数学选修45不等式选讲(推荐6篇)
人教A版普通高中数学课程标准实验教科书(选修4-5)《不等式选讲》是根据教育部制订的《普通高中数学课程标准(实验)》(以下简称课程标准)的选修4系列第5专题“不等式选讲”的要求编写的。根据课程标准,本专题介绍一些重要的不等式和它们的证明、数学归纳法和它的简单应用
一、内容与要求1.回顾和复习不等式的基本性质和基本不等式。
2.理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:(1)∣a+b∣≤∣a∣+∣b∣;(2)∣a-b∣≤∣a-c∣+∣c-b∣;(3)会利用绝对值的几何意义求解以下类型的不等式:∣ax+b∣≤c;∣ax+b∣≥c;∣x-c∣+∣x-b∣≥a。3.认识柯西不等式的几种不同形式。理解它们的几何意义。(1)证明柯西不等式的向量形式:|α||β|≥|α·β|。(2)证明:(a+b)(c+d)≥(ac+bd)。(3)证
明:
≥。4.用22222参数配方法讨论柯西不等式的一般情况:5.用向量递归方法讨论排序不等式。6.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题。7.会用数学归纳法证明贝努利不等式:(1+x)>1+nx(x>-1,n为正整数)。了解当n为实数时贝努利不等式也成立。
8.会用上述不等式证明一些简单问题。能够利用平均值不等式、柯西不等式求一些特定函数的极值。9.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法。
二、内容安排 本专题内容分成四讲,结构如下图所n
示:
本专题的内容是在初中阶段掌握了不等式的基本概念,学会了一元一次不等式、一元一次不等式组的解法,多数学生在学习高中必修课五个模块的基础上展开的.作为一个选修专题,教科书在内容的呈现上保持了相对的完整性.第一讲是“不等式和绝对值不等式”,它是本专题的最基本内容,也是其余三讲的基础.
本讲的第一部分类比等式的基本性质,从“数与运算”的基本思想出发讨论不等式的基本性质,这是关于不等式在运算方面的一些最基本法则.接着讨论基本不等式,介绍了基本不等式的一个几何解释:“直角三角形斜边上的中线不小于斜边上的高”,并把基本不等式推广到三个正数的算术—几何平均不等式.对于一般形式的均值不等式,则只作简单介绍,不给出证明.在此基础上,介绍了它们在解决实际问题中的一些应用,如最基本的等周问题,简单的极值问题等。第二部分讨论了有关绝对值不等式的性质及绝对值不等式的解法.绝对值是与实数有关的一个基本而重要的概念,讨论关于绝对值的不等式具有重要的意义.
绝对值三角不等式是一个基本的结论,教科书首先引导学生借助于实数在数轴上的表示和绝对值的几何意义,引导学生从数的运算角度探究归纳出绝对值三角不等式,接着联系向量形式的三角不等式,得到绝对值三角不等式的几何解释,最后用代数方法给出证明.这样,数形结合,引导学生多角度认识这个不等式,逐步深化对它的理解.利用绝对值三角不等式可以解决形如的函数的极值问题,教科书安排了一个这样的实际问题
对于解含有绝对值的不等式,教科书只讨论了两种特殊类型不等式的解法,而不是系统地对这个问题进行研究。教科书引导学生探讨了形如解法,以及形如或或的不等式的的不等式的解法.学生通过这两类含有绝对值的不等式能够基本学到解含有绝对值的不等式的一般思想和方法。第二讲是“证明不等式的基本方法”.对于不等式的深入讨论必须首先掌握一些基本的方法,所以本讲内容也是本专题的一个基础内容。本讲通过一些比较简单的问题,介绍了证明不等式的几种常用而基本的方法:比较法、综合法、分析法、反证法和放缩法. 比较法是证明不等式的最基本的方法,比较法可以分为两种,一种是相减比较法,它的依据是:
另一种是相除比较法,是把不等式两边相除,转化为比较所得商式与1的大小关系,它的依据是:当b>0
时,在比较法的两种方法中,相减比较法又是最基本而重要的一种方法。在证明不等式的过程中,根据对于不等式的条件和结论不同探索方向作分类,证明方法又可以分为分析法和综合法。在证明不等式时,可以从已知条件出发逐步推出结论的方法是综合法;寻找结论成立的充分条件,从而证明不等式的方法就是分析法.证明不等式的方法还可以分为直接证法和间接证法,反证法是一种间接证法.它从不等式结论的反面出发,即假设要证明的结论不成立,经过正确的推理,得出矛盾结果,从而说明假设错误,而要证的原不等式结论成立
在证明不等式的过程中,有时通过对不等式的某些部分作适当的放大或缩小达到证明的目的,这就是所谓的放缩法. 教科书对以上方法都结合实例加以介绍。本讲内容对进一步
讨论不等式提供了思想方法的基础. 本讲的教学内容中,用反证法和放缩法证明不等式是新的课程标准才引入到中学数学教学中的内容。第三讲是“柯西不等式和排序不等式”.本讲介绍两个基本的不等式:柯西不等式和排序不等式,以及它们的简单应用. 柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用.教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用。在介绍了二维形式的柯西不等式的基础上,教科书引导学生在平面直角坐标系中,根据两点间的距离公式以及三角形的边长关系,从几何意义上发现二维形式的三角不等式。接着借助二维形式的柯西不等式证明了三角不等式。在一般形式的柯西不等式的基础上,教科书安排了一个探究栏目,让学生通过探究得出一般形式的三角不等式。排序不等式也
是基本而重要的不等式,一些重要不等式可以看成是排序不等式的特殊情形,例如不等式
.有些重要不等式则可以借助排序不等式得到简捷的证明。教科书在讨论排
序不等式时,展示了一个“探究——猜想——证明——应用”的研究过程,目的是引导学生通过自己的数学活动,初步认识排序不等式的数学意义、证明方法和简单应用。
柯西不等式、三角不等式和排序不等式也是数学课程标准正式引入到高中数学教学中。第四讲是“数学归纳法证明不等式”.本讲介绍了数学归纳法及其在证明不等式中的应用.对于某些不等式,必须借助于数学归纳法证明,所以在不等式选讲的专题中安排这个内容是很有必要的。教科书首先结合具体例子,提出寻找一种用有限步骤处理无限多个对象的方法的问题.然后,类比多米诺骨牌游戏,引入用数学归纳法证明命题的方法,并分析了数学归纳法的基本结构和用它证明命题时应注意的问题(两个步骤缺一不可).接着举例说明数学归纳法在证明不等式中的应用,特别地,证明了贝努利不等式。本专题的教学重点:不等式基本性质、基本不等式及其应用、绝对值不等式的解法及其应用;用比较法、分析法、综合法证明不等式;柯西不等式、排序不等式及其应用; 教学难点:三个正数的算术-几何平均不等式及其应用、绝对值不等式解法;用反证法,放缩法证明不等式;运用柯西不等式和排序不等式证明不等式;
本专题教学约需18课时,具体分配如下(仅供参考)第一讲 不等式和绝对值不等式
一、不等式约3课时
二、绝对值不等式约2课时第二讲 证明不等式的基本方法
一、比较法约1课时
二、综合法与分析法约2课时
三、反证法与放缩法约1课时
第三讲 柯西不等式与排序不等式一、二维形式的柯西不等式约1课时二、一般形式的柯西不等式约1课时
三、排序不等式约2课时
第四讲 数学归纳法证明不等式
一、数学归纳法约2课时
二、用数学归纳法证明不等式约2课时
学习总结报告约1课时
三、编写中考虑的几个问题
根据课程标准,本专题应该强调不等式及其证明的几何意义与背景,以加深学生对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析解决问题的能力,我们在教科书的编写中努力去实现课程标准的思想。
(一)重视展现不等式的几何背景,力求让学生对重要不等式有直观理解
数量关系和空间形式是数学研究的两个重要方面,不等式则是从数量关系的角度来刻画现实世界的。我们一般借助于代数方法证明不等式。代数证明要经过一系列的变形,人们常常不能很直接地看出其中的数量关系。而借助于几何的方法,把不等式中的有关量适当地用图形中的几何量表示出来,则往往能很好地指明不等关系,使学生从几何背景的角度,直观地,从而也是直接地理解不等式。本专题中的重要不等式都有明显的几何背景,教科书注意呈现不等式的几何背景,帮助学生理解不等式的几何本质。如对于是借助于面积关系,绝对值三角不等式是借助于向量和三角形中的边长关系,柯西不等式是借助于向量运算,排序不等式是借助于三角形的面积。这样,逐渐引导学生在面对一个数学问题时能从几何角度去思考问题,找到解决问题的途径
(二)重视数学思想方法的教学
数学思想是对于数学知识(数学中的概念、法则、性质、公式、公理、定理、方法等)的理性的、本质的、高度抽象和概括的认识,带有普遍的指导意义,蕴涵于运用数学方法分析、处理和解决数学问题的过程之中。数学方法是研究或解决数学问题并使之达到目的的手段、方式、途径或程序。数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深对于具体数学知识的理解和掌握。本专题的内容包涵了丰富的数学思想方法,如应用重要不等式解决实际问题中体现出来的优化思想,在重要不等式的呈现过程中的数形结合思想,在解不等式中体现的转化的思想,函数思想,以及证明不等式的比较法、综合与分析法、放缩法、反证法、数学归纳法,在证明柯西不等式中的配方法等,对于这些数学思想和方法,教科书都及时作归纳和总结,使学生能够结合具体的问题加以理解和体会。
(三)重视引导学习方式和教学方式的改进
在目前的中学数学教学实践仍存在一些问题,就学生的学习而言,比较突出的就是被动的接受式的学习,教师偏重于灌输式的教学,启发式的教学原则做得不够。学生的问题意识不强,发现问题的能力不强,独立地解决问题的能力也不强。针对这种情况,教科书重视引导学生提出问题,教科书设置了许多探究栏目,鼓励学生主动探究,引导学生通过类比提出问题及其解决方法,对于数学结论进行特殊化、作推广。例如,在讲述了基本不等式以后,教科书就提出了一个思考问题:“对于三个正数会有怎样的不等式成立呢?”在证明了关于三个正数的均值不等式以后,又直接给出了一般的均值不等式;在证明了二维和三维的柯西不等式以后,就设置了一个探究性问题“对比二维形式三维形式的柯西不等式,你能猜想一般形式的柯西不等式吗?”;再如“一般形式的三角不等式应该是怎样的?如何应用一般形式的柯西不等式证明它?请同学自己探究。”等等,这样的探究性问题在教科书中处处可见。
(四)注意发展数学应用意识
重要不等式在许多实际问题中可以得到应用,在实际工作中常常能起到节约能源,降低成本,提高效率,加快速度等作用。在本专题中,教科书注意体现数学在实际工作中的广泛应用,编写了一些体现数学应用的例、习题。如经典的等周问题、盒子体积问题、施工队临时生活区选点问题、关于面积和体积的最值问题。通过这些简单的应用问题,使学生体会数学在实践中的作用。
四、对教学的几个建议
(一)注意把握教学要求
无论是不等式还是数学归纳法,都已经发展成为内容非常丰富的初等数学分支,也出版了一些专门的论著,老师们对于这些内容一般都有丰富的教学经验,很容易把这些内容作一
些拓展和补充。所以,在这个专题的教学中,要特别注意把握好教学要求,不要随意提高教学要求,而应该按照数学课程标准的要求来控制教学的深广度。课程标准对于本专题的几个教学内容都明确的教学要求,如:对于解含有绝对值的不等式,只要求能解几种特殊类型的不等式,不要求学生会解各种类型的含有绝对值的不等式。对于数学归纳法在证明不等式的要求也只要求会证明一些简单问题。只要求通过一些简单问题了解证明不等式的基本方法,会利用所学的不等式证明一些简单不等式,等等。
另外,在不等式和数学归纳法的许多问题中,常常需要一些技巧性比较强的恒等变形,在本专题的教学中则要控制这方面的教学要求,不要使教学陷于过于形式化和复杂的恒等变形的技巧之中,教学中不要补充一些代数恒等变形过于复杂或过于技巧化的问题和习题,以免冲淡对于基本思想方法的理解,也不要引入一些过于专业和形式化、抽象化的数学符号语言,对于数学归纳法的理解,不必要求学生对于方法的理解水平提高到专业数学工作者才需要的数学理论高度,而只需要通过一些学生容易理解的数学问题中加深对于方法的理解和掌握。对于大多数的学生来说,要重视通过比较简单的问题让学生认识、理解和掌握这部分的基本数学思想和方法。
当然,对于部分确有余力的学生,仍可以适当对于教学内容作一些拓展,如可以介绍一般的均值不等式的证明及其应用,以使学生对于这一重要不等式有一个比较完整的了解。
(二)要抓住教学重点
“数学史选讲”是《普通高中数学课程标准》 (实验) (以下简称标准) 中要求开设的一门高中数学选修课程。属于选修系列3, “是为对数学有兴趣和希望进一步提高数学素养的学生而设置的”, 这一选修课的设置, 体现了课程标准的“提供多样课程, 适应个性选择”的基本理念, 主要是针对以往数学课程过分重视数学学科自身体系的完整性和学生对基础知识技能的理解和掌握、却忽视学生情感培养这一问题而提出的。数学新课程认为数学内容应适当反映数学的历史、应用和发展趋势, 数学对推动社会发展的作用, 数学科学的思想体系, 数学家的创新精神, 体现数学的文化价值。
(二) 开设“数学史选讲”的意义
法国数学家庞加莱曾说:“如果我们需要预见数学的未来, 适当的途径是研究这门科学的历史和现状。”因此, 数学史教学在高中数学教学中有着十分重要的作用。学生掌握一定的数学史, 对于揭示数学知识的现实来源和应用, 引导学生体会真正的数学思维过程, 创造一种探索与研究的数学学习气氛, 发展学生数学学习的情感因素, 激发学生对数学的兴趣, 培养探索精神, 揭示数学在人类文化史和科学进步史上的地位与影响, 进而揭示其人文价值, 都有重要的意义。具体来讲, “数学史选讲”有以下几个方面的意义。
1. 揭示数学知识的来源与应用。
任何知识都有其发生、发展的历史。数学史往往揭示出数学知识的来源和应用, 从而可以使学生感受到数学在文化史和科学进步史上的地位与影响, 认识到数学是一种生动的、基本的人类文化活动, 进而引导他们重视数学在当代社会发展中的作用, 并且关注数学与其他学科之间的关系。
2. 理解数学思维。
一般来说, 数学史不仅可以给出一种确定的数学知识, 还可以给出相应知识的创造过程。对这种创造过程的了解, 可以使学生体会到一种活的、真正的数学思维过程, 而不仅仅是教科书中那些已经被标本化了的数学。从这个意义上说, 数学史可以引导学生创造一种探索与研究的学术气氛, 而不是单纯地接受知识。这既可以激发学生对数学的兴趣, 培养他们的探索精神, 还有助于他们理解掌握数学思维过程。
3. 培养学生的辩证唯物主义观点。
通过“数学史选讲”课展示历史上的开放性数学问题等, 将使学生了解到数学并不是一个静止的、已经完成的领域, 而是一个开放性的辩证的系统, 认识到数学正是在猜想、证明、纠正错误中发展进化的, 数学进步是对传统观念的革新, 从而培养学生的辩证思维和正确的数学观。数学中有许多著名的反例, 通常的教科书中很少会涉及它们。综合历史介绍一些数学中的反例, 可以从反面给学生以强烈的震撼, 加深他们对相应问题的理解, 培养他们的辨证唯物主义观点。
4. 榜样的激励作用。
数学发展的过程是人创造的过程, 特别是一个个伟大的数学家的创造的过程。在他们的身上, 集中体现了人类精神追求的伟大过程。这些杰出数学家的精神力量, 对于今天的每个学生来说, 有着巨大的激励作用。
5. 增强学生学习数学的兴趣、爱好。
英国科学史家丹波尔曾说:“再没有什么故事能比科学思想发展的故事更有魅力了。”数学是历史最悠久的人类知识领域之一。从远古结绳记事到现代高速电子计算机的发明, 从量地测天到抽象严密的公理化体系, 在数千年的数学历史长河中, 重大数学思想的诞生与发展, 构成了科学史上最富有理性魅力的题材。这些理性魅力的题材对于开阔学生的眼界、启发思维和为进一步的学习奠定基础都是十分重要的。同时, 这些历史故事还会为课堂增加许多文化韵味, 并极大地激发学生的兴趣, 从而有助于学生对数学建立良好的情感体验, 增强学习数学的动力, 对日常的数学学习起到积极的作用。
(三) “数学史选讲”课的要求
“数学史选讲”课旨在通过生动丰富的事例, 使学生了解数学发展过程中若干重要事件、重要人物与重要成果, 初步了解数学产生与发展的过程, 体会数学在人类文明发展中的作用, 提高学习数学的兴趣, 加深对数学的理解, 感受数学家的严谨态度和锲而不舍的探索精神。因此, 它对教师和学生两方面都提出了较高的要求。
对数学教师而言, 它需要教师具备开设“数学史选讲”课的能力。这就要求教师要系统、全面地了解数学史。教师要能充分利用图书馆、网络、多媒体课件等课外资源, 引导学生自己阅读, 拓宽视野, 并指导学生对某一专题进行专门研究;对学生而言, 数学史知识渊源流长, 其中蕴藏的数学思想很多, 在课堂上有限的时间内是无法一一涉及的。这就要求学生在课外能通过各种途径了解这方面的知识, 并就自己感兴趣的专题作进一步的探讨, 切身感受“做数学”的好处。
(四) “数学史选讲”课的内容
本专题由若干个选题组成, 内容反映出数学发展的不同时代的特点。要讲史实, 更重要的是通过史实介绍数学的思想方法。教学内容可参考标准给出的可供选择的专题, 并可根据“数学史选讲”专题的内容要求补充一些专题, 如三次数学危机、数学的严格性与三个数学学派、数学之神阿基米德、牛顿与莱布尼茨、海岸线与分形、从透视学到射影几何、计算机技术与对数、著名未决猜想的发展 (如哥德巴赫猜想、黎曼猜想等) 、两项影响最大的国际数学奖——菲尔兹奖和沃尔夫奖, 体现课程内容的弹性和开放性。
(五) “数学史选讲”的教学建议
1.“数学史选讲”的内容选择。
从“数学史选讲”的作用来看, “数学史选讲”应该主要是一门数学课, 而不是历史课。它的目标和重点应该在很大程度上围绕高中数学课程的目标和重点, 同时兼顾义务教育阶段已经涉及到的一些重要数学内容。在知识性上不应要求过高, 重在突出数学思想方法, 突出启发性和引导性, 激发学生的兴趣和思考。由于本课只有18课时, 不可能系统讲授。又由于这门选修课是为在数学方面具有一定实力和足够兴趣的学生开设的, 因此在内容的选取上要精心考虑, “不必追求数学发展历史的系统性和完整性, 通过学生生动活泼的语言与喜闻乐见的事例呈现内容, 使学生体会数学的重要思想和发展轨迹。”内容的选择要符合学生的接受水平, 呈现方式应图文并茂, 丰富多彩, 以引起学生的兴趣。
2.“数学史选讲”的内容安排形式。
本专题的内容安排可以采取多种形式。既可以由古至今, 追寻数学发展的历史, 也可以从现实的, 学生熟悉的数学问题出发, 追根溯源, 回眸数学发展中的重要事件和人物。
3.“数学史选讲”的教学方式。
“数学史选讲”课的“教学方式应灵活多样, 可采取讲故事、讨论交流、查阅资料、撰写报告等方式进行。教师应鼓励学生对数学发展的历史轨迹、自己感兴趣的历史事件和人物, 写出自己的研究报告。”在教学的时间安排上, 可考虑教师的课堂讲授与学生课外阅读、查阅资料相结合。教学可按照如下模式进行:提出问题→引导阅读 (课外) →学生讨论交流分享→教师的概括与提升→进一步的阅读。另外, 可以考虑现代教育技术和网络的应用。如利用图片、幻灯片、录像、计算机软件等, 也可以引导学生建立以数学史为主要内容的学生博客, 应用博客、维客、BBS论坛、QQ群、百度贴吧等构建以数学史为主要话题的教育虚拟社区, 让学生创建自己的数学史学习和研究平台, 在交流创造中实现“读者也是作者”的时代理念, 体现学生的创造价值。这些工具和手段的运用, 将会使得教学更加形象、生动、具体化、网络化、趣味化。总之, 本专题的教学应提倡多样化的学习方式, 努力培养学生的自主探索和合作交流意识, 力求使学生切身体会“做数学”的好处。而不应当照本宣科, 成为大事年表和流水账, 枯燥乏味, 缺少启发性等, 使学生乘兴而来, 败兴而归, 从而对数学史失去兴趣, 对数学失去兴趣。
4.“数学史选讲”的评价方式。
“数学史选讲”是为对数学有兴趣并希望进一步提高数学素养的学生而开设的, 主要是试图通过数学的历史发展线索帮助学生进一步理解数学方法和一些重要的数学思想, 拓宽学生的数学视野。因此, 建议选择比较灵活的评价方式, 如通过撰写研究报告、讨论发言、总结等形式进行评价。
“数学史选讲”这门选修课是在新课程理念的指引下, 适应高中数学教学需求, 适应数学发展现状、社会发展现状和学生心理发展现状的产物。它的产生, 将激起学生对数学的更大兴趣, 满足广大学生想要深入了解数学的欲望。同时, 它的产生也引发了一系列的问题。一方面, “数学史选讲”课对教师的数学专业素养和数学史素养提出了较高要求, 另一方面也对配套的课程资源提出了要求, 如教师参考用书、学生课外读物、电子音像资料、多媒体课件、计算机网络等。因此, “数学史选讲”课要走向成熟还有一个任重而道远的过程。但应当相信, 经过广大数学教育工作者的努力, “数学史选讲”课会扎根于中学数学课堂, 成为中学数学教学内容中不可缺少的一部分。
参考文献
[1]教育部.普通高中数学课程标准 (实验) [S].北京:人民教育出版社, 2003.
[2] (英) 克里斯托夫·霍洛克斯.麦克卢汉与虚拟实在[M].北京:北京大学出版社, 2005.98.
一、选择题:
1.如图4所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作
圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC =()
A.15B.30C.45D.60
第1题图 2.在RtABC中,CD、CE分别是斜边AB上的高和中线,是该图中共有x个三角
形与ABC相似,则x()
A.0B.1C.2 D.33.一个圆的两弦相交,一条弦被分为12cm和18cm两段,另一弦被分为3:8,则另一弦的长为()
4.O的割线PAB交O于A,B两点,割线PCD经过圆心,已知
22PA6,PO12,AB,则
O的半径为()3
A.4B
.6C.6
D.8
5.如图,AB是半圆O的直径,点C在半圆上,CDAB于点D,且AD3DB,设COD,则tan2
2=()
第5题图 11 A.B.C.4D.3 3
4二、填空题:
6.如图,在△ABC中,AB=AC,∠C=720,⊙O过A、B两点且
与BC相切于点B,与AC交于点D,连结BD,若BC=51,则AC=
7.如图,AB为O的直径,弦AC、BD交于点P,若AB3,CD1,则sinAPD=
.O
D B C 第 6 题图
第7题图
三、解答题:
8.如图:EB,EC是O的两条切线,B,C是切点,A,D是 O上两点,如果E46,DCF32,试求A的度数.9.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P, E为⊙O上一点,AEAC,DE交AB于点F,且AB2BP4, 求PF的长度.EA
C FB OD P
1、已知函数f(x)log2(|x1||x5|a).(Ⅰ)当a5时,求函数f(x)的定义域;
(Ⅱ)当函数f(x)的定义域为R时,求实数a的取值范围。
2、设a,b,c为不全相等的正数,证明:2(abc)a(bc)b(ac)c(ab)
ababma3、对于任意实数a(a0)和b,不等式恒成立,记实数m的最大333222
值为M。(1)求M的值;(2)解不等式:
4、设函数f(x)2x1x2.
(Ⅰ)求不等式f(x)2的解集;
2(Ⅱ)若xR,f(x)tx1x2M。11
2t恒成立,求实数t的取值范围.
5、已知函数f(x)2xaa.
(1)若不等式f(x)6的解集为x2x3,求实数a的值;
(2)在(1)的条件下,若存在实数n使f(n)mf(n)成立,求实数m的取值范围.
6、已知a,b,c都是正数,且a,b,c成等比数列,求证:a2b2c2(abc)27、已知函数f(x)=|x+1|,(1)解不等式f(x)≥2x+1;
(2)x∈R,使不等式f(x-2)-f(x+6)<m成立,求m的取值范围
8、若关于x的不等式xax2a2010的解集为非空集合,求实数a的取值范围。
9、设关于x的不等式x1ax.(I)当a2,解上述不等式。(II)若上述关于x的不等式有解,求实数a的取值范围。
10、设函数fxx1x2
fx3 对xR恒成立,求实数a的取值范围。(1)解不等式(2)若fxa11、已知函数f(x)|x2||x1|.g(x)ax3x3
【2013年高考会这样考】
考查圆的切线定理和性质定理的应用.
【复习指导】
本讲复习时,牢牢抓住圆的切线定理和性质定理,以及圆周角定理和弦切
角等有关知识,重点掌握解决问题的基本方法
.基础梳理
1.圆周角定理
(1)圆周角:顶点在圆周上且两边都与圆相交的角.
(2)圆周角定理:圆周角的度数等于它所对弧度数的一半.
(3)圆周角定理的推论
①同弧(或等弧)上的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. ②半圆(或直径)所对的圆周角是90°;90°的圆周角所对的弦是直径.
2.圆的切线
(1)直线与圆的位置关系
(2)①切线的性质定理:圆的切线垂直于经过切点的半径.
②切线的判定定理
过半径外端且与这条半径垂直的直线是圆的切线.
(3)切线长定理
从圆外一点引圆的两条切线长相等.
3.弦切角
(1)弦切角:顶点在圆上,一边与圆相切,另一边与圆相交的角.
(2)弦切角定理及推论
①定理:弦切角的度数等于所夹弧的度数的一半.
②推论:同弧(或等弧)上的弦切角相等,同弧(或等弧)上的弦切角与圆周角相等.
双基自测
1.如图所示,△ABC中,∠C=90°,AB=10,AC=6,以AC为直径的圆与斜边交于点P,1则BP长为________.
解析 连接CP.由推论2知∠CPA=90°,即CP⊥AB,由射影定理知,AC=
2AP·AB.∴AP=3.6,∴BP=AB-AP=6.4.答案 6.42.如图所示,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC
上的点,已知∠BAC=80°,那么∠BDC=________.解析 连接OB、OC,则OB⊥AB,OC⊥AC,∴∠BOC=180°-∠BAC=100°,1∴∠BDC=∠BOC=50°.2答案 50°
3.(2011·广州测试(一))如图所示,CD是圆O的切线,切点为C,点A、B在圆O上,BC=1,∠BCD=30°,则圆O的面积为________.
解析 连接OC,OB,依题意得,∠COB=2∠CAB=2∠BCD=60°,又OB=OC,因此△BOC是等边三角形,OB=OC=BC=1,即圆O的半径为1,所以圆O的面积为π×1=π.答案 π
4.(2011·深圳二次调研)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为________.
解析 连接BD,则有∠ADB=90°.在Rt△ABD中,AB=4,AD=2,所以∠
2A=60°;在Rt△ABC中,∠A=60°,于是有∠C=30°.答案 30°
5.(2011·汕头调研)如图,MN是圆O的直径,MN的延长线与圆O上过点P的切线PA相交于点A,若∠M=30°,AP=23,则圆O的直径为________.
解析 连接OP,因为∠M=30°,所以∠AOP=60°,因为PA切圆O于P,所以OP⊥AP,在Rt△ADO中,OP=
答案
APtan ∠AOP2
2,故圆O的直径为4.tan 60°
考向一 圆周角的计算与证明
【例1】►(2011·中山模拟)如图,AB为⊙O的直径,弦AC、BD交于点P,若AB=3,CD=1,则sin∠APB=________.[审题视点] 连结AD,BC,结合正弦定理求解.
解析 连接AD,BC.因为AB是圆O的直径,所以∠ADB=∠ACB=90°.又∠ACD=∠ABD,所以在△ACD中,由正弦定理得:===sin∠DACsin∠ACDsin∠ABDCDADADABsin∠ABD12=AB=3,又CD=1,所以sin∠DAC=sin∠DAPcos∠DAP=sin∠ABD3
3又sin∠APB=sin(90°+∠DAP)=cos∠DAP=
答案
2解决本题的关键是寻找∠APB与∠DAP的关系以及AD与AB的关系.
【训练1】 如图,点A,B,C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于22.3________.
解析 连接AO,OB.因为∠ACB=30°,所以∠AOB=60°,△AOB为等边三角形,故圆O的半径r=OA=AB=4,圆O的面积S=πr2=16π.答案 16π
考向二 弦切角定理及推论的应用
【例2】►如图,梯形ABCD内接于⊙O,AD∥BC,过B引⊙O的切线分别交DA、CA的延长线于E、F.已知BC=8,CD=5,AF=6,则EF的长为________.
[审题视点] 先证明△EAB∽△ABC,再由AE∥BC及AB=CD等条件转化为线
段之间的比例关系,从而求解.
解析 ∵BE切⊙O于B,∴∠ABE=∠ACB.又AD∥BC,∴∠EAB=∠ABC,∴△EAB∽△ABC,∴
又AE∥BC,∴BEAB.ACBCEFBEABEF=.AFACBCAF
又AD∥BC,∴AB=CD,∴AB=CD,∴
∴EF=
答案 CDEF5EF,∴,BCAF863015=8415 4
(1)圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明
三角形全等或相似,可求线段或角的大小.
(2)涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直线(或半径)或向弦(弧)两端画圆周角或作弦切角.
【训练2】(2010·新课标全国)如图,已知圆上的弧AC=BD,过C点的圆的切线与BA的延长线交于E点,证明:
(1)∠ACE=∠BCD;
(2)BC2=BE×CD.证明(1)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC,所以∠ACE=∠BCD.(2)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC∽△ECB,故即BC2=BE×CD
.BCCD,BEBC
高考中几何证明选讲问题(二)
从近两年的新课标高考试题可以看出,圆的切线的有关知识是重点考查对象,并且多以填空题的形式出现.
第一备课人:姚雪艳
第一讲
不等式和绝对值不等式
课题: 第04课时绝对值三角不等式 教学目标:
知识与技能:了解绝对值三角不等式的含义,理解绝对值三角不等式公式及推导方法,会进行简单的应用。
过程与方法:充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合的数学
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
思想,并能运用绝对值三角不等式公式进行推理和证明。
教学重点:绝对值三角不等式的含义,绝对值三角不等式的理解和运用。教学难点:绝对值三角不等式的发现和推导、取等条件。教学过程:
一、复习引入:
关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。本节课探讨不等式证明这类问题。
1.请同学们回忆一下绝对值的意义。
x,如果x0x0,如果x0。
x,如果x0 几何意义:在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。
2.证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:
(1)aa,当且仅当a0时等号成立,aa.当且仅当a0时等号成立。
(2)aa2,(3)abab,(4)那么abab?abab?
二、讲解新课:
探究: a,b,ab, ab之间的什么关系?
结论:ab≤ab(当且仅当ab≥0时,等号成立.)
aba(b0)b已知a,b是实数,试证明:ab≤ab(当且仅当ab≥0时,等号成立.)方法一:证明:10.当ab≥0时, 20.当ab<0时,ab|ab|,ab|ab|,|ab|(ab)2 2|ab|(ab)22 a2abba22abb2 22|a|2|ab||b| |a|22|a||b||b|2 |a|22|a||b||b|2(|a||b|)2
(|a||b|)2 |a||b||a||b|
综合10, 20知定理成立.方法二:分析法,两边平方(略)
定理1 如果a,b是实数,则ab≤ab(当且仅当ab≥0时,等号成立.(1)若把a,b换为向量a,b情形又怎样呢?
aba
abab
根据定理1,有abbabb,就是,abba。所以,abab。
定理(绝对值三角形不等式)
如果a,b是实数,则ab≤ab≤ab 注:当a,b为复数或向量时结论也成立.推论1:a1a2an≤a1a2an
推论2:如果a、b、c是实数,那么ac≤abbc,当且仅当(ab)(bc)≥0时,等号成立.思考:如何利用数轴给出推论2的几何解释?(设A,B,C为数轴上的3个点,分别表示数a,b,c,则线段ABACCB.当且仅当C在A,B之间时,等号成立。这就是上面的例3。特别的,取c=0(即C为原点),就得到例2的后半部分。)
三、典型例题:
cc例
1、已知 xa,yb,求证(xy)(ab)c.22证明(xy)(ab)(xa)(yb)xayb(1)
xacc,yb,22cc∴xaybc(2)
22由(1),(2)得:(xy)(ab)c
aa,y.求证:2x3ya。46aaaa证明 x,y,∴2x,3y,4622aa由例1及上式,2x3y2x3ya。
22注意: 在推理比较简单时,我们常常将几个不等式连在一起写。但这种写法,只能用于不等号方向相同的不等式。
例3 两个施工队分别被安排在公路沿线的两个地点施工,这两个地点分别位于公路路碑的第10公里和第20公里处.现要在公路沿线建两个施工队的共同临时生活区,每个施工队每天在生活区和施工地点之间往返一次,要使两个施工队每天往返的路程之和最小,生活区应该建于何处? 解:如果生活区建于公路路碑的第 x km处,两施工队每天往返的路程之和为S(x)km 那么 S(x)=2(|x-10|+|x-20|)例
2、已知x·10
四、课堂练习:
·x·20
1.(课本P20习题1.2第1题)求证: ⑴abab≥2a;⑵abab≤2b 2.(课本P19习题1.2第3题)求证: ⑴xaxb≥ab;⑵xaxb≤ab 3.(1)、已知Aacc,Bb.求证:(AB)(ab)c。22(2)、已知xacc,yb.求证:2x3y2a3bc。46
五、课堂小结:
1.实数a的绝对值的意义: a(a0)⑴a0(a0);(定义)
a(a0)⑵a的几何意义: 2.定理(绝对值三角形不等式)
如果a,b是实数,则ab≤ab≤ab注意取等的条件。
六、课后作业:
课本P19第2,4,5题
七、板书设计:
新课知识
八、教学后记:
比较两个实数的大小,有作差法和作商法两种方法.一般多用作差法,注意当这两个数都是正数时,才可以用作商法.作差法是比较作差后的式子与“0”的大小关系;作商法是比较作商后的式子与“1”的大小关系.
【数学选修45不等式选讲】推荐阅读:
选修41几何证明选讲11-06
选修4-1几何证明选讲练习题06-01
高中数学选修分析法06-02
高中数学选修4知识点07-19
高中数学选修1-2知识点归纳09-06
高二文科数学选修1-2测试题10-15
将进酒(高二选修)(高二选修教案设计)06-07
高中数学不等式证明10-06
高考数学不等式专题10-16
高中数学不等式证明题06-19