱,可以增加多级逻辑门来延时。如果显示字符变化很快,模糊不清,可能是由于电源电流的跳变引起的,可在集成电路器件的电源端Vcc加退藕滤波电容。通常用几十微法的大电容与0.01μF的小电容相并联。4.实验结论
通过运用数字集成电路设计的24小时制的数字电子时钟,经过试验,成功实现了一下基本功能:
1.能准确计时,以数字形式显示时、分、秒的时间。
2.能实现整点报时的功能,并分别在51秒、53秒、55秒、57秒、59秒实现了“四短一长”的报时效果。
3.能定时控制,且能惊醒校正时间(通过开关调时、分)。数字电子钟设计报告.实验心得
通过这次数字电子钟的课程设计,我们才把学到的东西与实践相结合。从中对我们学的知识有了更进一步的理解,而且更进一步地熟悉了芯片的结构及掌握了各芯片的工作原理和其具体的使用方法。也锻炼了自己独立思考问题的能力和通过查看相关资料来解决问题的习惯。虽然这只是一次简单的课程设计,但通过这次课程设计我们了解了课程设计的一般步骤,和设计中应注意的问题。设计本身并不是有很重要的意义,而是同学们对待问题时的态度和处理事情的能力。各个芯片能够完成什么样的功能,使用芯片时应该注意那些要点。同一个电路可以用那些芯片实现,各个芯片实现同一个功能的区别。
另外,我还渐渐熟悉了mutisim这个仿真软件的各个功能,让我体会到了期中的乐趣,还在电脑制作文档的过程中,使我对办公软件有了更进一步的了解和掌握。
参考文献
1.现代数字电路与逻辑设计 清华大学出版社 北京交通大学出版社.2.模拟电子技术(修订版)清华大学出版社 北京交通大学出版社 3.模拟电子技术教程 电子工业出版社
【FPGA课程设计多功能数字钟讲解】推荐阅读:
数电课程设计 多功能数字钟06-08
《数字电路与单片机课程设计》课程设计报告11-01
数电数字钟课程设计报告01-01
单片机课程设计报告多功能秒表02-14
eda数字秒课程设计02-11
EDA课程设计 数字时钟03-23
数字电子技术课程设计大纲04-21
数电课程设计数字电子钟的设计与制作01-23
DSP数字图像取反课程设计06-06
数字广告设计与制作课程教学大纲06-04