燃料电池技术论文(精选8篇)
燃料电池发电技术
摘要:概述了燃料电池的原理和分类,以及他们的反应原理及技术和燃料电池发电技术做了初步介绍。
关键词:燃料电池,发电
引言:随着社会经济的高速发展,人们对能源的依赖越来越严重,而生存环境的持续恶化又催促人们不断寻求清洁能源。燃料电池由于其环保性和高效性被誉为继火力发电、水力发电、核电之后的第四代发电技术,越来越多的国家和地区投入更多的资金对其进行研究并使其产业化。
一:燃料电池简介
燃料电池(Fuel cell),是一种使用燃料进行化学反应产生电力的装置,最早于1839年由英国的Grove所发明。最常见是以氢氧为燃料的质子交换膜燃料电池,由于燃料价格便宜,加上对人体无化学危险、对环境无害,发电后产生纯水和热,20世纪60年代应用在美国军方,后于1965年应用于美国双子星座5号飞船。现在也有一些笔记型电脑开始研究使用燃料电池。但由于产生的电量太小,且无法瞬间提供大量电能,只能用于平稳供电上。
燃料电池其原理:它是一种电化学装置,其组成与一般电池相同。其单体电池是由正负两个电极(负极即燃料电极和正极即氧化剂电极)以及电解质组成。不同的是一般电池的活性物质贮存在电池内部,因此,限制了电池容量。而燃料电池的正、负极本身不包含活性物质,只是个催化转换元件。因此燃料电池是名符其实的把化学能转化为电能的能量转换机器。电池工作时,燃料和氧化剂由外部供给,进行反应。原则上只要反应物不断输入,反应产物不断排除,燃料电池就能连续地发电。这里以氢-氧燃料电池为例来说明燃料电池
氢-氧燃料电池反应原理 这个反映是电觧水的逆过程。电极应为: 负极:H2 +2OH-→2H2O +2e-
正极:1/2O2 +H2O+ 2e-→2OH-
电池反应:H2 +1/2O2==H2O
图1 燃料电池工作原理示意图 燃料电池的类型:
碱性燃料电池(AFC)——采用氢氧化钾溶液作为电解液。
质子交换膜燃料电池(PEMFC)——采用极薄的塑料薄膜作为其电解质。
磷酸燃料电池(PAFC)——采用200℃高温下的磷酸作为其电解质。
熔融碳酸燃料电池(MCFC)
固态氧燃料电池(SOFC)——采用固态电解质
二:燃料电池发电系统
燃料电池是一种将储存在燃料和氧化剂中的化学能,直接转化为电能的装置。当源源不断地从外部向燃料电池供给燃料和氧化剂时,它可以连续发电。
燃料电池发电是在一定条件下使H2、天然气和煤气(主要是H2)与氧化剂(空气中的O2)发生化学反应,将化学能直接转换为电能和热能的过程。与常规电池的不同之处在于:只要有燃料和氧化剂供给,就会有持续不断的电力输出。与常规的火力发电不同,它不受卡诺循环(由两个绝热过程和两个等温过程构成的循环过程)的限制,能量转换效率高。燃料电池除可发电外,还可作为电动汽车的电源。在对众多的蓄电池以及一次电源的研究以及应 新型材料及其应用论文--《燃料电池发电技术》
用中发现:质子交换膜燃料电池(PEMFC)作为一种不经过燃烧直接以电化学反应连续地把燃料和氧化剂中的化学能直接转换成电能的发电装置,具有能量转换效率高(一般都在40-50%,而内燃机仅为18%-24%)、无污染、启动快、电池寿命长、比功率、比能量高等优点。
1.磷酸燃料电池(PAFC)发电技术
磷酸型燃料电池由多节单电池按压滤机方式组装以构成电池组。
碱性燃料电池在载人航天飞行中的成功应用,证明了按电化学方式直接将化学能转化为电能的燃料电池的高效与可靠性,为提高能源的利用效率,人们希望将这种高效发电方式用于地面发电。
以磷酸为电解质的磷酸型氢氧燃料电池首先取得突破。至今,其技术获得了高度发展,已进行了规模为11000kW~4500kW的电站试验,定型产品PC25(200kW)已投放市场,有数百台这种电站在世界各地运行,运行试验证明,这种燃料电池分散电站的运行高度可靠,可作为不间断电源应用,其热电效率达40%,热电联产时其燃料的利用率达60% ~70%。
图2 PAFC的反应原理
目前氢的贮存与运输均有不少技术问题需待解决,各国正在积极进行攻关研究一旦这一系列的技术问题得到解决,燃料电池就可利用由太阳能,核能等发出的电来电解水所制备出的氢作为燃料。
在以矿物燃料为原始燃料时,则需经化学转化的过程,例如煤的气化,天然气或汽油的蒸气转化等,通过这些方法将矿物燃料先转化为富氢气体,才可以送入电池作为燃料电池的燃料。
磷酸燃料电池的输出为直流电,而大部分用户的电器均使用交流电,因此,需要把燃料电池输出的直流电经逆变器转换成交流电后再提供给用户使用。磷酸燃料电池的内阻较常规化学电源如铅酸蓄电池大,所以,当输出电流变化时它的工作电压变化幅度大,为解决这一问题,常在燃料电池的输出和逆变器之间加一个振荡变流器(chopper),它的功能是升压或降,以确保供给用户电力的工作电压维持恒定。
燃料电池应是一个能够自动运行的发电厂,因此,对于磷酸燃料电池来说,其氧化剂的供应,电池废热的排出,反应生成水的回收等均需进行控制与管理,再加上还需对电力输出逆变进行控制与管理等,所有这些必须齐备才能构成一个完整的燃料电池系统。
新型材料及其应用论文--《燃料电池发电技术》
图3 磷酸燃料电池系统方框图 2.质子交换膜燃料电池(PEMFC)发电技术
质子交换膜燃料电池(PEMFC)由若干单电池串联而成,单电池由表面涂有催化剂的多孔阳极
多孔阴极和置于二者之间的固体聚合物电解质构成。其工作原理如图4所示,当分别向阳极和阴极供给氢气与氧气时,进入多孔阳极的氢原子在催化剂作用下被离化为氢离子和电子,氢离子经由电解质转移到阴极,电子经外电路负载流向阴极,氢离子与阴极的氧原子及电子结合成水分子,因此 PEMFC的电化学反应为:
图4 PEMFC的反应原理
(1)原料来源广泛,通过对石油,天燃气,煤炭还有沼气,甲醇,水植物等加工取得,来之不尽,取之不竭。
(2)无污染,因没有燃烧过程,不排放有害气体,它的排出物是氢氧结合的纯水。(3)无燥音,其发电过程是电化学反应过程,没有机械运动,所以没有噪音。(4)能源转换效率高,因其工作温度低,能耗少,能源转换效率理论上可高达。
欲使PEMFC依负荷的变化,长时间稳定的向负载提供电能,必须给电池组配置以下4个功能单元,即燃料及氧化剂贮存与供给单元,电池湿度,温度调节单元,功率变换单元及系统控制单元等,这样,方能构成一个实用化的,完整的PEMFC发电系统。如图5
图5 质子交换膜燃料电池发电系统示意图
新型材料及其应用论文--《燃料电池发电技术》
3.熔融碳酸盐燃料电池(MCFC)发电技术
熔融碳酸盐燃料电池(MCFC)以碱金属(Li﹑Na﹑K)的熔融碳酸盐为电解质,富氢燃料天然气甲烷煤气等转化而成为燃料,氧气空气加CO2为氧化剂,工作温度约为650℃,余热利用价值高,点催化剂以镍为主,无需使用贵金属,发电效率高。MCFC的反应原理如图
图6 MCFC的反应原理
MCFC单电池是由阴极、电解质、电解质隔膜和阳极组成,若组成电池堆,则还需要双极板、集流器、气泡屏等组件,其中,隔膜是MCFC的核心部件,必须强度高、耐高温熔盐腐蚀、浸入熔盐电解质后能够阻挡气体通过,并且有良好的离子导电性能(MCFC的导电离子是CO32-).通过对多种材料的筛选和多年的研究,目前已普遍采用偏铝酸锂来制备MCFC隔膜。
美国从1976年开始开发MCFC,主要的开商有能源研究所(Energy Research Corporation,ERC)和MC Power公司,ERC在1991至1994年间先后完成了25 kW、70 kW、125 kW电池组的试验,并于1996年建成了世界上功率最大的2MW MCFC电站,直接燃用脱硫后的天然气。2000年,ERC设计的单电池堆出力达到250 kW并进入商业化。2005年,兆瓦级的MCFC进入商业化。日本从1981年开始研究MCFC,并于1987年研究成功10 kW MCFC发电设备,1997年1MW MCFC电站在日本川越火电厂投运。日立公司2000年开发出1 MW MCFC发电装置。东芝公司开发出低成本的10 kW MCFC发电装置。此外,荷兰、德国、意大利、韩国等国家也于20世纪90年代建成相关的试验电站。我国于1991年由原电力工业部哈尔滨电站成套设备研究所研制出由7个MCFC单电池组成的电池组,上海交通大学和大连化学物理研究所都于2001年完成了1 kwMCFC电站的试验。
MCFC试验电站的建成和运行为MCFC商业化提供了丰富的经验,各国的科学家正在研究改进MCFC的关键材料和技术应用。
MCFC工作温度高,余热利用价值高,可以与煤气化联合循环结合组成高效的洁净煤发电技术。
4.固体氧化物燃料电池
同体氧化物燃料电池(SOFC)以固态氧化钇、氧化锆为电解质,天然气、气化煤气、碳氢化合物为燃料,氧气为氧化剂。固态氧化钇、氧化锆电解质在高温下有很强的离子传导功能,能够传导02~,电解质将电池分隔为燃料极(阳极)和空气极(阴极)。氧分子在空气极得到电子,被还原成02~,然后通过电解质传输到阳极,在阳极与氢气(或一氧化碳)发生反应。生成水(或二氧化碳)和电子。在迄今为止人类所发明的能源转化方式中,SOFC的转换效率是最高的,其反应原理如图
新型材料及其应用论文--《燃料电池发电技术》
图7 SOFC的反应原理
从原理与结构上讲,固体氧化物燃料电池是一种理想的燃料电池,它不但具有其他燃料电池高效,环境友好的优点,而且还具有以下突出优点
固体氧化物燃料电池是全固体结构,无使用液体电解质带来的腐蚀和电解液流失问题,可望实现长寿命运行,固体氧化物燃料电池在800~1000 下工作,不但电催化剂无需采用贵金属,而且还可直接采用天然气,煤气和碳氢化合物作燃料,简化了电池系统,固体氧化物燃料电池排出的高质量余热可与燃气,蒸汽轮机等构成联合循环发电系统,会大大提高总发电效率。
图8 100kw SOFC系统示意图
固体氧化物燃料电池技术的难点也源于它的高工作温度,电池的关键部件阳极隔膜,阴极和联结材料等在电池的工作条件下必须具备化学与热的相容性,即在电池工作条件下,电 新型材料及其应用论文--《燃料电池发电技术》
池构成材料间不但不能发生化学反应,而且其热膨胀系数也应相互匹配。
固体氧化物燃料电池最适宜的用途是与煤气化和燃气,蒸汽轮机构成联合循环发电系统,建造中心电站或分散式电站,这样既能提高能源利用率,又可消除对环境的污染。
三:燃料电池发电的应用前景
目前,美国、加拿大、日本、韩国以及欧洲的很多国家都把燃料电池发电技术提高到事关“国家能源安全”的战略高度,投入大量资金予以资助和研发。我国是能源消耗大国,以煤和石油为主,能源利用率低,污染严重;同时,近年来我国由于自然灾害或人为因素导致的大面积停电事故,给社会和经济造成巨大损失。如果在电网中有许多分布式电源在供电,则供电的可靠性和供电质量将会大大改善。分布式电源作为我国大电网的有效补充,如果能够得到较快的发展,电网抵御各种灾害的能力将会有很大提高。随着国民经济的发展,备用电源需求日益增大,如移动通信机站、军用移动指挥系统、野外医疗中心、固定或移动办公设施等的备用电源,需要配备技术性和经济性好的备用电源,而燃料电池中的PEMFC刚好能实现这个功能。从燃料电池发展的研究现状来看,我国在燃料电池发电方面的技术与发达国家如美国、加拿大、日本等相距甚远。我国要发展燃料电池技术,需要引进、消化及吸收国外先进技术,加快完成技术革新。
四:结束语
燃料电池作为高效、清洁、友好的新能源技术,已经得到越来越多国家的重视,掌握清洁高效的发电技术对国家能源和安全具有重要的战略意义,而燃料电池正是高效环保的发电技术之一。随着我国西气东送、天然气管网的不断完善,对电网可靠性和稳定性要求的不断提高,以及对环保要求的不断提高,燃料电池会起到越来越重要的作用。
参考文献:
祁宝森 《新型材料及其应用》 哈尔滨工业大学出版社 2007 颖颖 曹广益 朱新坚 《燃料电池一有前途的分布式发电》·电网技术·2005 许诗森 程健 《燃料电池发电系统》.中国电力出版社.2005 衣宝廉 《燃料电池——原理、技术、应用》.化学工业出版社,2003 宗强
《燃料电池》.北京:化学工业出版社.2005 丁常胜 苗红雁 《新型高效清洁能源—燃料电池》.陕西科技大学学报.2004 刘建国 孙公权 《燃料电池概述》.物理学与新能源材料专题.2004 沈德兴
美国航天局下属喷气推进实验室与南加州大学合作, 研制出一种利用液态甲醇产生电能的电池, 这项技术将为进一步开发和推广清洁能源开辟新途径。
喷气推进实验室表示, 与其他燃料电池相比, 这种“直接甲醇燃料电池”在发电时不需要添加任何燃料, 也不排放任何污染物, 其发电副产品为水和二氧化碳, 如此生成的电能相对更清洁。此外, “直接甲醇燃料电池”还具有设计简单和能量密度高等特点。目前使用的一些燃料电池主要以氢为能源, 但氢难以储存和运输, 而“直接甲醇燃料电池”克服了这一缺点。这种燃料电池今后有望用于国防、军工行业及商业领域, 市场前景广阔。
可提高燃料电池能效的新材料
韩国原子力研究院 (KAERI) 和韩国能源技术研究院共同研究, 成功开发出可提高燃料电池能效的新材料。
此次研制成果有两种:一种为可使固体氧化物燃料电池 (SOFC) 在低温状态下运作的“碳素薄膜银纳米粉末催化剂”;另一种为不仅可大幅缩小甲醇燃料电池 (DMFC) 体积, 而且还能提高能效的“放射线照射高分子燃料电子膜”。碳素薄膜银纳米粉末可取代用稀贵金属制成的催化剂, 使SOFC能在摄氏650度的高温下达到400-/-的最大功效;放射线照射高分子燃料电子具有过滤甲醇并只许氢离子透过的特性, 可制作小体积高能效DMFC电池。
不需贵金属的氢燃料电池催化剂
美国洛斯阿拉莫斯和橡树岭国家实验室的研究人员开发了一种不需要贵金属的新型氢燃料电池催化剂, 有望解决氢燃料电池推广过程中的主要障碍, 使氢燃料电池从个人设备到汽车等多个领域具有广泛应用。
该新型碳-铁-钴催化剂通过加热聚苯胺、铁、钴盐生成, 不含贵金属铂, 但几乎与铂催化剂一样有效耐用。使用该催化剂的燃料电池能有效地将氢气和氧气变成水, 而不会产生大量不需要的过氧化氢。大量过氧化氢的产生会使燃料电池的产出能量减少50%, 同时还可能破坏燃料电池的膜。通常情况下, 由非贵金属制备的类似催化剂容易在高度酸性情况下降解, 但这种新型催化剂却能保持稳定。与铂催化剂相比, 新型催化剂的成本还极低。研究结果证实, 这种新催化剂使氢燃料电池的能量更高、效率更高且寿命更长, 且能让电池在不断充放电的过程中损耗更小。
微生物燃料电池及机器人
英国的科学家研究出了一种微生物燃料电池, 以及能够自我供给功能的机器人, 使得微生物成为一种未来的可持续性的能源。
这种样子笨拙的机器人可以将任何有机物质分解转换成电能供自己使用, 人们未来可以派它去条件恶劣的灾区执行搜寻幸存者的任务, 由于机器人会自动利用环境中的一切有机物为自己供能, 所以不必像使用普通电池那样担心它能量耗尽。
燃料电池用35MPa储氢瓶已研发完成,有望率先实现产业化。氢燃料作为能源最大的优势就是无污染、效率高、可循环利用,从而成为全球未来新能源发展的方向,也是燃料电池汽车主要能源发展方向之一。国家发改委、国家能源局印发《能源技术革命创新行动计划(2016-2030)》,重点部署了氢能与燃料电池技术创新等15项任务。国家工信部、财政部等四部委也明确了燃料电池汽车的推广应用补助标准,为燃料电池汽车的发展进一步明确了政策方向。
目前众多汽车厂商开始进入燃料电池领域,氢气储运技术作为燃料电池最关键的配套装备有望优先受益。目前国外储氢瓶可达到70MPa,而国内储氢瓶还停留在35MPa的水平。公司作为国内老牌气体储运龙头,在装备技术研发及制造方面具有多年积累的丰富经验,公司依托传统气瓶装备与氢气储存装备的相通性,积极推进氢气储运装备的技术研发及制造。公司已完成70MPa高压氢燃料车用储气瓶的开发,打破了国内70MPa储氢瓶的技术瓶颈,目前正处于送样阶段,如果进展顺利,有望率先实现产业化。
操作策略:二级市场公司股价上放量突破年先后逐日走高,可待回调至年线附近介入。
【摘要】由于航天和国防的需要,才开发了液氢和液氧的小型燃料电池,应用于空间飞行和潜水艇。近二三十年来,由于一次能源的匮乏和环境保护的突出,要求开发利用新的清洁再生能源。燃料电池由于具有能量转换效率高、对环境污染小等优点而受到世界各国的普遍重视。
早在1839年,英国人W.Grove就提出了氢和氧反应可以发电的原理,这就是最早的氢-氧燃料电池(FC)。但直到20世纪60年代初,由于航天和国防的需要,才开发了液氢和液氧的小型燃料电池,应用于空间飞行和潜水艇。近二三十年来,由于一次能源的匮乏和环境保护的突出,要求开发利用新的清洁再生能源。燃料电池由于具有能量转换效率高、对环境污染小等优点而受到世界各国的普遍重视。美国矿物能源部长助理克.西格尔说:“燃料电池技术在21世纪上半叶在技术上的冲击影响,会类似于20世纪上半叶内燃机所起的作用。”福特汽车公司主管PNGV经理鲍伯.默尔称,燃料电池必会给汽车动力带来一场革命,燃料电池是唯一同时兼备无污染、高效率、适用广、无噪声和具有连续工作和积木化的动力装置。预期燃料电池会在国防和民用的电力、汽车、通信等多领域发挥重要作用。美国ArthurD.Little公司最新估计,燃料电池在能源系统市场将提供1500~MW动力,价值超过30亿美元,车辆市场将超过20亿美元;燃料电池在运输方面的商业价值将达到90亿美元。
燃料电池的工作原理和分类、特点和优势
燃料电池发生电化学反应的实质是氢气的燃烧反应。它与一般电不同之处在于燃料电池的正、负极本身不包含活性物质,只是起催化转换作用。所需燃料(氢或通过甲烷、天然气、煤气、甲醇、乙醇、汽油等石化燃料或生物能源重整制取)和氧(或空气)不断由外界输入,因此燃料电池是名符其实的把化学能转化为电能的装置。以熔融碳酸盐型燃料电池为例,图1为燃料电池的结构示意图。
图1熔融碳酸盐燃料电池单电池结构示意图
在燃料电池电极上反应如下:
阳极反应:H2+CO32-=H2O+CO2+2e-
阴极反应:1/2O2+CO2+2e-=CO32-
总反应:1/2O2+H2=H2O
申报材料
泓域咨询/ / 规划设计/ / 投资分析
摘要
燃料电池汽车是我国新能源汽车发展的主要技术路径之一。在《国家创新驱动发展战略纲要》《能源技术革命创新行动计划(2016 年~2030年)》《中国制造 2025》《汽车产业中长期发展规划》等国家级规划都明确了氢能与燃料电池产业的战略性地位,纷纷将发展氢能和氢燃料电池技术列为重点任务,将氢燃料电池汽车列为重点支持领域。
该氢燃料电池项目计划总投资 4463.20 万元,其中:固定资产投资 3055.19 万元,占项目总投资的 68.45%;流动资金 1408.01 万元,占项目总投资的 31.55%。
本期项目达产年营业收入 10045.00 万元,总成本费用 7823.81 万元,税金及附加 80.28 万元,利润总额 2221.19 万元,利税总额2607.84 万元,税后净利润 1665.89 万元,达产年纳税总额 941.95 万元;达产年投资利润率 49.77%,投资利税率 58.43%,投资回报率37.33%,全部投资回收期 4.18 年,提供就业职位 206 个。
氢燃料电池项目申报材料目录
第一章
项目概论
一、项目名称及建设性质
二、项目承办单位
三、战略合作单位
四、项目提出的理由
五、项目选址及用地综述
六、土建工程建设指标
七、设备购置
八、产品规划方案
九、原材料供应
十、项目能耗分析
十一、环境保护
十二、项目建设符合性
十三、项目进度规划
十四、投资估算及经济效益分析
十五、报告说明
十六、项目评价
十七、主要经济指标
第二章
背景及必要性研究分析
一、项目承办单位背景分析
二、产业政策及发展规划
三、鼓励中小企业发展
四、宏观经济形势分析
五、区域经济发展概况
六、项目必要性分析
第三章
项目建设方案
一、产品规划
二、建设规模
第四章
项目选址说明
一、项目选址原则
二、项目选址
三、建设条件分析
四、用地控制指标
五、用地总体要求
六、节约用地措施
七、总图布置方案
八、运输组成
九、选址综合评价
第五章
土建方案说明
一、建筑工程设计原则
二、项目工程建设标准规范
三、项目总平面设计要求
四、建筑设计规范和标准
五、土建工程设计年限及安全等级
六、建筑工程设计总体要求
七、土建工程建设指标
第六章
项目工艺技术
一、项目建设期原辅材料供应情况
二、项目运营期原辅材料采购及管理
二、技术管理特点
三、项目工艺技术设计方案
四、设备选型方案
第七章
项目环境影响分析
一、建设区域环境质量现状
二、建设期环境保护
三、运营期环境保护
四、项目建设对区域经济的影响
五、废弃物处理
六、特殊环境影响分析
七、清洁生产
八、项目建设对区域经济的影响
九、环境保护综合评价
第八章
安全生产经营
一、消防安全
二、防火防爆总图布置措施
三、自然灾害防范措施
四、安全色及安全标志使用要求
五、电气安全保障措施
六、防尘防毒措施
七、防静电、触电防护及防雷措施
八、机械设备安全保障措施
九、劳动安全保障措施
十、劳动安全卫生机构设置及教育制度
十一、劳动安全预期效果评价
第九章
项目风险评价分析
一、政策风险分析
二、社会风险分析
三、市场风险分析
四、资金风险分析
五、技术风险分析
六、财务风险分析
七、管理风险分析
八、其它风险分析
九、社会影响评估
第十章
项目节能评估
一、节能概述
二、节能法规及标准
三、项目所在地能源消费及能源供应条件
四、能源消费种类和数量分析
二、项目预期节能综合评价
三、项目节能设计
四、节能措施
第十一章
进度说明
一、建设周期
二、建设进度
三、进度安排注意事项
四、人力资源配置
五、员工培训
六、项目实施保障
第十二章
投资计划方案
一、项目估算说明
二、项目总投资估算
三、资金筹措
第十三章
项目经济效益可行性
一、经济评价综述
二、经济评价财务测算
二、项目盈利能力分析
第十四章
项目招投标方案
一、招标依据和范围
二、招标组织方式
三、招标委员会的组织设立
四、项目招投标要求
五、项目招标方式和招标程序
六、招标费用及信息发布
第十五章
项目结论
附表 1:主要经济指标一览表
附表 2:土建工程投资一览表
附表 3:节能分析一览表
附表 4:项目建设进度一览表
附表 5:人力资源配置一览表
附表 6:固定资产投资估算表
附表 7:流动资金投资估算表
附表 8:总投资构成估算表
附表 9:营业收入税金及附加和增值税估算表
附表 10:折旧及摊销一览表
附表 11:总成本费用估算一览表
附表 12:利润及利润分配表
附表 13:盈利能力分析一览表
第一章
项目概论
一、项目名称及建设性质
(一)项目名称
氢燃料电池项目
(二)项目建设性质
该项目属于新建项目,依托 xx 经济技术开发区良好的产业基础和创新氛围,充分发挥区位优势,全力打造以氢燃料电池为核心的综合性产业基地,年产值可达 10000.00 万元。
二、项目承办单位
xxx 科技发展公司
三、战略合作单位
xxx(集团)有限公司
四、项目提出的理由
燃料电池汽车是我国新能源汽车发展的主要技术路径之一。在《国家创新驱动发展战略纲要》《能源技术革命创新行动计划(2016 年~2030年)》《中国制造 2025》《汽车产业中长期发展规划》等国家级规划都明确了氢能与燃料电池产业的战略性地位,纷纷将发展氢能和氢燃料电池技术列为重点任务,将氢燃料电池汽车列为重点支持领域。
五、项目选址及用地综述
(一)项目选址方案
项目选址位于 xx 经济技术开发区,地理位置优越,交通便利,规划电力、给排水、通讯等公用设施条件完备,建设条件良好。
(二)项目用地规模
项目总用地面积 10878.77平方米(折合约 16.31 亩),土地综合利用率 100.00%;项目建设遵循“合理和集约用地”的原则,按照氢燃料电池行业生产规范和要求进行科学设计、合理布局,符合规划建设要求。
六、土建工程建设指标
项目净用地面积 10878.77平方米,建筑物基底占地面积 7113.63平方米,总建筑面积 10987.56平方米,其中:规划建设主体工程8543.17平方米,项目规划绿化面积 744.92平方米。
七、设备购置
项目计划购置设备共计 78 台(套),主要包括:xxx 生产线、xx设备、xx 机、xx 机、xxx 仪等,设备购置费 1332.17 万元。
八、产品规划方案
根据项目建设规划,达产年产品规划设计方案为:氢燃料电池 xxx单位/年。综合考 xxx 科技发展公司企业发展战略、产品市场定位、资金筹措能力、产能发展需要、技术条件、销售渠道和策略、管理经验以及相应配套设备、人员素质以及项目所在地建设条件与运输条件、xxx 科技发展公司的投资能力和原辅材料的供应保障能力等诸多因素,项目按照规模化、流水线生产方式布局,本着“循序渐进、量入而出”原则提出产能发展目标。
九、原材料供应
项目所需的主要原材料及辅助材料有:xxx、xxx、xx、xxx、xx 等,xxx 科技发展公司所选择的供货单位完全能够稳定供应上述所需原料,供货商可以完全保障项目正常经营所需要的原辅材料供应,同时能够满足 xxx 科技发展公司今后进一步扩大生产规模的预期要求。
十、项目能耗分析
1、项目年用电量 920900.39 千瓦时,折合 113.18 吨标准煤,满足氢燃料电池项目项目生产、办公和公用设施等用电需要
2、项目年总用水量 7750.71 立方米,折合 0.66 吨标准煤,主要是生产补给水和办公及生活用水。项目用水由 xx 经济技术开发区市政管网供给。
3、氢燃料电池项目项目年用电量 920900.39 千瓦时,年总用水量7750.71 立方米,项目年综合总耗能量(当量值)113.84 吨标准煤/年。达产年综合节能量 48.79 吨标准煤/年,项目总节能率 20.66%,能源利用效果良好。
十一、环境保护
项目符合 xx 经济技术开发区发展规划,符合 xx 经济技术开发区产业结构调整规划和国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境产生明显的影响。
项目设计中采用了清洁生产工艺,应用清洁原材料,生产清洁产品,同时采取完善和有效的清洁生产措施,能够切实起到消除和减少污染的作用。项目建成投产后,各项环境指标均符合国家和地方清洁生产的标准要求。
十二、项目建设符合性
(一)产业发展政策符合性
由 xxx 科技发展公司承办的“氢燃料电池项目”主要从事氢燃料电池项目投资经营,其不属于国家发展改革委《产业结构调整指导目录(2011 年本)》(2013 年修正)有关条款限制类及淘汰类项目。
(二)项目选址与用地规划相容性
氢燃料电池项目选址于 xx 经济技术开发区,项目所占用地为规划工业用地,符合用地规划要求,此外,项目建设前后,未改变项目建设区域环境功能区划;在落实该项目提出的各项污染防治措施后,可确保污染物达标排放,满足 xx 经济技术开发区环境保护规划要求。因此,建设项目符合项目建设区域用地规划、产业规划、环境保护规划等规划要求。
(三)
“ 三线一单 ” 符合性
1、生态保护红线:氢燃料电池项目用地性质为建设用地,不在主导生态功能区范围内,且不在当地饮用水水源区、风景区、自然保护区等生态保护区内,符合生态保护红线要求。
2、环境质量底线:该项目建设区域环境质量不低于项目所在地环境功能区划要求,有一定的环境容量,符合环境质量底线要求。
3、资源利用上线:项目营运过程消耗一定的电能、水,资源消耗量相对于区域资源利用总量较少,符合资源利用上线要求。
4、环境准入负面清单:该项目所在地无环境准入负面清单,项目采取环境保护措施后,废气、废水、噪声均可达标排放,固体废物能够得到合理处置,不会产生二次污染。
十三、项目进度规划
本期工程项目建设期限规划 12 个月。
十四、投资估算及经济效益分析
(一)项目总投资及资金构成
项目预计总投资 4463.20 万元,其中:固定资产投资 3055.19 万元,占项目总投资的 68.45%;流动资金 1408.01 万元,占项目总投资的 31.55%。
(二)资金筹措
该项目现阶段投资均由企业自筹。
(三)项目预期经济效益规划目标
项目预期达产年营业收入 10045.00 万元,总成本费用 7823.81 万元,税金及附加 80.28 万元,利润总额 2221.19 万元,利税总额2607.84 万元,税后净利润 1665.89 万元,达产年纳税总额 941.95 万元;达产年投资利润率 49.77%,投资利税率 58.43%,投资回报率37.33%,全部投资回收期 4.18 年,提供就业职位 206 个。
十五、报告说明
提供包括政策指引、产业分析、市场供需分析与预测、行业现有工艺技术水平、项目产品竞争优势、营销方案、原料资源条件评价、原料保障措施、工艺流程、能耗分析、节能方案、财务测算、风险防范等内容。
十六、项目评价
1、本期工程项目符合国家产业发展政策和规划要求,符合 xx 经济技术开发区及 xx 经济技术开发区氢燃料电池行业布局和结构调整政策;项目的建设对促进 xx 经济技术开发区氢燃料电池产业结构、技术结构、组织结构、产品结构的调整优化有着积极的推动意义。
2、xxx 科技发展公司为适应国内外市场需求,拟建“氢燃料电池项目”,本期工程项目的建设能够有力促进 xx 经济技术开发区经济发展,为社会提供就业职位 206 个,达产年纳税总额 941.95 万元,可以促进 xx 经济技术开发区区域经济的繁荣发展和社会稳定,为地方财政收入做出积极的贡献。
3、项目达产年投资利润率 49.77%,投资利税率 58.43%,全部投资回报率 37.33%,全部投资回收期 4.18 年,固定资产投资回收期4.18 年(含建设期),项目具有较强的盈利能力和抗风险能力。
4、引导民营企业建立品牌管理体系,增强以信誉为核心的品牌意识。以民企民资为重点,扶持一批品牌培育和运营专业服务机构,打造产业集群区域品牌和知名品牌示范区。加强对“专精特新”中小企
业的培育和支持,引导中小企业专注核心业务,提高专业化生产、服务和协作配套的能力,为大企业、大项目和产业链提供零部件、元器件、配套产品和配套服务,走“专精特新”发展之路,发展一批专业化“小巨人”企业,不断提高专业化“小巨人”企业的数量和比重,有助于带动和促进中小企业走专业化发展之路,提高中小企业的整体素质和发展水平,增强核心竞争力。提振民营经济、激发民间投资已被列入重要清单。民营经济是经济和社会发展的重要组成部分,在壮大区域经济、安排劳动就业、增加城乡居民收入、维护社会和谐稳定以及全面建成小康社会进程中起着不可替代的作用,如何做大做强民营经济,已成为当前的一项重要课题。
综上所述,项目的建设和实施无论是经济效益、社会效益还是环境保护、清洁生产都是积极可行的。
十七、主要经济指标
主要经济指标一览表
序号 项目 单位 指标 备注 1
占地面积
平方米
10878.77
16.31 亩
1.1
容积率
1.01
1.2
建筑系数
65.39%
1.3
投资强度
万元/亩
187.32
1.4
基底面积
平方米
7113.63
1.5
总建筑面积
平方米
10987.56
1.6
绿化面积
平方米
744.92
绿化率 6.78%
总投资
万元
4463.20
2.1
固定资产投资
万元
3055.19
2.1.1
土建工程投资
万元
953.35
2.1.1.1
土建工程投资占比
万元
21.36%
2.1.2
设备投资
万元
1332.17
2.1.2.1
设备投资占比
29.85%
2.1.3
其它投资
万元
769.67
2.1.3.1
其它投资占比
17.24%
2.1.4
固定资产投资占比
68.45%
2.2
流动资金
万元
1408.01
2.2.1
流动资金占比
31.55%
收入
万元
10045.00
总成本
万元
7823.81
利润总额
万元
2221.19
净利润
万元
1665.89
所得税
万元
1.01
增值税
万元
306.37
税金及附加
万元
80.28
纳税总额
万元
941.95
利税总额
万元
2607.84
投资利润率
49.77%
投资利税率
58.43%
投资回报率
37.33%
回收期
年
4.18
设备数量
台(套)
年用电量
千瓦时
920900.39
年用水量
立方米
7750.71
总能耗
吨标准煤
113.84
节能率
20.66%
节能量
吨标准煤
48.79
员工数量
人
206
第二章
背景及必要性研究分析
一、项目承办单位背景分析
(一)公司概况
公司始终坚持 “服务为先、品质为本、创新为魄、共赢为道”的经营理念,遵循“以客户需求为中心,坚持高端精品战略,提高最高的服务价值”的服务理念,奉行“唯才是用,唯德重用”的人才理念,致力于为客户量身定制出完美解决方案,满足高端市场高品质的需求。公司是一家集研发、生产、销售为一体的高新技术企业,专注于产品,致力于产品的设计与开发,各种生产流水线工艺的自动化智能化改造,为客户设计开发各种产品生产线。
公司建立完整的质量控制体系,贯穿于公司采购、研发、生产、仓储、销售等各环节,并制定了《产品开发控制程序》、《产品审核程序》、《产品检测控制程序》、等质量控制制度。
(二)公司经济效益分析
上一年度,xxx 科技发展公司实现营业收入 6782.25 万元,同比增长 33.29%(1693.95 万元)。其中,主营业业务氢燃料电池生产及销
售收入为 6438.02 万元,占营业总收入的 94.92%。
上年度主要经济指标
序号 项目 第一季度 第二季度 第三季度 第四季度 合计 1
营业收入
1424.27
1899.03
1763.38
1695.56
6782.25
主营业务收入
1351.98
1802.65
1673.89
1609.51
6438.02
2.1
氢燃料电池(A)
446.15
594.87
552.38
531.14
2124.55
2.2
氢燃料电池(B)
310.96
414.61
384.99
370.19
1480.74
2.3
氢燃料电池(C)
229.84
306.45
284.56
273.62
1094.46
2.4
氢燃料电池(D)
162.24
216.32
200.87
193.14
772.56
2.5
氢燃料电池(E)
108.16
144.21
133.91
128.76
515.04
2.6
氢燃料电池(F)
67.60
90.13
83.69
80.48
321.90
2.7
氢燃料电池(...)
27.04
36.05
33.48
32.19
128.76
其他业务收入
72.29
96.38
89.50
86.06
344.23
根据初步统计测算,公司实现利润总额 1689.98 万元,较去年同期相比增长 399.21 万元,增长率 30.93%;实现净利润 1267.49 万元,较去年同期相比增长 174.83 万元,增长率 16.00%。
上年度主要经济指标
项目 单位 指标 完成营业收入
万元
6782.25
完成主营业务收入
万元
6438.02
主营业务收入占比
94.92%
营业收入增长率(同比)
33.29%
营业收入增长量(同比)
万元
1693.95
利润总额
万元
1689.98
利润总额增长率
30.93%
利润总额增长量
万元
399.21
净利润
万元
1267.49
净利润增长率
16.00%
净利润增长量
万元
174.83
投资利润率
54.74%
投资回报率
41.06%
财务内部收益率
23.46%
企业总资产
万元
9524.12
流动资产总额占比
万元
32.68%
流动资产总额
万元
3112.88
资产负债率
42.37%
二、氢燃料电池项目背景分析
燃料电池汽车是我国新能源汽车发展的主要技术路径之一。在《国家创新驱动发展战略纲要》《能源技术革命创新行动计划(2016年~2030 年)》《中国制造 2025》《汽车产业中长期发展规划》等国家级规划都明确了氢能与燃料电池产业的战略性地位,纷纷将发展氢能和氢燃料电池技术列为重点任务,将氢燃料电池汽车列为重点支持领域。
我国的相关政策主要分为两方面,一方面是在燃料电池汽车方面,我国接连颁布了一系列燃料电池汽车相关的支持性政策,另一方面是积极参与氢能源的建设,在投资方面加大力度。
燃料电池汽车行业管理政策主要集中在投资、准入、积分等领域。其中,在投资领域,《外商投资产业指导目录(2017 年修订)》、《关于完善汽车投资项目管理的意见》、《汽车产业投资管理规定》等政策,明确并鼓励国内外厂商投资燃料电池汽车相关产业。
在准入领域,《新能源汽车生产企业及产品准入管理规定》、《鼓励进口技术和产品目录(2017 年版)》、《外商投资准入特别管理措施(负面清单)(2018 年版)》等,逐步放开了燃料电池汽车准入限制。
在积分领域,《乘用车企业平均燃料消耗量与新能源汽车积分并行管理办法》等政策,明确燃料电池乘用车标准车型积分上限为 5 分。
我近年来国新能源汽车补贴加速退坡,但燃料电池汽车仍实施高额补贴且不退坡。2019 年 3 月,四部委发布《关于进一步完善新能源汽车推广应用财政补贴政策的通知》,通知从 2019 年 3 月 26 日起实施,2019 年 3 月 26 日至 2019 年 6 月 25 日为过渡期。过渡期期间销售
上牌的燃料电池汽车按 2018 年对应标准的 0.8 倍补贴。目前过渡期已过,之后的燃料电池补贴政策尚未发布。
目前,出台的燃料电池汽车补贴政策中,以深圳、佛山禅城区和山西等地区的补贴比例最高,按照与中央 1:1 的比例补贴。此外,还有河南、六安、长治、佛山等地出台了加氢站基础设施建设补贴。
第三章
项目建设方案
一、产品规划
(一)产品放方案
项目产品主要从国家及地方产业发展政策、市场需求状况、资源供应情况、企业资金筹措能力、生产工艺技术水平的先进程度、项目经济效益及投资风险性等方面综合考虑确定。该项目主要产品为氢燃料电池,具体品种将根据市场需求状况进行必要的调整,各年生产纲领是根据人员及装备生产能力水平,并参考市场需求预测情况确定,同时,把产量和销量视为一致,本报告将按照初步产品方案进行测算,根据确定的产品方案和建设规模及预测的氢燃料电池产品价格根据市场情况,确定年产量为 xxx,预计年产值 10045.00 万元。
(二)营销策略
项目产品的市场需求是投资项目存在和发展的基础,市场需要量是根据分析项目产品市场容量、产品产量及其技术发展来进行预测;目前,我国各行业及各个领域对项目产品需求量很大,由于此类产品具有市场需求多样化、升级换代快的特点,所以项目产品的生产量满足不了市场要求,每年还需大量从外埠调入或国外进口,商品市场需
求高于产品制造发展速度,因此,项目产品具有广阔的潜在市场。
产品方案一览表
序号 产品名称 单位 年产量 年产值 1
氢燃料电池 A
单位
xx
4520.25
氢燃料电池 B
单位
xx
2511.25
氢燃料电池 C
单位
xx
1506.75
氢燃料电池 D
单位
xx
803.60
氢燃料电池 E
单位
xx
502.25
氢燃料电池 F
单位
xx
200.90
合计
单位
xxx
10045.00
二、建设规模
(一)用地规模
该项目总征地面积 10878.77平方米(折合约 16.31 亩),其中:净用地面积 10878.77平方米(红线范围折合约 16.31 亩)。项目规划总建筑面积 10987.56平方米,其中:规划建设主体工程 8543.17平方米,计容建筑面积 10987.56平方米;预计建筑工程投资 953.35 万元。
(二)设备购置
项目计划购置设备共计 78 台(套),设备购置费 1332.17 万元。
(三)产能规模
项目计划总投资 4463.20 万元;预计年实现营业收入 10045.00 万元。
第四章
项目选址说明
一、项目选址原则
项目建设区域以城市总体规划为依据,布局相对独立,便于集中开展科研、生产经营和管理活动,并且统筹考虑用地与城市发展的关系,与项目建设地的建成区有较方便的联系。项目建设方案力求在满足项目产品生产工艺、消防安全、环境保护卫生等要求的前提下尽量合并建筑;充分利用自然空间,坚决贯彻执行“十分珍惜和合理利用土地”的基本国策,因地制宜合理布置。
二、项目选址
该项目选址位于 xx 经济技术开发区。
园区是经省人民政府批准成立的省级经济园区,园区位于市区东侧。园区区域面积 80平方公里。经过十多年的开发建设,园区已建成了完善的工业基础设置和综合配套服务设施,创造了规范的法制环境,并已通过 ISO14000 环境管理体系认证。园区建有完善的服务体系,创业中心、项目服务中心、经贸局等可为各类企业提供周到细致的全面服务。优越的投资环境吸引了众多客商前来兴办企业,目前在园区注册的企业近3000 家,其中工业企业 2000 余家,外商投资企业 300 余
家。当地制定了一系列配套优惠政策,按照“精简、高效”的原则设置内部机构,对区内企业实行“一条龙”跟踪服务,具有了“小政府、大社会”,“小机构、大服务”的功能。几年来,高新区以引进高新技术项目为重点,形成了新材料、交通、环保设备、电子信息等为重点的产业框架。园区深入贯彻落实党中央、国务院和省委、省政府的决策部署,牢固树立和自觉践行创新、协调、绿色、开放、共享五大发展理念,坚持问题导向、底线思维,推进供给侧结构性改革,厚植优势、补齐短板,着力破除制约民间投资发展的体制机制障碍,提升行政服务效能,改善投资环境,强化要素保障,不断提升民营经济对需求变化的适应性和灵活性,推动经济发展向高中速、高中端转型,为高水平全面建成小康社会奠定坚实基础。
三、建设条件分析
项目承办单位现有资产运营优良,财务管理制度健全且完善,企业的资金雄厚,凭借优异的产品质量、严谨科学的管理和灵活通畅的销售网络,连年实现盈利,能够为项目建设提供充足的计划自筹资金。项目建设得到了当地人民政府和主管部门的高度重视,土地管理部门、规划管理部门、建设管理部门等提出了具体的实施方案与保障措施,并给予充分的肯定;其二,项目建设区域水、电、气等资源供给充足,可满足项目实施后正常生产之要求;其三,投资项目可依托项目建设地成熟的公用工程、辅助工程、储运设施等富余资源及丰富的劳动力资源、完善的社会化服务体系,从而加快项目建设进度,降低建设成本,节约项目投资,提高项目承办单位综合经济效益。项目承办单位自成立以来始终坚持“自主创新、自主研发”的理念,始终把提升创新能力作为企业竞争的最重要手段,因此,积累了一定的项目产品技术优势。项目承办单位在项目产品开发、设计、制造、检测等方面形成了一套完整的质量保证和管理体系,通过了 ISO9000 质量体系认证,赢得了用户的信赖和认可。
四、用地控制指标
投资项目占地税收产出率符合国土资源部发布的《工业项目建设用地控制指标》(国土资发【2008】24 号)中规定的产品制造行业占地税收产出率≥150.00 万元/公顷的规定;同时,满足项目建设地确定的“占地税收产出率≥150.00 万元/公顷”的具体要求。投资项目占地产出收益率完全符合国土资源部发布的《工业项目建设用地控制指标》(国土资发【2008】24 号)中规定的行业产品制造行业占地产出收益率≥5000.00 万元/公顷的规定;同时,满足项目建设地确定的“占地产出收益率≥6000.00 万元/公顷”的具体要求。投资项目土地综合利
用率 100.00%,完全符合国土资源部发布的《工业项目建设用地控制指标》(国土资发【2008】24 号)中规定的产品制造行业土地综合利用率≥90.00%的规定;同时,满足项目建设地确定的“土地综合利用率≥95.00%”的具体要求。
五、用地总体要求
本期工程项目建设规划建筑系数 65.39%,建筑容积率 1.01,建设区域绿化覆盖率 6.78%,固定资产投资强度 187.32 万元/亩。
土建工程投资一览表
序号 项目 占地面积(㎡)
基底面积(㎡)
建筑面积(㎡)
计容面积(㎡)
投资(万元)
主体生产工程
5029.34
5029.34
8543.17
8543.17
815.39
1.1
主要生产车间
3017.60
3017.60
5125.90
5125.90
505.54
1.2
辅助生产车间
1609.39
1609.39
2733.81
2733.81
260.92
1.3
其他生产车间
402.35
402.35
495.50
495.50
48.92
仓储工程
1067.04
1067.04
1588.85
1588.85
110.29
2.1
成品贮存
266.76
266.76
397.21
397.21
27.57
2.2
原料仓储
554.86
554.86
826.20
826.20
57.35
2.3
辅助材料仓库
245.42
245.42
365.44
365.44
25.37
供配电工程
56.91
56.91
56.91
56.91
4.44
3.1
供配电室
56.91
56.91
56.91
56.91
4.44
给排水工程
65.45
65.45
65.45
65.45
3.98
4.1
给排水
65.45
65.45
65.45
65.45
3.98
服务性工程
675.79
675.79
675.79
675.79
46.91
5.1
办公用房
321.40
321.40
321.40
321.40
26.77
5.2
生活服务
354.39
354.39
354.39
354.39
27.17
消防及环保工程
190.65
190.65
190.65
190.65
14.89
6.1
消防环保工程
190.65
190.65
190.65
190.65
14.89
项目总图工程
28.45
28.45
28.45
28.45
-69.32
7.1
场地及道路硬化
1964.32
287.28
287.28
7.2
场区围墙
287.28
1964.32
1964.32
7.3
安全保卫室
28.45
28.45
28.45
28.45
绿化工程
764.72
26.77
合计
7113.63
10987.56
10987.56
953.35
六、节约用地措施
投资项目建设认真贯彻执行专业化生产的原则,除了主要生产过程和关键工序由项目承办单位实施外,其他附属商品采取外协(外购)的方式,从而减少重复建设,节约了资金、能源和土地资源。
七、总图布置方案
(一)平面布置总体设计原则
根据项目承办单位发展趋势,综合考虑工艺、土建、公用等各种技术因素,做到总图合理布置,达到“规划投资省、建设工期短、生产成本低、土地综合利用率高”的效果。按照建(构)筑物的生产性质和使用功能,项目总体设计根据物流关系将场区划分为生产区、办公生活区、公用设施区等三个功能区,要求功能分区明确,人流、物
流便捷流畅,生产工艺流程顺畅简捷;这样布置既能充分利用现有场地,有利于生产设施的联系,又有利于外部水、电、气等能源的接入,管线敷设短捷,相互联系方便。
(二)主要工程布置设计要求
道路在项目建设场区内呈环状布置,拟采用城市型水泥混凝土路面结构形式,可以满足不同运输车辆行驶的功能要求。
(三)绿化设计
投资项目绿化的重点是场区周边、办公区及主要道路两侧的空地,美化的重点是办公区,场区周边以高大乔木为主,办公区以绿色草坪、花坛为主,道路两侧以观赏树木、绿篱、草坪为主,适当结合花坛和垂直绿化,起到环境保护与美观的作用,创造一个“环境优美、统一协调”的建筑空间。场区绿化设计要达到“营造严谨开放的交流环境,催人奋进的工作环境,舒适宜人的休闲环境,和谐统一的生态环境”之目的。
(四)辅助工程设计
1、消防水源采用低压制,同一时间内按火灾一次考虑,室内外均设环状消防管网,室外消火栓间距不大于 100.00 米,消火栓距道路边不大于 2.00 米。投资项目用水由项目建设地给水管网统一供给,规划
在场区内建设完善的给水管网,接入场区外部现有给水管网,即可保证项目的正常用水。
2、投资项目厂房排水方案采用室内悬吊管接入主管排至室外,室外排水采用暗沟、雨水井、检修井、下水管组成的排水系统。投资项目水源来自场界外的项目建设地市政供水管网,项目建设区现有给、排水系统设施完备可以满足投资项目使用要求。
3、车间电缆进户处要做重复接地,接地电阻小于 10.00 欧姆,其他特殊设备的工作接地电阻应按满足相应设备的接地电阻要求。
4、车间采用传统的热水循环取暖形式,其他厂房及办公室采用燃气辐射采暖形式。有空调要求的办公室和生活间夏季设置空调,空调温度范围要求为 26.00℃-28.00℃,空调设备采用分体式空调控制器。项目承办单位设计提供监控系统的基本要求和配置;选用系统设备时,各配套设备的性能及技术要求应协调一致,系统配置的详细清单及安装、辅助材料待确定系统成套供货商后,按技术要求由成套厂商提供;系统应由资信地位可靠、具有相关资质、有一定业绩、服务良好、具有现场安装调试、开车运行经验、能做到“交钥匙”工程的成套厂商配套供货,并应对项目承办单位操作人员进行相关的技术培训。
八、运输组成
(一)运输组成总体设计
1、项目建设规划区内部和外部运输做到物料流向合理,场内部和外部运输、接卸、贮存形成完整的、连续的工作系统,尽量使场内、外的运输与车间内部运输密切结合统一考虑。
2、外部运输和内部运输可采用送货制;采用合适的运输方式和运输路线,使企业的物流组成达到合理优化;把企业的组成内部从原材料输入、产品外运以及车间与车间、车间与仓库、车间内部各工序之间的物料流动都作为整体系统进行物流系统设计,使全场物料运输形成有机的整体。
(二)场内运输
1、场内运输系统的设计要注意物料支撑状态的选择,尽量做到物料不落地,使之有利于搬运;运输线路的布置,应尽量减少货流与人流相交叉,以保证运输的安全。
2、场内运输主要为原材料的卸车进库;生产过程中原材料、半成品和成品的转运,以及成品的装车外运;场内运输由装载机、叉车及胶轮车承担,其费用记入主车间设备配套费中,本期工程项目资源配置可满足场内运输的需求。
(三)场外运输
1、场外运输主要为原材料的供给以及产品的外运;产品的远距离运输由汽车或铁路运输解决,区域内社会运输力量充足,可满足本期工程项目场外远距离运输的需求。
2、短距离的运输任务将利用社会运力解决,基本可以满足各类运输需求,因此,本期工程项目不考虑增加汽车运输设备。
3、外部运输应尽量依托社会运输力量,从而减少固定资产投资;主要产成品、大宗原材料的运输,应避免多次倒运,从而降低运输成本且提高运输效率。
4、该项目所涉及的原辅材料的运入,成品的运出所需运输车辆,全部依托社会运输能力解决。
(四)运输方式
由于需要考虑氢燃料电池产品所涉及的原辅材料和成品的运输,运输需求量较大,初步考虑铁路运输与公路运输方式相结合的运输方式。
九、选址综合评价
拟建项目用地位置周围 5.00 千米以内没有地下矿藏、文物和历史文化遗址,项目建设不影响周围军事设施建设和使用,也不影响河道的防洪和排涝。综上所述,项目选址位在项目建设地工业项目占地规
划区,该区域地势平坦开阔,四周无污染源、自然景观及保护文物;供电、供水可靠,给、排水方便,而且,交通便利、通讯便捷、远离居民区;所以,从场址周围环境概况、资源和能源的利用情况以及对周围环境的影响分析,拟建工程的场址选择是科学合理的。
第五章
土建方案说明
一、建筑工程设计原则
项目承办单位本着“适用、安全、经济、美观”的原则并遵照国家建筑设计规范进行项目建筑工程设计;在满足投资项目生产工艺设备要求的前提下,力求布局合理、造型美观、色彩协调、施工方便,努力建设既有时代感又有地方特色的工业建筑群的新形象。项目承办单位本着“适用、安全、经济、美观”的原则并遵照国家建筑设计规范进行项目建筑工程设计;在满足投资项目生产工艺设备要求的前提下,力求布局合理、造型美观、色彩协调、施工方便,努力建设既有时代感又有地方特色的工业建筑群的新形象。
二、项目工程建设标准规范
1、《无障碍设计规范》
2、《民用建筑供暖通风与空气调节设计规范》
3、《民用建筑设计通则》
4、《屋面工程技术规范》
5、《建筑工程抗震设防分类标准》
6、《地下工程防水技术规范》
7、《自动喷水灭火系统设计规范》
8、《建筑结构可靠度设计统一标准》
9、《汽车库、修车库、停车库设计防火规范》
10、《工业建筑防腐设计规范》
11、《动力机器基础设计规范》
12、《钢结构设计规范》
三、项目总平面设计要求
应留有发展或改、扩建余地。应有完整的绿化规划。功能分区合理,人流、车流、物流路线清楚,避免或减少交叉。建筑布局紧凑、交通便捷、管理方便。本次设计充分考虑现有设施布局及周边现状,力求设施联系密切浑然一体,总体上达到功能分区明确、布局合理、联系方便、互不干扰的效果。
四、建筑设计规范和标准
1、《砌体结构设计规范》
2、《建筑地基基础设计规范》
3、《建筑结构荷载规范》
4、《混凝土结构设计规范》
5、《建筑抗震设计规范》
6、《钢结构设计规范》
五、土建工程设计年限及安全等级
根据《建筑结构可靠度设计统一标准》(GB50068)的规定,投资项目中所有建(构)筑物均按永久性建筑要求设计,使用年限为 50.00年。建筑结构的安全等级是根据建筑物结构破坏可能产生的后果(危及人的生命、造成经济损失)的严重性来划分的,本工程结构安全等级设计为Ⅰ级。
六、建筑工程设计总体要求
本项目设计必须认真执行国家的技术经济政策及现行的有关规范,根据国民经济发展的需要,按照市规划和环境保护等规划的要求,统筹安排、因地制宜,做到技术先进、经济合理、安全适用、功能齐全、确保建筑工程质量。该项目建筑设计及结构设计在满足生产工艺要求的前提下,尽量贯彻工业厂房联合化、露天化、结构轻型化原则,并注意因地制宜。对采光通风、保温隔热、防火、防腐、抗震等均按国家现行规范、规程和规定执行,努力做到场房设计保障安全、技术先进、经济合理、美观适用,同时方便施工、安装和维修。
七、土建工程建设指标
本期工程项目预计总建筑面积 10987.56平方米,其中:计容建筑面积 10987.56平方米,计划建筑工程投资 953.35 万元,占项目总投资的 21.36%。
第六章
项目工艺技术
一、项目建设期原辅材料供应情况
该氢燃料电池项目在施工期间所需的原辅材料主要是:钢材、木材、水泥和各种建筑及装饰材料,项目周边市场均有供货厂家(商户),能够满足项目建设的需求。
二、项目运营期原辅材料采购及管理
投资项目原料采购后应按质量(等级)要求贮存在原料仓库内,同时,对辅助材料购置的要求均为事先检验以保证辅助材料的质量和生产需要,不合格原材料不得进入公司仓库,应严把原材料质量关,确保生产质量。投资项目的成品及包装材料分别贮存于各分类仓库内;仓库应符合所存物品的存放条件、建立责任体系、保证存放安全;项目承办单位建立健全 ISO9000 质量管理和质量保证体系和检验手段,确保项目所需物品存储纳入这一体系统一管理。项目所需原料来源应稳定可靠,建成后应保证原料的质量和连续供应。
二、技术管理特点
项目产品流程化设计:在设计阶段引入 CAE 分析,避免过多的“设计―分析循环”,明显减少设计总费用和设计周期。产品的流程化设计包括从三维的几何造型设计、ANSYS 分析到产品实验,通过 CAD
和 CAE 的平滑过度双向互动,进而避免 CAD 与 CAE 的重复工作,提高设计效率,通过流程化控制提高设计制造质量的稳定性。投资项目项目产品制造质量控制将按 ISO9000 体系标准组织生产,从业务流程与组织结构等方面来确保产品各环节处于受控状态,同时,项目承办单位推行精益生产(JIT、LEAN)、供应商库存管理(VMI)、全面质量管理(TQM)等先进的管理手段和管理技术。项目产品制造执行系统(MES):制造执行系统的作用是在项目承办单位信息系统中承上启下,在生产过程与管理之间架起了一座信息沟通的桥梁,对生产过程进行及时响应,使用准确的数据对生产过程进行控制和调整。
三、项目工艺技术设计方案
(一)工艺技术方案要求
对于项目产品生产技术方案的选用,遵循“技术上先进可行,经济上合理有利,综合利用资源”的进步原则,采用先进的集散型控制系统,由计算机统一控制整个生产线的各工艺参数,使产品质量稳定在高水平上,同时可降低物料的消耗。对于项目产品生产技术方案的选用,遵循“技术上先进可行,经济上合理有利,综合利用资源”的进步原则,采用先进的集散型控制系统,由计算机统一控制整个生产线的各工艺参数,使产品质量稳定在高水平上,同时可降低物料的消
耗。积极采用新技术、新工艺和高效率专用设备,使用高质量的原辅材料,稳定和提高产品质量,制造高附加值的产品,提高项目承办单位市场竞争能力。
(二)项目技术优势分析
四、设备选型方案
以甄选优质供应商为原则;选择设备交货期应满足工程进度的需要,售后服务好、安装调试及时、可靠并能及时提供备品备件的设备生产厂家,力求减少项目投资,最大限度地降低投资风险;投资项目主要工艺设备及仪器基本上采用国产设备,选用生产设备厂家具有国内一流技术装备,企业管理科学达到国际认证标准要求。工艺装备以专用设备为主,必须达到技术先进、性能可靠、性能价格比合理,使项目承办单位能够以合理的投资获得生产高质量项目产品的生产设备;对生产设备进行合理配置,充分发挥各类设备的最佳技术水平;在满足生产工艺要求的前提下,力求经济合理;充分考虑设备的正常运转费用,以保证在生产相关行业相同产品时,能够保持最低的生产成本。
项目拟选购国内先进的关键工艺设备和国内外先进的检测设备,预计购置安装主要设备共计 78 台(套),设备购置费 1332.17 万元。
第七章
项目环境影响分析
创建绿色工厂,按照厂房集约化、原料无害化、生产洁净化、废物资源化、能源低碳化的原则分类创建绿色工厂。引导企业按照绿色工厂建设标准建造、改造和管理厂房,集约利用厂区。鼓励企业使用清洁原料,对各种物料严格分选、分别堆放,避免污染。优先选用先进的清洁生产技术和高效末端治理装备,推动水、气、固体污染物资源化和无害化利用,降低厂界环境噪声、振动以及污染物排放,营造良好的职业卫生环境。采用电热联供、电热冷联供等技术提高工厂一次能源利用率,设置余热回收系统,有效利用工艺过程和设备产生的余(废)热。提高工厂清洁和可再生能源的使用比例,建设厂区光伏电站、储能系统、智能微电网和能管中心。绿色发展、循环发展、低碳发展是相辅相成的,相互促进的,可构成一个有机整体。绿色化是发展的新要求和转型主线,循环是提高资源效率的途径,低碳是能源战略调整的目标。从内涵看,绿色发展更为宽泛,涵盖循环发展和低碳发展的核心内容,循环发展、低碳发展则是绿色发展的重要路径和形式,因此,可以用绿色化来统一表述。
一、建设区域环境质量现状
投资项目建设地点―项目建设地主要大气污染物为二氧化硫、二氧化碳和 PM10,根据当地环境监测部门连续 5.00 天监测数据显示,项目建设区域监测到的二氧化硫、PM10 和二氧化碳浓度较低,达到《环境空气质量标准》Ⅱ级标准要求,未出现超标现象,环境空气质量本底值较好。投资项目建设地点―项目建设地主要大气污染物为二氧化硫、二氧化碳和 PM10,根据当地环境监测部门连续 5.00 天监测数据显示,项目建设区域监测到的二氧化硫、PM10 和二氧化碳浓度较低,达到《环境空气质量标准》Ⅱ级标准要求,未出现超标现象,环境空气质量本底值较好。项目建设区域 CODcr、BOD5、氨氮值浓度均不超标,CODcr 质量指数在 0.43-0.50 之间,BOD5 质量指数在 0.29-0.32 之间,氨氮质量指数在 0.26-0.27 之间,硫化物未检出,由此可见,项目建设区域地表水环境质量标准执行《地表水环境质量标准》(GB3838-2002)Ⅲ类标准。
二、建设期环境保护
(一)建设期大气环境影响防治对策
对施工场地、施工道路应适时洒水、清扫,在施工场地每天洒水抑尘作业四至五次,可使扬尘造成的 TSP 污染距离减小到 30.00 米以内范围。
(二)建设期噪声环境影响防治对策
项目建设承包单位应加强施工管理,合理安排施工作业时间,午间(12:00-14:00)及晚间(22:00-6:00)严禁高噪设备施工,降低人为噪声,合理布局施工现场,严格按照施工噪声管理的有关规定执行,在施工过程中,施工单位应严格执行《建筑施工场界噪声限值》(GB12523)中的有关规定,避免施工噪声扰民事件的发生。施工噪声是居民特别敏感的污染源之一,根据目前的机械制造水平,它即不可避免又不能从根本上采取噪声控制措施予以消除,只能通过加强施工产噪设备的管理,以减轻施工噪声对周围环境的影响;通过以上计算结果表明,在施工过程中高噪机械产生的噪声影响范围昼间为 45.00米-120.00 米、夜间为 140.00 米-350.00 米,项目所处位置为区域环境噪声的Ⅱ类区
(三)建设期水环境影响防治对策
施工现场因地制宜建造沉淀池、隔油池等污水临时处理设施,对含油量较高的施工机械冲洗水或悬浮物含量较高的其他施工废水需经处理后方可排放;砂浆、石灰等废液宜集中处理,干燥后与固体废弃物一起处置。施工单位应设置临时厕所等生活设施;施工人员生活所产生的少量生活废水,主要污染物是:COD、氨氮、SS 等,生活废水经
临时化粪池处理,达到《污水综合排放标准》(GB8978)Ⅱ级标准后排入附近的水体,对受纳水体的水质影响较小。
(四)建设期固体废弃物环境影响防治 对策
施工单位在开工前,应当与当地环境卫生行政主管部门签订环境卫生责任书,对施工过程中产生的渣土和各类建筑垃圾应当及时清理,保持施工现场整洁;在建设期间,应认真核实土石方量避免多余弃土,多余废弃物和弃土必须及时清运,以免影响周围环境。
(五)建设期生态环境保护措施
简述了插电式燃料电池轿车的结构,重点介绍其各主要部件的模型结构和建模原理,最后在Matlab平台上将所建的.整车模型与整车控制策略模型进行联合仿真,仿真分析结果验证了整车模型的正确性和整车控制策略的有效性.
作 者:寇改红 何彬 刘奋 王松 Kou Gaihong He Bin Liu Fen Wang Song 作者单位:寇改红,何彬,刘奋,Kou Gaihong,He Bin,Liu Fen(上海汽车集团股份有限公司)
王松,Wang Song(上海大众汽车有限公司)
2013年8月14日,欧盟联合研究中心同美国能源部阿尔贡国家实验室签署聚合物电解质燃料电池测试程序协议,标志着双方迈出了燃料电池技术标准国际化的第一步。近年来,全球燃料电池与燃料电池堆栈技术发展迅速,已展现出在道路交通电动汽车行业广泛应用的前景。协议的签署,有利于双方在燃料电池测试技术与测试方法上的相互协调与标准化,扩大双方间燃料电池技术的信息交流与数据交换,加速燃料电池技术的商业化应用进程。
根据燃料电池国际专家组最新提供的研究报告,“从国际视角看燃料电池测试协议”显示,签署国际协议的重要性和必要性显而易见。目前,世界上燃料电池主要存在两大类性能测试方法和五大类负荷曲线,包括占空比的耐久性测试方法。其中,美国以动态应力测试法为主,而欧盟以新欧洲驾驶循环模拟汽车功率测试法为主。暂且不论不同测试方法提供的数据参数准确性与误差率,仅不同测试方法很可能导致的不同技术发展路线,包括国际间燃料电池技术参数的对比交换,必将造成延迟燃料电池技术商业化应用的严重后果。
双方代表在测试程序协议签字仪式后表示,欧盟美国将加强燃料电池这一战略能源新兴技术领域的科技合作,积极推动燃料电池技术标准的国际化。
世界燃料电池汽车技术发展大致经历了两个阶段,2005年以前,戴姆勒、福特、丰田、本田等公司完成了以第一代燃料电池为基础的燃料电池汽车开发,通过验证,初步证明燃料电池运用于汽车上是可行的,但是,昂贵的成本(1万美元/kWh)与较短的寿命(2000小时)使得人们对燃料电池产业化的期望有所下降;2005年以后,燃料电池汽车在寿命、成本等关键难点取得了出乎意料的进展,燃料电池汽车技术进入了可喜的第二阶段。
在寿命方面,对燃料电池和系统进行了许多改进和优化,且普遍采用了燃料电池与蓄电池的混合动力系统,使得燃料电池处于较平稳的工作状态,国际燃料电池寿命普遍达到高于5000小时的水平。美国UTC Power开发的燃料电池系统在大巴车上实现了近10000小时的运行寿命,可以初步满足要求。
在成本方面,一方面由小量研制的产品到未来大批量生产的实现,成本会大幅度降低;另一方面,燃料电池中高含量的铂金催化剂成本高,人们正在研发低铂金或非铂金催化剂,并已取得进展。2007年以前,一辆燃料电池汽车需要铂金约100g。现在有望降至每辆车30g。如果采取电池一燃料电池混合动力方式,只需要铂金15g,进一步的目标是朝着3~5g努力。
成本与寿命的突破性进展,增强了对燃料电池汽车产业化的信心。德国戴姆勒公司开发的燃料电池B级车,主要性能已经达到传统内燃机汽车水平,该车计划2014年量产。日本丰田公司所开发燃料电池SUV车计划2015年达到5万美元/辆,并进入到市场导入阶段。日本本田公司的FCX clarity轿车和美国通用公司的Equinox SUV也都在积极进行市场应用准备。
与纯电动汽车比较,燃料电池汽车的重要优点是电源系统能量密度高,同样质量的汽车续驶里程更长。目前国际上燃料电池汽车大都采用70MPa氢罐,储氢约为6kg,每千克氢可释放约19kWh电能,发电量约为110kWh,储氢系统加燃料电池系统质量共约300kg,则电源系统能量密度约为:110kWh÷300Kg=360Wh/kg;而目前车用锂电池系统能量密度低于100Wh/Kg。相比之下,相同质量的燃料电池汽车的续驶能力是目前锂电池电动汽车的三四倍。人们预计,近几年内锂电池单体的比能量只可能提高到150Wh/Kg,系统的比能量达到120Wh/Kg。比能量要想达到200Wh/kg以上,需要更加复杂的安全技术,难度很大。即使达到了,也仍然与燃料电池有差距。
【燃料电池技术论文】推荐阅读:
燃料管理与成本控制探究论文05-27
论文:《原电池原理》07-17
废旧电池处理技术07-28
锂电池防爆技术09-07
动力锂电池技术路线07-21
燃料油买卖合同07-08
燃料油购销合同09-16
火电厂燃料管理制度10-27
电池污染09-07