五年级简易方程练习题(通用10篇)
1.解方程。
(6x-90)÷2=45
0.3x-x×0.25=21.15-7x
6(x-10)=24
2.5x-2.5=2.5×2
2.列方程,解答下面各题。
(1)长方形的.周长是68厘米,它的长是23.5厘米,宽是多少厘米?
(2)一个三角形的面积是300平方厘米,高是125厘米,它的底是多少厘米?
3.亚洲人口约39亿,比欧洲人口总数的5倍还多4亿人。欧洲人口大约有多少人?
4.小青到文具店买了4个笔记本和2枝钢笔,付给售货员阿姨20元,阿姨找回他6.40元。已知1个笔记本的价格是1.50元,问1枝钢笔是多少元?
举一反三,应用创新,方能一显身手!
5.甲、乙两人相距100千米,他们同时出发相向而行,甲每小时行6千米,乙每小时行4千米。甲带着一只狗,狗每小时行10千米,这只狗同甲一道出发碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。这只狗一共走了多少千米?
一、填空。(14分)
1、甲数比乙数少5,设乙数是x,甲数是( ),甲、乙两数的和是( )。
2、一本书有a页,小敏每天看b页,看了c天后,还剩( )页。
3、一个长方形的长是a米,宽是3米,它的周长是( )米,面积是( )平方米。
4、乘法分配律用字母表示是( )。
5、爸爸今年m岁,比儿子大n岁,m—n表示( )。
6、如果3x+6=24,那么5x—7=( )。
7、五(1)班有女生x人,比男生少5人,男生有( )人,全班有( )人。
8、有三个连续的自然数,第一个是b,第二个是( ),第三个是( )。
9、一辆汽车t小时行了s千米,每小时行( )千米;行100千米要( )小时 。
二、判断题(对的打“√”,错的打“╳”)(10分)
1、所有的等式都是方程。 ( )
2、x=3是方程 8+2x=30的解。 ( )
3、小数0.3535是纯循环小数。 ( )
4、因为22=2╳2,所以x2=x╳2。 ( )
5、方程5—3.2=3x与5=3x—3.2的解是相同的。 ( )
三、选择题。(将正确答案的序号填在括号里)(10分)
1、含有( )的等式称为方程。
A、字母 B、未知数 C、等号
2、下列各式中不是方程的是( )。
A、7—x=5 B、0.3x—1=1.7x—9 C、7(x+2)
3、水果店运进柑桔m千克,运进李子的重量比柑桔3倍多n千克,运进的李子重( )千克。
A、m÷3+n B、3m+n C、3m—n
4、与方程3╳(4+x)=12.9的解相同的是( )。
A、4╳(3+x)=12.9 B、2╳(4—x)=7.2 C、6╳(x—0.1)=1.2
5、小敏今年a岁,爸爸今年36岁,后爸爸比小敏大( )岁。
A、36—a+20 B、36—a C、20
四、计算题。(30分)
1、解方程。(12分)
13+x=28.5 (要检验) 2.4x=26.4 (要检验)
4x+13=365 30x+15x=22.5
96÷6+4x=56 3x—2╳7=40
2、简便计算(18分)
12.5×(0.7×0.8) 6.25×1.02 1.25×99
12.5×32×2.5 4.12-1.78-1.22 4.2÷0.7÷6
五、列方程并求出方程的解。(8分)
1、x的3.5倍刚好是14的一半,求x。
2、一个数与2.5的乘积是14,求这个数。
3、三个连续自然数的和是24,中间一个是n。
六、列方程解决问题(28分)
1、197路公共汽车上原有乘客50名,车到站后有一些人下车,又有7人上车,这时车上比原来少23人。问有多少人下车?(5分)
2、甲、乙两地相距405米,小明和小芳同时从两地出发相向而行,3分钟相遇,小明平均每分钟行65米,小芳平均每分钟行多少米?
3、一头牛和一头大象共重5445千克,大象的体重相当于8头牛的体重。这头牛和大象的体重各是多少千克?(6分)
4、小明花了7元钱买了面额为6角和8角的.邮票,两种邮票的数量相同,小明买的两种邮票各有多少枚?(6分)
5、长江服装厂有布1200米,做了150套大人服装,每套用布5米。剩下的布料做小孩子衣服,每套用布3米,可以做小孩衣服多少套?(6分)
走进赛场:
1、在一个停车场停车一次要交5元,如果停车时间超过2小时,每多停1小时要多交2元。有辆车离开停车场时,车主付了13元停车费。这辆车在这个停车场停了几小时?
2、有一列数是1.1, 2.2, 4.3, 5.4, 7.5, 8.6,……这列数的第10个数是多少?
3、有一个月有5个星期一,但这个月的第一天和最后一天都不是星期一。你知道这个月的第一天是星期几吗?
4、明明的妈妈今年32岁,她的年龄是明明年龄的6.4倍。当明明妈妈的年龄是明明的3.7倍时,明明多少岁?
1.用字母表示数。
2.解简易方程(解方程、实际问题与方程)。
和原实验教材相比,变化有:一是,增加用字母表示常见数量关系的例题,为解决实际问题列方程作准备。二是,根据课标要求,明确给出等式的性质(原来只是借助天平平衡来理解),利用等式的性质解方程。三是,解方程和列方程解决问题分开编排,分散难点,并且解方程的类型更全面。
二、教学目标
1.使学生初步认识用字母表示数的作用,发展符号意识,能够用字母表示学过的运算定律和计算公式,能够在具体的情境中用字母表示常见的数量关系。初步学会根据字母所取的值,求含有字母式子的值。
2.使学生初步了解方程的作用,初步理解等式的基本性质,能用等式的基本性质解简易方程。在这过程中初步体会化归思想。
3.使学生感受数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。在这过程中获得数学建模的初步体验。培养学生根据具体情况,灵活选择算法的意识和能力。
三、编排特点
1.重视用字母表示数量关系的教学。
学生在日常生活和前面的学习中已经接触到了用字母表示数,学习了用符号表示一个特定的数、用字母表示运算定律等,所以教材就不再从用字母表示特定的数、一般的数起步,而是直接从用含有字母的式子表示数量关系开始。
用代数式表示数量关系,即根据数量关系的陈述写出代数式,这是进一步学习代数知识的基本技能。对小学生来说,受以往学习习惯、思维方式的影响起初会有一些困惑。因此,为了突破难点,保证基础,教材加强了用字母表示数的教学。除了原有的两个例题之外,还增加了两个例题,学习表示稍复杂的数量关系,也为后面学习列方程解决实际问题作准备(具体内容如下表)。相应地还增加了一个练习。
例1 用字母表示数量关系(a+30)
例2 用字母表示数量关系6x 例3 用字母表示运算定律和计算公式 例4 用字母表示数量关系(1200-3x)例5 用字母表示数量关系(3x+4x)
同时,还加强了代入求值的教学,使学生不断看到,用含字母的式子既可以表示数量关系,又可以表示一个量,当用一个合适的数代替字母并求值,就得到了一个具体的数。从而帮助学生逐步感悟、适应字母代数的特点。
2.以等式的基本性质为解方程的依据,突显利用等式性质解方程的优势。
根据《义务教育数学课程标准(2011年版)》的要求,从小学起引入等式的基本性质,并以此为基础导出解方程的方法。这不仅有利于改善和加强中小学数学教学的衔接,而且有利于学生代数思维习惯的培养。
以等式性质作为解简易方程的依据后,利用等式基本性质解方程的优越性变显现出来了。例如,解形如的方程,都可以归结为,等式两边减去与加上,得与;解形如与的方程,都可以归结为,等式两边除以与乘上,得与。这样解决方程显然比原来依据逆运算关系解方程,思路更为统一。
3.加强列方程解决实际问题的教学,适当分散难点。
教材一方面在第一节,加强用含有字母的式子表示数量关系的教学,为学习列方程解决实际问题奠定了更为坚实的基础。另一方面,解方程单独编排,并且解方程的类型更全面,分散难点。
在 解方程这部分内容中,方程没有刻意一一从现实情境引出;而且解方程的过程,充分借助实物直观、几何直观,发挥数形结合的优势,帮助学生理解方程变形、求解的过程。待学生有了一定的解方程基础后,在实际问题与方程这部分内容中,再由实际问题引入前面没有出现过的方程。这样处理,两部分内容各有侧重,既分散了教学的难点,又关注了数学知识与现实世界的联系,有利于提高教学的有效性,切实加强数学应用意识的培养。
教材对实际问题与方程这部分内容进行调整,并有所加强。一共安排5个例题(具体如下表)。这部分的5个例题,如果用算术方法解答,都需要逆向思维,从而便于突出等量关系的分析,突出列方程解决实际问题的特点。
例1 x+b=c的应用 例2 ax-b=c的应用 例3 ax+ab=c的应用 例4 x+bx=c的应用 例5 ax+bx=c的应用
<<<1234&&&
四、具体内容
(一)用字母表示数
1.例1:用字母表示加减的关系。
重点让学生体会还有字母的式子表示数量关系的特点:具有一般性,可以看作一个具体的量。具体编排体现具体一般具体的过程。
(1)重视抽象概括。用含有字母的式子表示数量关系和一个量,这是列方程的基础。教材采用从个别到一般的归纳思路,先列出用具体的数表示的式子,让学生看到这些式子,每个只能表示个别现象,提出问题:怎样才能用一个式子表示一般情况呢?由此引出含有字母的式子。使学生看到用含有字母的式子表示,不仅简单明了,而且具有一般性,经历抽象概括的过程。
(2)渗透函数思想。让学生体会:a+30随着a的变化而变化,它们之间一一对应,以渗透函数思想。
(3)取值范围。关于字母的取值范围应该让学生明确,在一个实际问题中,字母的取值范围是由实际情况决定的。
(4)代入求值。代入求值是由一般到具体的过程,通过正反两个思维过程,帮助学生进一步理解,含有字母的式子也可以表示一个具体的数量。如:当a是一个具体的岁数时,a+30也是一个具体的岁数。
2.例2:乘除的数量关系。
(1)编排和例1相同。同样是从具体到一般的抽象、归纳过程,再从一般到具体的代入求值。
(2)介绍字母与数相乘的习惯写法。
3.例3:运算定律、计算公式。
(1)体会数学符号语言的优越性。对比用语言描述和用字母表示运算定律,体会到:用字母表示,一目了然,准确、简明、易记。
(2)代入求值。以正方形的面积和周长为例,教学怎样用字母表示计算公式,怎样把已知数据代入公式求值。介绍平方的书写方法,数与字母相乘的书写习惯。
4.例4:两级运算。
例4例4和例5是新增的,目的是让学生学会用含有字母的式子表示稍复杂的数量关系,为后面列方程解决实际问题作准备。
这里数量关系比前面进了一步,含两级运算,重点是还是用含有字母的式子表示数量关系和一个量。有了前面学习的基础,这里可以让学生独立思考,写出代数式,代入求值。
5.例5:两积之和(ax+bx)。
(1)借助直观图帮助学生理解并用含有字母的式子表示。
(2)引导学生化简式子。根据乘法分配律进行化简,学生熟练后可以直接写出7x。
(3)拓展例题。将式子改为4x-3x,让学生说出它的含义,再说出化简的结果。这时将出现数与字母相乘的特殊情况,即1与字母相乘,1可省略,可用来检查前面学习的书写习惯。
(二)解简易方程
1.方程的意义。
方程是含有未知数的等式,因此教学方程的概念要从认识等式开始。教材采用连环画的形式,通过天平演示,经历由数的等式到含有未知数的等式,通过不等到相等的比较,为引入方程提供丰富的感性认知基础。
<<<1234&&&教学时,可制作动画或自制的天平教具来演示。因为精密的天平仪器小,学生不易看清,也不容易取得平衡。
通过实物演示得到了一个方程,接下来再通过图示得出第二个方程。然后以两个方程为例,给出方程概念的描述。为了丰富对方程的感知,让学生自己写出一些方程,并呈现三个同学在黑板上写的方程,初步感知方程的多样性。
2.等式的性质。
原来没有直接出示等式性质,但是解方程时不利于学生的描述,这次正式总结出。通过插图演示天平平衡的实验,探究等式基本性质。
用连环画式的插图,一方面提示教师可以怎样演示,另一方面也给学生思考、感悟天平保持平衡的变化规律,提供了直观的观察材料。要注意的是,教具演示能使学生看到动态的过程,获得实实在在的真切感受。但演示过后,呈现在学生眼前的,只剩最后的结果状态。而连环画式的插图,没有实物演示那么生动,但可以保留初始状态和结果状态,便于学生观察、比较。
教学中注意引导学生双向观察,可以丰富学生的感性认识。同时引导学生自己总结规律。等式性质1的演示过程中可以用等式来表示,这样从直观演示过渡到等式,帮助总结。等式的性质2可以放手让学生自己总结,通过交流完善对0的补充说明。
3.解方程。
(1)例1:解形如x+a=b的方程。
利用等式性质解方程,理解解方程和方程的解的概念。
①这里借助三幅天平演示图展现了解方程的完整思考过程。为了便于通过图示说明解方程的全过程,这里的数据比较小。但是学生可能一眼就能看出结果,为提高学习掌握新方法的积极性,可以明确指出,要根据等式性质来解方程。在这里要暂时避开算法多样化的讨论。
②结合解方程的过程给出方程的解和解方程的概念,不再单独编排。
③检验。由小精灵给以提示,介绍了验算的全过程,就是前面所学的代入求值的过程。
(2)例2:解形如ax=b的方程。
编排思路同例1。练习中尝试解形如x÷a=b的方程。
(3)例3:解形如a-x=b的方程。
这是新增的,解方程的类型更全面。
重点突出转化思想。教材以20-x=9为例,讨论形如a-x=b的方程的解法,思路是转化为x+b=a,即转化为例1的形式。这里不再依靠天平的图示,意在及时抽象,启发学生直接依据等式性质进行转化。a÷x=b类型的方程让学生自主探索。
教学中注意让学生积累解方程的经验。完成基本类型的方程求解后,小精灵提示学生总结解方程的思考方法(利用等式性质)、解题步骤、要注意的问题。
(4)例4:解形如ax+b=c的方程。
(5)例5:解形如a(x+b)=c的方程。
这两种都是新增的稍复杂的类型。同样也是利用转化的方法,将解较复杂的方程转化为前面的基本类型来求解。教学重点是把什么看作一个整体。
4.实际问题与方程。
(1)例1:基本类型。
①经历列方程解决实际问题的基本方法。这里的问题比较简单,容易发现数量关系。学生也比较容易直接利用算术方法求解,教材在这里尊重学生的经验,先出示了算术解法。以此鼓励学生自己想方法解决问题的积极性。接下来引出列方程的方法来解决。这是学生第一次接触列方程解答实际问题,对将所求数量设为x,对未知数参加列式,都会感到不习惯。所以,教材引导学生将未知数设为x,列出方程。
②体会列方程解决问题的特点:用字母表示未知数,未知数参与列式。其中寻找等量关系是列方程的关键,教材用色块予以凸显,但它不是解题书写的要求,主要是帮助学生列方程。
③淡化算术方法和列方程方法的对比。这里的数量关系简单,体现不出列方程的优势,重在经历一般方法,规范书写格式。
(2)例2:列方程解形如ax±b=c的问题。
①体会优越性。这里的问题如果用算术方法解决需要逆思考,思维难度较大,学生容易出现先除后减的错误。而用方程解,思路比较顺,体现了列方程解决问题的优越性。
<<<1234&&&②注重数量关系的分析。这里的数量关系,学生常有不同的分析(如下)。学生有必要的话,可以画线段图帮助分析。如:
黑色皮的块数×2-4=白色皮的块数
黑色皮的块数×2-白色皮的块数=4
黑色皮的块数×2=白色皮的块数+4
③总结列方程解决实际问题的基本步骤。教材给出了基本步骤,提升学生的学习经验。
(3)例3:列方程解形如ax±ab=c的问题。
这里的数量关系是两积之和,是典型的数量关系,生活中很常见。而且,理解了两积之和的数量关系,也就容易理解两积之差、两商之和(差)的数量关系。同时,两个积中有相同的因数,可以根据分配律,得到含小括号的方程。所以例3具有举一反三的典型意义。
(4)例4:列方程解形如ax±bx=c的问题。
①含有两个未知数。此类问题称为和差、和倍、差倍问题,其特点是:含有两个未知数,知道这两个未知数的倍数关系,以及它们的和或差,求两个未知数(如本例)。如果用算术方法解比较难。改用方程解,都可归结为解形如ax±bx=c 的方程,思路统一,解法一致,学会其中之一的解法,其他类似的问题,如和差就很容易类推解决。
②设未知数。解决这类问题,首先要确定一个未知数为x,另一个根据两者之间的关系用含有x的式子来表示。但这里重点是设谁是x,一般为了解方程方便,设倍数关系中的单位量为x。也可以利用线段图帮助学生思考。
(5)例5:解决问题。
这里是行程中的相遇问题,比较经典,这里以解决问题的形式进行编排,让学生体会方程解的优越性。
这里的方程形式与例3相同,重点是借助线段图来帮助学生分析数量关系,列出方程。
五、教学建议
1.关注由具体到一般的抽象概括过程。
本单元的知识大多比较抽象。教学时要充分利用学生原有的相关认知基础,关注由具体实例到一般意义的抽象概括过程。无论是学习用字母表示数量关系,还是学习方程的概念或等式的性质,既要发挥具体实例对于抽象概括的支撑作用,又要及时引导学生超脱实例的具体性,实现必要的抽象概括。
2.有意识地渗透数学的思想方法。
本单元的内容蕴涵较为丰富的数学思想,如抽象思想、推理思想、化归(转化)思想、等价思想、模型思想等。比如:
解方程的过程实际上是一连串依据等式性质的演绎推理过程,最终将原方程转化为与其等价的x=?的形式。x=?是方程变形的目标。教学时,应要求学生做得对、说得清,从而在理解变形依据、过程的基础上掌握所学方程的解法。
列方程的过程实际上是一个用数学符号提炼现实生活中特定关系的过程,也就是数学建模过程。教学时,应启发学生学习把日常生活中的自然语言等价地转化为数学语言,得到方程,进而解决有关问题。
3.重视解决实际问题能力的培养,注重数量关系的分析,体会列方程解决实际问题的优越性。
列方程解决实际问题的思考过程比较直接、简明,能使某些实际问题的解决化难为易。让学生体会列方程的优越性。同时,引导学生掌握列方程解决问题的基本步骤,还要注意引导他们逐步学会根据问题特点,灵活选择便于思考的简便解法,进而丰富解题策略,发展思维的灵活性。
天平及相关物品。(也可以将插图制作成课件让学生逐步观察思考)
教学过程:
一、导入新课:同学们用天平做过实验吗?今天我们就要用天平去发现一些重要的规律,有信心吗?
二、新知探究
(一)探寻发现“天平保持平衡的规律1”。
第一步,出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板),
第二步,问:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b。
第三步,问:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?学生回答后,老师一一演示验证。
第四步,想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?
第五步,在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a—a=2b+a—a。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)
第六步,应用,进一步验证。展示数学书P55页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。
(二)探寻发现“天平保持平衡的规律2”。
第一步,出示天平,左盘放一瓶墨水,右盘放两个铅笔盒,天平保持平衡。一瓶墨水等于两个铅笔盒的`质量,如果设一瓶墨水重c克,1个铅笔盒重d克,则可以用一个等式来表示:即c=2d(板),
第二步,问:想一想,如果在左边再放上1瓶墨水,右边再放上2个铅笔盒,天平还保持平衡吗?验证,天平两边加的东西不同,数量也不同,为什么还能保持平衡呢?学生可能会说,因为两边增加的质量相同,肯定;同时引导,天平左边的质量在原来的基础上发生了什么变化?(扩大了2倍),右边呢?(也扩大了两倍)因此,天平两边尽管所增加的东西不同,数量不同,但两边质量所发生的变化是相同的,都扩大了2倍,所以天平仍然保持平衡。用式子表示就是c×2=2d×2。
第三步,刚才的演示反过来,就是天平两边同时缩小相同的倍数,天平保持平衡,用式子表示就是2c÷2=4d÷2。因此,天平除了在两边同时增加或减少同样的物品会保持平衡外,还可怎么变换也可以保持平衡?归纳得出:天平两边物品的质量同时扩大或缩小相同的倍数,天平保持平衡。[
第四步,进一步验证,出示P56的情景,问要求1个排球和几个皮球同样重该怎么办?两边质量同时缩小2倍,即把两边的球都平均分成2份,保留其中的一份,按其操作,天平保持平衡,得出结论:1个排球和3个皮球同样重。
(三)小结天平保持平衡的变换规律,引出等式不变的规律。
通过刚才的实验,我们发现了什么,谁来总结一下。
得出天平保持平衡的变换规律:
(1)天平两边同时增加或减少同样的物品,天平保持平衡;
(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。
老师引导:我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。
交流,发现:等式保持不变的规律:
(1)等式两边都加上或减去相同的数,等式保持不变;
(2)等式两边都乘或除以相同的数(0除外),等式不变。
三、练习。
实物演示并判断:(准备8袋花生,4袋盐)
天平两端分别放有一袋500克的盐和两袋250克的花生。
1、当两边各增加3袋同样的花生(250克/袋)时,天平是否保持平衡?为什么?
2、在“1”的基础上,现在将把天平两端的东西减少,怎样变化?可使天平依然保持平衡?怎么想的?(可抽学生上台动手操作。)
3、假如天平两端只能加与先前完全一样的东西,要保持平衡可以怎么做?怎么想的?
4、一端放有两袋1千克的白糖,另一端放有4袋500克的盐,问一袋白糖与几袋盐同样重,怎么想的?
四:小结。
有什么收获?还有什么问题?
教学内容:数学书P55—56及“做一做”。
教学目标:
1、通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。
2、利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。
1、说课内容
《解简易方程》是九年义务教育人教版小学数学第九册第四单元第二节的教学内容。
2、教学内容的地位、作用和意义本节课的主要内容是方程的定义和应用等式性质解方程,它起着承前启后的作用。从知识结构上看,本节课是在学生学习了一定的算术知识和已具有初步的代数知识的基础上进行教学,教学这一部分内容有助于培养学生抽象思维能力,也是培养学生抽象概括能力的过程,为以后学习解稍复杂的方程和列方程解答应用题打下良好的基础。
3、教学目标
结合教材特点和学生实际,我制定了本课的教学目标:
⑴知识与技能:初步理解“方程的解”和“解方程”的意义,并能进行辨析,并会应用等式性质解答简易方程。
⑵过程与方法:通过讨论和辨析,帮助学生理解方程的解和解方程的意义,进一步提高学生比较、分析和概括的能力。
⑶情感、态度与价值观:关注由具体到一般的抽象概括过程,培养学生初步的代数思想。
4、教学重点、难点
(1)比较方程的解和解方程这两个概念的含义。
(2)掌握解方程的方法。
二、说教法
这节课,我主要采用“直观教学法”、“演示操作法”、“观察法”等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,平等交流各自对数学的理解,并通过相互合作共同解决所面临的问题。我设计了如下三个方面的教学手段:
1、用直观的操作和演示,让每位学生在动手操作的过程中理解和归纳出结论。
2、恰当运用现代教学手段,突出重点突破难点,努力促进本节课教学目标的实现。
3、充分利用身边的事物,创设情境,激发兴趣,让学生能在轻松、愉快而且有趣的氛围中理解、掌握知识。
三、说学法
为了使学生获取“解方程”这部分的知识,在课堂教学中,我注重学生学习知识的过程,给学生充分的时间和空间,在特定的数学活动中自主探究、合作交流,激发学生的学习积极性,增强学生学习知识的自信心。让学生动眼观察,动手操作,动脑思考,动口表达,真正理解和掌握方程最基本的知识,培养学生探索、发现和创新能力。
四、说教学过程
课堂教学是教学的主渠道,根据教学要求为实施教学计划突破教学的重、难点,我将教学过程分为以下几个步骤。
(一)激趣导入,动手操作。针对“解方程”这节课的特点以及结合小学生的年龄特征,上课开始,我借助多媒体,激发学生的学习兴趣。出示天平,杯子,水,然后提问学生:利用这些工具,你能称出一杯水的重量吗?分组讨论后,点名让学生说说他的想法并展示操作的过程,我再借助课件出示学生说的方法,紧接着让学生利用上节课学习的“天平保持平衡的规律”列方程,从复习天平保持平衡的道理入手,引出课题,引导学生质疑,有利于激发学生主动探究、深入学习的积极性。
(二)探究新知,理解归纳
1、概念教学:认识“方程的解”和“解方程”的两个概念
让学生分组讨论猜一猜x的值是多少,然后我随着学生的回答演示课件。根据学生的回答和课件的演示引出概念———方程的解和解方程,同时出示这两个概念的含义。接着抛出问题让学生独立思考,再组内交流:“方程的解”和“解方程”的两个解有什么不同?根据学生的回答总结出:“方程的解”的解,它是一个数值;“解方程”的解,它是一个演变过程。这样的设计目的在于通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。
2、教学例1
借助课件出示例1,然后让学生独立思考该怎么根据题意列方程,之后分组讨论,汇报求解的过程,我再借助多媒体演示,同时根据学生的回答补充、强调一些细节问题,比如解方程的格式、要验算等等。我的设计意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。
3、拓展延伸
课件显示:解方程x—2=15,提示学生这是一个减法的方程,能根据我们学习的加法方程的步骤来解吗?指名学生到黑板上做,然后我再点评,补充强调细节问题。通过这道例题,学生对解简易方程就有一个比较全面的认识。
4、归纳小结解方程的步骤:
(1)先写“解:”。
(2)方程左右两边同时加或减一个相同的数(0除外),使方程左边只剩X,方程左右两边相等。(3)求出X的值。(4)验算。
(三)巩固深化,拓展思维
1、基础性练习:P57“做一做”
2、综合练习:练习十一第2题
教学设计及说课稿
作者:*** 时间:2015/11/5
《解简易方程》教学设计
教学目标
1.使学生初步理解“方程”“方程的解”和“解方程”的含义.2.初步掌握解简易方程的方法并会检验.教学重点
使学生初步掌握解方程的方法和书写格式.教学难点
帮助学生建立“方程”的概念,并会应用.教学设计
一、复习准备(一)口算下面各题.30+=50 ×2=10(二)列式.1.一支钢笔 元,2支钢笔多少元? 2.与4的和.二、新授教学(一)方程的意义 1.介绍天平
这是一架天平、可以用来称物品的重量.当天平的指针指在标尺中间时,表示天平平衡,即天平两端的重量相等.2.引出方程
(1)出示图片:天平1 教师提问:这个天平平衡吗?说明了什么?谁会用等式表示?(2)出示图片:天平2 教师提问:请同学们观察,天平平衡说明了什么?怎样用式子表示? 教师板书:20+?=100 教师说明:这个未知数“?”,如果用 来表示就可以写成20+ =100.(3)出示图片:篮球
教师提问:这幅图是什么意思?怎样用含有未知数的等式表示? 教师板书: 3.方程的意义.教师提问:观察上面三个等式回答问题.这三个等式有什么相同点和不同点? 相同点:都是相等的式子.不同点:第一个等式不含有未知数,第二个和第三个等式含有未知数.教师板书:象这种含有未知数的等式,叫方程.教师强调:含有未知数、等式
4.思考:方程和等式之间到底是什么关系呢?(1)出示图片:等式与方程
(2)小结:所有的方程都是等式,但是等式不一定都是方程.(二)教学例1 1.方程的解
教师提问:在 中,等于多少时方程左边和右边相等? 在 中,等于多少时方程的左边和右边相等? 教师说明:使方程左右两边相等的未知数的值,叫做方程的解.如: 是方程 的解 是方程 的解 2.解方程
教师板书:求方程的解的过程叫做解方程.3.教学例1 例1.解方程-8=16(1)教师提问:解方程先写什么?根据什么计算?(2)教师板书:
解:根据被减数等于减数加差(3)怎样检查解方程是否正确? 检验:把 代入原方程,左边,右边 左边=右边
所以 是原方程的解.4.讨论:“方程的解”和“解方程”有什么区别?
三、课堂小结
今天你学到了哪些知识?什么叫方程?方程的解和解方程有什么区别?
《解简易方程》说课稿
【教材分析】
今天我说课的内容是五年级上册第四单元《解简易方程》的第一课时——“方程的意义”。在小学阶段,一般只要求学生初步理解方程的意义,所以只要学生知道什么是方程,能判别一个式子是不是方程就可以了。教学这一部分内容有助于培养学生抽象思维能力,也是培养学生抽象概括能力的过程,为以后学习解方程和列方程解答应用题打下良好的基础。
【教学目标】
根据本节课的教学内容,我拟定了一下教学目标:
1、理解并掌握方程的意义,弄清方程与等式之间的关系。2、正确地应用方程的意义辨别方程,帮助学生建立初步的分类思想。培养学生认真观察、思考的学习品质及抽象概括能力。3、加强师生的情感交流,使学生在民主和谐的气氛中获取新知。
【教学重点、难点】
基于以上教学目标我认为本课的教学重点:建立方程的概念。教学难点:正确区分等式与方程的含义。
【教学方法】
为了突出重点,突破难点这节课,我主要采用了直观教学法、演示操作法、观察法等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,【教学过程】
针对“ 方程的意义 ”这节课的特点以及结合小学生的年龄特征,本课我设计了板书课题、揭示目标、自学指导、先学、后教、当堂训练六个环节进行教学。
上课开始,我借助媒体,激发学生的学习兴趣。出示天平,天平是平衡的,再引导学生看屏幕进行演示:在天平的左边放上两个50 克的物体,天平不平衡了。在天平的右边放 100克的砝码,这时天平又平衡了,说明天平两边所放的物体的重量相等,用式子表示50+50=100,并点明这是一个等式。表示等号两边的数量相等。这样,学生的印象也非常深刻。在学生建立等式概念后,我把天平的左边换掉一个重x克的物体,天平发生了倾斜,说明天平两边所放的物体的重量不相等,引导学生用算式50+x>100来表示,及时说明这是一个不等式,表示左边的重量大于右边。这时在往右盘增加砝码100克,天平又向右倾斜了,引导学生列出不等式:50+x<200。根据两个不等式的关系把一个100克砝码换成50克,天平又出现平衡了,学生观察后得出:50+x=150。同学们在思考交流中明白:这也是一个等式,但它是含有未知数的的等式。为了加深学生的感性认识。我还设计了这个例子:天平的左边放两个相同的未知重量的物体,右边入 100 克砝码,可以用式子表示 2X=100。通过天平称重的演示,让学生观察平衡与不平衡的各种生活现象,用生活原型帮助学生理解方程的意义,这样的设计激发了学生的学习兴趣、培养了学生的观察能力和发现能力。
像这样含有未知数的等式,人们给它起了个名字,你们知道是什么吗?引出方程的概念(像 50+X=150、2X=100 等这样的含有未知数的等式,叫做方程。)
为了体现学生的主体性,培养学生的合作意识,同时让学生在解决问题的过程中得到创造的乐趣。通过四人合作用自己的方法创作 “ 方程 ” 与 “ 等式 ” 的关系图,并用自己的话说一说 “ 等式 ” 与 “ 方程 ” 的关系:方程一定是等式,但等式不一定是方程。接下来是对我们所探究结果的运用,我先设计了对方程概念理解的习题,帮助学生巩固所学的基础知识,强化重点;再通过判断,帮助学生巩固新概念,加深等式与方程关系的理解,强化难点。
教学内容:P105~106页例5、6和做一做。
教学目标:
1、初步学会ax±bx=c这一类简易方程的解法,知道计算这类方程的道理。
2、能正确解ax+bx=c的方程,提高学生的计算能力。
3、渗透事物之间相互联系又相互转化的观点。培养学生认真计算,自觉检验的好习惯。
教学重点:ax+bx=c这一类方程的解法。
教学难点:化简形如ax+bx的含有字母的式子。
教学过程:
一、复习
解下列方程
3x-43=273x+4×3=27
二、新授
1、出示下图:看图自己提出数学问题并用含有字母的式子表示。
板书: 4x+3x(4+3)x
说明:这个式子中含有两个未知数。这就是今天要学习的解简易方程。(板书课题)
(1)这个式子怎样计算呢?学生分组讨论怎样计算,师巡视。
(2)分组汇报讨论结果:可能出现两种情况:一种认为4x表示4个x,3x表示3个x,4x+3x一共是(4+3)个x,也就是7x。或者先求一共有多少部车:4+3,再求一共多少元,就是(4+3)x=7x。
(3)教师对两种思考给以充分肯定后说明:两种思考方法既有联系又有区别,最后的结果都是正确的。板书如下:
4x+3x=(4+3)x=7x
答:这一天共卖出玩具车7X元。
(4)思考:上午比下午多卖多少元?口头列式后,板书:4X-3X=X。
(5)订正并提示:1个x,可以写成x,1可以省略不写。
(6)引导学生小结:一个式子中如果含有两个x的加减法,可以根据乘法分配律和式子所表示的意义,将x前面的因数相加或相减,再乘以x,计算出结果。
(7)练习:
4X+5X= 3.5t-t= 7b+b= 12a-2a-4a=
3X+6X-8X= 2X+5X+3=
学生自己计算结果,集体订正。
订正时注意特殊类型如:3.5t-t3x+6x-8x 2X+5X+3
2、将上题补充条件和问题:“玩具车一天共卖得56元,每辆玩具车多少钱?”
(1)生尝试列方程解答,师个别指导。
(2)集体订正,让学生讲计算过程,并板书解题过程。
解方程4x+3x=56
解: 7x=56
x=8
检验:把x=8代入原方程。
左边=4×8+3×8=56,右边=56。
左边=右边
所以x=5是原方程的解。
3、练习:P106做一做:独立完成,集体订正,计算小数时要注意小数点。
4、拓展:
师:其实,用方程解决问题在人类历史上早有出现,你们知道吗?请看书P106。
生看书后让他们谈一谈自己的古朴,以激发他们热爱数学的感情。
三、巩固练习
1、判断正误,对的画“√”,错的画“X”
(1)5x-4.7x==1.7x()
(2)8x+0.06x=8.06x()
(3)3.5x-x=3.4x()
2、P107第4题。
3、对比练习:解下列方程
3X+2=20 3X+2X=20 3X+2X+5=20
4、全课小结:
今天我们学习的方程与前几节课学习的方程有什么不同?解这样的方程首先应该怎么做?
四、作业
1.53x1213
3.2x131
5.16x1316
7.2x43525
9.115x15
11.12-x13
12.13.21530x16
15.11540x110
17.37x85
19.19243x512
21.5x525
23.794x13 24.25.12x1312
27.143x31
29.3x11012
31.13x23
33.2x1612
35.1120x234
37.115x1012
39.151x115
41.174x1612
2.16x231 4.4x115
6.133x112 8.1115x612 10.13113x4
232x715
14.15x14315 16.571235x35 18.13x9112 20.136x18124 22.4152x23 19x1359
26.113x215
28.112x11412 30.3x13013 32.1113x12
34.132x121
36.211x79 38.14x8112 40.13x215
42.5138x24 22x
515745.23x
8111x
47.315531149.x
56243.51x2 7722446.x
533511348.x
2535111 50.x312344.1.12 2.2 3.13 8.5 9.4 10.14 15.4 16.113 17.5 22.15 23.19 24.2 25.15 30.1110 31.9 36.19 37.3 38.11143.27 44.3 45.38 50.34
答案
4.15 5.3 11.16 12.110 18.1111 19.8 13 26.5 27.32.4 33.6 34.39.7 40.15 46.37 47.2 112 7.17 7 14.3 6 21.127 28.4 35.5 42.2
一、填空题
仔细分析题意,在括号里设未知数,写出等量关系。
1、今年妈妈42岁,天天14岁,几年后妈妈的年龄是天天的2倍?
设( ),等量关系是( )
2.有两杯水,茶杯里有水150克,玻璃杯里有水100克,从茶杯里倒出多少克水到玻璃杯,才能使两杯水一样多?
设( ),等量关系是( )
3.图书馆内大小两个书架共有书500本,已知小书架上书的本数比大书架的还多32本,大、小两个书架各有书多少本?
设( ),等量关系是( )
4.三人按工作量分1350元的报酬,乙得的钱是丙的3倍,甲得的钱是丙的2倍,三人各分得多少元?
设( ),等量关系是( )
5.三个同学量身高,她们的身高共401厘米,玲玲比可可高3厘米,可可比圆圆高4厘米,三人身高分别是多少?
设( ),等量关系是( )
6.幼儿园老师分糖果,如果每人3颗,那么多出12颗;如果每人4颗,则少1颗。这个班有多少小朋友?糖果一共有几颗?
设( ),等量关系是( )
7.甲、乙两数的和是121,甲数的小数点向右移动一位就等于乙数。甲、乙两数各是多少?
设( ),等量关系是( )
8.长方形的周长是42厘米,长比宽多8厘米,长方形的长、宽各是多少厘米?
设( ),等量关系是( )
二、选择题
1.甲、乙两个工程队合修一条41200米的公路,计划20天完成。甲队每天修26米,乙队每天修多少米?设乙队每天修x米,根据题意列方程正确的是( )。
A.B.
C.D.
2.学校添置教学设备,去年开支了0元,去年比今年的少120元,今年开支多少元?设今年开支x元,根据题意列方程正确的是( )。
A.B.
C.D.
3.某养猪厂今年养猪0.8万头,比去年多,去年养猪多少万头?设去年养猪x万头,根据题意列方程正确的是( )。
A.B.
C.D.
4.一块三角形的布,面积是24平方厘米,它的底边长是8厘米,高是多少厘米?设高是x厘米,根据题意列方程正确的是( )。
A.B.C.D.
三、判断题
1.六年级同学参加计算机小组的有20人,参加趣味数学小组的`人数比计算机小组的2倍多2人,参加趣味数学小组的有几人?如果设参加趣味数学小组的有x人,那么方程是.( )
2.三根绳子总长120米,第一根比第二根长18米,第二根比第三根长21米,三根绳子各长多少米?如果设第二根绳子长x米,那么第一根绳子的长度可以表示为(x+18)米,第三根绳子的长度可以表示为(x+21)米。( )
3.鸭和羊共88只,共有脚232只,甲和羊各有多少只?如果根据题意所列的方程是,那么是设鸭有x只。( )
四、根据题意把方程补充完整
1.李刚买了4本笔记本,每本3.2元,又买了x只圆珠笔,每支1.5元,共一共用去21.8元。
方程可以这在列:___________=21.8或____________=3.2×4.
2.一个畜牧场养猪和羊共500头,猪的头数比羊的2倍少41头。羊和猪各有多少头?
教学内容:教材P75~76练习十六第2、7、8、10、11题。教学目标:
知识与技能:巩固学生用方程解决简单的实际问题的能力。过程与方法:经历列方程解决简单的实际问题的练习过程,提高学生分析数量关系的能力。
情感、态度与价值观:在学习活动中,激发学生的学习兴趣,培养学生的发散思维能力,体验数学知识的应用价值。
教学重点:找出题中的数量关系,并根据数量关系列方程解决简单的实际问题。教学难点:培养良好的书写习惯以及自觉检验的习惯。教学方法:引导回顾,练习讲解。合作讨论,练习巩固。教学准备:多媒体。教学过程
一、复习回顾
教师:同学们,前几节课我们学习了等式的性质、解方程、列方程解决简单的实际问题,谁来说一说,你有怎样的认识?
指名口答,其余学生补充,教师小结。
教师:今天这节课,我们就进行一些相应的练习来巩固前面所学的知识。
二、指导练习
1.请你判断下面各式哪些是方程?(l)a+24=73(2)4x <36+17(3)72=x +16(4)x +85(5)25÷y=0.6(6)2x +3y=9 生:(l)、(3)、(5)、(6)是方程,(2)、(4)不是。
师:为什么说(1)、(3)、(5)这三个是方程,而且(6)也是方程?
生:因为它们含有未知数而且是等式,所以是方程。(6)也是方程,只不过它含有两个未知数。
2.我们班学生在作业中有这样解方程的,你认为这样做对吗?如果不对,就帮他改正过来。
x +32=76 x-3.2=6.5 解: x =76-32 解:x-3.2=6.5-3.2 x =44 x =3.3 x ÷8=0.4 3x =18 解:x ÷8×8=0.4×8 解:3x-3=18-3 x =3.2 x =15 生:第一题正确,第二、四题两边没有同时加或除以相同的数,第三题等号没有对齐。
3.你认为在解方程的过程中,应注意些什么? 生1:等号对齐。
生2:两边必须要根据天平平衡的原理同时加、减或乘、除以相同的数(O除外)。
生3:要验算或口头验算,保证解的正确性。4.出示教材第75页练习十六第2题。学生读题,理解题意,独立思考。
教师提示:要先找准题中的数量关系,黄河的长度+835=6299,再列方程解答。
指名学生口答,集体订正。
5.出示教材第76页练习十六第8题。(1)引导学生读题,捕捉题目中的信息: ①猎豹的奔跑速度是每小时110 km。②猎豹的速度比大象的2倍还多30 km。
(2)教师:数量关系是解决问题的关键,运用数量关系可以帮助我们解决实际问题。根据以上两个条件,你会想到哪些数量关系?
学生独立思考,指名汇报。
(3)请根据归纳的数量关系列方程,并解答。学生根据归纳的信息列式,可能列出:2x +30=110,从而求出大象的奔跑速度。
三、巩固练习1.解下列方程
4x +13=365 3x +2×7=50 4x +2.1=8.5 48.34-3.2x =4.5 指名学生板演,集体订正。2.拓展练习。
(1)教材第75~76页练习十六第7题。
学生独立完成,小组内检查订正,并交流解决疑问。(2)教材第76页练习十六第10题。
学生独立完成,教师巡视,发现问题,个别辅导。同时注意观察学生的不同做法,并通过展示作业在全班讨论。
(3)教材第76页练习十六第11题。
引导学生转化为方程解题,独立解答,汇报交流。
分析:这道题其实就是解两个方程(36-4a)÷8=0和(36-4a)÷8=1。解答:(36-4a)÷8=0 a=9(36-4a)÷8=1 a=7
四、课后小结
通过练习课,你有什么新的收获?
【五年级简易方程练习题】推荐阅读:
苏教版小学六年级简易方程复习题04-08
五上 简易方程复习07-13
简易方程教学设计07-25
简易方程复习教学反思10-07
简易方程测试题02-16
数学解简易方程教学反思01-12
简易方程整理与复习教案03-02
《简易方程的与复习》教学反思07-15
小学五年级数学解方程练习题05-29
小学五年级解方程教案03-17