《倍数与因数》听课反思(推荐13篇)
问题是数学的心脏,问题是思维的开端、是创新的前提和基础。听了我们学校陶老师执教的《倍数和因数》,我有如下体会:一、挖掘问题内涵教育家第斯多惠曾说过:“一个坏的教师奉送真理,一个好的教师则教人发现真理。”因此教学中,教师要重视学生的主体地位,给学生提供充分思考和自我表现的`空间,引导他们利用已有的知识去探索发现新的知识。如何找一个数的因数是这节课的重点也是难点。在出示例题后,陶老师让学生利用已有的知识独立找出36的所有约数,并在此基础上提出一个问题:“想一想,用什么方法才能使我们在找一个数的因数时,既不重复,又不遗漏呢?”学生练习时,通过相互的讨论已经自己发现了找一个数的因数的方法,很有序的写出了36的所有约数。这比教师的传授要好百倍。
二、促进问题延伸
数学教学最终是以学生能够探索和解决实际问题为目的。因此,在课堂教学中让学生享受到成功的同时,教师也应注重知识的课后延伸。在这节课的最后,教者安排了这样一个环节:阅读《神奇而有趣的“完美数”》,让学生感受数学的神奇。
导入新课
1.回忆学过哪些数?(自然数,分数,小数……)
2.哪种类型的数学起来最容易?(大部分学生肯定会说自然数学起来最容易)
其实,在数学中,真正有分量的题目,难倒一代又一代数学家的题目都在自然数领域,以至于有位数学家发出这样的感慨:“自然数,可真不自然呀!”今天,我们将重新感受自然数,看看里面蕴藏着哪些奇妙的内容,我们又将会有哪些有趣的发现。
反思:苏格拉底的“产婆术”教育法就是通过巧妙设问在谈话中让对方彻悟的。学生根据以往的学习经验自然而然会认为自然数学起来最容易,这是一种比较普遍的观点。而这时教师话锋陡转,适时抛出一个与之相反的观点,并有相应的论据作为支撑,这足以搅动学生的思维,激发探究的欲望。更重要的是,教师对自然数的阐述把学生带入了数学史。让学生产生一种历史的纵深感,与此同时,又不露痕迹地将本课的知识点“因数和倍数”归置到了自然数这个知识体系当中。如果把自然数比作大海的话,因数和倍数就是海面上众多的帆船之一,它只有置身于大海的怀抱才能扬帆远航。
探索找一个非零自然数的所有因数的方法。
找30的因数
学生作品展示:
a.正确但不全面的作品
b.既正确又全面的作品
讨论:他们的最大区别是什么?
小结:按一定的顺序,思考,才能带来结论的准确、全面。
继续深入:
为什么找到5就不找了呢?(讨论)小结:避免重复
手势演示:
一对一对地找,成对的两个因数越来越靠近。
反思:找一个数的因数是本节课的难点,考虑到学生在认知背景、思维品质及思维方式上的差异,学生中势必会出现不一样的思考过程和结果:或者全面、或者片面;或者有序,或者无序;或者肤浅、或者深刻。此时,教师应该引导学生将自己的数学思考展示出来,在师生之间、生生之间多维的对话、思辨、质疑、争论的过程中,彼此取长补短,相互吸纳,使得片面的思维趋于全面,无序的思维走向有序,肤浅的认识归于深刻。思维品质在沟通中获得提升,思维方式在比照中得以修正,思维能力在对话中得到发展。而“怎么找到5就不找了呢?”这个问题又一次引发学生的思维风暴,诱发学生的深层思考,这就是一种本质的数学文化,也是数学的魅力所在。
拓展延伸
1.在50、60、70、80、100中谁的因数个数最多?
当学生发现60的因数个数最多后,教师揭示60进制中的奥秘:原来天文学规定,1小时=60分,1分=60秒,与60的因数的个数有关。与24差不多大的数中,24的因数最多,1天=24小时;与12差不多大的数中,12的因数最多,1年=12个月。
反思:引领学生揭开1小时=60分、1分=60秒、1天=24时、1年=12个月等约定俗成的规则中所蕴含的奥秘,使学生领略到数学与天文学的完美结合给我们的社会生活带来的便捷。也许此时,科学的种子已悄悄地在某些学生的心田里生根,假以时日,这粒种子定会破土而出,在阳光雨露的滋养下,发芽,开花,最终结出累累硕果。
2.一个更有趣的规律——完美数。
(1)拿出2号作业纸,找出6的所有因数,把其中最大的因数划掉,再把剩下的因数加起来,发现这些因数的和恰好也是6。
小结:这种现象很罕见。数学家把像6这样的,去掉它的最大因数后,剩下的因数相加的和是它本身的数叫“全数”,也叫“完美数”。
(2)这样的数会有第2个吗?寻找第2个完美数。
学生独立完成(师提示:比20大,比30小的偶数)
板书:28;1、2、14、4、7
师:找到了第1、2个完美数,数学家会停止寻找的脚步吗?第3、4、5个完美数会是多少呢?一定超出你们的想象。
屏幕显示:6、28、498、8128、33550336、858986059……)
想想看,你们刚才找28都花了将近2分钟,那数学家要从浩如烟海的自然数中找出这些完美数,该付出怎样的艰辛呀!几年,几十年,甚至一辈子。完美数对生产生活并没有什么直接的用处,是什么力量吸引数学家付了毕生的心血去寻找呢?
小结:伟大的数学家高斯说过:“人们通常把数学誉为科学的皇后,而专门研究自然数性质的数学分支——‘数论’,则是数学皇后头顶上的皇冠。”今天,时间有限,我们只是看到了皇冠上一粒小小的珠子,但只要你沿着这条路走下去,在数学看似抽象的百花园里,你一定会收获很多东西。
反思:引着学生走进和因数有着密切关系的特殊的数学现象“完美数”,感受完美数的美妙结构,领略了凝聚在数学之中的美妙绝伦的思维方法、探索不止的数学精神、臻善达美的数学品格。最后从“数论”的角度重新考察“因数和倍数”,使新的知识在深度和高度上获得提升。这对于一个人全面和谐的发展,具有重要意义和积极影响。
生1:最小的合数是多少?
生2:20以内有几个素数?
生3:20以内有几个合数?
生4:哪个数既不是素数也不是合数?
生5:哪个数既是素数又是偶数?
生5:20以内有哪几个数既是合数又是奇数?
生6:“自然数不是素数就是合数”这句话对不对?
生7:“所有的偶数都是合数”,对不对?
生8:“所有的素数都是奇数”,对不对?
生9:自然数按它的因数的个数分成哪几类?
生10:“1是所有自然数的因数”这句话对吗?
学生有的提问,有的作答,情绪高涨,思维活跃,忙得不亦乐乎。
流水不腐,户枢不蠹”,如果要想让课堂成为“清澈的渠水”,就必须不断地为它注入“活水”,这个“活水”就是一个个精妙的提问,而如果这些“活水”就来自学生自己的思考,那么这将是多么有生命力的课堂!
上述教学片断中,教师只是抛出了一个问题,但就像点着了焰火的引信一样,课堂立刻绽放出绚烂的火花!学生纷纷把自己积累的数学知识亮了出来,提出了一个个问题,既考了考别的同学,又训练了自己的思维和语言表达,又让大家应用概念的能力得到了增强,还活跃了课堂气氛,让一堂平淡无奇的复习课变得精彩纷呈。
我执教的四年级数学拓展平台《因数和倍数》一节,这一内容,学生初次接触。数学中的“起始概念”一般比较难教,我创设有效的数学学习情境,数形结合,变抽象为直观。首先以贴画为素材,让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
这节课另一个给我感触最深的是:在引导学生找一个数的因数和倍数。我借助学生开课摆的12个小正方形,写出的三个乘法算式。首先引导学生找12的因数,我给学生充分的自主探究时间,让学生经历知识的形成过程,自主构建新知。出乎意料的是学生竟然用口诀,乘法和除法等等方法找出12的因数,找到两个因数非常接近,紧接着师生互动,交流讨论出12的所有因数。学生在轻松愉快中掌握了找一个数的所有因数的方法。再找9的13的因数,一环扣一环,总结归纳再能不能找出这些数的因数了?学生说不能,从而引出因数的个数是有限的。及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。教师及时跟上个性化的语言评价,激活学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自己学习找一个数的倍数。教师相信学生,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数而且发现了倍数的特点。这一环节教学的成功,也使我改变了教学的观念――适时放手,会看到学生更精彩的一面。以后教学需大胆相信学生,深入钻研教材,既备教材又了解学情,作到收放自如,充分发挥学生的潜能。
《倍数和因数》这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识倍数和因数的。数学中的“起始概念”一般比较难教,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。
这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:
(一)操作实践,举例内化,认识倍数和因数
我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
(二)自主探究,意义建构,找倍数和因数
整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的意义,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。
新课程提出了合作学习的学习方式,教学中的多次合作不仅能让学生在合作中发表意见,参与讨论,获得知识,发现特征,而且还很好地培养了学生的合作学习能力,初步形成合作与竞争的意识。找一个数因数的方法是本节课的难点,在教学过程中让学生自主探索,在随后的巡视中发现有很多的学生完成的不是很好,我就决定先交流在让学生寻找,这样就用了很多时间,最后就没有很多的时间去练习,我认为虽然时间用的过多,但我认为学生探索的比较充分,学生也有收获。如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。
(三)变式拓展,实践应用---—促进智能内化
练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。
教学目标:
1. 通过复习, 使学生进一步巩固因数、倍数、质数、合数、奇数、偶数、公因数、最大公因数、公倍数、最小公倍数等概念及其相互间的关系, 掌握2、3、5 的倍数的特征, 并能灵活运用有关知识解决相关的问题。
2. 通过画和说思维导图, 经历有关概念整理的过程, 建构知识网络, 进一步完善知识结构, 培养学生复习整理的能力。
3. 通过参与游戏和比赛等活动, 让学生获得快乐和成功的体验, 培养团队意识、竞争意识以及乐学的态度。
教学重点: 梳理知识, 构建网络; 运用知识, 解决问题。
教学难点: 能运用思维导图整理所学的知识, 并理解有关概念之间的联系和区别。
教学过程:
一、游戏导入, 揭示课题
1. 师生互相问候, 游戏导入 ( 未等学生入座) 。
师: 请同学们先不要坐下, 我们来玩个游戏, 好吗? 请按老师的要求坐下!
师: 如果你的学号是2 的倍数, 请坐下! 追问: 2 的倍数有什么特征?
( 依次让学号是3 和5 的倍数的学生坐下, 追问3、5 的倍数有什么特征?)
师: 没坐的同学学号分别是几? 如果让剩下的同学同时坐下, 可以怎么说?
( 1 的倍数请坐下! )
师: 为什么呢? ( 任何自然数都是1 的倍数)
【设计意图】课始, 借助每个学生的学号, 在轻松的游戏中复习了2、3、5 的倍数的特征, 营造了宽松和谐的学习氛围, 学生愉快地进入了因数和倍数复习的情境之中。
2. 揭示并板书课题。
师: 这节课和大家一起复习因数和倍数。 ( 板书课题, 齐读课题)
二、回顾概念, 梳理知识
过渡: 课前让大家准备的思维导图, 都画好了吗?
下面我们借助思维导图来回顾一下本单元知识, 请拿出思维导图。
( 一) 展示思维导图, 初步构建知识网络
1. 同桌指图互说, 老师巡视, 选优秀作品贴黑板上。
2. 点名学生上台讲说, 同时投影学生作品。
【设计意图】课前学生自己画思维导图, 既节约了宝贵的课堂时间, 又激发了学生的创新意识。
3. 课件出示知识结构图, 科学构建知识网络。
【设计意图】因数和倍数单元, 内容杂, 概念多, 而学生建构知识网络尚处于摸索阶段, 因此, 知识网络的构建分两个阶段很有必要, 课前学生画思维导图是初步构建, 第二次则是科学梳理和巩固提升, 并最终形成一个完整的知识网络。
(二) 通过游戏, 回顾概念
游戏:“快乐大转盘”
课件出示大转盘。 ( 转盘中间数字是5, 周围有以下概念: 因数、倍数、质数、合数、奇数、偶数、最大公因数、最小公倍数等)
②演示并说明游戏要求: 转盘停止后, 用中间的5 和箭头指到的概念造句, 造句时可以加上另外一个数。 ( 如“5和3 的最小公倍数是15。”)
③转动转盘, 游戏开始。
【设计意图】通过转盘游戏, 既可以深入了解学生对本单元概念的理解程度, 又可以快速回顾重要知识点, 保证了复习的有效性和趣味性。
三、抢答比赛, 强化知识
1. 课件出示比赛规则: 先举手, 后回答; 回答时响亮说出答案; 答对记√, 答错记 × , √多获胜。
2.开始比赛, 老师记录。
(1) 明辨是非。
①所有的奇数都是质数 () ; ②所有的偶数都是合数 () 。
③质数 × 质数= 合数 () ; ④91 是倍数, 13 是因数 () 。
⑤一个三位数同时是2 和3 的倍数, 这个数最小是120。 ()
( 2) 精挑细选。
①把12 分解质因数是 () 。
A.1×2×2×3=12 B.2×2×3=12
C.12=2×2×3
②一个数的最小倍数除以它的最大因数, 结果等于 ()
A. 最小倍数B. 最大因数B C. 本身D. 1
3. 统计成绩, 宣布结果。
师: 男 ( 女) 生就是今天的冠军, 祝贺男 ( 女) 生! 女 ( 男) 生就是今天的亚军, 今天的亚军就是明天的冠军, 掌声送给女 ( 男) 生!
【设计意图】“以赛代练”往往事半功倍。简单重复的练习只会打击学生的积极性, 而一旦引入比赛, 就会取得良好的教学效果。
四、实际应用, 提升能力
1. 出示端午节题目。
端午节, 爱心小队的同学们到敬老院看望老人, 他们带了24 个苹果和16 个芒果。这些水果最多可以分成多少份同样的礼物? 每份礼物中苹果和芒果各有几个?
巡视指导, 学生口答, 课件校对。
【设计意图】从生活问题中抽象出数学问题, 其实就是复习“最大公因数”的相关知识, 再用学会的数学知识去成功解答, 学以致用, 水到渠成。解答的同时还受到良好的爱心教育。
五、课堂总结, 拓展延伸
内容:“破译密码”
师: 老师非常想和同学们做朋友, 想把电话号码留给你们, 我把号码设置成了密码, 你们能破译吗? 以下是老师的电话号码: ABCDEFGHIJK, 提示如下:
A: 只有一个因数。
B:既是3的因数, 又是3的倍数。
C:它的因数有1、2、3、6。
D:不是质数, 也不是合数。
E:2和3的最大公因数。
F:它的最小的倍数是5。
G:1和3的最小公倍数。
H:12和18的最大公因数。
I:既是奇数, 又是合数。
J:5的最小因数。
K:5的最小倍数。
师: 同学们知道了老师的号码, 以后可要经常联系啊, 咱们可以聊聊因数, 谈谈倍数, 知无不言, 言无不尽。你也可以把自己的电话号码或者QQ号、微信号设置成密码形式, 和同学们互猜, 既有趣好玩, 又巩固知识。
《因数和倍数》这一教学内容是一节概念课。教材在引入因数和倍数的概念时是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。数学中的“起始概念”一般比较难教,我创设有效的数学学习情境,数形结合,变抽象为直观。利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。这样,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。这样,用学生已有的数学知识引出了新知识,减缓了难度,这一环节的教学,我觉得还是收到了预设的效果。
能不重复、不遗漏、有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的:在根据1×12=12,2×6=12,3×4=12三个乘法算式说出了谁是谁的因数、谁是谁的倍数后,教师紧接着提问:12的因数有哪些?学生看着黑板上的算式很快地找出12的因数,接着再提问:你是用什么方式找到12的因数的?在学生说出方法后,为了让学生探索出找一个因数的方法,我让学生自己找一找15的因数有哪些。预设在汇报时,能借此解决如何有序、不重复、不遗漏地找出一个数的因数。但在实际交流时,学生的方法出现了两种意见,并且各抒己见,因为15的.因数只有两对,无论怎样找都不会遗漏。作为老师,我这时没有把我的意见强加给学生,而是以男女生比赛的形式,让学生分别找16、18的所有因数。由于部分学生运用从小到大一对一对地找很快找出这两个数的因数,另一部分却在无序的情况下,不是重复就是遗漏,这样在比较中,不重复、不遗漏、有序地找出一个数的因数的方法,学生就能够很好地接受并掌握。同时在练习中我设计了其中一道题是猜我的电话号码,激发起学生的兴趣,我是这样想的:重在培养学生善于联想,勇于探索的习惯。由个体现象联想到同类现象并能深入探索,这是创造的源泉。虽然在这个环节上花了比较多的时间,但对学生自主探索、自主学习起到了很好的促进作用。
这节课另一个给我感触最深的是:就是在引导学生归纳总结出一个数的因数的特点时,由于及时跟上个性化的语言评价,激活了学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自己探索找一个数的倍数的方法。教师相信学生,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数而且发现了倍数的特点。这一环节教学的成功,也使我改变了教学的观念――适时放手,会看到学生更精彩的一面。以后教学需大胆相信学生,深入钻研教材,既备教材又了解学情,作到收放自如,充分发挥学生的潜能。
课堂中,我首先让学生理解分类标准,明确因数和倍数的含义。在例1教学中,首先根据不同的除法算式让学生进行分类,同时思考其标准依据是什么。通过学生的独立思考和小组交流学生得出:第一种是分为两类:一类是商是整数,另一类是商是小数;第二种是分为三类:一类商是整数,一类是小数,另一类是循环小数。究竟怎样分类让学生在争论与交流中达成一致答案分为两类。然后根据第一类情况得出倍数和因数的含义,特别强调的是对于因数和倍数的含义要符合两个条件:一是必须在整数除法中,二是必须商是整数而没有余数。具备了这两个条件才能说被除数是除数的倍数,除数是被除数的因数。
其次,厘清概念倍数和几倍,注重强调倍数和因数的相互依存性。在教学中可以直接告诉学生因数和倍数都不能单独存在,不能说2是因数,12是倍数,而必须说谁是谁的因数,谁是谁的倍数。对于倍数与几倍的区别:倍数必须是在整数除法中进行研究,而几倍既可以在整数范围内,也可以在小数范围内进行研究,它的研究范围较之倍数范围大一些。
本节课的不足之处:
1.练习设计容量少了一些,导致课堂有剩余时间。
——题记
“智慧”虽是一个很古老的词语, 但很难给它下一个比较统一的定义。“智慧数学”就是应运而生的一种教学主张。“智慧数学”还原了学生作为一个学习和发展中的人探索和发现数学的过程, 培养了基于成功智力的数学学力, 学生的智慧必将随之生长。近日, 笔者听了一节智慧数学的课例《倍数和因数》, 其间的智慧贯穿全课, 可谓在点滴之间, 现采撷一个最有“智慧”的教学片断与大家分享。
【课堂再现】
师:请你找出12的因数。
生:12的因数有1、2、3、4、6、12。
师:30的因数有哪些?
生:30的因数有1、2、3、5、6、10、15、30。
师:你认为因数与哪些关键词或数有关? (在表格中打“√”)
师:请你用你选择的与因数有关的关键词或数组织一段话来描述一下关于因数的收获。
生1:我选乘法和成对这2个关键词, 比如, 我们在找36的因数时可以利用 () × () =36, 而且成对地找, 不会重复与遗漏。
生2:我选1和最小这2个关键词, 我觉得一个数最小的因数是1。
生3:我选最大和本身这2个关键词, 我认为一个数最大的因数是它本身。
生4:我选有限这个关键词, 我觉得一个数的因数是有限的。
师:写出3的倍数。
师:对于写一个数的倍数, 你能总结出一些关键词、一段话吗?………
(此环节最后适时出现智慧心语:我们寻找一个数的因数, 如同在探寻数的“基因”, 我们列举一个数的倍数, 是在建立数与数的广泛联系。)
通常教师在处理这一环节时都是于“习惯处行走”:“对于一个数的因数 (倍数) , 你发现了什么?”然后由学生一条条地总结或者由教师引导着得出一个个结论。智慧数学则提倡打开智慧的心门, 从一句话、一个问题、一个教学环节入手, 独具匠心地设计了一个表格, 让学生们选与因数有关的关键词或数, 接着又让学生们自己设计有关倍数的关键词, 这样在学生们的头脑中自然生成了一个数的因数 (倍数) 的特点, 可谓真正做到了“用数学自身的魅力去打动学生”。
“智慧数学”的教学不在于教师讲授多少知识点, 而在于积极开拓学生们的视野, 鼓励学生们展开想象的翅膀, 提出更多的为什么;“智慧数学”的教学不在于教学方法如何精细, 而在于学生们是否在学习过程中有主动参与和自由表达的机会;“智慧数学”的教学不在于学生们从书本、教师那里接受了多少, 而在于他们批判地吸收、内化了多少, 是否真正具有发展的原动力, 对自己的数学学习是否有足够的自信, 在数学学习中获得了哪些思想启迪、精神熏陶……
下面是我在复习五年级上册第九单元《倍数与因数》时,两次不同的主要教学过程及本人对这两次课的印象和反思。
第一次教学是这样的:我先请学生回忆这个单元学习了哪些内容;接着让全体学生背诵了倍数、因数、偶数、奇数、合数、素数等概念和是2、3、5的倍数的特征;最后,出示了很多类型的习题,如找倍数与因数的,判断素数与合数的,根据2、3、5的倍数特征填数的……。
整节课教师忙得不亦乐呼,幻灯片换了一张又一张,看起来似乎什么内容都复习了;学生就像赶集一样,做了这一题又忙哪一题,但收获甚微。
这次是苏教版教材的第一轮使用,我这个从事多年人教版教学的老教师虽在新课改培训中加大了新课程理念的学习,但因多年产生的教学习惯而很难有所真正的改变,是基于传统的数学课堂教学,认为单元复习就是由教师带领学生把知识点再全部扫描一下,多设计一些习题,让学生反复操练,只有让学生当上了熟练工,才能应付考试。而这种炒冷饭的复习课,忽视了重点、难点,学生茫然地被教师牵着鼻子走,学习没有了主动性,教学效果当然不乐观。
第二次教学时,我在复习课前先让学生反思自己本单元的哪些知识掌握得比较好、哪些知识还掌握得不好并整理成书面材料。在批阅了学生整理的书面材料后,发现比较集中的问题是:写一个数的因数写不全,判断一个数是否同时是2、3、5的倍数时有困难,对于一些特殊的素数、合数与奇数、偶数的特征掌握不好。因此,复习时,我先请每个学生任意写一个两位数,写完后观察这个数有什么特点,并结合这一单元学到的概念说一说。然后出示了一道开放题:“谁能根据11、15、21、37、45、48、57、60、83、90这些数提与本单元的知识有关的问题?’学生思维活跃。有的提:“请判断哪些是素数,哪些是合数,哪些是奇数,哪些是偶数?”有的提:“请写出这些数中每个合数的全部因数。”有的提:“这10个数中,哪些数同时是2和3的倍数?哪些数同时有因数3和5?哪些数既是2的倍数又有因数5?哪些数同时是2、3、5的倍数?”每次学生提出问题后,教师都及时组织学生完成练习。接着,教师在黑板上写下48□,让学生继续思考:要使48□既有因数2,又是3的倍数,□里应该填多少?有学生说0、2、4、6、8都可以。有学生马上反驳说,2、4、8都不可以,只能填0或者6。教师追问原因,相机复习被3整除的数的特征,接着出示问题:”如果要使□48既是2的倍数,又是3的倍数,□里应该填多少?”学生讨论完后,教师再引导学生思考:“观察、比较48□和□48,同样要填一个数字,使它既是2的倍数,又是3的倍数,为什么答案不同?”有了前面的对比练习,学生终于明白在口填数的诀窍所在:既要考虑整除的特征,又要观察数字所处的位置。这时,教师强调要灵活运用所学的知识解决问题。最后,教师要求每个学生拿出错题集,先自己复习,然后以同桌两人为一组,出题考对方,教师巡视指导。
课堂上不时有学生间的争论,有学生举手请教老师、有同学之间的互助,每个学生学的都很积极主动,全然没有复习课的单调枯燥之感。
1、构建知识网络体系,理清知识之间的相互联系。在教学中,我首先通过一个联想接龙的游戏调动学生学习的兴趣,让学生利用因数和倍数单元的知识来描述数字2,学生非常容易想到2是最小的质数、2是偶数、2的因数是1和2、2的倍数有2,4,6…、2的倍数特征是个位是0、2、4、6、8的数,通过学生的回答教师及时抓住其中的关键词引出本单元的所有概念:因数、倍数、质数、合数、奇数、偶数、公因数、最大公因数、公倍数、最小公倍数、2的倍数特征、3的倍数特征、5的倍数的特征。如何整理使这些凌乱的概念变得更加简洁、更加有序、更加能体现知识之间的联系呢?通过学生课前的整理发挥小组的合作交流作用,在相互交流中,学生相互学习、相互借鉴,逐渐对这些概念的联系有了更进一步的认识,然后通过选取几名同学的作品进行展评,最后教师和学生共同进行整理和调整,最终来完善知识之间的网络体系。
2、教给学生整理知识的方法。在教学中,是授人以鱼不如授人以渔,作为教师莫过于教给学生必备的学习方法。在这节课的整理复习中,课前我让学生把第二单元的关于因数和倍数的概念进行了汇总,涉及的概念有如下几个:因数、倍数、公因数、公倍数、最大公因数、最小公倍数、质数、合数、奇数、偶数、2的倍数特征、3的倍数特征、5的倍数特征,并提出具体的要求:一是观察分析这些概念,哪些概念之间有着密切的联系;二是根据这些概念之间的紧密联系可以分为几类;三是用你自己喜欢的方法表示出来,可以以数学手抄报的形式来呈现。通过课前的设计,我事先搜集了一些有代表性的作品放在课件中,让同学们进行欣赏,相互取长补短,共同学习,共同进步。课堂中在小组讨论交流的过程后,教师与学生共同对本单元的概念进行了整理和总结,并得出知识网络图。
纵观本节课的设计,就是通过学生的联想,回忆前面学过的知识,并在头脑中构建知识之间的相互联系,从而揭示出这个知识网络图就是思维导图。掌握了这种方法,就可以把数学中的每一个单元进行整理,也可以把每一册知识进行整理,还可以把小学数学的知识进行系统的整理,从而让学生体会到思维导图方法的强大之处,学生在感叹这种方法的魅力同时,并把这种方法推广到其它学科,让学生真正掌握知识整理的方法,并在以后的单元知识整理中加以运用。
3、在练习中进一步对概念进行有针对性的复习。在练习环节中,我根据这些概念设计了一些相应的练习。目的是以练习促复习,在练习中更好的体会这些概念的具体含义,加深学生对概念的理解和掌握,学生在练习的过程中不仅掌握了知识整理的方法,还深刻地理解了知识的来龙去脉,对每个知识点的概念理解也更加清晰了,起到了复习回顾旧知识的作用。
不足之处:
1、个别学生在展评中不会去评价,只是从设计的美观上去思考,而没有从体现知识之间的联系上去进行说明,在这一点上教师还要加以引导。
2、出现个别学生由于第二单元的知识是在开学初学习的,有些知识点已经遗忘,导致出现连最小的偶数是几都不知道了,因此在学完每个单元后要不间断的进行知识的巩固和练习。
3、由于本节课的知识点过于多,练习的时间有些不足,导致基本的练习时间可以保障,但是需要拓展的知识没有更好的呈现出来。
再教设计:
1、抓住数学知识的本质,美观的整理形式只是一些外在的,并不是重点,注意引导学生从数学的本质去思考问题,排除数学本质以外的东西,去引发思考,从而形成良好的数学思维品质。
《公倍数和公因数》的教学已接近尾声,但练习反馈,部分学生求两个数的最大公因数和最小公倍数错误百出,细细思量,用课本上列举的方法,真的很难一下子准确找到最大公因数或最小公倍数。如:8和10的最小公倍数,有学生写80,25和50的`最大公因数有学生写5。……而且去问问学生找两个数公倍数和最小公倍数,或者两个数的公因数和最大公因数的感受,他们都说“烦”,“很烦”,“太麻烦了”。
在了解了学生的感受以后,我又重新通过练习概括出了一些特殊情况:(1)两个数是倍数关系的,这两个数的最小公倍数是其中较大的一个数,最大公因数是其中较小的一个数;(2)三种最大公因数是1,最小公倍数是两数乘积的情况(“互质数”这个概念学生没有学到):①两个不同的素数;②两个连续的自然数;③1和任何自然数。
另外,我又结合教材后面的“你知道吗?”,指导了一下用短除法求两个数的最小公倍数和最大公因数的方法。在完成练习时,让学生根据情况,用自己喜欢的方法来求两个数的最小公倍数和最大公因数。这样,给学生结合题目中两个数的特点,自主选择方法的空间,学生比较喜欢。
教学内容:苏教版小学数学四年级下册《倍数和因数》 教学目标:
1.通过操作活动得出相应的乘除法算式,帮助学生理解倍数和因数的意义;探索并掌握求—个数的倍数和因数的方法,发现一个数倍数和因数的某些特征。
2.在探索一个数的倍数和因数的过程中培养学生观察、分析、概括能力,培养有序思考能力。
3.使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。
教学重点:理解倍数和因数的意义,探索求一个数的倍数和因数的方法。
教学难点:发现一个数的倍数和因数的特征,探求并掌握求一个数的所有因数的方法。教学准备:每桌准备12个一样大小的正方形。
教学过程:
一、师生互动,引入新课
师:同学们,今天这节课,我们一起学习《倍数和因数》(板书课题)。
看了这个课题,你想了解哪些内容? 生:什么是倍数和因数?
怎么找倍数和因数?
学习倍数和因数有什么用?(师相应标记板书)
师:接下来我们就围绕同学们提出的问题一起探究发现。
二、操作感悟,形成概念 1.操作感知,初步理解概念
(1)师:请看大屏幕,用12个同样大小的正方形拼成一个长方形。想一想,每排摆几个,摆了几排?有几种不同的摆法?请同学们动手摆一摆,并用乘法算式把自己的摆法表示出来,完成作业纸上的活动一。
(2)学生操作并用乘法算式记录摆法。(3)资源收集并交流。
师:谁来说说看,你是怎么摆的,乘法算式是什么?
生说摆法、算式。预设:4×3=12 6×2=12 12×1=12
师:大家可别小看了这些算式,今天我们要研究的内容就在这里。(4)初步感知概念。
师:咱们先看4×3=12这道算式,你知道什么是倍数,什么是因数吗?(稍停顿)别急,书上已经为大家解释得非常清楚。请同学打开课本,仔细学习70页下方倒数第三、四行的一句话。
学生自己阅读课本。
师:你看明白了吗?请大家合上课本,谁能够看着大屏幕说说看?
请一学生说,同时课件出示:4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。
师:你真会学习。现在,大家知道什么是倍数和因数了吗?
为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。
2.问题推进,进一步理解概念。
试一试:出示6×2=12 12×1=12 5×3=1
521÷7=3+4=7
师:老师这里有一些算式,你能不能也来说说谁是谁的倍数、谁是谁的因数呢?
自己先轻轻地说,再说给你的同桌听。学生自己练习说。师:谁先来试试?
指名说。
①6×2=12
师追问:能不能这样说:6和2是因数,12是倍数?
强调:我们一定要说清楚,谁是谁的倍数,谁是谁的因数。
②12×1=12
师:12是12的倍数,12是12的因数,这里说到的4个12,到底指乘法算式里的哪一个12呢?谁来边指边说?
师:看来一个数本身——既是自己的倍数,也是自己的因数。③21÷7=3
师:你是怎么看出来的呀? 生:可以想到乘法算式7×3=21 师:乘法和除法可以相互转化,原来我们不仅能在乘法算式中找到一个数的倍数和因数,也能在除法算式中找到一个数的倍数和因数。
④3+4=7
师:这道算式表示的是加法关系,不存在我们所说的倍数因数关系。
三、探索方法,发现特征 1.探索求一个数因数的方法。
(1)师:刚才在一些乘法算式或除法算式中,我们知道了什么是因数,什么是倍数。想一想,如果老师请你找出18的因数,该怎么办?请你试着找一找,完成作业纸上活动二的第1题。(板书:找一找)
学生独立尝试。
资源预设:
①18的因数有:2,9,3,6。(找不全)
②18的因数有:1,18,2,9,3,6。(顺序乱)
③18的因数有:1,2,3,6,9,18。(不重不漏,有序)
(2)交流:请看大屏幕,老师这里有几位同学的作业,仔细观察,18的因数都找全了吗?
师:先来比一比第一份和第二份作业,谁来说一说?
生:第一位同学没有找全。
师:第二位同学是不是找全了?那我们请第二位同学说说看,我们怎样能做到不重复、不遗漏呢?你是怎么找的?
生1:我是一对一对地找的。想乘法算式,先想(1)×(18)=18,再想(2)×(9)=18„„
生2:我是想的除法算式。先用18÷(1)=(18),然后用18÷(2)=(9)„„
师:无论是乘法还是除法算式,从1乘起(除起),找的时候都是一对一对找的,都是不错的方法。
师:老师这里还有一份作业,比一比,你又有什么想说的?你更喜欢哪一种?
生:更喜欢第三个同学的。因为他写的很有序。
师:我们怎样能做到不重复、不遗漏、又有序呢?你是怎么找的呢?
生:我是想的除法算式。先用18÷(1)=(18),写的时候把1写在最前面,18写在最后面。
然后用18÷(2)=(9)„„
师:其他同学听明白了吗?
同时课件出示:()×()=18 18÷()=()
根据学生的回答演示,一前一后写因数。师:看来我们可以想乘法或除法算式,按顺序一对一对找,写的时候一前一后,用逗号把数隔开。一直找到两个因数相差很小或相等为止。这样就能做到不重复、不遗漏、又有序。你学会了吗?
(3)师:请你试着用这样的方法也来找找15、16的因数。完成作业纸上活动二的第2题。(板书:试一试)
学生独立找15、16的因数。
师:谁来说说看你是怎么找的,找到了哪些? 学生回答。
2.发现一个数因数的特征。
(1)师:请大家观察一下这几个数的因数,你有什么发现?
指名学生回答。
预设:一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。(2)方法指导。
师:这只是我们观察了几个两位数的因数发现的因数特征,最多只能算是猜想。要想说明这个猜想是正确的,我们可以再举几个不同范围的自然数(如一位数、三位数),也来找一找它们的因数,看看它们的因数是否也有同样的特征。(3)学生扩大范围举例验证。
(4)交流验证情况,尤其关注有没有反例。
指名几位同学说说自己验证的情况。
师:刚才大家举了大量的例子进行验证,每个同学都举了不同范围中的不同的数,这样一来全班就有几百个例子了。观察它们的因数是不是存在我们发现的特征,有没有不具备这种特征的例子?(5)归纳得出结论。
师:谁来试着小结一个数的因数具有什么特征?
生小结:一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。
3.方法回顾。
师:刚才我们经历了“找一找”“试一试”“想一想”这几个过程对因数进行了研究,想一想接下来我们会研究什么?
4.迁移方法,研究倍数。
(1)师:接下来我们就按这样的方法来研究倍数。请同学们试着找一找3、2、5的倍数,完成作业纸上活动三。(2)学生独立完成。
教师呈现资源,组织交流。(预设:缺本身,缺省略号,比较完整的。)
师:比一比这三位同学的作业,你更喜欢谁的?为什么?(3)师:有的同学写得又对又快,还有序,有什么好方法吗?
学生交流并小结:要找一个数的倍数,只要把这个数和非0自然数依次相乘。(4)组织交流:
师:与因数的特征比一比,一个数的倍数又有怎样的特点呢?
指名学生回答。相互补充。
小结:我们发现了:一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。同学们如果有兴趣,课后可以举一些其他范围的自然数去验证一下。
师:大家很了不起,根据研究因数的内容和过程,自己尝试着研究了倍数,这是大家爱动脑、不断思考的结果。
四、巩固练习,完善新知
师:想不想检查一下自己掌握得如何? 1.“想想做做”的第l题。
学生表述后强调哪个是哪个的倍数(或因数)。2.“想想做做”的第2题。
学生填好后引导学生说一说:表中的“应付元数”其实都是什么?表格中为什么用省略号?
3.“想想做做”的第3题。
学生填好后引导学生说一说:表格中所有数都是什么?这个表格中为什么没有省略号? 4.游戏
“找朋友”:让学生在作业纸反面写上自己的学号,找出自己学号数的所有因数,使学生发现每个学号数的因数都在全班的学号数以内;再让学生找一找自己学号数的倍数,并说一说能不能在全班学号数内部找到一个,还有其他的吗?
五、全课总结,拓展延伸
师:通过今天这节课的学习,你有什么收获?现在你能回答课开始提出的问题了吗?相互说一说。
学生交流反馈。
【《倍数与因数》听课反思】推荐阅读:
数学倍数与因数11-01
倍数与因数复习教案07-16
《因数与倍数》整理和复习教学设计09-25
新人教版因数与倍数的教学设计06-15
小学五年级下册数学《因数与倍数》测试题07-21
因数和倍数题09-19
倍数和因数教学实录11-07
教学设计因数和倍数07-19
因数和倍数的教学设计10-06
《公倍数和公因数》提高练习10-20