192全等三角形的判定教案

2025-04-20 版权声明 我要投稿

192全等三角形的判定教案(精选5篇)

192全等三角形的判定教案 篇1

教学任务分析

一、教学目标

1、知识技能:

1)掌握全等三角形的4种判定方法;

2)利用三角形全等的判定方法证明三角形全等;

3)通过证明三角形的全等,利用全等三角形的性质来证明其他的结果。

2、教学思考

1)在经历寻找证明全等三角形的条件来感受全等三角形的判断意义;

2)通过观察、比较、证明,学会运用全等三角形的判断条件去证明全等三角形;

3、解决问题

1)在经历解决实际问题的过程中,发展逻辑思维,发展观察、抽象的能力,加强逻辑推理能力;

2)通过说、写,提高解决问题的能力;

4、情感态度

通过交流,培养主动与他人合作的意识;

二、重点:全等三角形全等的判定

三、难点:对全等三角形全等的判定的应用

教学流程安排

活动

1、复习全等三角形判断的方法

活动

2、利用全等三角形判断的方法证明全等三角形,根据全等三角形的性质得到线段相等或角相等;

活动

3、小结与作业

活动内容和目的

一、复习已经学习过的全等三角形判断方法: SSS、SAS、ASA、AAS

二、练习

求简思维:判定全等三角形的启示 篇2

在平面上取定不在同一直线上的三个点的位置,以它们为顶点,一定能画出三角形,并且只能画出一个三角形.这说明一个三角形的形状和大小可以由三个顶点的相对位置唯一确定.因此,要考虑两个三角形是否全等,只要考虑它们各自顶点之间相对位置是否相同.要描述顶点之间的相对位置,必然涉及顶点之间的距离和方向,这就启发人们借助三角形的边和角寻找三角形全等的判定条件.

苏科版八年级数学教材的1.3节(第13页)就从“尺规作图”出发带领同学们作图、归纳出一些具有决定意义的元素,比如“边角边”(SAS)、“角边角”(ASA)和“边边边”(SSS)这三个最基本的三角形全等判定条件.说它们是“最基本的”,是因为其他判定条件可以由它们推导出来.比如,结合三角形内角和定理容易说明“角角边(AAS)”也是真命题,也可以作为判定依据.下面我们把常见的判定两个三角形全等的思路整理如下,启发同学们思考.

情形(一) 已知一边及与其相邻的一个内角对应相等

判断三角形全等的公理中边和角相邻的有SAS、ASA、AAS,所以可以从三个方面进行考虑:

小结一下,全等三角形是沟通线段、角相等的重要工具,然而人们不愿意反复确认6个元素的对应相等,想“偷懒”的求简思维促使我们归纳出几个基本的判定方法,这里体现的“求简思维”“经济化”也是数学的重要特点,值得同学们体会.

全等三角形的判定第二课时教案 篇3

由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题).

【讲解新课】

(1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形.

引导学生结合图1,把已知,求证具体化.

分析:因为已知,所以只须证出,为此只需连对角线,通过全等三角形来实现.

证明:(由学生口述)

师:我们已经全面的掌握了平行四边形的判定方法,共有几个方法?哪几个?由学生归纳后用投影仪打出.

(2)平行四边形判定等知识的综合应用

教师指出:平行四边形的有关知识同学们都已掌握,但如何灵活、综合、有效地用来解决有关问题是非常重要的.因此,对典型例题的分析、论证、方法技巧的探讨运用都必须引起重视.

例2 已知: , 分别是 、的中点,结合图1,求证: .

分析:证明两条线段相等,从它们在图形中的位置看,可证明两个三角形全等或证明四边形 为平行四边形(显然后者较前者简单)

证明:(略).

此例题综合运用了平行四边形的性质和判定,证题思路是:先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用基础知识较多,因此应使学生获得清晰的证题思路.

例3 画 ,使 ,,

(按课本讲)

【总结、扩展】

1.小结

平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质来解决某些问题,例如求角的度数,线段长度,证明角相等或互补,证明线段相等或倍分等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用四边形的性质来解决有关问题.

2.思考题:

已知:如图1,在△ 中, , .

求证:

八、布置作业

教材P143中11、12,P144中13、14

九、板书设计

十、背景知识与课外阅读

美妙的莫雷定理

已知:如图1, 和 , 和 , 和 分别为△ 的 、、的三等分线.

求证:∠△ 是正三角形.

这是英国数学家富兰克·莫雷在18提出的,不管从已知条件和结论看,都十分对称美妙,数学家柯克特称它是初等几何最惊人的定理之一.

十一、随堂练习

教材P140中1、2

补充:判断

(1)一组对边平行,一组对边相等的四边形是平行四边形( )

(2)一组对角平行,一组对角相等的四边形是平行四边形( )

(3)一组对边相等,一组对角相等的四边形是平行四边形( )

《全等三角形判定》的教学反思 篇4

《全等三角形的判定》本节知识点是全等三角形的四种判定方法。鉴于此,我设计的教学目标是:知识目标:探究三角形全等的判定条件,掌握全等三角形的四种判定方法;技能目标:渗透分类思想,逐步学会写出逻辑推理的证明过程。为实现教学目标,我制定的教学策略:应用《非线性主干循环活动型》教学模式,先对本节内容进行整合,结构先立,第一课时渗透分类思想,让学生通过画图探究得出三角形全等的判定方法。第二、第三、第四课时循序渐进,由易到难安排全等三角形判定方法应用的练习题。斜边直角边在具体题目中由勾股定理推出。回顾第一课时教学环节:环节一,从全等三角形对应边、对应角分别相等的性质出发,让学生思考判定两个三角形全等最少需要几个条件,只有一边或一角对应相等可以吗?(极容易否定,让学生口答)。有两个条件呢?分为有两边、一边一角或两角对应相等三种情况。(学生画出反例否定)。有三个条件呢?分为有三边、两边一角、两角一边和三角对应相等四种情况,其中根据位置不同两边一角对应相等又分为两边及其夹角和两边以及其中一边所对的角对应相等两种情况,两角一边对应相等又分为两角及其夹边和两角以及其中一角所对的边对应相等两种情况。环节二,学生在事先发下的半透明白纸上,按照给定的数据画三角形,然后同桌对光重叠,发现完全重合即能判定三角形全等。教学效果:学生对组合三角形边和角对应相等的条件、分类讨论颇感兴趣,学习积极性也较高。反思成功与不足:我的教学设计是遵循新课程理念下的常规教学,虽然没有用现代化的教学手段,形象、生动的展现所要表达的内容,但是在教学中,以学生为主体,通过直观感知,画图操作确定的方式,让学生亲身经历数学结论的发现过程,渗透分类、类比的数学思想。整合本节内容,结构先立,第一课时就让学生通过画图探究得出全等三角形的四种判定方法。这样设计,学生对全等三角形的四种判定方法第一节课就有了很直观的感受,也记忆得很清楚,使学生深刻建立起本节知识结构。第二、第三、第四课时循序渐进,由易到难安排全等三角形判定方法应用的练习题,这样设计,使学生对基本的证明步骤掌握得很好。上完这节内容,仔细反思回顾,发现还存在很多不足:第一,感觉没有与生活实际紧密相连,不能很好体现学数学的宗旨为生活实践服务;第二,学生解题存在的最大问题是常常会错误的使用边边角。由于课堂时间的限制,我给学生探究两边一角对应相等的时间不充足,很多同桌之间画出来的三角形都是全等的(学生很习惯画锐角三角形),全班只出现了一个反例画出了钝角三角形,我匆匆将反例肯定,否定了边边角,但是到后来的练习中才发现,很多学生常常会错误的使用边边角。基于此,我重构教学策略:针对第一个不足,第一课时开篇创设情境,师:同学们,今天先请大家帮个忙,我手 中是一块残破的玻璃片,原来是一块三角形的玻璃片,老师不小心打碎了,但是我又很需要它,你们说,我能不能根据残留的这块玻璃片所保留的条件,到玻璃店去做一个和原来一模一样的呢?生:可以.师:为什么呢?生:可以通过残留玻璃片的两个角和其夹边画出与原玻璃片全等的三角形。师:为什么这样做两个三角形会全等呢?全等需要什么条件呢?今天,我们就一起来研究三角形全等的条件。(引出课题)针对第二个不足,把边角分类组合布置学生课前思考,把节省下来的时间用于用几何画板展示边边角的反例,并在整个探究过程中都要强调边与角的位置关系。教后感言:教学活动必须建立在学生的认识发展水平和已有的知识经验基础之上,体现学生学习的过程是在教师的引导下自我建构、自我生成的过程。学生不是简单被动地接受信息,而是对外部信息进行主动地选择、加工和处理,从而获得知识的意义。学习的过程是自我生成的过程,这种生成是他人无法取代的,是由内向外的生长,而不是由外向内的灌输,其基础是学生原有的知识和经验。所以应该以学定教。根据学生原有的知识,先将本节知识整合,结构先立,先粗后细,先易后难,符合学生的认知规律。在课堂教学中,尽量为学生提供做中学的时空,不放过任何一个发展学生智力的契机,让学生在做的过程中,借助已有的知识和方法主动探索新知识,扩大认知结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上。课堂要充分体现以教师为主导、学生为主体,以知识为载体、以培养学生的思维能力为重点的教学思想。以探究任务引导学生自学自悟的方式,提供了学生自主合作探究的舞台,营造了思维驰骋的空间,在经历知识的发现过程中,培养了学生分类、探究、合作、归纳的能力。

《三角形全等的判定》教学反思 篇5

本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的`判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解。在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力。新课程标准强调“从具体的情景或前提出发进行合情推理,从单纯的几何推理价值转向更全面的几何的教育价值”,为了体现这一理念,我设计了几个不同的情景,让学生在不同的情景中探求新知,用直接感受去理解和把握空间关系。这一设计,极大的激发了他们的学习欲望,加深了师生互动的力度,课堂效益比较明显。不同的情景又以不同的层次逐步提升既有以知识为背景的情景,又有以探索、验证为主的情景,从不同的方面,让不同层次的学生都有所收获,体现了“大众数学”的主旋律,也是“不同的人学习不同的数学”的新课程理念的体现。《标准》明确提出“通过对基本图形的基本性质必要的证明,使学生体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化的思想”,为体现这一目标,在“情景二”探索“HL公理”中,要求学生用文字语言、图形语言、符号语言来表达自己的所思所想,强调从情景中获得数学感悟,注重让学生经历观察、操作、推理的过程。

数学教学应努力体现“从问题情景出发,建立模型、寻求结论、解决问题”,在“情景三”中,我通过三角板的拼图,让学生从这一过程抽象出几何图形,建立模型,研究具体问题,起到了较好的作用,学生也体会到数学与现实的联系,以及学习处理此类问题的方法。作为九年级的学生,他们的抽象思维已有一定程度的发展,具有初步的推理能力,因此,教学中,我除了注重情景的运用外,更多的运用符号语言,在比较抽象的水平上,提出数学问题,加深和扩展了学生对数学的理解。纵观整个教学,不足主要体现在提出的一些问题,启发性、激趣性不足,导致学生的学习兴趣不易集中,课堂气氛不能很快达到高潮,延误了学生学习的最佳时机;在学生的自主探究与合作交流中,时机控制不好,导致部分学生不能有所收获;在评价学生表现时,不够及时,没有让他们获得成功的体验,丧失激起学生继续学习的很多机会。

总之,我们在教学中一定要考虑我们的对象,要为他们服务,为他们设想,这样才能够获得最佳教学效果。

上一篇:奇妙的植物为题目的作文下一篇:党章填空题