弧长与扇形的面积教学设计(精选3篇)
前几天,我上了“弧长和扇形的面积”一课在课堂中体现出许多问题,现做一点自我反思。
在新课程理念下,强调了几何建摸过程和几何推理的要求要发生变化。图形由于自身的特点,教之其他的数学模型更加直观、形象,更易于从现实情景中抽象出数学的.概念、理论和方法。在课中我改变以往那种教师讲学生听、教师问学生答的传统的教学方法,让学生动手制作圆锥经历了知识的形成过程,所有的学生都参与到活动中来,充分调动了学生的积极性,让学生通过制作、再拆分,很容易的得到了圆锥侧面积和表面积的计算方法。学生始终参与了圆锥面积公式的形成过程,这完全符合新课程所倡导的“以学生为主体,教师为主导”的教学理念。
姜永娜
教学目标 知识与技能:
1.会计算弧长及扇形的面积。
2.会计算圆锥的侧面积和全面积,并能用这些知识解决相关问题。过程与方法:
1.通过识图、阅读图形探索弧长、扇形及其组合图形面积的计算方法和解题规律。2.在探究弧长公式和扇形面积公式的过程中,体会“从特殊到一般”的数学思想方法。情感态度价值观:在合作交流中体验成功的快乐。教学重难点
重点:1.计算弧长和扇形面积;2.利用弧长和扇形面积公式进行计算。难点:理解公式的推导过程 教学媒体:多媒体 教学过程设计
一、复习引入
已知⊙O半径为R,⊙O的面积S是多少?S=πR2
我们在求面积时往往只需要求出圆的一部分面积,如图中阴影图形的面积.为了更好研究这样的图形引出一个概念.
扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。你能举例说出生活中的扇形吗?(比如扇子。)
问题1:请同学们观察下图,指出哪部分是扇形,并说出它是由哪条弧和哪两条半径构成?
问题2:请同学们判断,在同圆或等圆中,是否具有相同圆心角的扇形面积也相等呢?
学生同桌讨论,做出正确判断,老师予以补充说明。
结论:在同圆或等圆中,由于相等的圆心角所对的弧相等,所以具有相等圆心角的扇形,其面积也相等。
二、做一做
认识了扇形,我们下面就来一起探究一下已知⊙O半径为R,如何求圆心角n°的扇形的面积
1.教师引导学生迁移推导弧长公式的方法步骤:
设置问题:圆的周长是多少?1°圆心角所对弧的长是多少?90°圆心角所对弧的长是多少?n°圆心角所对弧的长是多少?
学生独立思考,给出答案。(1)圆周长C=2πR;(2)1°圆心角所对弧长=
2r90;
12(3)90°圆心角所对弧长=
360r;
.(4)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;n°圆心角所对弧长=归纳结论:若设⊙O半径为R,n°圆心角所对弧长l,则2.一起探究扇形面积(教师组织学生对比研究):(1)圆面积S=πR2;
(2)圆心角为1°的扇形的面积=(弧长公式)
;
r2(3)圆心角为1°的扇形的面积=4
(4)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍;(5)圆心角为n°的扇形的面积=
.
归纳结论:若设⊙O半径为R,圆心角为n°的扇形的面积S扇形,则
S扇形=
(扇形面积公式)
3.注意:(1)在应用扇形的面积公式S扇形=表示1°圆心角的倍数,它是不带单位的;
进行计算时,要注意公式中n的意义.n提出问题:扇形的面积公式与弧长公式有联系吗?(教师组织学生探讨)
1S扇形= 2lR 想一想:这个公式与什么公式类似?(小组合作研究)
与三角形的面积公式类似,只要把扇形看成一个曲边三角形,把弧长l看作底,R看作高就行了.这样对比,帮助学生记忆公式.实际上,把扇形的弧分得越来越小,作经过各分点的半径,并顺次连结各分点,得到越来越多的小三角形,那么扇形的面积就是这些小三角形面积和的极限.要让学生在理解的基础上记住公式.
三、灵活应用
例 如图,⊙O的半径为10cm。(1)如果∠AOB=100°,求弧AB的长及扇形AOB的面积;(2)已知BC弧长为25πcm,求∠COB的度数。
学生:利用所学弧长及扇形面积的共式,充分探究,最后教师归纳总结。解:略。
四、巩固练习:配套练习册40页1、2.五、总结
知识:弧长及扇形面积公式
S扇形=,S=lR. 扇形方法能力:迁移能力,对比方法.
六、当堂检测:
(一)、教材的地位与作用
本节课的教学内容是义务教育课程标准实验教科书,内容是新人教版九年级上册新课标实验教材《第24章圆》中的 “弧长和扇形的面积”,这个课题学生在前阶段学完了 “圆的认识”、“与圆有关的位置关系”、“正多边形和圆”的基础上进行的。本课由特殊到一般探索弧长及扇形面积公式,并运用公式解决一些具体问题,为学生今后的学习及生活更好地运用数学作准备。
(二)、教学目标和重点、难点
根据新课标要求,数学的教学不仅要传授知识,更要注重学生在学习中所表现出来的情感态度,帮助学生认识自我、建立信心。
教学目标:(1) 了解弧长和扇形面积的计算方法。
(2) 通过等分圆周的方法,体验弧长和扇形面积公式的推导过程。
(3) 体会数学与实际生活的密切联系,充分认识学好数学的重要性,树立正确的价值观。
【弧长与扇形的面积教学设计】推荐阅读:
扇形的统计图教学设计06-06
《扇形统计图》教学案例06-11
六年级数学上册扇形统计图教学反思11-17
扇形的认识导学案10-22
最新扇形统计图教案11-18
《面积和面积单位》的教学反思数学论文12-25
小学六年级数学教案《扇形统计图》01-01
幼儿园大班美术教案《百变扇形》09-13
面积的含义教学设计10-17