圆柱的体积习题(精选12篇)
1.把圆柱切开、再拼起来,能得到一个()。长方体的底面积等于圆柱的(),长方体的高等于圆柱的(),因为长方体的体积=底面积×高,所以圆柱的体积=(),用字母表示是()。2.⑴已知圆柱的底面半径和高,求体积。先用公式()求();再用公式()求()。
⑵已知底面直径和高,求体积。先用公式()求();再用公式()求();最后用公式()求()。⑶已知底面周长和高,求体积。先用公式()求();再用公式()求();最后用公式()求()。3.已知圆柱的体积和底面积,求高,用公式();已知圆柱的体积和高,求底面积,用公式()。
4.当圆柱和圆锥()时,圆锥的体积是圆柱体积的1/3。等底等高的圆柱和圆锥,圆柱体积比圆锥体积大()倍,圆锥体积比圆柱体积小()/()。
5.圆锥的体积计算公式用字母表示是()。已知圆锥的体积和底面积,求高,用公式()。
6.长方体的表面积=(),长方体的体积=();正方体的表面积=(),正方体的体积=()。
7.求一个圆柱形水池的占地面积,是求这个水池的();求一个圆柱形水池能装多少水,是求这个水池的()。
8.把一段圆柱形钢材加工成一个最大圆锥,削去的钢材的体积是24立方厘米,这段圆柱形钢材的体积是()立方厘米,加工成的圆锥的体积是()立方厘米。
9.将一段棱长是20厘米的正方体木材,加工成一个最大的圆柱,削去的木材的体积是()立方厘米。
二、解决问题。1.一个圆柱的底面直径是6厘米,高是 2.一个圆柱的底面周长是25.12分米,10厘米,体积是多少? 高是2分米,体积是多少?
3.一个圆锥的底面半径是5米,高是6
4.一个圆锥的底面周长是18.84分
米,体积是多少?
米,高是12分米,体积是多少?
5.一个圆柱的底面周长是37.68厘米,体 6.一个圆锥形沙堆的体积是47.1 积是565.2立方厘米,高是多少厘米? 立方米,底面直径是6米,?高
是多少米
7.一个圆柱形水池的侧面积是94.2平方米,8.一个圆锥形沙堆,底面直径
底面半径是3米,这个水池能装水多少立 是8米,高 是3米。如果每方米?
立方米沙重1.7吨,这堆沙重
多少吨?(得数保留整数)
9.一个圆柱形油桶,从里面量,底面周长是 10.一个圆锥形麦堆,底面周。62.8厘米,高是30厘米。如果1升柴油重 长是25.12米,高是3米 把这 0.85千克,这个油桶可以装柴油多少千克? 些小麦装入一个底面直径是4
米的圆柱形粮囤 内,正好装满,这个粮囤的高是多少米?
11.一段钢管长60厘米,内直径是8厘米,12.一根圆柱形钢管,长3米,外直径是10厘米。这段钢管的体积是 横截面的外直径是20厘米,管
多少立方厘米? 壁厚2厘米。如果每立方厘米钢
重7.8克,这根钢管重多少千克?
13.一个圆柱形的玻璃杯,底面直径为20厘 14.有一块长方体钢坯,长15.7 米,水深24厘米,当放入一个底面直径是
厘米,宽10厘米,高5厘米,6厘米的圆锥形铁块后,水深24.6厘米。
把它熔铸成一个底面周长是31.4 圆锥形铁块的高是多少厘米?
厘米的圆锥形零件,圆锥形零
件的高是多少厘米?
15.把一根长5分米的圆柱形木料沿着与底面 16.把一根长5分米的圆柱形木料沿底面
平行的方向锯成两段后,表面积增加了200 直径锯成两半后,表面积增加了200 平方分米。这根木料的体积是多少立方分米?
一、循序渐进,温故而知新
上课之初,我充分利用主题图,引导学生思考如何求圆柱形柱子的体积和圆柱形水杯的容积,开门见山地让学生明确本节课的学习任务,快速进入学习状态。接着把“知识绣球”抛给学生,让他们根据生活经验寻找解决问题的妙方。他们经过激烈的讨论,得出圆柱体积的算法可能与长方体体积的算法有关。于是,我顺水推舟,让他们回忆了长方体、正方体体积的计算方法以及圆的面积计算公式的推导过程,以便于学生猜想,从而激起学生的好奇心,萌生独立思考问题,探索问题的愿望。
二、动手操作,验证猜想,探索新知
在教学《圆柱的体积》时,虽然学校条件有限,没有现成的学具可供学生实践操作,但是我因地制宜、因材施教,利用课前准备的一个大萝卜和一把小刀作为学生道具。在推导时,我先选出两名同学轮流上前演示,把圆柱形教具的底面平分成16等份,然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;其他同学用提前准备好的圆柱形萝卜,完成切拼活动。接着,引导学生悟出这个长方体的长、宽、高相当于圆柱哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。
三、课件演示,巩固理解
为了让学生更直观、形象地理解圆柱体积计算公式的推导过程,让学生观看课件:圆转化成近似长方形的过程。引导学生想象:“如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?”通过多媒体课件演示,学生不仅对这个切拼过程一目了然,同时又加深理解了圆柱体转化成近似长方体的过程和方法。
四、分层练习,拓展延伸
为了培养学生思维的创造性和解题的灵活性,我在设计练习时多花了些心思去考虑如何让学生在最短的时间完成不同类型的题目。于是采用了分层练习策略。
小结时,提醒学生要从多方面去考虑,做到面面俱到,逐层深入。同时一定要认真读题审题,注意单位统一。
一、循序渐进,温故而知新
上课之初,我充分利用主题图,引导学生思考如何求圆柱形柱子的体积和圆柱形水杯的容积,开门见山地让学生明确本节课的学习任务,快速进入学习状态。接着把“知识绣球”抛给学生,让他们根据生活经验寻找解决问题的妙方。他们经过激烈的讨论,得出圆柱体积的算法可能与长方体体积的算法有关。于是,我顺水推舟,让他们回忆了长方体、正方体体积的计算方法以及圆的面积计算公式的推导过程,以便于学生猜想,从而激起学生的好奇心,萌生独立思考问题,探索问题的愿望。
二、动手操作,验证猜想,探索新知
在教学《圆柱的体积》时,虽然学校条件有限,没有现成的学具可供学生实践操作,但是我因地制宜、因材施教,利用课前准备的一个大萝卜和一把小刀作为学生道具。在推导时,我先选出两名同学轮流上前演示,把圆柱形教具的底面平分成16等份,然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;其他同学用提前准备好的圆柱形萝卜,完成切拼活动。接着,引导学生悟出这个长方体的长、宽、高相当于圆柱哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。
三、课件演示,巩固理解
为了让学生更直观、形象地理解圆柱体积计算公式的推导过程,让学生观看课件:圆转化成近似长方形的过程。引导学生想象:“如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?”通过多媒体课件演示,学生不仅对这个切拼过程一目了然,同时又加深理解了圆柱体转化成近似长方体的过程和方法。
四、分层练习,拓展延伸
为了培养学生思维的创造性和解题的灵活性,我在设计练习时多花了些心思去考虑如何让学生在最短的时间完成不同类型的题目。于是采用了分层练习策略。
小结时,提醒学生要从多方面去考虑,做到面面俱到,逐层深入。同时一定要认真读题审题,注意单位统一。
在本课的教学过程中,不仅使学生获取的知识层次化、系统化,而且提高了他们主动建构知识的能力,同时也发展了他们灵活选择公式解决实际问题的能力。学生学得快乐,教师教得轻松。
教学内容:教材第18、19页圆柱的体积公式,例6,练习三2、3、4题
教学要求:
1.学生动手操作推导出圆柱体积公式
2.学生理解和掌握圆柱体积计算公式并能运用体积计算公式解决问题
3.培养学生初步的空间观念和思维能力,让学生认识“转化“的思考方法。
4.教具准备:圆柱体积教具,多媒体,教学重点:理解和掌握圆柱的体积计算公式。
教学难点:圆柱体积计算公式的推导。
教学过程:
一、情境导入。
多媒体出示圆柱体实物(白宫、故宫、压路机)
这些圆柱的体积应该怎样求呢?(板书课题)
二、大胆设想
1观察
底面积相等,高不相等的两个圆柱体谁的体积大?
高相等,底面积不等的两个圆柱体谁的体积大?
问:你觉得圆柱体体积应该和圆柱的什么有关?(与圆柱的底面积和高有关)
想一想:圆面积是怎样推导出来的?(剪拼法)圆柱是不是也可以用同样的方法推导呢?
三、自主研究: 1.请同学指出圆柱体的底面积和高。
2.实验探究:用圆柱体积教具切割后拼成长方体,探求圆柱体积公式
根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。学生动手操作圆柱体积教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见多媒体)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。3.多媒体动画演示圆柱切割成长方体的过程
4.讨论并得出结果。
你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的体。这个长
方体的底面积等于圆柱体的底面积,这个长方体的高等于圆柱体的高。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:。(板书:圆柱的体积=底面积×高)用字母表示:。(板书:V=Sh)
5.小结:
圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?
四:学以致用
1.出示例6,审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正。
2.填表:
底面积(平方米)
高(米)
体积(立方米)
3 40 4 3.动手实践:让学生测量自带的圆柱体。
提问::如果要知道这个圆柱体积,该用什么方法?让学生说一说是怎样测量的?又是如何计算
五、课堂小结
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式V=Sh。
六、布置作业
练习三,第2,3,4,题。六课外拓展
圆柱切割成长方体后表面积发生什么变化?、七、板书设计:
圆柱的体积
长方体的体积=底面积×高
圆柱的体积=底面积×高
尊敬的各位评委老师,大家好!我是()号考生。今天我说课的内容是《圆柱的体积》,下面我将就这个内容从以下几个方面进行阐述。
一、说教材
1、本课是人教版小学数学六年级下册第三单元第3课时的教学内容。它是在学生学习了长方形、圆等平面图形和长方体、正方体等立体图形并认识了圆柱的特征的基础上进行教学的,为今后学习“圆锥的体积”打下基础。
2、教学目标
根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:
①认知目标:理解圆柱体积公式的推导过程,掌握计算公式。
②能力目标:经历圆柱体积公式的推导过程,体验比较分析,归纳发现的学习方法。
③情感目标:使学生在自我实验的过程中,体验数学问题的探索性和灵活性,增强学生对数学问题的探究力
3、教学重难点
在深入研究教材的基础上,我确定了本节课的 重点是:掌握圆柱的体积公式并加以运用 难点是:掌握圆柱的体积公式并加以运用
二、说教法学法
有这样一句话:听见了,忘记了;看见了,记住了;体验了,理解了。可见让学生感受数学、经历数学、体验数学是学生学习数学的最佳方式。因此,这节课我采用的教法:课前复习法,复习迁移法,引导探究法; 学法是:自主学习法,合作交流法。
三、说教学准备
在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、说教学过程
新课标指出:“教学活动是师生积极参与、交往互动、共同发展的过程”本着这个教学理念,我设计了以下四个教学环节。环节
一、复习旧知,导入新课。
首先,我会给学生呈现一个长方体的长、宽、高和一个正方体的边长,要求学生算出它们的体积,以此让学生回顾计算长方体和正方体体积的公式都是底面积×高。接着,我出示一个圆柱体,问;如何计算圆柱的体积呢?由此引出课题。环节
二、推测猜想,探究新知。1.实验探究,引出猜想
在这一环节,我先向学生提出疑问:如果不用公式,你还能用什么方法来计算圆柱的体积呢?部分学生可能会想到先前学过的梨溢水法,即把圆柱放进装有水的长方体水槽中,水面上升的部分即为圆柱的体积。为此,我会对这些学生的聪明才智给予充分的肯定和表扬。并在此提出疑问:那你能把教室外的那根大圆柱的体积也用这个方法求出来吗?由此学生产生认知冲突,迫切需要找到一种更科学更便捷的方法来求圆柱的体积。我适时让学生进行大胆的猜想,圆柱的体积可能与什么有关呢?并有选择的板书学生的猜想。2.图形转化,验证猜想
在上个环节中,大部分学生都会猜想把圆柱转化为先前学过的长方体或正方体的形式,再用底面积乘以高的方式求出体积。由此,我会让学生拿出学具,以小组合作的形式,动手操作推导圆柱的体积公式,并提出以下问题: A.圆柱转化成长方体或正方体后,什么改变了?什么没有改变? B.长方体或正方体的底面积等于圆柱的什么?高等于圆柱的什么?
在小组合作时,我会参与到其中并指导学生把圆柱体拼成近似的长方体,引导学生将长方体的底面积和高与圆柱的相应部分对照起来,把握之间的关系。在小组展示后,我会利用课件动态,演示拼成的过程,让学生感受到分的份数越多,拼成的图形越接近长方体,初步渗透极限的数学思想。并让学生直观的发现,长方体的底面积就是圆柱的底面积,长方体的高就是圆柱的高,从而得到圆柱体积的计算公式也为底面积x高,用字母表示为:V=sh。
用猜想验证的方式,让学生在动手操作的过程中,渗透极限的数学思想,充分的体验圆柱体体积的计算公式,3.利用新知,解题应用。
1、在教学例6之前,我先引导学生由已知圆柱底面的半径和高改写圆柱的体积公式,即:
V=π r² h/
2、在学生全面把握圆柱体体积公式后,我将出示例6,组织学生审题,明确求圆柱体杯子的容积跟圆柱体积的计算方法一样,学生独立解答后反馈答题步骤,着重说明在没有直接给出底面积的情况下,应先求出底面积,再求体积。
环节
三、巩固提高,学以致用
这一环节主要是设计层次渐进式的练习第一关:基础题,完成教材25页做一做。
第二关:拓展题,完成练习五第8题,已知一定容积的果汁,分到3个圆柱杯中给客人喝,看是否足够。
第三关:提高题,完成练习五第14题,用一个长20cm, 宽10cm的长方形为轴旋转成两个圆柱,求他们的体积。以训练学生的空间想象能力。
(这样设计练习一是为了巩固基础知识,二是为了让有需要的学生在拓展中得到挑战,从而让不同层次的学生在学习上得到不同的发展)环节
四、归纳总结,畅谈收获
在这个环节,我充分发挥学生的主体作用,让学生总结今天所学知识点,若学生总结不够完善,我再加以补充,强化对知识得认知。
四、板书设计
板书能加强教学的直观性,唤起学生的注意力,为此我的板书设计以简单明了为根本宗旨,重在突出重点,清晰易记。板书设计:
圆柱的体积
圆柱的体积=底面积×高 V=sh
本节课的教学内容是:圆柱的体积计算公式的推导及练习,本节课的教学目标是:使学生知道圆柱体体积的推导过程,理解并掌握求圆柱体体积的计算公式,并能正确地应用公式计算圆柱体积。本节课的教学重点是:圆柱体体积计算公式。教学难点是:圆柱体割拼组合教学。第一方面:成功之处
1、教师能围绕本节课的教学内容有目的、有针对性地进行复习,为后面圆柱体体积的计算埋下伏笔。
2、传统教学与现代化教学相结合。圆柱体体积的推导过程中,教师首先把实物圆柱体模型进行分解,再组合成一个已学过的长方体进行推导,但南老师觉得还不够透彻,因此,又利用多媒体现代化教学手段把推导过程重新回顾一遍,这样就把传统教学与现代化教学有机地结合再一起,突破了教学难点。
3、针对本节课所学知识内容,安排练习,由易到难,由浅入深,使学生当堂掌握所学的新知识,并通过练习达到一定技能。
4、本节课,让学生动手、动脑,参与教学全过程,较好地处理教与学,练与学的关系,达到了一定的教学效果。第二方面处:探讨之处
1、课堂教学环节如能先复习圆的面积计算公式及立体图形的体积计算公式,再出示课题进而传授新知识,整堂课的结构应该会更完整一些。
2、本节课学生的主体性没有充分展示出来,例如:在体积公式的推导过程中,教师如能让学生自己去探讨长方体的底面积和高与圆柱的底面积和高的关系,从而推出圆柱体的体积公式,这样学生在课堂中的主体性就能充分发挥出来。
3、在“讨论”这一环节中,应该是“已知圆柱的底面半径和高,怎样求圆柱的体积”而不是“已知圆的半径和高”,圆哪来的高,因此这里表述的不够准确。
第一,我们在集中讲解时可穿插一些单位换算的练习等,从而避免学生误用单位名称;
第二,在计算以长方形的一边为轴旋转得到的圆柱体积和计算直接将长方形卷成的圆柱体积之前,我们可先组织学生自己动手操作、观察比较,让学生们自己发现圆柱与长方体各部分之间的关系。
常西完小
李玉双
教学内容:人教版小学数学六年级下册p25 教学目标:
1、知识技能
1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法
2、过程方法
让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、情感态度价值观
通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。教学重点:
圆柱体体积的计算公式的推导过程及其应用。教学难点:
理解圆柱体体积公式的推导过程。
教学准备:圆柱体积公式推导演示学具、多媒体课件。课前思考
这部分内容是在学生已经学会计算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。例5安排第一步教学要达到三个目的,一是认识等底等高的含义,便于判断圆柱可以转化成与它等底等高的长方体。二是从长方体与正方体等底等高,体积也相等的事实,引发等底等高的圆柱与长方体的体积也相等的猜想,形成把圆柱转化成长方体的活动心向。三是复习长方体、正方体的体积公式,圆柱的体积最终也要这样计算。
练习五的第1题巩固圆柱的体积公式,第2题解决实际问题的过程中进一步理解和掌握圆柱的体积公式,感受数学知识的应用价值。第5题动手操作,把所学知识应用到实际生活,第6题,提高应用公式的能力,体会底面积、侧面积、表面积和容积概念及计算中的联系和区别,思考题进一步培养学生的空间想象能力和综合应用数学知识解决实际问题的能力。
教学过程:
一、情境导入
师:同学们,这个杯子(圆柱形)能装多少水?你能用什么方法计算水的体积?(生答略)
师:如果是一个圆柱体木块,你能计算出它的体积来吗?
生:可以将其完全浸没在长方形容器水中
师:假如是大礼堂两旁的的圆柱形水泥柱子,你能想办法计算吗?
生答略
师怎样计算圆柱的体积呢?这节课我们就来进行探究。(板书:圆柱的体积)
二、图柱转化,自主探究,验证猜想。
师
(一)猜想。
1、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。)
[数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师由复习圆面积公式的推导过程入手,实现知识的迁移。]
2、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。
(二)操作验证。
1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。
在操作时,学生分组边操作边讨论以下问题:
(1)拼成的近似长方体的体积与原来的圆柱体积有什么关系?
(2)拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?
(3)拼成的近似长方体的高与原来的圆柱的高有什么关系?
2、小组代表汇报
(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)
3、电脑演示操作
(1)电脑演示圆柱体转化成长方体的过程:
仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的什么?
动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?
(分的分数越多,拼成的图形就越接近长方体)(2)根据学生的观察、分析、推想,老师完成板书:
长方体的体积=底面积×高
圆柱的体积=底面积×高
V=Sh
(3)你的猜想正确吗?学生齐读圆柱的体积计算公式。
三、练习巩固,灵活应用
1、教材第25页做一做1、2题。
2、教材第28页练习五第1题。
学生讨论、交流、汇报。
小结:解决以上问题的关键是先求出什么?(生:底面积)
3.下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的。)学生在练习本上独立完成,集体反馈。
四、课堂小结
学习本节课你有哪些收获?还有哪些疑惑?(生汇报收获)
五、布置作业
教科书第21页练习三第1-4题。
板书设计:
圆柱的体积
长方体的体积=底面积×高
圆柱的体积=底面积×高
V
= S
长安希望小学—刘会兰
一、设计说明
本节课是在学生已经了解了圆柱的特征,掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的。根据学生的认知水平和已有经验,本节课在教学设计上体现了以下几个特点:
1.创设问题情境,点燃探索激情。
基于“数学来源于生活,又应用于生活”这一理念,教学过程中通过呈现身边圆柱的体积问题,使学生感受到数学与现实生活的密切联系,认识到学习圆柱的体积计算公式的必要性,从而激发了学生的探究兴趣,使学习成为学生自觉的需求。
2.注重直观教学,引导合作迁移。
数学理论的表述往往是抽象的,它影响了学生数学思维的发展,所以,教学中通过圆的面积公式的推导过程来再利用课件演示等直观教学手段帮助学生推导出圆柱体积的计算公式,使学生从感性认识上升到理性认识,体会到知识的由来。
3.渗透数学思想,发展数学思考。
在本节课的教学中,充分利用教材内容,对学生有效地进行转化思想的渗透,使学生在体会运用转化思想可以化难为易、化复杂为简单、化生疏为熟悉等作用的同时,参与数学活动,提高解决问题的能力。
二、课前准备
教师准备 PPT课件
三、教学目标:
1、理解圆柱体积公式的推导过程。掌握圆柱的体积计算公式的推导过程,会运用公式计算圆柱的体积
2、体会转化的思想方法。
四、教学重难点 :
1.掌握圆柱的体积公式,并能运用其解决简单实际问题。2.理解圆柱体积公式的推导过程。
五、教学过程
(一)⊙情境引入
1.出示图片,提出问题,图中的压路机的轮子的体积和大楼的柱子的体积该怎样计算?激发学生的学习兴趣。
2.引入:这节课我们就一起来探究圆柱体积的计算方法。(板书课题:圆柱的体积)
(二)新课教学
1.先让学生回忆圆的面积公式的推导过程,大胆地猜想圆柱的体积我们是否也可以转化成已学的长方体的体积来计算。师:根据学过的知识,你认为该怎样求圆柱的体积呢? 预设
生:先把圆柱的底面平均分成若干份扇形块(偶数份),再沿高切割,应该能够拼成一个近似的长方体,圆柱的体积可能也是用底面积乘高来计算的。
2、引导发现。
师:通过实验你们发现什么变了?什么没变? 预设
生1:拼成的近似长方体和圆柱相比,体积大小没变,形状变了。生2:拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没变。
生3:近似长方体的高就是圆柱的高,没有变化。
课件演示:把圆柱的底面分成若干份相等的扇形(16、32、64等份),然后把圆柱沿高切开,拼成近似的长方体。分的等份越多,拼成的图形越接近长方体,但不是精确的长方体。
3、推导圆柱的体积计算公式。
①你认为圆柱的体积怎样计算?为什么?
(圆柱的体积=底面积×高。因为近似长方体的体积可以用底面积乘高来计算,而在推导的过程中,圆柱的底面积等于近似长方体的底面积,圆柱的高等于近似长方体的高,所以圆柱的体积也可以用底面积乘高来计算。板书:圆柱的体积=底面积×高)②怎样用字母公式表示?
(学生自学教材25页例5下面的一段话,并用字母表示公式。学生反馈自学情况:V=Sh或V=πr2h。板书:V=Sh V=πr2h)
4、应用圆柱的体积计算公式解决问题。
(1)课件出示例:一根圆柱形柱子的底面半径是0.4米,高5米,它的体积是多少?
引导学生思考:要求圆柱的体积,必须知道什么和什么?已经知道什么,还要求什么?师:计算柱子子的体积时,需要先求出底面积。教师板演:柱子的底面积:略 柱子的体积:略 答:
设计意图:先通过让学生学会根据公式比较→推理等找到计算方法。灵活地用它解决相关问题,使学生的创新精神得到培养,实践能力得到提高。
(三)⊙巩固发展
练习:一个圆柱形水桶。从桶内量,底面直径是3分米,高4分米,这个水桶的容积是多少?
(5)讨论:①圆柱的体积与哪些有关? 巩固练习:
(5)这节课你有哪些收获?
(四)⊙布置作业
板书设计 圆柱的体积
圆柱的体积=底面积×高
V=Sh或V=πrh
例:圆柱的体积的大小由圆柱的底面积和体积共同确定
积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。
我让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验:有的组用捏橡皮泥的方法,有的组用到沙子的方法;有的组用计算的方法。让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。接着我趁热打铁,让学生想一想等积等高的时候,圆柱和圆锥有什么样的关系?等积等底的时候,圆柱和圆锥又会有什么样的关系?这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。
圆锥的体积这节课的教学具有下面的特点,一是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;二是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验
在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。
教材中圆锥体积的相对练习较少,但在考试里面实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或三分之四个圆柱的体积),而它们的体积相差2个圆锥的体积(或三分之二个圆柱的体积)??。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘三分之二从而使计算简便。
教学的最后我与孩子们一起通过大量的练习,引导总结出了圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆柱的3倍,圆柱的底面积(或高)是圆锥的三分之一。
教学目标:
1.结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。
2.让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。
教学重点:
理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。
教学准点:
掌握圆柱体积公式的推导过程。
教学准备:
圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。
教学过程:
一、情境激趣导入新课
1、课始师首先出示一个长方体和一个正方体,说说怎样求它们的体积,接着师往正方体容器中倒入一定量的水,然后拿出一个圆柱形物体准备投入水中并让学生观察:有什么现象发生?由这个发现你想到了些什么?
2、提问:“能用一句话说说什么是圆柱的体积吗?” (板书课题)
二、自主探究, 学习新知
(一)设疑
1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?
2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?
3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)
师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式
(二)猜想
1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?
2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?
(三)验证
1、为了证实刚才的猜想,我们可以通过实验来验证。怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)
2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)
3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。
4、根据学生操作,师再次课件演示圆柱转化成长方体的过程。并引导学生分析当分的份数越多时,拼成的图形越接近长方体。
5、通过上面的观察小组讨论:
(1) 圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?
(2) 长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?
(3) 长方体的高与原来圆柱体的哪部分有关系?有什么关系?
(4) 你认为圆柱的体积可以怎样计算?
(生汇报交流,师根据学生讲述适时板书。)
小结:把圆柱体转化成长方体后,形状变了,体积不变,长方体的底面积等于圆柱的底面积,高等于圆柱的高,因为长方体的体积等于底面积×高,所以圆柱体积也等于底面积×高,用字母表示是V=Sh。
6、同桌相互说说圆柱体积的推导过程。
7、完成“做一做 ”:一根圆形木料,底面积为75cm2,长是90cm。它的体积是多少?(生练习展示并评价)
8、求圆柱体积要具备什么条件?
9、思考:如果只知道圆柱的底面半径和高,你有办法求出圆柱的体积吗?如果是底面直径和高,或是底面周长和高呢?(学生讨论交流)
小结:可以根据已知条件先求出圆柱的底面积,再求圆柱的体积。
10、出示课前的圆柱,说一说现在你可以用什么办法求出这个圆柱的体积?(测不同数据计算)
11、练一练:列式计算求下列各圆柱体的体积。
(1)底面半径2cm,高5cm。
(2)底面直径6dm,高1m。
(3)底面周长6.28m,高4m。
三、练习巩固拓展提升
1、判断正误:
(1)等底等高的圆柱体和长方体体积相等。………………
(2)一个圆柱的底面积是10cm2,高是5m,它的体积是10×5=50cm3。.....()
(3)圆柱的底面积越大,它的体积就越大。............( )
(4)一个圆柱的体积是80cm3,底面积是20cm2,它的高是4cm。......( )
2、这是我们学校种榕树的一个花坛,测得花坛内直径是4m,花坛内填土高度是0.5m,算一算这个花坛内一共填土多少立方米?
3、学习很愉快,我们来庆祝一下:在一个棱长为20厘米正方体纸盒中,放一个最大的圆柱体蛋糕,系上180厘米长的丝带(打结部分忽略不计),那么这个蛋糕的体积到底是多少呢?
四、全课总结自我评价
通过这节课的学习你有什么感受和收获?
教学反思:
圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。
从本节课教学目标的达成来看,较好地体现了以下几方面:
一、创设生活情境,体现数学生活化。
《新课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我从生活情境入手,创设了一个装水的学具槽放入圆柱学具使水面上升的情境,引导学生观察思考,直观感知圆柱体积的概念,同时意识到过去学的.排水法可以用来求圆柱的体积,紧接着当老师再出示橡皮泥捏成的圆柱体模型,并追问大厅内圆柱的体积等问题时,学生意识到前面所说求体积计算方法的局限性,从而产生思维困惑,进一步激发了探究圆柱体积计算方法的欲望。这样的导入不仅为学生创造了一个十分宽松的生活化学习环境,还为学生后面构建数学模型,发现圆柱体积公式奠定了基础。在练习的设计上,为避免纯数学的计算,我以学生熟悉的学校圆柱形花坛为背景,提出求花坛填土体积这样的问题,让学生学会灵活应用知识解决简单的实际问题,在巩固体积计算方法的同时,进一步感受到数学知识的使用价值。这样的教学安排不仅体现了数学来源于生活,又应用于生活的思想,也使数学的课堂教学充满浓浓的生活味。
二、引导学生经历知识探究的全过程。
动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式。在本课教学中,由于学具的欠缺,没能给学生提供小组动手操作的机会,为了弥补这一不足,最大限度发挥学生自主学习的作用,教学中我努力为学生搭建探究平台,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。在探究圆柱体积的过程中,我从本班学情出发,大胆放手让学生猜想“圆柱体积大小可能与什么有关,可能怎样计算,为什么?”,然后再结合以往学习几何图形的经验,回顾圆的面积推导过程,实现知识迁移,明确“转化”思想在数学研究中的重要意义。为了让学生直观感受到圆柱体转化为长方体的过程,我较好地借助实物模型和多媒体课件演示,把二者有机结合,先让两个学生上台操作演示,然后再课件动态模拟,在学生充分观察的基础上,小组讨论交流:当圆柱体转化成近似的长方体后什么变了,什么没变?长方体的底面积与圆柱的底面积有什么关系?长方体的高与圆柱的高有什么关系?从而得出结论:圆柱的体积等于底面积乘以高。整个探究过程以学生自主学习为主,知识的形成给学生留下深刻的印象。伴随着问题的圆满解决,学生体验到了成功的喜悦与满足。
三、注重学法指导和数学思想方法的渗透。
【教材分析】圆柱的体积是几何知识的综合运用,是在学生已了解了圆柱体的特征、掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,给体积的认识和计算增加了难度。教材将本课学习安排在圆柱的认识和圆柱的表面积之后,让学生有序地经历了探究物体与图形的形状、大小、位置关系的变换过程,掌握圆柱体积的计算方法和公式的推导过程,建立初步的空间观念,培养形象思维,还可以为学习圆锥体积打下坚实的基础,提高学生的知识迁移能力。
【学情分析】 高年级学生发现问题、解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们已经掌握了一些几何知识,了解部分几何图形之间的转化方法。但学生的立体空间观念还不是完全成熟,形体之间的转化还有一定的困难。针对学生的实际,教学中我主要采用观察、比较、操作等方法。组织学生探索规律,归纳总结,体验知识的产生和形成。【教学目标】 知识与技能
1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学
过程,向学生渗透转化思想。
2.通过圆柱体体积公式的推导,培养学生的分析推理能力。
3.理解圆柱体体积公式的推导过程,掌握计算公式; 会运用公式计算圆柱的体积
过程与方法
从学生已有的知识水平和认识规律出发,为了更好地突出重点,化解难点,扫清学生认知上的思维障碍,在实施教学过程中,主要体现以下几个特点: 1.直观演示,操作发现
教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。2.巧设疑问,体现两“主”
教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。3.运用迁移,深化提高
运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。
本节课的教学,主要使学生掌握以下一些基本的学习方法: 1.学会通过观察、比较、推理能概括出圆柱体积的推导过程。2.学会利用旧知转化成新知,解决新问题的能力。
3.学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。
情感态度价值观.
1、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
【重点、难点】 重点:圆柱体体积的计算 难点:圆柱体体积公式的推导 【教学过程】: 【预习导学】
(一)轻松热身。
1、物体所占空间的大小叫做物体的().2、长方体的体积=
v=
正方体的体积=
v=
长方体和正方体的体积=
v=
3、回顾圆面积公式的推导。
(二)自主学习。
1、自学例5.(1)操作:把圆柱转化成长方体。
把圆柱的底面分成16个相等的扇形,按照等分线并沿着圆柱的高把圆柱切开,然后拼成学过的立体图形,如下图所示:
(2)把圆柱分成16等分,能拼成一个近似的()。(3)观察比较上面两个图形之间的关系:
图形形状不同,但()相等
圆柱的高=长方体的高()圆柱的()= 长方体的长
圆柱的()=长方体的宽(4)推导圆柱体积公式:
因为长方体的体积= 长
x 宽
x 高=()x 高 所以圆柱的体积=()x 高
用字母表示圆柱的体积公式:v=
或v=
【合作交流】
1、讨论自主学习中存在的问题。
2、探讨:圆柱的各部分与拼成的长方体的各部分之间的关系。
3、知道哪些条件就可以计算圆柱的体积?
4、一个圆柱形罐头盒的底面半径是5cm,高是18cm。它的体积是多少?
【课堂总结】
本堂课你学懂了什么?还有什么疑问? 【当堂检测】
1、判断。
(1)圆柱的体积比表面积大。()(2)侧面积相等得两个圆柱,它们的体积一定相等。()(3)等底等高的正方体、长方体和圆柱的体积都相等。()(4)圆柱的高不变,底面直径扩大到原来的4倍,体积也扩大到原来的4倍。()
2、一个圆柱的底面直径是80dm,高15dm,求这个长方体的体积。
*
【圆柱的体积习题】推荐阅读:
圆柱的体积教学反思06-04
“圆柱体体积的计算”教学设计及思考07-13
圆柱的体积(人教新课标六年级教案设计)09-14
五年级下册数学长方体和正方体的体积练习题06-16
圆柱的认识教案06-27
圆锥的体积计算11-19
圆柱的教学设计11-28
体积与体积单位教案09-06
圆锥体积的教学反思10-25
《圆柱的侧面积》教案07-23