整式的乘法教学设计(共12篇)
2.会进行单项式乘以多项式的计算以及含有单项式乘以多项式的混合运算。
3.通过例题教学,培养学生灵活运用所学知识分析问题、解决问题的能力。
教学重难点
重点:本节课的教学重点是掌握单项式乘以多项式的法则。
难点:熟练地运用法则,准确地进行计算。
教学过程
一 创设情境,引入新课
问题:三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一 个月内的销售量(单位:瓶)分别是a,b、c.你能用不同的方法计算它们在这个月内销售这种商品总收入吗?
二 探究新知
让学生分析题意,得出两种解法:
解法(一):先求三家连锁店的总销量,再求总收入,即总收入(单位:元)为:m(a+b+c)①
解法(二):先分别求三家连锁店的收入,再求它们的和,即总收入(单位:元)为:ma+mb+mc ② 请学生探究①和②是否表示的结果一致?
由于①和②表示同一个量,所以: m(a+b+c)=ma+mb+mc。
得出结论后再由乘法分配律公式(a+b)c=ac+bc从另一个角度推出结论m(a+b+c)=ma+mb+mc?
想一想:你能由此总结出单项式与多项式相乘的乘法法则吗?教师总结如下:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.?例题分析:分部讲解课本100页例5 的两道例题(在学习过程中重点提醒学生注意 符号问题,多项式的每一项都包括它前面的符号)
三深入探究
(一)根据例题分析,启发学生总结单项式与多项式相乘的实质和一般步骤:
1.单项式与多项式相乘的实质是利用分配律把单项式乘以多项式转化为单项式乘法。
2.单项式与多项式相乘时,分三个阶段:①按分配律把乘积写成单项式与单项式乘积的代数和的形式;②按照单项式的乘法法则运算 ③再把所得的积相加.(二)强调计算时的注意事项:
1.计算时,要注意符号问题,多项式中每一项都包括它前面的符号,单项式分别与多项式的每一项相乘时,同号相乘得正,异号相乘得负
2.不要出现漏乘现象
3.运算要有顺序:先乘方,再乘除,最后加减。
4.对于混合运算,注意最后应合并同类项。
四课内巩固
练一练:课本101页的练习1和2。给学生足够的时间进行基础练习,安排2-3个同学在黑板上演示解题过程,及时观察学生知识的掌握状况,及时纠错以便加深印象,使学生深刻理解单项式与多项式相乘的解题思路及基本方法。(注:学生在计算过程中,容易出现符号问题,要特别提醒学生注意.)
五 课外探究
计算:(1)3a(5c-2b)?(2)(x-3y)·(-6z)让学生在练习本上计算,然后老师通过课件对照答案,这样使学生更加熟练地掌握单项式与多项式相乘的解题思路及基本方法。
六课堂小结
1、这节课你学到了哪些知识?
2、你有什么想法要跟大家一起交流?
七 布置作业
1.课本p105?第4题
2.练习册p79-p80
八课后反思
一 、整式的乘法
整式的乘法是整式四则运算的重要组成部分.其中之前所学习的幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础.整式乘法具体内容包括单项式乘以单项式,单项式乘以多项式以及多项式乘以多项式.
单项式与单项式相乘 把他们的系数相乘,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
单项式乘以多项式 就是用单项式去乘多项式的每一项,再把所得的积相加.依据是
.
多项式与多项式相乘 用多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.
二 .乘法公式
乘法公式是整式乘法的特殊情形.运用乘法公式能迅速而简洁地进行一些整式相乘的运算.
平方差公式:
注意:平方差公式展开只有两项.
公式的特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.
完全平方公式:
完全平方公式的口诀:首平方,尾平方,首尾2倍中间放,符号和前一个样.
三. 因式分解
因式分解是多项式的一种恒等变形.因式分解不但在解方程等问题中极其重要,在数学科学其他问题和一般科学研究中也具有广泛应用,是重要的数学基础知识.因式分解的方法一般包括提公因式法、公式法.因式分解和整式乘法是互逆的运算,同学们在学习时必须能够弄清两者的区别和联系.
分解因式基本概念:
※把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.
※因式分解与整式乘法是互逆关系.
因式分解的思路与解题步骤:
(1)看各项有没有公因式,若有,先提取公因式;
(2)再看能否使用公式法;
(3)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;
(4)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.
因式分解的基本方法
Ⅰ提公因式法
概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.如:
概念内涵:
(1)因式分解的最后结果应当是“积”;
(2)公因式可能是单项式,也可能是多项式;
(3)提公因式法的理论依据是乘法对加法的分配律,即:
方法:
(1)找多项式中的公因式;公因式的构成一般情况下有三部分:①系数----各项系数的最大公约数;②字母----各项含有的相同字母;③指数----相同字母的最低次数;
(2)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.
(3)注意点①提取公因式后各因式应该是最简形式②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
易错点点评:
(1)注意项的符号与幂指数是否搞错;
(2)公因式是否提“干净”;
(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.
Ⅱ公式法
运用公式法分解因式的实质是:把乘法公式反过来使用.常用的公式:
①平方差公式:
(应是二项式,且每项(不含符号)都是一个整式的平方;二项是异号.)
②完全平方公式: 、
(应是三项式;其中两项同号,且各为一整式的平方; 还有一项可正负,且它是前两项幂的底数乘积的2倍.)
因式分解中需要注意的几个问题
1.分解的对象是多项式.而对于 的变形过程,是利用了因式分解的方法和形式,而不能叫因式分解.
2. 要把结果化为几个因式的积,而不是把部分化为积的形式.有些同学在分解因式时,容易出现这样的错误
= ,
它不符合因式分解的定义,应分解为 =
3.不要分解后又乘回来
1.教学目标
★新课标要求
(一)知识与技能
1.掌握完全平方公式及文字叙述. 2.能够熟练运用完全平方公式进行运算.
(二)过程与方法
经历平方差公式的探索过程,使学生熟悉完全平方公式的特征,进一步发展学生的符号感和推理能力、培养学生的发现能力、归纳能力.
(三)情感、态度与价值观
1.学生在阅读概念及探究和运用法则过程中,培养勇于探索的精神,树立积极思考,克服困难的信心.
2.通过探究完全平方公式的几何背景,培养学生运用数形结合的思想方法和整体的数学思想方法的能力.
2.教学重点/难点
★教学重点
熟练运用完全平方公式进行运算. ★教学难点
熟练运用完全平方公式进行运算.
3.教学用具 4.标签
教学过程
(一)复习旧知(1)合并同类项法则
ab+ba=(1+1)ab=2ab 2xy-5xy+xy=(2-5+1)xy(2)多项式与多项式相乘的法则(a+b)(m+n)=am+an+bm+bn.
(3)根据乘方的定义,我们知道:a2=a•a,那么 应该写成什么样的形式呢?
(二)创设情境、引发新知(1)计算(m+2)(m+2)=(2)计算
通过计算,引导学生得出
(3)总结 的特点:
学生讨论后教师板书公式特点:两数和的平方,等于这两数的平方和,加上这两数乘积的2倍.
(4)引导学生观察公式的左右边,进一步挖掘公式的结构特征 ①公式左边是两项(数)的和的平方.
②公式的右边有三项,两个平方项,且符号相同,一个两项乘积的两倍.(首平方,尾平方,成绩的两倍放中央,中间符号同前方.(5)多层面多方位考察完全平方公式,加深理解 ①()+ +()
②(2m)+()+(6)完全平方公式的几何证明
(三)范例解析,深化新知 【公式的直接运用】
例1 运用完全平方公式计算:
(1)
(2)
(3)
练习:利用完全平方公式计算
【公式的转化运用】
例2 运用完全平方公式计算:
(1)
(2)
练习:利用完全平方公式计算(1)
(2)
【思考探究、知识延伸】
你能用几种方法运用完全平方公式计算:
课堂总结
本部分主要是掌握并理解完全平方公式,能够熟练运用公式进行运算.学习时与平方差公式对照记忆,以免产生混淆.在记忆公式(a±b)2=a2±2ab+b2时,要在理解和比较的基础上记忆,两个公式相同之处在于两个数的平方和,不同之处在于中间项的符号不同,计算时要注意.如:(x-2y)2=x2-2•x•2y+(2y)2=x2-4xy+4y2.
说明完全平方公式,既可以用多项式乘法进行推导,同时,也可以用观察情境来推导,用几何图形拼割之后的面积来证明公式的正确性. 第二课时 ★新课标要求
(一)知识与技能
1.熟练掌握添括号法则并能够熟练运用法则进行运算. 2.能用适当的乘法公式进行计算.
(二)过程与方法
1.学生通过阅读教材理解并掌握法则,提高自主学习能力.
2.通过学生思考、练习、讨论等过程,提高学生分析问题,解决问题及综合运用知识能力.
(三)情感、态度与价值观
1.学生在阅读、探究和运用法则过程中,培养勇于探索的精神,树立积极思考,克服困难的信心.
2.加强学生团队及合作精神. ★教学重点
1.熟练运用添括号法则.
2.熟练运用适当的乘法公式进行运算. ★教学难点
1.熟练运用添括号法则.
2.熟练运用适当的乘法公式进行运算. ★教学方法
教师适当引导;学生自主学习,通过阅读教材、与同学讨论、交流获取知识. ★教学过程
第一环节 回顾与思考
活动内容:复习已学过的完全平方公式. 1.完全平方公式:(a+b)2 = a2 + 2ab + b2
(a-b)2 = a2x2 解:(1)方法一
完全平方公式→合并同类项(x+3)2-x2 =x2+6x+9-x2 =6x+9 解:(1)方法二
平方差公式→单项式乘多项式.(x+3)2-x2 =(x+3+x)(x+3-x)=(2x+3)•3=6x+9(2)(x+5)2–(x-2)(x-3)解:(2)(x+5)2-(x-2)(x-3)
=(x2+10x+25)-(x2-5x+6)
=x2+10x+25-x2+5x-6
=15x+19 温馨提示:
1. 注意运算的顺序.
2.(x−2)(x−3)展开后的结果要注意添括号.(3)(a+b+3)(a+b-3)解:(a+b+3)(a+b-3)=[(a+b)+3][(a+b)-3] =(a+b)2-32 =a2+2ab+b2-9 温馨提示:
将(a+b)看作一个整体,解题中渗透了整体的思想 2.巩固练习
(1)(a-b+3)(a-b-3)
(2)(x-2)(x+2)-(x+1)(x-3)(3)(ab+1)2-(ab-1)2(4)(2x-y)2-4(x-y)(x+2y)
活动目的:使学生进一步熟悉乘法公式的运用,同时进一步体会完全平方公式中字母a,b的含义是很广泛的,它可以是数,也可以是整式.并且在解题过程中体会解题前观察与思考的重要性,学会一题多解情况下的优化选择,并通过例题中的第三个题目体会整体思想,同时渗透添加括号的思想.
实际教学效果:对例题1(1),学生经过独立思考容易想到方法一从而借助于完全平方公式来解决问题,但是不容易想到借助逆向使用平方差公式来进行计算,在教师的引导下部分学生可以理解借助平方差公式的方法.虽然此题两种方法解题难度上差别不大,但是在随后练习中的第三小题学生会感悟到借助逆向使用平方差公式更为简单.从而既达到了巩固练习的目的,还使学生有了优化选择的意识.
对例题1(2),当整式乘法之间用减号连接时,此时应特别注意后面部分的计算结果应该加上括号,这是学生非常容易出错的地方,应给予强调,并在随后练习中的二、四小题有所体现. 对例题1(3),在前面学习中就已经有所渗透整体的思想,此题让学生进一步感悟公式中的“a”“b”除了可以代表数与字母之外,还可以代表代数式,并体会添加括号的思想. 第五环节 课堂小结 活动内容:归纳小结 1. 完全平方公式的使用:
在做题过程中一定要注意符号问题和正确认识a、b表示的意义,它们可以是数、也可以是单项式,还可以是多项式,所以要记得添括号. 2. 解题技巧:
在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择.
活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的.同时本节课更多的属于练习巩固及综合应用,所以应让学生更多的谈在这节课中解题上所获得的收获与体会.
实际教学效果:通过学生的畅所欲言,教师在其中能够发现学生掌握较为薄弱的地方,从而在今后教学中可以得以弥补.同时学生谈了更多在某个题目上所获的经验和方法,此时教师应给予总结,进一步明确所涉及的数学思想和数学方法.
第六环节 布置作业 活动内容:
1.基础训练:教材习题. 2.扩展训练:联系拓广
活动目的:课下将所学知识进一步巩固,并得以反馈. 第七环节 联系拓广
1.(1)如果把完全平方公式中的字母“a”换成“m+n”,公式中的“b”换成“p”,那么(a+b)2 变成怎样的式子? 怎样计算(m+n+p)2呢?
(m+n+p)2 =[(m+n)+p]2 =(m+n)2+2(m+n)p+p2 =m2+2mn+n2+2mp+2np+p2 =m2+ n2 +p2+2mn+2mp+2np(2)把所得结果作为推广了的完全平方公式,试用语言叙述这一公式: 三个数和的完全平方等于这三个数的平方和,再加上每两数乘积的2倍.(3)仿照上述结果,你能说出(a−b+c)2所得的结果吗? 2. 已知:a+b=5,ab=-6,求下列各式的值(1)(a+b)2
(2)a2+b2 若条件换成a-b=5,ab=-6,你能求出a2+b2的值吗?
活动目的:对于本节课的进一步拓广,培养学生的探究意识,让学有余力的同学进一步加深对本节课的理解.
教学目标:
1、经历探索整式的乘法运算法则的过程,会进行简单的整式的乘法运算。
2、理解整式的乘法运算的算理,体会乘法分配律的作用和转化思想,发展有条理的思考及语言表达能力。
教学重点:
整式的乘法运算。
教学难点:
推测整式乘法的运算法则。
教学过程:
一、探索练习:展示图画,让学生观察图画用不同的形式表示图画的面积。并做比较。由此得到单项式与多项式的乘法法则。观察式子左右两边的特点,找出单项式与多项式的乘法法则。
跟着用乘法分配律来验证。
单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项再把所得的积相加。
二、例题讲解:
例2:计算(1)2ab(5ab2+3a2b);
(2)解略。
三、巩固练习:
1、判断题:(1)3a3·5a3=15a3( )
(2)( )
(3)( )
(4)—x2(2y2—xy)=—2xy2—x3y( )
2、计算题:
(1);(2);(3);(4)—3x(—y—xyz);(5)3x2(—y—xy2+x2);(6)2ab(a2b—c);(7)(a+b2+c3)·(—2a);(8)[—(a2)3+(ab)2+3]·(ab3);(9);(10);(11)(。
四、应用题:
1、有一个长方形,它的长为3acm,宽为(7a+2b)cm,则它的面积为多少?
五、提高题:
1、计算:(1)(x3)2―2x3[x3―x(2x2―1)];(2)xn(2xn+2—3xn—1+1)。
2、已知有理数a、b、c满足|a―b―3|+(b+1)2+|c—1|=0,求(—3ab)·(a2c—6b2c)的值。
3、已知:2x·(xn+2)=2xn+1—4,求x的值。
4、若a3(3an—2am+4ak)=3a9—2a6+4a4,求—3k2(n3mk+2km2)的值。
小结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。作业:课本P11习题1。3教学后记:
第二课时
教学目标:
1、经历探索多项式乘法的法则的过程,理解多项式乘法的法则,并会进行多项式乘法的运算。
2、进一步体会乘法分配律的作用和转化的思想,发展有条理的思考和语言表达能力。
教学重点:
多项式乘法的运算。
教学难点:
探索多项式乘法的法则,注意多项式乘法的运算中“漏项”、“符号”的问题
教学过程:
一、探索练习:如图,计算此长方形的面积有几种方法?如何计算?小组讨论。你从计算中发现了什么?多项式与多项式相乘,_____________________________。
二、巩固练习:1、计算下列各题:(1);(2);(3);(4);(5);(6);(7);(8);(9);(10);(11)。
三、提高练习:
1、若;则m=_____,n=________
2、若,则k的值为( )(A)a+b(B)—a—b(C)a—b(D)b—a
3、已知,则a=______,b=______。
4、若成立,则X为__________。
5、计算:+2。
6、某零件如图示,求图中阴影部分的面积S。
7、在与的积中不含与项,求P、q的值。
一、小结:
本节课学习了多项式乘法的运算,要特别注意多项式乘法的运算中不要“漏项”、和“符号”的正确处理。
(一)教案
教学目标:
知识与技能:记住整式乘除的计算法则;平方差公式和完全平方公式;掌握因式分解的方法和则
过程与方法:会运用法则进行整式的乘除运算,会对一个多项式分解因式 情感态度与价值观:培养学生的独立思考能力和合作交流意识 教学重点:记住公式及法则
教学难点:会运用法则进行整式乘除运算,会对一个多项式进行因式分解 教学方法与手段:讲练结合 教学过程:
一.本章知识梳理:
幂的运算:
(1)同底数幂的乘法(2)同底数幂的除法
(3)幂的乘方(4)积的乘方
整式的乘除:(1)单项式乘单项式(2)单项式乘多项式
(3)多项式乘多项式
(4)单项式除以单项式(5)多项式除以单项式 乘法公式:
(1)平方差公式(2)完全平方公式 因式分解:
(1)提公因式法(2)公式法 二.合作探究:
(1)化简:a3·a2b=.(2)计算:4x2+4x2=(3)计算:4x2·(-2xy)=.(4)分解因式:a2-25=
三、当堂检测
1.am=2,an=3则a2m+n =___________,am-2n =____________ 2.若A÷5ab2=-7ab2c3,则A=_________, 若4x2yz3÷B=-8x,则B=_________.2(axb)(x2)x4,则ab=_________________.3.若4.若a-2+b2-2b+1=0,则a=a,b=
5.已知
11a223aa的值是.,则6.已知被除式是x3+2x2-1,商式是x,余式是-1,则除式是()
A、x2+3x-1 B、x2+2x C、x2-1 D、x2-3x+1 7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()
A.–3 B.3
C.0
D.1 8.一个正方形的边长增加了2cm,面积相应增加了32cm,则这个正方形的边长为()
A、6cm B、5cm C、8cm D、7cm 9.下列各式是完全平方式的是()
2A、x2x14 B、1x2 C、xxy1
2D、x2x1
10.下列多项式中,含有因式(y1)的多项式是(y 2 2 y 1)
A.22222(y1)(y1)(y1)(y1)(y1)2(y1)1 B.C.D.三.课堂小结:
今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。四.课后作业:
21.简便方法计算(1)98×102-992(2)991981
2.矩形的周长是28cm,两边长为x、y,若x3+x2y-xy2-y3=0,求矩形的面积. 3.已知a,b,c为△ABC的三条边的长.
(1)若b2+2ab=c2+2ac,试判断△ABC的形状
222a2bc2b(ac)0,试判断三角形的形状(2)若板书设计:
第14章整式的乘法与因式分解复习
幂的运算:
(1)同底数幂的乘法(2)同底数幂的除法
(3)幂的乘方(4)积的乘方
整式的乘除:(1)单项式乘单项式(2)单项式乘多项式
(3)多项式乘多项式
(4)单项式除以单项式(5)多项式除以单项式 乘法公式:
(1)平方差公式(2)完全平方公式 因式分解:
学习单项式与单项式相乘的法则应注意:
1. 法则的推导运用了乘法的交换律和结合律、同底数幂的乘法法则,它是对已有的知识进行概括得到的,所以没有必要死记硬背法则的内容.
2. 法则中包括乘式里的系数、相同字母和单独出现的字母三个部分:积的系数等于各因式系数的积,这是有理数的乘法,应先确定符号再计算绝对值;相同字母的幂相乘是同底数幂的乘法,底数不变,指数相加;只在一个单项式里含有的字母,要连同它的指数写在积里,注意不能把这个因式漏掉不写.
这里的“c2”只在一个单项式中出现,运算时每一步都要乘上它,千万不能漏掉.另外,运算过程中的数与数、字母与字母之间要写上乘号,适当加上括号,可以更清楚地表明是如何利用法则运算的,但最后的结果不要写乘号、括号,并且系数要写在最前面.
3. 单项式乘单项式的法则对于两个以上的单项式相乘同样适用,如计算:
单项式与单项式相乘的结果仍是单项式.
单项式的乘法在整式乘法中占有重要的地位,熟练地进行单项式的乘法运算是学好多项式乘法和多项式混合运算的关键.
整式的除法是人教版八年级15章第三节的内容,主要知识是单项式除以单项式及多项式除以单项式的基本运算,此节课是我们实施高效课堂来设计的导学案并已经进行了实际教学, 通过学生的学习有以下感受:
一、通过同底数幂的除法的复习让学生有个知识的链接,能把同底数幂的除法运算合理准确的应用到本节做了很好的铺垫,可谓起到温故而知新的有效作用。
二、探究新知这一环节的设计是一个层层递进的学习过程,从单项式除以单项式开始,让学生通过自主学习、小组交流、合作展示等,准确把握住单项式除以单项式的运算法则并能总结规律(1)数字系数:相除(2)相同字母:同底数幂相除(3)只在被除式里出现的幂:不变。在掌握单项式除以单项式的运算为基础上,为多项式除以单项式埋下很好的伏笔和合理的过度,所以学生能比较快的理解、应用、掌握和计算。
三、课堂练习是基础性知识的计算题,让学生能准确计算并特别注意系数是负号的题要细心。5(2a+b)4÷(2a+b)2是希望学生能把(2a+b)当成一个整体来计算。
四、拓展提高的题型是综合性比较高,涉及面比较广的计算题,让学生能分清楚平方差公式、完全平方公式并能计算无误。如果2x-y=10,[(x2+y2)-(x-y)2+2y(x-y)]÷4y的值,此题还希望学生能有一个整体代入的数学思想来应用。
都说教学是一个缺憾的艺术,确实如此。
通过这节课的学习,也暴露出许多问题。
一、在学生自主学习并相互交流和讨论而生成后,当学生展示时,没给学生足够的表述观点的时间而自己不时的替代他们补充和完善,虽然想让学生学的更快和更好,其实是阻碍的学生思路的发展。回头考虑:应该让学生通过展示体验到成功的快乐和收获的乐趣,从而激发出他们求知的欲望和学习的积极主动性。在很多时候,我们应该相信自己的学生并确实给他们一个展示自己、展示亮点的舞台,应该放手把课堂真正的还给学生。
二、课堂练习没涉及多项式除以单项式的计算题,而多项式除以单项式实际上都以单项式除以单项式来解决。5(2a+b)4÷(2a+b)2的运算好多学生无从下手,而把(2a+b)4想成8a4+b4来计算,可见学生对整体的思想和思路还不完善,还不会应用。学生在学习基础知识时往往不求甚解、粗心大意,忽视对结论的反思,满足于一知半解,这是造成错误的重要原因。结果常常出现不符合实际,数据出错等现象,特别是一些隐性错误发生频率更高。因此教师应当结合学生出现的错误,帮助学生从基本概念、基础知识的角度来剖析作业错误的原因,给学生提供一个对基础知识、基本概念重新理解的机会,使学生在纠正作业错误的过程中掌握基础知识,理解基本概念,指导学生自觉地检验结果,培养他们的反思能力。让学生交流解答后应该适时的再让学生自己想出这样的类型题来计算,并通过这一过程让学生能准确把握住整体的思路。
三、实际课堂上,自己不善于表扬学生,总以为他们学会是理所应当的,不会及时的给学生合理的或者是扩大他们的优点来表扬。其实课堂应该是充满着尊重,充满着激励,充满着赏识,充满着期待的大平台,让学生能尽情的发挥自己的智慧,发现自己的优点并通过一点一点的夸大而得到提高。
四、实际课堂上,没有合理利用好学生教学生的关系。通过独学交流并掌握交好的学生,应该充分发挥出他们的主体优势,让他们把自己的思路和方法适时的帮助学习比较困难的学生。这样不但能使优等生发现自己的优势,而且使学困生在学习的过程中明白自己学习方法的不足和缺陷,从而找出努力的方向。
总之,要上好一节课,教师除了准确把握教材、理解教材、挖掘教材外,还要全面分析学生的实际情况,还应该把握住教学中的每一个环节,合理设计每一节的教学过程,能巧妙的为学生铺路搭桥,帮助学生跨越障碍,让学生能体验成功的乐趣!我们为此而努力加油吧!
反思二:整式的除法教学反思
在学生独立探究了多项式除以单项式的法则之后,及时引导学生反思自己的思维过程,并对自己计算所得的结果进行观察,总结出计算的一般方法和结果的项数特征:商式与被除式的项数相同.教学中一定要通过实际情境让学生体会学习整式除法的必要性,还要重视学生对算理的理解,使学生体会重要的教学思想方法转化法。
在讲解多项式除以单项式时,教科书提供了一些多项式除以单项式的题目,鼓励学生利用已经学习过的内容独立解决这些问题.教学中仍应提倡算法多样化,让学生说明每一步的理由,并鼓励学生间的交流.学生可以类比数的除法把除以单项式看成是乘以这个单项式的倒数,也可以利用逆运算进行考虑.这里重要的是学生能理解运算法则及其探索过程,能够运用自己的语言叙述如何进行运算,不必要求学生背诵法则.用字母概括法则是使算法一般化,可深化和发展对数的认识.
幂的运算性质是整式除法的关键,符号仍是运算中的重要问题.在此可由学生口答,要求学生说出式子每步变形的依据,并要求学生养成检验的习惯,利用乘除互为逆运算,检验商式的正确性.
通过例题的剖析和解决,培养学生耐心细致、严谨的数学思维品质,训练学生形成一定的计算能力.
反思三:整式的除法教学反思
在进行整式的除法教学时我是用两个例子引出课题并进行法则的研究的,12x2y4z=3x2y2×(?),-2a2b×(?)=4a4b-6a3b2+2a2b,同时进行分类,整式的除法可以分为:单项式除以单项式、单项式除以多项式、多项式除以单项式、多项式除以多项式,告诉学生,在整式范围内,我们不能研究单项式除以多项式(为什么?),只能研究特殊情况下的多项式除以多项式,给学生一个整体的知识结构是很有好处的,可使学生明明白白地学习。
在学生探究单项式除以单项式的法则时,正好借助引入的例子,由学生采用类比迁移的方法,单乘单,一二三,那么单除单,一二三,学生结合单项式乘以单项式的法则,讨论研究单项式除以单项式法则,关键词与单项式乘以单项式的法则只有一字之差,单项式乘以单项式,对于系数,用它们的积作为积的系数;对于相同字母,用它们的指数和作为积中这个字母的指数;对于只在一个单项式中所含的字母,连同它的指数作为积中这个字母的指数,而单项式除以单项式,对于系数,用它们的商作为商的系数;对于相同字母,用它们的指数差作为商中这个字母的指数;对于只在被除式中所含的字母,连同它的指数作为商中这个字母的指数。学生总结这个法则,理解和应用法则解决问题的情况比较好。
课堂上学生的训练比较充分,以学生为主体,法则应用和解题经验、注意点都得到明晰,课堂上关注学习困难生也能够得到落实,平平常常课就应该是实实在在的,全体学生在课上都能够得到有效的学习。
继续反思:
有一个同学在练习计算:2000/20012-19992时,小曹同学错误地做成2000/20012-2000/19992,反思课堂教学,我在引导学生探究多项式除以单项式的法则时,用的是乘除互逆的方法,忘记一个茬儿,法则的理论依据还是乘法的分配率,是除以一个数等于乘以这个数的倒数,再用乘法的分配率的,注意提醒学生:除法对于加法没有分配率。
反思四:整式的除法教学反思
这个学期,我就《整式的除法》上了一节公开课,教材选自人教版八年级上§15.3的教学内容。完成教学后,结合多次的实施情况和老师们的研讨,我萌发了一点思考。
一、教学初步设想
本课时的内容比较简单,但作为一节公开课而且要把它上好,对我来说还是有挑战的。我所任教的班级基础不是很理想,学习能力比较有限,所以采用讲授的形式学生比较容易掌握。由于课时较紧,我对教材的教学内容作了整合,一节课包含了同底数幂的除法、单项式相除、多项式除以单项式等内容,然后完成相关练习的模式,整一节课以老师讲解学生练习为主要形式。为了让学生在有限的时间里掌握这三个内容,我决定以同底数幂的除法作为依据,有计算具体的实例得到单项式除法的法则,进而得到多项式除以单项式的法则。
二、实施情况与设计多次修改
1、实施情况
前两次的实施选择在两个层次相当的教学班。在这两次实施中,我在这两个班采用了两种不同的思维方法,学生所反映出了一定的问题。
其中,相同的是:在这两个班中教学的总体思路引入知识点的将手例题的安排练习的设置都是一致的。首先,这两个班都可以提前较多的时间完成学习内容;其次,由于教学设计的问题,在练习中都出现了运算符号的问题,即当出现负号时,有部分学生就混淆了;另外,遇到系数不能整除时,也是存在较大的问题。当时,让我比较纳闷的是,学完这三个内容,两个班的绝大部分学生对同底数幂除法法则的理解还不透彻。例如:对 这道题时,他们只会用以前的知识先进行符号化简,再相除,而意识不到 这个代数式就是一个底数。
所不同的是,在a教学班,探讨单项式相除和多项式除以单项式时都紧扣同底数幂除法的引入中的= =5,(写成乘法形式)(约分)
学完这些内容后,对于整式的单除单和多除单学生基本掌握,但是带有符号的运算中,问题较严重。例如:在 这道题中,很多学生做到 时,弄不清用什么符号连接,或者得到 这一步,而最后的结果到底是什么符号又弄不清了。
在b教学班,探讨单项式相除和多项式除以单项式时,沿用教科书的方法,根据乘、除的运算关系,在学习单项式乘法运算的基础上,通过具体实例的计算得出单项式的除法法则,这里通过,根据除法是乘法的逆运算,得到商,再进一步比较被除式()、除式()与商式()的系数、字母及其指数,总结出一般的单项式除以单项式的法则。学完这些内容后,学生基本都能掌握,没有出现特别突出的问题。
2、实施反思与设计修改
设计的首次实施应该说是失败的。课后与科组的老师进行了讨论,感觉
还是自己的教学设计出现了问题。对这两种讲解的思维方法,更多的老师赞成沿用教材的方法跟恰当,目前来说学生跟容易接受。对于,这两次中所遇到的问题,根源还在学生的能力还没有到这种程度,要修改教学设计。一方面是,在讲解的过程中,还要进一步深化,强调重点,突破难点;另一方面,对于在这个能力范围内的学生,每一种情况必须一具体的典型代表题目出现,尤其要注意当出现负号和不能整除时,如何去处理,要突破这个易错点。第三方面,为了整一节课更系统化,在学完同底数幂的除法这一知识点后,加强练习,让学生加深理解。为了了解教与学的效果,我们还在原有的基础上增设了一个教学反馈。
3、第三次实施
第三次,设计的实施,基本上修正了前两次实施的缺陷,也许是跟自己班的学生比较有默契,从教学反馈来看,这一次的实施效果很好,学生不但掌握了运算法则,而且对出现负号的运算和不能整除的运算都基本能掌握,方法都可以接受,并能运用,进一步理解同底数幂除法的法则,并能进行比较复杂的整式除法的运算。
三、课后反思
整式的除法这一课时,内容是比较简单,但是深深地感到要把它上好,尤其作为一节公开课,确实不容易。三个知识点在45分钟内是完成了,但是还感觉有所欠缺,来不及深化与拓展。
之后我又和其他老师进行了探讨,终于找到了在课堂上出现的一些问题的答案,发现在教学过程中我仍有很多有待改进的地方。存在的问题有:
1、内容整合后,虽然比较有系统性,但是一节课三个知识点,内容上繁琐,时间紧,给学生思考、练习的时间太少,来比及深化与拓展,只学了一点表皮的东西,学生的思维没有得到充分发散,不利于后续学习。对于这个问题,之前我们也考虑到了,但在教材改革,课时多而我们这一学期时间紧,我们当时是选择了尝试节省时间。
2、在引入同底数幂的除法中,初三的老师认为用约分的形式
(写成乘法形式)(约分)
这种方式较好,有利于学生对分式的学习。但是遗憾的是采用了教材的方法而,没有按照这种思维方贯穿下去。仔细想想,其实,在a班实施中,遇到类似于 这种问题,学生在 时,或者 这些步骤中出现符号问题,也不难解决,关键还在于学习同底数幂除法的运算中要突破带有负号这一个难点。
3、在零指数幂,注意底数不能为0,在这个问题中,为了让学生深刻理解,不妨增设一些题目,例如,当 满足什么条件时,有意义;或当 满足什么条件时,有意义。另外,很多学生认为: 在这里,若能及时给予反例说明则会更好。
4、还是教学设计的问题,讲完同底数幂的除法法则后,马上从 过渡到,太快了,学生还没回过神来,又到了另一个新的知识点了。所以,不妨把第6、计算调到第3、归纳后面,更严谨些。
围场二中 佟彦风
《整式的加减》 是人教版数学七年级上册第二章整式的运算中的第二节内容。教材的安排是在学习有理数的基础上,结合学生已有的生活经验,引入用字母表示有理数。继而介绍了代数式、代数式的值、整式、单项式与多项式及其相关概念,以及多项式的升(降)幂排列,并在这些概念的基础上逐步展开同类项的概念、合并同类项的法则以及去括号与添括号的法则,最后将这些法则应用于整式的加减。
这部分课,我按照 “ 学习目标 —— 预习指导 —— 展示提升 ——当堂检测 ” 这几个环节来组织教学活动,让学生自主参与到整个教学活动中去,大胆尝试,找出规律,进行应用。给予了学生充分展示的机会,培养了学生的运算能力。但讲完以后却发现还是出现了一些问题,下面就教学的整个过程做出一些回顾和思考。学习目标的问题,我觉得设计的还是很好的。就要学生去读,总结目标内容重点,让学生得到数学问题。对学生的课前预习是很有用的。从上课的过程也可以看出,他们是很感兴趣的。这对于调动他们的积极性是很有帮助的。对于指导自学的环节,我要排学生依据导学案自学引导学生很自然地就过度到新知识上了。其实整式的加减本质上就是合并同类项的问题(即同类项的系数相加减的过程),只是需要让学生知道前面所学的就已经是整式的加减了,只不过没有明确的讲罢了。所以这一个环节还是做的较好的。对于去括号法则的记忆,我觉得这是一个亮点。只要把知识点记起来,长久不忘。对于整式的教学就轻松多了。因此,在展示提升中,我重点是让学生较好的记住法则,论依据法则去解决问题,学生的疑惑被一点点的解决了。并能在当堂检测中反应出学习的效果。总之,这样的课,总体上是还可以的,教学过程中仍有很多有待改进的地方。
1、学生练习的量小,时间太紧,来不及深化与拓展,学生的思维没有得到充分发散。导学案中设计的问题,留给学生足够的时间思考太长,老师指导的时间少。
2、问题都是让学生先进行试算,然后集体讨论,使得部分学生的解题步骤不规范。教师应该选择一个例题,进行规范的、完整的板书,给予学生书写规范性的示范与指导。、知识处理方面还存在欠缺,预习指导花的时间太多,学生接受的能力不同,使整个课堂显得松紧不调。、学生的讨论与合作学习还需加强,讨论问题还不够深入,多数时间还是以个别回答为主,主动参与的学生少,个别学生由于基础的问题还是不能全力的投入学习,虽然全部参与了,但仍需注意实效性,让学生从合作学习中有所提高,从与它人的交流中碰撞出思维的火花。、学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强。有理数的学习不够优秀是本章学习的一大难题。
对于《整式的加减》教材中首先是在学习有理数的基础上,结合学生已有的生活经验,引入用字母表示数。了解代数式、代数式的值、整式、单项式与多项式及其相关概念,并在这些概念的基础上逐步展开同类项的概念、合并同类项的法则以及去括号的法则,最后将这些法则应用于本章的重点——整式的加减,全章知识体系井然有序,层层深入。通过本章的学习应使学生达到以下目标:
1、理解并掌握单项式、多项式、整式的概念,弄清它们之间的区别和联系。
2、理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确的进行同类项的合并和去括号,正确合并同类项的基础上进行整式的加减运算。
3、理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4、能分析实际问题中的数量关系,并列出整式表示。体会用字母表示数后,从算数到代数的进步。
我在《整式的加减》复习课教学中尝试了“相互交流,归纳提升”的教学策略,学生在独立探索,合作交流中系统整理学习的知识。
1、在教学中力求让学生独立思考,小组讨论,再让全班合作交流。
课前,我再次要求学生去观察家里衣服的摆放,课上引导学生想一想东西这样摆放的好处。这些事情看似与数学学习毫不相干,但从学生身边的生活实际出发就可以让学生自然而然地感受分类思想,为“合并同类项”概念及方法打下了较好的基础。同
时使学生明白现实生活中蕴藏着大量的数学信息,而数学知识在现实世界里有着广泛的应用,从而引起学生进行数学探索活动的热情。
新课程标准中要求学生“数学学习活动应该是一个生动活泼的、主动的和富有个性的过程”。因此,在学生对“合并同类项”已经有了初步的体验,在这样的学习情景中,提出问题“多项式-3+5xy+2xy+5中。①这个多项式中有哪些项?②各项的系数又是多少?③哪些项可以合并在一起?为什么?”然后安排了小组活动。这样在教学中力求让学生独立思考,小组讨论,再全班合作交流。让学生在思维的碰撞中积极主动地学习,增强了学生参与数学活动的意识,并从中体验到了数学学习的过程充满了探索和创造的乐趣,有意识地让学生在抽象思维、情感态度等方面得到进步与发展。
2、在课堂教学中增加了对学困生的关注
由于学习方式的改变,学生自主探究的时间多了,机械模仿的时间少了。再加上是学过的知识,所以在教学中我就采用你问我答的游戏为学困生创造了切实参与学习的机会,有意地让他们与其他同学组对,先让他们提问,然后倾听他人的回答,从中让他们能逐步学会表达知识,然后再把回答的次序倒过来。在出现问题的时候多鼓励,排除他们学习中的障碍,增强学习的信心,调动他们的学习内驱力,使他们能积极主动地参与学习。如果他
们的学习每天都能得到及时的辅导,将减少学生的两极分化。这种做法体现了人人获得数学知识的思想。
当然,本节课也有一些不足之处,比如对活动时间的掌控上,活动的时间过长,以致后面的教学实践不足,预计的内容没有完成;评价的方式有些单一等。
因此,今后应注意:
1.要不断学习新的教学理念,更新教学观念,使数学教学面向全体学生。
2.要最大程度的相信学生,要学会放手,让学生真正的做“学习”的主人、课堂的主体。
2、添括号和去括号问题是个难点,通过设句的铺垫和学生的讨论,成功突破了难点。组织学生板演,并由学生批改纠错,既起到了一题多解的作用,又让学生体验了合作和成功的快乐。
3、要有效突出重点,突破难点,就必须在教学环节设计上作精心准备。为了提高学生的学习兴趣,我针对学生的实际情况,结合他们身边熟知的事情,在保证知识点不变的前提下,拓展了应用题。同时针对学生的层次差异和添括号去括号问题的教学难点,设计了师生互动的环节,提高学生的学习兴趣。
4、在对教材的整合中,使学生轻松的认识、理解、掌握知识,突出了重点,加强了练习,让学生构建自己的知识体系、完善知识结构,形成能力。
针对以上的看法,我们采用“非线性主干循环活动型”单元教学模式,削枝强干,优化结构,突出知识的主干,先不在枝节问题上纠缠。把整式的加减中合并同类项的相关内容作为第一单元,具体的安排如下:
(一)同类项:通过生活中通俗易懂的表示方法,如□+□+□=3□,让学生模仿例子做练习,然后推出同类项的定义。课前练习要有模仿性及代表性,能让学生易于观察推出结论。因为在学生的认知结构中“同类的东西”是容易理解的,所以这节课的目标是学会辨认同类项就不难了。
(二)合并同类项:先讲系数这个概念,既避免了与单项式的次数一起讲所带来的易混淆性,又是合并同类项所必须掌握的基石。然后,重点是掌握合并同类项的法则。
(三)去括号:运用乘法分配律引入及进行去括号的运算。
(四)整式的加减:可用两个课时把重点知识巩固好。
主干知识掌握之后,对概念和纯文字的叙述,不追求精确的形式而注重其实质的理解与领悟。接下来,第二单元将整式的相关概念用两至三个课时逐一学习。如单项式、单项式的次数、多项式、项、常数项、多项式的次数等等。
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础。
与传统的教学模式(方式)相比,主要体现以现几个转变:
1、教的转变。本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生发现结论后,利用数学练习直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变。学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。
3、课堂氛围的转变。整节课以“流畅、开放、合作、引导”为基本特征,教师应尽量让学生自己讨论、思考归纳出结论,教学过程呈现一种比较流畅的特征。
整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值,学生充分体验到获取知识的乐趣。
【整式的乘法教学设计】推荐阅读:
1.整式的乘法第二课时教学设计06-17
《整式的加减――数学活动》教学设计10-27
整式的加减复习教案设计10-01
《整式的加减》第三课时教学反思03-03
3.3整式 教学设计06-12
七年级上册《整式》教学设计03-22
整式的乘除练习题01-01
整式的加减4教案02-13
初一数学上整式的加减05-26
人教七上《整式的加减》教案07-19
注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com