移动基站维护述职报告

2024-11-23 版权声明 我要投稿

移动基站维护述职报告(推荐7篇)

移动基站维护述职报告 篇1

移动通信系统中的基站主要负责与无线有关的各种功能,为MS(移动台)提供接入系统的UM接口,直接和MS通过无线相连接,系统中基站发生故障对整个移动网的影响是很大的。引起基站故障的原因很多,但大多可归为以下四类:

一.因传输问题引起的故障

移动通信虽属于无线通信,但其实际为无线与有线的结合体。移动业务交换中心(MSC)与基站控制器(BSC)之间的A接口以及基站控制器(BSC)与基站收发信台(BTS)之间的ABIS接口其物理连接均为采用标准的2.048MB/S的PCM数字传输来实现。另外基站的各部件的稳定工作离不开稳定的时钟信号,而基站的时钟信号是从PCM传输中提取的,爱立信的基站不提供外部时钟输入的端口,这些基站设备是基于采用传统的PDH组网方试而设计的。

目前传输设备正从PDH向SDH逐步过度,而按照SDH的传输体制,由于指针调整的原因,其传送时钟是通过线路码传输,由分插复用器(ADM)专门的时钟端口输出。如果采用从SDH的随路码流中提取时钟的方法,将会带来诸如失步,滑码,死站的问题。如新桥站原采用爱立信RBS200设备,传输采用SDH系统,此站自开通以来一直不稳定,后经爱立信工程师到现场检查发现为基站同步不好,建议采用PDH传输系统,或基站采用RBS2000设备,(RBS2000对同步要求较RBS200低),后用RBS2000设备替换原RBS200设备,基站工作正常至今。

日常维护中经常有基站所有或部分载频不稳定,时而退服时而工作的现象,BSC侧对CF测试结果为BTS COMMUNICATION NOT POSSIBLE 或CF LOAD FAILED。此类故障大都为传输不稳定有误码,滑码而引起的。当传输误码积累到一定时,BSC无法对基站进行控制,数据装载,此时可在本地模式下通过OMT对IDB数据从新装载,复位后可恢复正常。

二,因基站软件问题引起的故障

基站系统中的软件是指挥和管理基站各部件有序,正常工作的。若基站IDB数据与基站情况不匹配,则基站一定无法正常工作。如在对北码头基站进行传输压缩(两条压缩为一条)后发现A,B小区工作正常而C小区工作不正常,说明BSC无法与C小区进行通信,于是怀疑与之想邻的B小区的软件设置有误,经查看发现B小区的传输方式被误设为STANDALONE(单独方式),一条传输时ABC各扇区的传输方式应分别设为CASCADE,CASCADE,STANDALONE,将B的传输方式改为CASCADE后基站恢复正常。

三,因基站硬件引起的故障

此类故障较常见,现象也较明显,一般有故障的硬件其红色FOULT灯会点亮,但有时不能被表面假象所迷惑。

例如唐闸基站B扇区一载频(TRU)退服,到站后发现此载频的红色FOULT灯和TX NOT ENABLE 灯都亮,于是判断为TRU硬件损坏,更换后故障现象依旧,此时更换TRU就犯了“头痛医头,脚痛医脚”的错误,TRU退服可能为其本身硬件故障也可能为与之相连的其他硬件或连线的故障。用OMT软件诊断后提示为CU到TRU间的连线故障,检查发现连线松动,重新连接后故障消失。对此类故障建议先用OMT软件进行故障定位,根据OMT的建议替换单元进行操作,而不能只看表面。

四,因各种干扰引起的故障

移动通信系统中的干扰也会影响基站的正常工作,有同频干扰,邻频干扰,互调干扰等。现在陆地蜂窝移动通信系统采用同频复用技术来提高频率利用率,增加系统容量,但同时也引入了各种干扰。

日常维护中新建站以及扩容站新加载频的频点选取不合理基站将无法正常工作,对此类故障应与网优配合,综合考虑各种因素,选取合理频点,消除以上干扰。

对移动通信系统中基站的各类故障应认真分析,找到其真正原因,才能以最快的速度排除故障,提高网络质量。

五、移动通信基站维修实例 爱立信模拟基站系统RBS883障碍处理一例

江苏南通易家桥站的模拟基站系统为RBS883,原经安装调测后,基站能正常工作。运行一段时间后,交换侧测试发现系统中B小区第十个载频没有发射功率,经到现场观察发现其对应的COMB不能调谐。

我们知道,江苏目前的爱立信模拟基站系统RBS883一般均使用自动调谐的形式,即功率合成器采用自动调谐合成器。其调谐过程主要是由功率监测单元接受从功率合成器中耦合出的-32dB的射频信号和从方向耦合器中耦合出的-40dB的射频信号,通过对这两个射频信号进行比较处理后,功率监测单元启动并控制相应的自动调谐合成器上的电动步进马达转动,从而实现自动调谐功能。

下面我们对RBS883的具体结构作一说明。

在RBS883系统中,自动调谐功能主要由以下结构共同协调完成:功率监测单元(PMU-AT)、信道收发信机(TRM)、自动调谐合成器(COMB)、方向耦合器。其工作原理如下:当某一信道收发信机的发信机打开后,其输出功率信号经射频线输入到功率合成器中的环形隔离器并最后进入合成器腔体中,同时从环形隔离器中(功率合成器上的Pi口)耦合出-32dB的射频信号,经功率监测单元面板上的参考信号输入端口(COMB端口,共有八个,分别与位于无线机架A中的八个合成器腔体相连),输入到功率监测单元中;另外,输入到合成器腔体中的射频信号最后进入方向耦合器并经天馈线系统发射,同时也从方向耦合器的前向功率(PFWD)口耦合-40dB的射频信号,经功率监测单元面板上的Pout FWD口输入到功率监测单元中。

功率监测单元对以上两种射频信号进行比较处理,当两信号相差7-9dB以上时,功率监测单元就会通过步进马达控制线(从功率监测单元面板上的M01-M08端口至功率合成器上的步进马达信号连接头)向相应的功率合成器送步进马达控制电源信号,启动步进马达转动,并控制其转动量使其准确调谐到相应的频率上。

首先更换COMB,问题依旧,证明COMB正常;将功率计接到TRM的TX口,用LCTRL1软件将TRM的功率打开,发现功率计有功率显示,证明信道盘TRM正常;一般说来,如果功率监测单元或方向耦合器坏,会导致该小区所有载频出现问题,而不应是某一载频退服,因此我们可断定功率监测单元及方向耦合器没有问题。

于是我们将目光转移到连线上:与相邻载频(第八个或第十二个载频)同时对换COMB端的Pi输出头与马达连接后发现,该载频能正常工作,而相邻载频却不能工作,从而将障碍定位在Pi输出线和马达连接线上;更换从功率合成器上Pi口至功率监测单元上COMB口间的连线后,载频正常工作,问题解决。

这些问题都因功率合成器上Pi口至功率监测单元上COMB口间的连线损坏,功率监测单元无法接收从功率合成器中耦合出的-32dB的射频信号,进而无法控制COMB调谐。爱立信数字基站系统RBS200障碍处理一例

江苏南通的海北站(RBS200系统)曾发生过某个载频不能工作的情况:交换侧测试反应为该套载频接收正常但不能有效发射;到基站观察发现,该套载频在推服过程中,RRX、TRXC及SPU一切正常,而RTX不能有效锁定,导致整套载频无法正常工作。

我们知道,爱立信数字基站系统RBS200一般均采用自动调谐合成器的形式。自动调成器实质是一个窄带合路器,其输入被机械地调谐到指定的GSM频点。在每一个合路器的输入端都有一个步进马达,它受控于它所连接的RTX。两个输入被合路成一路输出,若干个合成器的输出可以被连接成一条链。在调谐期间,发射机将其合路器的输入设置到可以给出最大前向功率的位置,而且还检验反射回的功率,如果反射功率超过最大允许值,那么发射机将其自身禁用并发出一个错误代码。

下面我们联系RBS200的具体结构作一说明。

RBS200系统的自动调谐功能主要由以下结构共同协调完成:无线发射顶(RTX)、自动调谐合成器(COMB)、发射机带通滤波器(TXBP)、监测耦合器单元(MCU)及发射机分路器(TXD)。

其工作原理如下:语音信息经过编码、交织、加密等一系列处理过程后,由TRXC通过TX总线传送到无线发射机(RTX),无线发射机对其进行调制和放大,并经自动调谐合成器(COMB)调谐和发射机带通滤波器(TXBP)滤波后,最后传送到监测耦合器单元(MCU)并经天馈线系统发射出去;与此同时,监测耦合器单元的一个输出被连接到发射机分路器(TXD)单元的输入端,经发射机分路器分路后,由其输出端连接到相应的一个RTX的“PT”口,RTX将该信号与其自身发射信号进行分析比较后,进而控制自动调谐合成器使其准确调谐到相应的频点上。

我们检查并更换硬件设备COMB、RTX及TXD,结果在检查RTX时,发现该RTX的“PT”端口中的针头歪掉了,导致该RTX与从TXD过来的射频线不能有效接触,RTX收不到从TXD反馈加来的参考信号,无法将该信号与其自身发射信号进行分析比较,进而无法控制自动调谐合成器使其准确调谐到相应的频点上,因此该载频不能正常工作。将该RTX的“PT”端口中的针头拨正后,该套载频工作正常。3 爱立信数字基站系统RBS2000障碍处理两例

(1)因缺少环路终端而导致基站退服

启东土管局基站为RBS2000站,原为5/5/5配置,后因信令压缩的需要,经网络规划人员现场测试分析后,决定将其改型为4/4/4配置,并经信令压缩成一条传输线。压缩传输后基站能正常工作。后因某种原因基站迁址,由原少年宫迁至启安宾馆,在重新开通时,基站的A小区能正常工作,而B、C小区却不能工作,从交换机侧反应为CF数据灌不进去。

经到现场用OMT软件观察发现,TEI值、PCM等设置一切无误,而用Monitor菜单也不能发现任何告警信息;对B、C小区重新灌入原IDB后,障碍依旧,断定IDB数据无误。在C机架的DXU中灌入A小区的IDB数据并改变架顶的PCM连接方式,使原C、B机架分别对应A、B小区,则C机架(对应A小区)能正常工作,而B机架(对应B小区)却不能工作;对B机架进行同样的操作后,情况与C一致,由此判断B、C机架设备无障碍。

在判断基站软、硬件一切正常的情况下,我们将目光转移到传输上。该站现为4/4/4配置,一条传输线,从DF架连到A机架的C3口,并从A机架的C7口出来连到B机架的C3口,然后再从B机架的C7口连到C机架的C3口。

在检查连线及IDB中传输设置无误后,对传输通道进行环路测试并用万用表检查通路,没有发现任何问题。最后在C架的C7口加上一环路终端,重新推站,基站恢复正常。在基站工作正常的情况下,我们曾做过如下试验:将整个基站断电一段时间后再供电、起站。共断过三次电,其中有两次在不加环路终端的情况下基站能正常工作,而另一次却必须加上一环路终端基站才能工作。由此可见,因掉电而退服的基站,这种障碍现象并不是必然的,而是具有一定的偶然性,即可能会出现这种障碍。

在我们日常操作维护中,对于只有一条传输线的RBS2000基站(其它站型的基站尚未出现如此现象),当出现故障时,我们首先应该按照正常的步骤进行操作维护,包括用OMT观察告警信息、复位、拔插硬件板、检查软件设置及硬件故障等。在一切努力均告失败的情况下,试着在C架架顶的C7端口加上一个环路终端,可能会帮助我们解决问题。

(2)因硬件原因引起基站告警

南通北码头基站为RBS2000站型,经工程局安装并调测后,基站能正常工作。但经过一段时间的话务统计分析发现,该基站的A、B小区有较高的拥塞和掉话。通过BSC观察发现,该站的A、B小区均有分集接收告警,同时A小区还有驻波比方面的告警。到基站用OMT观察,发现有分集接收丢失告警及VSWR/POWER检测丢失告警。

由于告警均与天馈线系统有关,我们先用驻波比测试仪分别对A、B小区的四根天馈线进行了测试,结果发现测量值均在标准范围内,证明天馈线本身没有问题。我们知道,分集接受是解决信号衰落、提高信号接收强度的重要措施之一。小区通过两根接收天线接受信号,可以产生3dB左右的增益,同时通过对两路信号的对比来判断接受系统是否正常。如果TRU检测两路信号的强度差别很大,基站就会产生分集接收丢失告警。分集接收丢失告警可能是TRU、CDU、至TRU的射频连线或天馈线故障引起的。

由于在本例中,我们注意到A、B小区均有分集接收告警且拥塞和掉话均较高,于是怀疑A、B小区的天馈线相互错位。后经高空作业人员对天馈线逐一检查,发现A、B小区的接受天线相互错位。因此A、B小区的两根接收天线接受方向不一致,方向不对的天线就接收不到该小区手机发出的信号或接受信号很弱,从而使小区产生分集接收丢失告警且伴随着较高的拥塞和掉话。经更改后,分集接收丢失告警消失,且拥塞和掉话降到了指标范围内。

对于VSWR/POWER检测丢失告警,我们也从原理上对其进行了分析处理。我们知道,在RBS2000中,每个TRU都通过Pfwd和Prefl两根射频线分别与CDU的Pf与Pr相连,从而检测CDU的前向功率和反向功率。如果反向功率过大,则说明天馈线驻波比太大或CDU有问题,这时TRU会自动关闭发射机产生ANT VSWR告警。同时TRU还对Pfwd和Prefl这两根射频线进行环路测试,如环路不通,则产生一个VSWR/POWER告警。在本例中,由于出现了VSWR/POWER告警,于是我们对其环路进行了检查。在RBS2000中,Pfwd和Prefl这两根射频线的接口处在FU上,其一端分别连到CDU前面板的Pf和Pr口,另一端则通过背板连线连到TRU的后背板,并与TRU通过射频头相连,从而形成Pfwd和Prefl的整个环路。我们对CU、FU上的接头进行认真检查,确定一切正常后,对TRU的后备板进行了检查,结果发现后备板的射频头接口处凹了进去,导致TRU与后备板接触不好所致。经更改后,VSWR/POWER检测丢失告警消失。

六、移动通信基站的防雷

防雷是一项综合工程,它包括防直击雷、防感应雷以及接地系统的设计。根据信息产业部批准的中国通信行业标准:“移动通信基站防雷与接地设计规范”以及产品的特点和工程设计的经验,提出以下解决方案。1.接地系统

防雷工程设计中无论是防直击雷还是感应雷,接地系统是最重要的部分 1.1对接地电阻的要求:

从理论上讲接地电阻愈小愈好。据我们的经验,地阻决不能大于4欧姆,应力争小于1欧姆。1.2应采用联合接地:

接地的“流派” 很多,近年来联合接地的观点占了上风。因为,现代化的城市不可能以足够的距离作几个地网来满足使用要求。采用联合接地时只要保证各种接地作到共地网而不共线的原则,机房设备做到用汇流排或均压环实现设备的等电位联接即可。2.直击雷的防护:

移动通信基站天线通常放在铁塔上,防直击雷避雷针应架设在铁塔顶部,其高度按滚球法计算,以保护天线和机房顶部不受直击雷击,避雷针应设有专门的引下线直接接入地网(引下线用40mm?4mm的镀锌扁钢)。铁塔接地分两种情况:若铁塔在楼顶上,则铁塔地应接入楼顶的钢筋网或用三根以上的镀锌扁钢焊接在避雷带上。若铁塔在机房侧面,则建议单独作铁塔地网,地网距机房地网应大于十米。否则两地网间应加隔离避雷器。3.感应雷的防护:

感应雷是指由于闪电过程中产生的电磁场与各种电子设备的信号线、电源线以及天馈线之间的耦合而产生的脉冲电流。也指带电雷云对地面物体产生的静电感应电流。若能将电子设备上电源线、信号线或天馈线上感应的雷电流通过相应的防感应雷避雷器引导入地,则达到了防感应雷的目的。3.1天馈线糸统的防雷与接地

基站至天线的同轴电缆不采用金属外护层上、中、下部接在铁塔上的方案。我们建议天线同轴电缆从铁塔中心引下,这样可以减少由于避雷针接闪后的雷电流沿铁塔泄放时对同轴电缆的感应电流。因为铁塔四支柱同时泄放雷电流入地时铁塔中心的感应场最弱。若天线塔高度超过30m,天馈线电缆在塔的下部电缆外护层可接地一次(可直接接铁塔或直接接地皆可)。

电缆进入机房走线架接在六个天馈避雷器(组件)上,型号为CT1000H-DIN和CT2100H-DIN,前者工作频率范围为850-960MHZ;后者为1700-1900MHZ。天馈避雷器组件由紫铜构成,紫铜构件的接地应采用截面积大于25平方毫米的多股铜线接在机房内的汇流排上。本防雷设计用的天馈避雷器采用∏型网络高通滤波器方案,它不同于国内外惯用的气体放电管方案。这种避雷器扦入损耗低(小于0.2dB),驻波小(小于1.15),雷电通流量大(最大可作到50KA/在8/20μs下),残压低(小于18v)。

对室外基站,天馈避雷器和机柜接地都应分别接入接地排(见图LDTA2000-01)3.2 供电糸统的防雷与接地

移动通信基站外供电源可能是架空线进入,也可能是穿金属管埋地进入基站。无论是什么情况,都应在出入基站的电源线出口处加装大通流量的电源避雷器,因为电源线架线长,走线也较复杂,易应感应较强的雷电流。设计了CY380-100GJ(10/350us)电源避雷器。雷电通流量在10/350us波型下雷电通流量大于50KA,后面应再配置两级并联型避雷器。三级防雷器之间的间距应在10m以上。若基站较小,三级防雷不能保证上述距离,则应当设计为串联型电源避雷器它是由二级或三级并联式避雷器加隔离电感后的组合。雷电通流量仍为10/350us波型下大于50KA,工作电流可达60A。若基站用电超过60A,则只能作并联方案。

对室外基站由于供电线路很长。应设计具有三级防雷功能的大雷电通流量的串联型电源避雷器。雷电通流量为60KA,工作电流35A。电源避雷器接地线也接在机柜的接地排上。

移动基站维护述职报告 篇2

1 移动基站配套设备实施维护的科学必要性

电源设备系统为通信系统重要组成, 其运行水平对基站之中的各类设备整体可靠安全性形成直接作用影响。如果供电系统引发问题, 便会使基站主体设施中断运行, 对移动网络的有效应用形成负面影响, 并使电信行业面临较大的经济损失。从当前状况来讲, 供电系统管理维护通常包含的问题是:一些基站供电系统应用380V交流电, 自身电流存在一定的不可靠性, 导致农村基站应用农电电网故障现象频繁发生, 并会对供电设施整体工作质量形成明显的外界影响。另外, 当前, 供电系统之中较多应用的阀控密封蓄电池, 虽在一些状况下, 会缩减维护管理人员的任务量, 然而基于制作电池工艺手段以及质量水平的不同, 因而在应用电池以及使用寿命等层面包含明显差异。如果应用了工艺水平有限的电池, 便会在其使用持续一年时间后, 容量水平明显下降, 变成基站健康运行的缺陷。另外, 基于基站总量较多, 且分布地点广泛、散乱, 进而使维护工作人员的任务量大大增加, 导致维护效率水平不高, 不能保障各个基站系统供电设施的总体运行水平。为此, 应扩充移动基站维护管理的力度。

对监控系统进行维护可有效提升移动基站配套设施的工作效率, 良好的辅助维护员工全面控制电源系统形成故障问题。

基站系统设施以及蓄电池的优质工作需要提供适宜的环境温度。如果环境温度水平较低或较高, 则会使基站之中的设施不能正常运行。另外高温环境会影响蓄电池的应用寿命。因此, 日常工作中, 应将空调系统作为重点维护对象。

2 移动基站配套设备维护管理策略

2.1 供电系统维护管理策略

基站供电系统可保障基站的可靠安全运行, 应合理的选择48V直流发射机, 方能保障供电系统的可靠稳定运行。如果交流电引发故障终止供电, 则需要通过48V后蓄电池确保基站内光端机以及无线发射装置的可靠正常运行。另外应注重蓄电池管理维护, 由于其为一类便利安全, 不会受到断电干扰的稳压直流电源, 因此为确保对蓄电池的有效管理维护, 应借助开关电源内在作用。

实践工作中, 还需全面核查蓄电池系统自动管理单元, 具体涵盖验证均充电流浮充电压、具体时间的设置状况, 进而保障开关电流可发挥自动化管理的功能。另外, 维护工作人员应做好基站电池放电试验, 明确其有否包含问题。通常来讲, 明确一组电池具体的功能属性应进行数次的放电试验, 进而了解蓄电池功能特性有否良好。另外, 应每年对电池具体的连接部位有否出现腐蚀或是松动问题展开两次的检验核查, 如果发现问题, 应快速的解决处理。

2.2 监控系统维护管理策略

倘若监控系统主机自身存在故障, 不能工作, 使得整体监控系统面临瘫痪, 则应布设监控器进行自检告警, 进而在监控系统主机形成问题之时, 可快速的将故障上报到交换机房完成自检, 预防由于主机系统故障使监控管理最终失效, 不能知晓具体状况的发生。日常维护管理阶段中, 交流停电通常会形成基站全阻现象, 针对交流环节监控可针对交流停电以及缺相状况进行告警。进而可全面提升处理交流供电系统故障问题的工作效率, 节约蓄电池放电持续的时间, 进而为各类基站设施的可靠稳定运行提供完善优质的保障。

2.3 空调系统维护管理策略

日常维护巡检工作中, 应采用交流钳表量测各个空调系统的工作电流, 并同额定电流展开分析比较。具体的工作电流同额定电流出现的偏差应低于百分之十。室外机器应中断后进行清洗, 将交流配电系统的空调关停, 并通过高压水泵完成处理。该环节中, 应尽可能的避免采用洗涤剂, 尤其是腐蚀性液体进行冲洗, 同时完成冲洗后, 空调系统的工作电流应不大于清洗之前的电流。尤其是较脏的站点, 则应合理的提升清洗处理的次数, 秉承空调系统洁净, 可正常制冷的处理原则。另外应核查室外设备风扇在运行阶段中是否存在异常的噪音, 核查清洗室之中的机滤网与表面, 探查室中风机服务运行是否包含异常的声音, 排水管路是否通畅无阻, 不存在漏水问题, 自启动是否规范正常, 空调系统的温度水平有否适宜等。

总之, 针对移动基站配套设施构成、内在功能属性, 我们应真正明确做好维护管理的科学必要性, 制定有效的维护工作策略, 做好监控、空调与供电系统的维护管理, 方能真正提升整体工作水平, 实现综合效益目标, 确保又好又快的全面发展。

摘要:移动基站配套设备进行有效的管理维护可保障基站系统主设备以及传输设施科学正常的运行。对提升网络系统综合质量水平发挥了积极促进作用。本文针对移动基站系统配套设施进行维护管理的必要性, 实践策略展开研究。对提升移动基站综合功能水平, 确保配套设备的科学有效运转, 创设明显的经济效益与社会效益, 有重要的实践意义。

关键词:移动基站,配套设备,维护

参考文献

[1]黄海峰.基站主设备节能趋向标准化湖南移动现行[J].通信世界, 2010 (24) .

移动基站维护述职报告 篇3

【关键词】直流远供 电源设备 应用 维护 安全

【中图分类号】TG434.1【文献标识码】A【文章编号】1672-5158(2013)07-0376-01

前言

为解决基站建设供电保障难题,福建联通于2010年开始实施基站直流远供应用试点,当年试用了5套直流远供设备。在此基础上,2012年计划在全省使用400套设备,目前已安装投产340套。

正文

1、直流远供电源系统简介

1.1、直流远程供电工作原理

直流远程供电系统,是指安装在局端站的局端直流远程供电设备通过供电线路为分布组网的通信设备提供不间断直流供电保障的电源系统。

1.2、远程供电组网方式

目前有星形、链式、混合式三种

1.3、目前在福建联通主要的应用场景

目前推广试用的应用场景主要集中在城区室外基站(道路、楼顶等)、郊区室外边际基站(高速路、铁路、村通等)以及采用集中BBU池、RRU拉远的网络组网模式,如高层住宅小区、办公楼、大型商场、停车场等室内分布系统中。

2、实际案例

2.1、站点及组网方案

局端:蕉城城区沃尔玛室分基站机房含中达MCS3000D-48-开关电源,有备用熔丝、空开,48V引入端子2个,电池容量600AH。

远端:RRU及WLAN交换机设备功率约为250W、150W,输入电压均为220VAC,分布在各楼层弱电间。

组网方案:

2.2、方案说明

远端基站功耗:设备功耗=250W/台(每台RRU的功耗)×RRU数量+150W/台(每台WLAN交换机的功耗)×WLAN交换机数量+线路损耗。局端设备输出电压为Us=280V,远端设备输入允许电压为Uo=240V,选用铝芯电缆其导线电阻率ρ=0.027,通过计算,所需的铝芯电缆线径的最大截面积为1.06 mm2,按照福建联通《高压直流远程供电系统技术规范(试行)》的规定,使用铝芯电缆时线径不宜低于6 mm2 ,实际各路由均选用截面积为6 mm2铝线。远端设备实际输入电压Uo最低值为265.6V,均大于远端设备允许的最低电压值240V。总功率为8500W。局端基站配置直流远供电源系统5台,最大输出功率12000W,完全满足设备的供电要求。

2.3测试数据

两台远供设备并机给A区域基站供电的测试数据:

近端

安装站点:蕉城城区沃尔玛机房

输入电压53.4Vdc,输入电流15.87A

输出电压设置273Vdc,输出电压271.1Vdc

远端

安装地点:A区域1F,输入电压268Vdc,输入电流0.54A

安装地点:A区域2F,输入电压270Vdc,输入电流1.32A

安装地点:A区域3F,输入电压270Vdc,输入电流1.23A

三台远供电源系统并机为B区域基站基站供电的测试数据:

近端

安装站点:蕉城城区沃尔玛机房

输入电压53.4Vdc,输入电流42A

输出电压设置268Vdc,输出电压266.9Vdc

远端

安装地点:B区域1F,输入电压254Vdc,输入电流2.63A

安装地点:B区域2F,输入电压250Vdc,输入电流1.72A

安装地点:B区域3F-1,输入电压248Vdc,输入电流2.23A

安装地点:B区域3F-2,输入电压245Vdc,输入电流1.06A

3、直流远供优缺点分析

3.1、优点

(1)有效解决疑难站点的接入开通问题,避免就地取电难题。便于站点选址和站址协议谈判,省略了设备安装工程中的市电引入,最大限度的减少选址、建站困难,使网络设备能够选择和建在最佳站点。

(2)减少电池、开关电源、电源柜、配电箱、切换箱、电表等设备的使用,降低成本。

(3)运用场景广泛,适应多种场合,如基站、室内分布、宽带小区、直放站等。

(4)操作简易,局端设备采用模块化设计,支持热插拨。

3.2、缺点

(1)直流远供为新技术应用,目前没有国标或行业标准。电信、移动、联通各自制定企业标准,不同厂家远供电压等级不统一。

(2)故障定位较难。远供电力电缆在发生被盗、某处点短路或者被刮断时,目前无法通过设备准确定位,需要全路由检查才能发现故障点;如果是埋地的线缆故障定位更难。

(3)远端站电源容量扩容有一定难度。

4、合缆及分缆供电的考虑

福建联通在福州分公司少量试用光电复合缆,使用复合缆能够节约施工成本,但由于同缆中有直流高压传输,增大了维护抢修的难度。建议慎用,一般情况采用独立供电电缆。

5、需要注意的安全问题

在近期试用中,南平分公司发生了一起线缆被车挂断后起火花的故障。分析原因是局端远供电源设备具有短路、开路、空载断电自启动检测功能,并会以打嗝式恢复方式检测线路的情况,判断是否为误操作,每隔一段时间输出电流检测线路是否需要恢复。此设计的思路是避免因为人员误操作或者远端带电设备电流过小设备误判断而照成电源断路,如每次都需要维护人员上站处理,可能会增加断站时长。

基站维护个人工作述职报告 篇4

一、个人基本情况: 主要经历:

二、工作职责: 1、配合组长做好维护组日常的工作; 2、做好备件、油机的出入库的管理; 3、负责向公司和客户提交维护组工作周报和月报; 4、负责安排基站日常巡检、统计基站固资和存在的问题; 5、负责维护组资料的建设管理; 6、完成公司以及客户交办的其他工作。

移动基站:软基站介绍 篇5

随着人们生活水平的不断提高,人们对健康和环保越来月关注,这客观上使得无线蜂窝网络的运营商寻找合适的蜂窝站址变得越来越困难,

移动基站:软基站介绍

。对移动运营商尤其是新的移动运营商来说,在一个网络的铺设前期,希望采用广覆盖、低容量密度的设备进行建网,以达到用最少的成本实现最大的覆盖目的,使广大用户享受到精品网络的良好服务。但随着用户规模的不断增长和业务需求的不断丰富,网络也需要不断扩容和调整。由于技术上的原因,在网络扩容和调整过程当中,原先连续覆盖的网络,往往会出现一个个盲点甚至一片片盲区,或者正好相反,在某些区域形成话务量的热岛,造成话务量的溢出。同时,一些特殊的复杂地形的覆盖,如地铁、地下室、室内、城郊、公路等,也是令人头痛的问题。传统上,由于技术和设备的限制,运营商和网络设计部门往往采用普通基站加直放站的方式来解决这些问题。这种解决方式缺点是会带来干扰增加,掉话率高,维护困难等问题。如何使用一种技术手段使网络呈现“软”特性,使网络在规划和优化当中具有自适应能力,使扩容、网络规划和优化、业务提供等变得更加容易是人们一直在思考的问题。为解决这些问题,最近人们提出了一种具有自适应能力解决方案的新型基站DD软基站(Soft Base Station)。

所谓软基站,是指在一片覆盖区域内,一个射频单元(称为子站)通过光纤或其他数字化传输介质与处在远端的大容量基带处理资源池(称为主单元)相连,并在射频单元间共享基带处理资源、主控时钟单元以及操作维护平台,从而实现对周围相邻地区覆盖的基站系统。(学电脑)

2 软基站的特点

2.1 分布式覆盖(distributed converge)

由于软基站的主单元通过数字光纤等数字化传输设备与子站相连,子站与主单元之间可以相距较大距离,在建网初期通过在主单元周围拉出的子站,可以形成大片区域的连续覆盖,尤可解决市区与城郊的连续覆盖问题,与相同容量的传统基站相比其覆盖面积可以增加几倍甚至几十倍。由于软基站的子站只包含射频部分,因而体积可以小型化,这使得软基站可以灵活适应象地铁、地下室以及高层建筑室内等复杂地形和恶劣环境条件下的覆盖。通过光纤形成基站的串联还可应用于高速公路、铁路等的覆盖。子站室外设计的特性可适应恶劣室外环境,可在-40~60℃的环境下正常工作。

2.2 更软切换(softer handover)

软基站的子站与主单元共享基带资源池,可以将子站视为主单元的一个扇区,同一基站不同扇区间的宏分集合并可以在基站内进行,不同扇区之间的切换为更软切换,因此子站之间以及子站与其主单元之间切换为更软切换的关系。更软切换宏分集采用最大比率合并,从而提高了系统容量,降低了RNC的负荷。

2.3 软规划(soft network deployment)

子站既可视为主单元的远端扇区,也可视为与主单元不同的逻辑基站,与其相邻基站统一进行PN码规划和载频规划,网络规划简单容易。

2.4 软站点 (soft site)

子站所覆盖的地区如果因为话务量增加,数据业务的增长或网络调整优化等原因需要建设大容量基站,只需在子站上增加基带处理板即可成为与主单元独立的小基站,灵活适应网络建设需要。

2.5 软业务能力 (soft service provision)

子站只是主单元的射频远端,系统的升级只需对主单元进行即可,可以适应网络的升级和业务的升级,是网络升级和业务升级变得非常简单。

2.6 软兼容 (soft compatibility)

软基站具有良好的多标准、多频段兼容能力,主单元通过调用不同的软件即可支持不同标准、不同频率和不同版本的用户;而射频远端通过配置不同的射频器件即可支持不同的标准和频率,能够充分满足网络升级的需要,保护用户投资。

2.7 软基带资源(soft capacity)

软基站的主单元侧的基带处理采用资源池设计,软基站系统的不同标准的子站之间以及同一标准不同频率的子站之间动态共享基带资源池。这样由于信道资源的统计复用使资源的利用率大为提高,这就意味着用比常规基站少的多的资源就能达到常规站的容量效果。对每个子站来说,主单元会根据其需求动态的给其分配硬件资源。因此每个子站的硬件资源都是随着时间动态的发生变化。因此对子站来说,基带资源呈现软特性。

3 软基站与常规基站+直放站方案相比的技术优势

与常规基站+直放站方案相比,软基站吸收了常规基站+直放站方案的优点,同时摒弃了其弊端。具体表现在以下几个方面:

(1)增加容量,扩大覆盖,降低干扰

直放站只是主基站覆盖的延伸,本身不提供额外的容量; 直放站采用同频

转发,互调、空间干扰严重,降低了施主基站的容量,同时带来掉话率高、话音

质量差、切换成功率低等弊端。

子站本身就是一个基站,与主单元连续覆盖时的更软切换关系,由于增益的提高,减少了干扰,增加了容量,扩大了覆盖面积。

(2)易于管理和维护

直放站需建立一套独立的维护系统,电源、环境以及设备告警信息无统一标准,无法与网上其他基站统一网管,直放站必须经常上站维护,导致后期维护工作量大。软基站的子站为逻辑基站,可与主单元统一维护,维护及环境监控信息通过主单元Iub接口上报网管中心。可免维护,掉电后自动重启。

(3)选址容易

为了避免干扰主基站,对直放站站址选择要求很高,选站困难,往往成为整个工程建设的瓶颈。

软基站的子站与常规基站的站址要求相同,同时由于其体积小,室外环境设计的特性,使选址相对容易。

(4)支持精确定位

由于直放站扩大的是主基站的覆盖范围,位置查询所获得的信息为主基站的经纬度,无法精确定位。软基站的子站的逻辑基站特性,位置查询所获得的信息为软基站子站的经纬度,因而支持精确定位。

(5)节省投资

直放站的投资并没有增加容量,平均每用户而言,增加了投资成本。软基站更软切换的特性增加了系统容量,平均每用户而言,减少了投资。同时由于子站之间以及子站与主单元之间共享基带处理资源池以及主控时钟单元,从而可以以更少的基带处理资源实现对相邻地区的覆盖,因而比直接新建基站投资更省。

(6)更高的资源利用率

由于在主单元基带处理资源在子站间动态共享,因而极大提高了资源利用率,变相降低了每个用户的设备成本。

4 UT的软基站方案

图5-1 UT斯达康软基站方案

UT斯达康是最早倡导并开发软基站的厂家之一。早在就开始软基站的研究,并在开始了软基站的产品设计。如上图所示:UT斯达康的软基站方案由三部分组成:负责设备控制,基带信号处理和时钟同步的主单元MU,负责射频信号处理的远端射频单元RRU和负责在RRU与MU之间进行数据传输的宽带传输网络。

UT斯达康的软基站方案的的主单元在设计时不但考虑支持对单一标准的基带信号的处理,而且考虑到未来一家运营商可能会采用多种技术标准(如采用WCDMA,TD-SCDMA建网和Wimax等)和多频段(如在1.9GHz、1.7GHz等)建网的需要,尽量采用软件化的处理平台,通过加载不同的软件即可支持不同标准和不同频段的基带信号处理,并且可以根据不同标准和不同频段用户对业务的需要动态分配硬件处理资源。UT斯达康将要推出的两款软基站NB8D24和NB8D48分别可带48个射频远端和96个射频远端。不但可支持WCDMA的不同版本,不同频段的射频远端,而且通过软件升级支持向TD-SCDMA,Wimax的射频单元。

UT斯达康的宽带传输网络设备在主单元MU与RRU之间不但支持类SDH光口传输,在没有光纤的地方还支持FSO传输。不管对于Iub口组网或基带射频端口组网,UT的基站都支持星型、链型和环型组网。主单元和RRU远端的最大传输距离可达100Km。(学电脑)

UT斯达康公司具有多种远端射频单元RRU产品。支持从一载一扇到三载一扇,功放20W/载扇和40W/载扇可选的室外型RRU-NB8R03,能够充分满足覆盖核心城区、城区、郊区和农村的需要,而室内型的NB8R01不但支持功率从100mW到1W可选,而且可接分布式天线系统,进行室内覆盖。

5、UT软基站的优势:

第一,网络方案由于射频RRU可以直接架在天线端,因此省去了机房,预计在全国范围内运营商在机房方面节省的成本可以占40%到50%以上。

第二,UT斯达康RRU靠近天线安装,节省购置塔放TMA的费用和60%的溃线费用。

第三,在接收方向可以避免溃线损耗3-4dB,可以使覆盖的范围增加48%,站点减少30%。

第四,在发射方向由于获得了这3-4dB的增益,可以采用更低功率的功放,消耗更少的电能,可以降低运营商的建设成本和网络的运营成本。

第五,由于不同地区忙时出现的时间不同,通过不同地区、不同标准对基带资源的统计复用,可以节省30-40%的基带处理资源,节省网络的建设成本。

第六,采用软基站方案,把RRU独立出来一个产品,就可以把RRU变为支持不同标准和不同频率的宏蜂窝、微蜂窝、微微蜂窝产品。只对射频进行改造,就能生产出适合于不同标准,不同频段的射频单元,可进一步降低生产成本。通过更为灵活的、高质量的覆盖,完成精品网络的的建设。

第七,系统将成为一个透明的传输,设备具备了完全的监控,因此可以在主单元和远端射频之间实现非常好的监控,可以节省40%人力成本。

第八,建网速度快。由于采用软基站方案基站射频部分都已在工厂调好,在室外现场固定即可,所以安装非常方便。

第九,由于采用了基带池的方法,把部分的软切换变成“更软切换”,这样基站的覆盖,通话的质量、网络的指标比传统的方式会更好。

第十,由于采用软基站方案,所以整个设备的升级,只进行软件升级即可,升级非常简单方便,可以提高运营商的效率,更好地为客户服务。

总结整个运营成本,对两种城市进行比较,对小城市综合建网成本可以降低20%以上,对大城市会达到30%以上。在特大型城市,为了安全等等各方面,可以建多个软基站建网成本可以节省40%以上。

6、结束语

无线移动通信基站维护策略分析 篇6

1 无线移动通信基站维护的理论阐述

无线移动通信基站的维护是一个系统化的管理工作, 它针对的主体是各类基站设备在进行实际的基站维护时需要明晰的具体目标。以基站内部的监督管控设备为例, 监督管控设备是能够检验基站通信是否时刻处于受监控的状态下的一种管理工具, 监督管控设备的存在可以实现对通信基站全天候的管理与控制, 显著提高了无线移动系统操作与运行的可靠性与精准性。

要对监督管控设备进行维护, 第一步需要做的就是以日常工作流程为基础制定出科学化的管理方案, 方案内容中不紧要涉及到对监督管控设备固有功能的维护, 还需要充分的考虑到外界环境因素对其所造成的不良干扰, 并积极采取有效措施进行预防。另外, 一旦监督管控设备出现运行问题, 就需要在最短的时间内采取针对性措施进行解决, 最好对监督管控设备维护的实效性。对监督管控设备的维护要面面俱到, 必不可少的就是扎实的基站维护理论, 只有这样才能在实践中遇到问题时游刃有余, 确保维护工作顺利开展, 减少维护阶段中可能出现的失误问题, 提高无线移动通信基站维护工作的开展效率。

2 无线移动通信基站维护的科学策略探究

2.1 重视日常的巡检与维护工作

要想真正提高无线移动通信基站维护的质量与水平, 日常的巡检与维护则是首要的关注点, 巡检能够为维护的开展提供必要的信息支持, 两者有效结合能够推动基站维护工作的顺利开展。在进行日常的巡检时, 能够明确基站各类设备在不同时间段所处的运行状态, 根据其运行的效果来判断是否需要采取进一步的设备维护措施, 当巡检的结果是设备运行正常, 就不需要进行重点的维护, 当巡检设备运行异常, 就可以针对性的开展维护工作, 这样就能够有效提升巡检与维护的效率。

在巡检工作具体开展中, 首先要规划出巡检的周期, 通过这种方式提升巡检工作的规范性, 有效提升日常工作的管理力度。例如, 在针对通信基站的机房巡检时, 重点需要核查的是机房中潜在的风险, 全面评判所处区域的地基沉降, 科学测试避雷系统的安全性, 准确查验使用电源的接通效果, 通过这一系列的措施保证机房中的各类硬件设备都能够安全运行。 其次, 对于需要巡检维护的对象要明确, 划定详细的范围, 针对维护需求度不同的设备进行层次化的维护管理。在通信基站中, 有的设备对维护的需求度相对较高, 这时为了尽量的将日常维护工作对无线移动通信服务运行所造成的影响降到最低, 就要适当的调整设备维护的频率, 使其保持在一个稳定的水准上, 然后再针对那些相对特殊的设备重点推行维护工作。

2.2 全面开展动力维护

动力维护又被称之为远程维护, 它指的是当通信基站在无人看守的情况下开启自动化维护的一种重要维护措施。这种基站维护模式在实际运行时采用的是监控管理方式, 该方式的应用可以将基站中各类运行的设备稳定在一种优化式的运行状态, 而不需要过多的人工参与维护。动力维护可以借助于在线监测来对基站中的设备设施进行调控, 以此来实现维护管理水平的提高。现阶段, 动力维护在无线移动通信中的运用还不成熟, 仅仅局限在针对维护工作提供相应服务的状态中, 因而它还有很大的发展空间。

2.3 强化对基站故障问题的处理力度

基站故障问题的有力处理是通信基站维护水平提高的重要举措, 而要强化对基站故障问题的处理力度, 就可以从防护与维护的方面着手。防护式管理能够在较短的时间内有效检测出潜在的故障问题, 使通信基站能够在不影响基站运行效果的情况下快速的恢复到正常运行的状态。针对防护管理的开展需要工作人员的严谨端正的工作态度, 准确的掌握与故障相关的各类问题, 从而及时解决各类故障。除此以外, 在进行基站维修时, 对于相对明显存在的故障问题要严格遵循相关的维修标准与原则, 规范维修行为, 在各个方面都实现科学化, 最大限度的发挥基站中各类设备的价值。

无线移动通信技术的快速发展推动了基站维护工作趋向复杂化, 为了适应这一现状, 就要按照通信基站中维护工作的具体标准、运用科学有效的维护措施对基站进行维护, 充分发挥通信基站对于无线移动通信服务运行的支持, 实现社会效益与经济效益的统一。

参考文献

[1]王跃, 许志远, 严珏玮.移动智能终端操作系统技术发展[J].中兴通讯技术, 2014 (02) .

[2]朱玉华, 鞠睿.移动通信无线技术智能化发展探讨[J].电子技术与软件工程, 2015 (08) .

移动基站防雷方案 篇7

工程名称:移动基站综合防雷工程

建设单位:湖南移动常分公司

设计单位:湖南普天科比特防雷技术有限公司

设计负责人:

编 号 :

日 期:

一、概述

移动通信基站的主要设备一般分为以下几个系统:传输系统,包括SDH设备,光缆,电缆等等;动力系统,蓄电池,市电等等;动环监控系统;天馈系统; 基站收发信台BTS(包括收发信机无线接口TRI、收发信机子系统TRS等设备);以及其他辅助设备,如空调,防盗门等等。基地站的配电电压为26.4v。通常是由主干电力线路经AC/DC变换器得到的。当主干线路发生故障时,备用电池将能在一定时间内向基地站供电。

移动通讯基站多位于地势较高的多雷雨地带,气候条件恶劣,夏季通讯机房设备及发射铁塔遭遇雷击的概率较高。基站建设的基础部分多为岩石结构,基本无土层,接地电阻很难保证在1 Ω以下,在此条件下给雷电的泄放带来很大困难。电源采用架空线上山,基站交流供电线路较长,同线路上用电负载比较复杂,大型用电设备启动或停止瞬间会产生很大的冲击电压干扰,严重影响通讯组合电源的使用安全。基站的接地系统在设计时也没有得到足够的重视,极易遭受直击雷、感应雷及电源操作等多种过电压的侵袭。再者基站重要设备都是微电子设备,由于微电子设备具有高密度、高速度、低电压和低功耗等特性,这就使其对各种诸如雷电过电压、电力系统操作过电压、静电放电、电磁辐射等电磁干扰非常敏感。如果防护措施不力,随时可能遭受重大损失。

二、雷电引入途径分析

移动基站防雷的主要保护对象是在机房中的通信设备,保障这些通信设备的正常运行。雷电损坏设备通常是它在通过带电或非带电的导体对地泄放的过程中,由于电荷运动产生的一些物理效应,比如热效应、磁效应等,改变了在雷电

泄放通道中所涉及设备的基本性能,从而使设备不能正常运行或被损坏。因此我们需要对雷电的入侵途径进行仔细分析,发掘出雷电可能的入侵途径,并在雷电流到达设备前改变其对地泄放途径,保障设备的安全运行。

雷电传导主要有两种方式:

一、直接雷击:即雷云通过地面上某一点直接对地释放。由于我们国家对建筑物的防雷有严格的标准,通常雷电都是通过建筑物的外部防雷系统对地泄放,在旷野中通常通过一些架空电源线或其它一些对地具有良好导电性能的突出媒介进行对地泄放。雷电流直接入侵基站内部设备主要是通过一些与外界相连的媒介传导入侵,如进出局站的电源线、通信线及铁塔地网等。

二、感应雷击:带电的雷云层由于静电感应作用,使地面某些范围内带上异种电荷,当直击雷发生以后,云层带电迅速消失,而地面某些范围由于散流电阻较大,以致出现局部高压,从而形成雷电流;或者在由于直击雷放电过程中,强大的脉冲电流对周围的导线或金属物产生电磁感应发生高压以致发生闪击的现象。而磁场感应方式入侵最终也是体现在一些带电的金属导体上。

根据物理学尖端放电的原理人类发明了避雷针,它可以将一定场强范围内的闪电引到自己身上,再通过引下线将雷电流泄放入地,从而使在这个范围内的建筑不成为雷电对地泄放的途径,也就避免了被雷击。而在移动基站中,高高的铁塔通过钢筋混凝土与大地紧密相连,由此可以说铁塔就是一个巨大的“引雷针”,它可以将方圆几公里内的雷电引到自己身上。从而大大增加了移动基站直接被雷击的概率,更增加了在铁塔旁一些缆线、金属构架产生感应雷电流的概率。因此我们必须对移动基站的铁塔及其周边环境进行仔细分析,以确定雷电侵入移动基

站内部的主要途径。

三、铁塔引雷分析

通常从移动基站的外部环境构造来看,从雷电引入的角度可以粗略分为带铁塔和不带铁塔两种,这两种情况虽然里面内部构造相同,但遭受雷击的概率却大相径庭。

不带铁塔的基站:这类基站主要分布在城市市区或市郊,多为租用普通大楼或民宅,基站天线采用抱杆,这类基站遭受雷击的概率通常较小。这些基站机房的特点是整个建筑本身在等电位连接、电磁屏蔽、接地电阻方面都能较好的满足信息产业部的要求,但存在问题是大楼的功能并不是为基站设计,所以比较难找到一个较好的接地参考点来确保机房内电子设备有良好的接地。要保证机房内部有良好的等电位连接系统,通常这类基站的接地系统和大楼的接地网采用的联合接地系统。这类基站雷电入侵的主要途径是雷电浪涌通过一些电源系统、信号系统、接地系统等所有进出机房的线缆和管道引入,采取浪涌保护措施。

带铁塔的基站:这类基站主要分布在农村、郊区,多为独立机房旁边建铁塔的方式,这类基站多建在地势开阔的平原地带、山坡上。通常铁塔在当地为最高建筑,有非常好的接地,按信息产业部的要求基站接地要求小于5欧姆,一旦在该区域内有雷云,地面上的电荷将通过铁塔与雷云中的电荷发生中和,铁塔将成为云中雷电对地泄放的一个主要通道。与铁塔相连的一些线路、桥架、设备就成为雷电入侵的对象,比如天馈线、走线架、与地网相连的设备等。这类基站被雷电击中的概率较不带铁塔的基站要高得多,因此对有铁塔的基站防雷就更加的迫切,有必要对这类基站进行进一步分析。

通常按移动基站机房与铁塔的关系可分为:塔边屋、屋顶塔、塔下屋三种。下面就这三种基站类型进行相应的防雷接地、等电位连接,起到良好的雷电防护作用。

(一)、屋顶塔

铁塔与机房独立型的移动站,如图一所示。雷电对该类型移动通信基站的危害主要途径是直击雷和感应雷两种。

图1.铁塔与机房一体型结构 1.雷电流直接危害

根据我们现场的调查和分析,在移动通信基站的铁塔建在基站机房上面的情况下,当雷电击中铁塔后,雷电流就会沿着铁塔及同轴馈线的外导体往下泻放,由于移动通信同轴馈线的外导体与铁塔是相互连接的,铁塔上的雷电流直接会分流一部分到同轴馈线的外导体上,并沿同轴馈线的外导体和机房内的走线架直接流入到移动设备上,对移动设备造成雷击危害。除此以外,还由于同轴馈线的走线架是与铁塔直接相连,并进入机房,从而将雷电直接引入到机房内,对机房内 的通信设备造成危害。

2.雷电感应对移动通信基站内设备造成的危害

当雷电流在移动通信基站周围的空中或空中对地放电时,就会在移动通信基站周围的空中产生交变电磁场,从而使移动设备上产生感应电流和电压,严重者也会对移动设备通信造成危害,但这种危害的概率较少,另一方面若雷电击中铁塔并沿着铁塔和机房的立柱中的钢筋在下泻的过程中,也会在周围产生强大的交变电磁场,从而在移动设备上产生感应雷电流和雷电压,同样地感应雷电对通信设备所造成的危害比起直击雷所造成的危害要少得多。

(二)、铁塔与机房独立型

铁塔与机房独立型的移动站,如图二所示。该移动站遭雷电直击的主要途径是雷电流通过铁塔的走线架和同轴馈线的外导体进入机房,对通信设备造成危害。其次是雷电在空中放电时对机房内的通信设备所造成的感应雷的影响,同样感应雷对通信设备所造成的影响比起直击雷来说,则概率很少。该类型的移动站与上述的第一种铁塔与机房一体型的情况相比,则少得多。

图二铁塔与机房相互独立型结构

(三)、铁塔包围机房型

铁塔包围机房型的移动基站,如图三所示。

该种类型的移动基站遭直击雷的途径与第二类的铁塔与机房独立型的移动站相似,主要是雷电通过同轴馈线的外导体和同轴馈线的走线架进入机房,对通信设备造成危害。但该种类型的移动站所遭受到的感应雷则最少,因有四面铁塔的屏蔽作用。

(四)不带铁塔型基站

这类基站往往建在城区,一般使用公共大楼或民用建筑来作为机房。对于公用建筑上,由于我们国家对这类建筑物有严格的防雷标准要求,因此这类基站具有接地良好,外部防雷完善,且整个建筑形成一个法拉第笼的特点,所以这类基站遭受直接雷击的概率较小,受到雷电电磁干扰的影响也较小。雷电入侵这类基站的方式将主要是供电线路、同轴馈线的外导体和同轴馈线的走线架、接地系统进入机房。对这类基站的防护级别,对防雷器的通流能力通常不需要很高,因此对这类基站通常只需选择一般的B类限压型和C类限压型两级防雷就基本能满足这类基站要求。而民用建筑与公用建筑的差别主要在国家对这类建筑的要求不是很高,因此建筑物在屏蔽和接地的效果上可能差一些,但

只要将这类基站的接地问题处理好,很多防雷问题也就迎刃而解。

我们把雷电入侵移动基站的主要渠道总结如下:

雷电对移动通信基站的四个引入渠道

第一个入侵渠道——由铁塔天馈线、接地系统引入的雷害 第二个入侵渠道——由交流配电系统引入的雷害 第三个入侵渠道——由传输线路引入的雷害 第四个入侵渠道——由雷电电磁脉冲的雷害

通过对雷电主要入侵途径的分析,结合移动基站现场综合环境特点,给我们进行防雷方案设计提供了思路和线索。根据防雷分区、综合防雷的思想,综合基站所处的地理环境,在具体位臵选择相匹配的浪涌保护器,将可以很好解决移动基站的防雷问题。

移动通信基站的雷电过电压保护,各级防护器件是相辅相成的,互相影响的,此时用以局部防护的过电压器件不能有效的发挥其防护性能,将影响移动通信基站的整体防护。另外还有一个重要的原则,移动通信基站的雷电过电压保护设计必须是建立在联合接地基础上。因此移动通信基站雷电保护并非是简单的接地或者单一的雷电过电压保护器件应用,而是根据移动通信基站所处的具体位臵、环境因素、所在地区的雷暴强度及雷暴日的大小、来确定基站的雷电保护措施和方法。

因此,移动通信基站的雷击电磁脉冲防护必须综合考虑,应从整体防雷的角度来进行防雷方案的设计

二、依据的规范

1.GB50057-94《建筑物防雷设计规范》

2.YDJ26-89《移动基站(站)接地设计暂行技术规范》(综合楼部分)

3. YD/T 1235.1、2-2002 《移动基站站低压配电系统用电涌保护器技术要求及测试方法》

4.YD5068-98《移动通信基站防雷与接地设计规范》 5.YD5078-98《通信工程电源系统防雷技术规定》 6.YD5098-2001《移动基站(站)雷电过电压保护设计规范》

三、方案设计原则

一、综合防雷的思想

移动基站的防雷是一个系统工程,它包括直击雷防护、等电位连接措施、屏蔽措施、规范的综合布线、安装电涌保护器(电源、信号)、完善合理的接地系统六个部分组成。这六部分在一个完善的移动基站防雷系统工程中缺一不可。对移动基站的防雷设计应进行全面规划、综合治理、多重保护,将外部防雷措施和内部防雷措施应整体统一考虑,做到安全可靠、技术先进、经济合理、施工维护方便。综合防雷的思想在YD5098总则中就有明确规定,如YD5098-1.0.3 通信局(站)雷电过电压保护工程应建立在联合接地、均压等电位分区保护的基础上。

综合防雷的思想在移动基站中的主要体现到具体的防雷手段,就是分流、接地、屏蔽、等电位连接和过电压保护五个方面。其中:

(A)、分流

利用避雷针将雷电流沿引下线或铁塔安全地流入大地,防止雷电直接击在基站建筑物和设备上。(B)、屏蔽

移动基站内应采取屏蔽措施的对象主要有两种:一是所有的带电金属导线,包括电力电缆、通信电缆和信号线,应采用屏蔽线或穿金属管屏蔽。二是基站内部电子设备,通常采取的措施是在机房建设中利用建筑物钢筋网和其他金属材料,使机房形成一个屏蔽笼。以及通信设备的机柜因具有一定的屏蔽效果,用以防止外来电磁波(含雷电的电磁波和静电感应)干扰基站设备。(C)、非带电金属等电位连接

通常等电位连接分带电与不带电金属导体,这里主要指将基站机房内所有非带电金属物体,包括电缆屏蔽层、金属管道、走线架、金属门窗、设备外壳等金属构件进行电气连接,以均衡电位。(D)、带电设备的过电压保护

对于与基站设备相连的馈线、信号线、电源线路安装防雷器进行过电压保护。(E)、接地

在移动基站中的接地包含两个方面,一是地网,建立一个接地通畅的地网是移动基站防雷基础,具体要求是根据YD5078中要求基站接地电阻小于5欧姆;二是、基站内的接地系统,为保护基站通信设备和人身安全,解决环境电磁干扰及静电危害,需要一个良好的接地系统。一个好的接地系统的关键在于建立统一的接地参考点,采用“S型”接地。

二、“防雷分区、逐级泄放”的思想

为了定义雷电电磁脉冲(LEMP)影响程度不同的空间,和选择带电导体等电

位连接点的适当位臵,被保护空间必须首先被分成不同的防雷保护区。(见下图)这点在移动基站的防雷工程中非常重要,等电位连接点的位臵选择将直接影响到防雷设备在基站防雷效果。根据IEC61312中对雷电保护区的划分思想,我们通常可以将移动基站防雷进行如下图分区

根据IEC1312以及YD5098中的相关规定,其中YD5098中1.0.4 通信局(站)雷电过电压保护设计应根据电磁兼容原理按防雷区划分,对电涌保护的安装位臵进行合理规划,如见图DJZFL01:

图:YDJZFL01 移动基站的防雷分区

根据IEC1312以及YD5098中的防雷分区规定,可以将移动基站内空间及设备的防雷分区进行如下划分:

LPZ0B区:移动基站机房外部都有外部防雷措施,如果存在铁塔则铁塔为一个巨大的避雷针,通常我们认为在被铁塔保护的区域为LPZ0B区,因此进入基站的电源线和通讯线及其它线路应从LPZ0B区进入机房。

LPZ1区:整个机房的外墙对雷电电磁脉冲有一定屏蔽作用,可看作是屏蔽层1;按照IEC1312防雷分区的概念,整个机房内部空间应划为LPZ1区。

LPZ2区:通常移动基站设备都有机柜,机柜外壳为可看作屏蔽层2,机柜内部空间可划分为LPZ2区,通常对基站防雷而言我们所保护的对象就是这些机柜内部的通信设备,因此也就没有必要在往下划分了;故通常对移动基站内部可以分为LPZ1、LPZ2区。

四、移动基站综合防雷设计

1、供电线路防雷保护:

雷电即可以通过对输电线路直接放电,也可以在几公里之外通过雷电电磁脉冲在输电线路上感应出雷电流入侵移动基站。因此供电线路成为雷电泄放的主要途径之一。目前我们国内的供电线路以架空线为主且线路较长,据不完全统计国内移动基站中的雷害近80%与电力线路有关。而且在国际、国内的相关防雷标准中对供电系统的雷电防护描述也是占绝大部分篇幅,因此对供电线路的防雷是整个基站防雷的重心,而对移动基站的电力供电系统进行雷电防护是解决整个移动基站防雷问题的核心。

目前国内移动基站的市电引入情况基本上是先从架空高压电力线终端引入通信局(站)的10KV或6.6KV高压电力线,经过配电变压器输送到基站。移动基站的防雷也就从配电变压器开始考虑,这类基站的供电构成按YD5078-98要求:

对于从高压到配电变压器这一段供电系统的防雷在YD5098-2001中3.7.1~3.7.4有明确规定,主要的要求是配电变压器不能与通信设备同在一建筑内,高压铠装线路到配电变压器应两端接地,在架空高压电力线终端杆与铠装电缆的接头处,应采用标称放电电流大于20KV的交流无间隙氧化锌避雷器(强雷电避雷器)。配电变压器高、低压侧避雷器的接地端子、变压器的外壳、中性线、经及电力电缆的铠装层应就近接地。移动基站内供电系统(YD5078-98)规定如图

二、移动基站内低压配电系统防雷器选型

如图中所示在移动基站中主要的供电设备有交流稳压器、交流配电屏、整流设备、直流控制屏。从YD5078-98无人值守移动基站供电系统图中可以比较清晰的体现“防雷分区、逐级泄放”的思想,首先市电从LPZ0B区入户进入LPZ1区交流配电设备前安装第一级防雷器,在开关电源的整流设备前安装第二级防雷器,在直流输出端安装第三级防雷器。很多事实也证明,移动基站防雷只安装一级防

雷器是不够的,必须进行分级保护、分级泄流的防护方案,才能比较好的解决移动基站的防雷问题。

第一级防雷器选用模块化三相电源防雷箱,安装在电源的总进线配电屏处,该产品是我公司的专利产品,型号为KBT-BJX40/380/100,标称通流容量100KA,接线方式为3+1,保护模式为L-PE,N-PE,L-N,并具有专长防水防爆、阻燃、雷电通流量大、漏电流小的特点,同时具有产品劣劣化指示、声光告警、雷电计数、远程告警干点输出等功能,专用于通信基站的电源线路雷电过电压保护。

第二级防雷器选用模块化三相电源防雷箱,安装在开关电源的整流设备配电屏处,型号为KBT-BJX40/380/50标称通流容量50KA,接线方式为3+1,保护模式为L-PE,N-PE,L-N,并具有防水防爆、阻燃、雷电通流量大、漏电流小的特点,同时具有产品劣劣化指示、声光告警、雷电计数、远程告警干点输出等功能,专用于通信基站的电源线路雷电过电压保护。

第三级防雷器选用模块化三相电源防雷箱,安装在各设备机柜的电源总进线处,型号为KBT-BJX40/220/20,标称通流容量20KA,保护模式为L-PE,N-PE,L-N,并具有专长防水防爆、阻燃、雷电通流量大、漏电流小的特点,同时具有产品劣劣化指示、声光告警、雷电计数、远程告警干点输出等功能,专用于通信基站的电源线路雷电过电压保护

2.移动基站信号及天馈线防雷

雷电除了通过供电系统侵袭移动基站内的设备外,还通过接地系统、天馈线、通信线路来影响移动基站的工作。从这些途径上切断雷电入侵就非常显得必要,因为与这些线路相连设备的通信端口以及IC电路板的耐压水平水平非常的低,而且这些设备对信号的要求都非常的敏感,信号稍微有点衰耗就会影响通信,因

此对这类设备通常不能采用多级防雷设备防护,而只能通过在一个防雷设备内采用多级电路进行精细级保护。

一、PCM 2M线的防雷

移动基站的2M端口设备发生损坏主要有如光端机、BTS的传输板、DDF架、及一些传输设备。通常雷电通过信号线来入侵移动基站设备的主要有两种情况:

1、不同设备间发生雷电高电位的耦合和转移:移动基站遭受雷击时,如雷电电流通过:1)基站铁塔直接引下到地;2)通过室外感应的馈线的外部屏蔽层引至地线系统;3)电源线上的直击或感应雷电流经SPD引下到接地系统,其50%的雷击电流以电阻方式对地耦合,这时会使基站的地网电位瞬时抬高,此时即使是0.5欧的接地电阻的基站在雷击电流通过瞬间也会使接地电位瞬间呈现几十千伏的电压。使得设备接地与信号芯线之间存在高电压,信号线上就带上感应雷电流,与通信线相连的另一端处于正常电位的情况下,如果设备未加装性能良好的SPD,就会出现了雷电通过通信线将两端设备的通信端口损坏,严重的将导致一些传输通信设备被损坏。

2、室外通讯线感应雷电流传导入户:一些基站的通信线如2M线存在从室外引入的情况,雷电往往通过电磁感应的方式在户外通信线中感应出雷电流。

3、基站内的电磁干扰:由于基站走线的情况是地线和电源及信号线全部为平行布放,地线回路上的雷电电流势必会在相应的电源或信号线上耦合现象。对于2M线而言,直接的后果是在信号线上感应出过电压,将设备打坏。

在YD5098-2001 3.4中对2M线路的雷电防护措施有明确规定:3.4.1 出入通信局(站)光缆或电缆,应在进线室将金属铠装外护层做接地处理,另外光缆应将缆内的金属构件,在终端处接地;3.4.2 进入通信局(站)的PCM电缆芯线应在终端处加装SPD,空线对必须就近接地。

通信系统由于受到工作电平、接口速率、和传输性能(插入损耗)、线路阻抗等指标的约束,不能象供电系统一样分几级防雷,因此PCM 2M线防雷应在通信线路与设备的接口即LPZ1-LPZ2区处使用一级与之通信接口、工作电平、速率相匹配、线路阻抗匹配的精细级防雷器,同时通信线应就近接地。在中国移动的基站的传输线的速率小于2Mb/S,线路阻抗有75和120欧姆两种,工作电平通常小于12V。其中阻抗为75欧姆的2M线的接口类型主要有BNC,L9,C4等类型,如在NOKIA的基站中的传输接口就大量使用BNC接口;阻抗为120欧姆的2M线接口类型主要有RJ45、9针或15针的通信串口等,如爱立信的RBS2000型基站就大量使用15针的串口。

移动基站天馈系统防雷措施

通常移动基站中天馈线的布放是沿着铁塔爬梯布放,然后通过走线架进入机房内部,存在与铁塔防雷引下线平行布放的问题,因此非常容易受到在雷电流同通过铁塔引下线泄放的过程中产生的雷电电磁场的干扰。根据YD5098-2001.3中对天馈线的防雷措施主要有:

1、对天馈线的防雷从工程上讲就是三点接地,铁塔上架设的波导馈线、同轴电缆金属外护层应分别在上、下端、及进入机房入口处就近接地,当馈线及同轴电缆长度大于60m时,其屏蔽层宜在塔的中间部位增加一个接地连接点,室外走线架始末两端均应作接地连接。

2、城市内孤立的高大建筑物或建在郊区及山区,地处中雷区以上的无线通信局(站),当馈线采用同轴电缆时,应在同轴电缆引进机房入口处安装标称放电电流不小于5KA的同轴SPD,同轴SPD接地端子的接地引线应从天馈线入口处外侧的接地线、避雷带或地网引接。

因此要对天馈线防雷器进行选型。

3、天馈线防雷器的选择问题:移动基站通常使用带馈电和不带馈电的两种系统,馈线传送速率为850M-960M,传输速率非常的高。因此选用天馈线防雷器时主要考虑的防雷器的插入损坏、回波损耗VSWR等。YD5098 5.4.1 要求:同轴型SPD插入损耗应小于等于0.2dB,驻波比小于等于1.2,同轴型SPD最大输入功率能满足发射机最输出功率的要求,安装与接地方便,具有不同的接头,同轴型SPD与同轴电缆接口应具备防水功能。同轴型SPD的标称放电电流应大于等于5KA。

具体配臵如下:

1.在天馈线路上安装KBT-T2000A天馈线路防雷器,数量共20只,通流容量10KA,插入损耗应小于等于0.2dB,驻波比小于等于1.2,3. 移动基站的监控系统防雷措施

近年来,中国移动基站普遍采用了智能监控系统,据统计监控系统设备目前已经成为移动基站中设备被雷电损坏频度最多的设备,也是被损坏最严重的系统。统计被雷电损坏与监控系统有关设备中比较多的有:空调的控制板(通常通过RS232端口与监控相连)、一些数据采集器的RS422或485端口、协议转换器、监控设备的传输板等。为什么很多基站在供电系统防雷比较完善的情况下其监控系统还是被损坏呢?雷电对基站的监控系统的入侵途径与入侵PCM 2M线的方式一样也就不再说明,损坏的主要原因在于监控系统自身的特点,从对众多监控系

统被雷电损坏的基站情况来看,可以总结出以下几个因素:

1、设备电源没有防雷措施,且耐压水平低,根据IEC61000-4-5直流-48V的通信设备的耐压水平不会高于500V;

2、控设备的RS485、RS422或RS232通信端口都没有相应的防雷措施,且通信端口本身的耐压水平非常低,通常RS485、RS422或RS232通信端口的耐压水平不超过100V;

3、监控系统被雷击的基站的开关电源普遍没有安装直流防雷器;

4、监控系统存在大量的数据采集线路,这些线路的布放不规范,往往是捆在一起,且很多数据采集线不是屏蔽线缆;

5、监控设备接地参考点不统一,且接地线不规范。可以说监控系统纷繁复杂的布线为雷电流入侵提供了更多的渠道,与本身羸弱的防护能力形成巨大的反差,因此、监控系统更需要全面的防雷。

因此、对移动基站监控系统的主要雷电防护措施有:

1、对监控数据采集线的布放进行合理规划,所有数据采集线路应使用屏蔽线,且其屏蔽层应接地,尽可能的降低雷电电磁脉冲在数据采集线路上感应出的雷电流;

2、接地方面:在监控主设备下设一个小的监控设备接地参考点作为所有监控设备的接地,并用超过16mm2的接地线与基站总等电位排进行连接。目的用来降低各监控设备间因接地产生的电位差,3、在监控设备端安装-48V的电源防雷器,释放从地线或电源线引入的雷电流;

4、5、在开关电源直流输出端安装相应的直流防雷器,如电源防雷图中所示,在一些损坏频度较高的设备与监控设备间的通信端口安装相适用的信

号线防雷器,6、对于监控系统的数据采集线路以及控制线都是信号线,因此在选择防雷器时要考虑信号线防雷器的接口类型、工作电压、传输速率、线路阻抗与系统设备相匹配。下面我们主要推荐一些已经在中国移动省市基站主流监控设备及开关电源中使用过的防雷器如:艾默生、中兴、亚信、亚奥等监控设备厂家;以及在开关电源的监控系统中使用过的信号线防雷器,如艾默生、中恒、动力环等;在这些设备中主要使用到的信号线防雷器被实践和时间证明是非常有效的,而且不会有任何主设备产生任何影响。

具体配臵如下:

1. 在摄像机前安装KBT-V/3监控多功能防雷器,通流容量10KA,对摄像机的电源线路、信号线路及控制线路进行防雷保护,共3只。2. 在监控主机前端的信号线路前端安装KBT-V40A视频信号防雷器,共3只

3. 在在监控主机前端的控制线路前端安装KBT-C485控制信号防雷器,共1只

4. 在数据采集线路上安装KBT-C10A控制信号防雷器,共2只

4.等电位处理

在机房四周设臵一均压环,作为各防雷器及通信设备的接地线汇聚排,并与室外接地装臵可靠连接。均压环材料为30*3紫铜排,长度为40米。

4.移动基站的外部防雷接地工程

移动基站的接地应采用联合接地,对有铁塔的基站应将铁塔地网与机房地网相焊接,机房总接地排的接地线与地网连接时应避开铁塔及避雷针的专用引下线,两者间距离要求大于5米,以免铁塔和避雷针上的雷电流沿总地线引入线流入机房内。对一些租用大楼或民用建筑的基站,根据国家标准GB50057-94《建筑物防雷设计规范》的相关要求,对于建筑物的接地一般都采用其钢筋混凝土基础作为地网,建筑物其钢筋混凝土基础埋地较深,大楼的接地电阻基本上能满足要求,因此可以使用大楼的主钢筋作为防雷接地系统。

1、根据YD5068-98《移动通信基站防雷与接地设计规范》的要求,通常移动基站的接地电阻要求小于5欧姆。如果山区基站接地电阻难以满足要求,可以通过使用降阻材料来降阻,如果还是不能满足要求则应将整个基站通过防雷器做好等电位连接。

2、在移动基站外部进线孔处设立接地排,并与基站地网相连。将所有进入基站的缆线的接地与之相连,如天馈线接地、铁塔走线架的接地、光缆加强芯的接地、供电线屏蔽管道的接地等。

3、YD5098-2001中规定出入通信局(站的电力电缆(线)、通信缆线应采用金属护套电缆或敷设在金属管内,且应埋地引入,缆线埋地深度应不小于0.7m。特别对于进入通信局(站)的低压电力电缆宜全程埋地引入,其电缆埋地长度不宜小于15m等。这些工程措施都具有一定的雷电防护作用。

4、接地引线材料选择金属接地体应采用热镀锌材料,在各个焊接点由于已破坏

了原来的热镀锌层,因此一定要做防腐蚀处理。垂直接地体长度为1.5~2.5m,垂直接地体间隔为其自身长度的1.5~2倍。接地体上端距地面不小于0.7m,且应在冻土层之下。具体要求如下: 垂直接地体:

可采用直径为50mm壁厚3.5mm的钢管 或50mm*50mm*5mm的角钢 水平接地体和接地引入线: 可采用40mm*4mm 或50mm*5mm的扁钢。

附地网设计过程:

基站周围的土质较差,土壤以风化石为主,土壤电阻在1000Ω〃m。原地的接地电阻为15欧姆,要求将整个接地接地的接地电阻降到4欧姆以下,现在其进行设计。

在基站下侧的山坡上新建一个地网,长42米,宽28米,面积为1176平方米。地网布臵成网格状,网络大小为7米*7米,水平接体采用50*5热镀锌扁钢,共450米,垂直接地体采用50*50*5*热镀锌角钢,共35根,该接地网的接地电阻值计算如下:

地网长42米,宽28米,土壤电阻率为1000,按以下公式计算其电阻值。

R10.5S14.58 

新地网与老地网并联后的接地电阻计算如下:

R111R1RY7.4

经计算:R1=7.4欧姆.,不能满足4欧姆的要求,需使作其它材料使地网接地电阻值降低,2.由于土壤电阻率很高,仅用角钢和扁钢难以使地网电阻满足不小于4欧姆的要求,因此使用降阻剂,使地网的电阻值达到设计要求。

在水平接地体上包裹降阻剂,用量为15kg/m,总长度450米,共需降阻剂6750kg 1)使用降阻剂后的新建地网的接地电阻计算如下:

R10.5S14.580.710.2 

2)新地网与老地网并联后的接地电阻计算如下:

R111R1RY6.07

经计算:R1=7.4欧姆.,不能满足4欧姆的要求,需使作其它材料使地网接地电阻值降低,3)继续使高效用接地模块来降低整个地网的接地电阻,型号为KBT-DF,数量为26块,间距为7米。

单块接地模块的接地电阻计算如下:

R0.068ab152

10块高效接地模块的联合接地电阻计算如下:

R2 R15217.9 n100.85

使用10块高效接地模块、6750公斤降阻剂、450米扁钢、角钢与原地的联合接地电阻计算如下:

R114.5

111111R1R2R31510.217.9还是不能满足不大于4欧姆的设计要求。需继续采用其它的方法进一步降低地网的接地电阻。

4.为使地网的接地电阻降低到设计要求,本方案采取增设电解离子接地极的方法进一步降低接地电阻,电解离子接地极的型号为KBT-LJD,数量6支 单根离子接地极的接地电阻计算如下: R48l100083(ln1)k(ln1)0.240.2 2Ld23.1430.2经计算.R2=40.2欧姆

6根离子接地极并联后的接地电阻计算如下;R4R40.27.9 n60.855.新地网与原有地网联接地的接地电阻计算如下

R11111R1R2R3R4111111510.217.97.92.9

合格

经计算,新建地网需使用450米热镀锌扁钢,35根1.5米根的热镀锌角钢,6750公斤降阻剂,10块接地模块,6根电解离子接地极,接地电阻可达到2.9欧姆,能满足不大于4欧姆的要求。

如由于运输困难,降阻剂难以施工,可不使用降阻剂,在其它材料用量相同的情况下,新建地网的接地电阻值为3.1欧姆,也可满足设计要求。

R11111R1R2R3R4111111514.617.97.93.1但由于季节的变化,土壤中的水份会发生很大的变化,干旱季节由于土壤中的水分减少,导致土壤电阻率大大升高,从面使整个接地装臵的接地电阻增加。而降阻剂能有效保持土壤中的水份,从而使整个接地装臵的接地电阻保护稳定,不会随季节的改变而发生大的变化,因此建议本工程使用降阻剂。

三、地网施工方案

1.人工接地体在土壤中的埋设深度不应小于0.5m。水平接地体应挖沟埋设,沟的尺寸为上宽上0.6米,下宽松0.4米,高0.6米的梯形。

2.地网的网格为7米*7米,在水平网格的交叉处放臵垂直接地体。3.在水平接地体上包裹降阻剂,用量为15公斤/米。

4.电解离子接地极采用钻孔的方法敷设,用热熔焊的方法与水平接地体连接。5.接地模块与水平接地极采用焊接地方法连接。6.新建地网与原地网连接点不少于两处。

KBT-LJD离子接地体施工方法如下:

1、钻孔

在选好的施工场地钻出Φ155mm×3155mm垂直地面的孔洞。

2、配填充剂

(1)在容积大小150升的容器内放入50kg淡水(井口、自来水均可);(2)加入填充剂A,搅拌至全部溶解;(3)加入填充剂B,搅拌至全部溶解;(4)加入填充剂C,搅拌至糊状。

3、植入接地棒

(1)拆开接地棒两端密封胶带

(2)将四分之一配臵好的的填充剂填入孔洞底部;(3)将接地棒植入孔洞中,棒顶与地平面平齐;(4)接好引出线;(5)将其余填充剂填在接地棒周围,填至距棒顶端100mm时止;(6)盖上防护帽,测量接地电阻;

(7)用土填盖防护帽周围,帽顶高出地面100mm。

4、注意事项

(1)钻孔直径不宜大于155mm,以免填充剂填充不足;

(2)盖防护帽时注意棒上的通气孔不得被泥土或填充剂堵塞,帽上通气孔在回填土之上,不得堵塞。

(3)当一根接地棒达不到地阻要求时,可用两根或几根并联使用,棒与棒之间的间隔不宜小于5m;(4)引出线采用50mm多股铜线,引出线与棒体实行压接,接点防腐处理。(5)多极离子接地极的母线采用BV50mm²铜线实行火泥熔接连接。

服务与承诺

1、本公司保证所提供的产品符合国家有关防雷产品的法规和标准。

2.本公司防雷工程中所使用的产品实行一年内免费更换,五年内免费维修,终身维护。

3.我公司承包的防雷工程中所使用的产品,保修期的起始日期为产品安装之日。4.保修期内对符合保修条件的产品,不收取备件费和工时费;对不符合保修条件的产品,收取备件费,免收工时费。

5.凡本公司施工的防雷工程,保证防雷系统及被保护系统的安全有效运行,如防雷系统出现故障,自接到通知之时起,省外48小时派员赶到现场处理,省内24小时派员赶到现场处理,市内4小时派员赶到现场处理。

6.公司对各用户实行免费提供防雷技术人员培训,免费提供防雷技术咨询。7.本公司所使用的产品均由中国人民保险公司质量承保。8.本《服务与承诺》解释权归湖南普天科比特防雷技术有限公司。

湖南普天科比特防雷技术有限公司

某移动基站综合防雷工程预算表

上一篇:高中体育教师个人教学工作总结下一篇:2022医学生自我鉴定