小学数学五年级《分数与小数的互化》说课稿

2024-12-11 版权声明 我要投稿

小学数学五年级《分数与小数的互化》说课稿(推荐9篇)

小学数学五年级《分数与小数的互化》说课稿 篇1

听了吴老师的数学课,充分感受到了吴老师对家课堂教学改革的热情、扎实地抓好课堂教学,启迪了我在今后教学中应如何进行“先学后导”的有效课堂教学,领悟了一点在课改中遇到的困感问题。下面我就吴老师讲的《百分数、分数、小数的互化》将自己几点粗浅感受与各位老师交流。

1、注重知识的联系为新课程铺垫

吴老师善于抓住学生的心理特点设计与新授知识课有密切联系的复习题,《小数与分数的互化》,让学生回忆已学过的转化方法,有效地搭建起新旧知识之间沟通的桥梁。

2、重视引导学生经历知识的探究过程。

学生是学习的主人,是课堂活动的主体,本课吴老师充分信任学生,大胆地放手给学生,通过导学提纲激励学生勤于思考,自觉地思考,让学生在观察、交流中思考,在思考中探索,学生在观察、计算、分析中发现转化的`规律,掌握了百分数、分数和小数互化的方法,这些都是学生自己或是小组合作完成的,体现了先学后教的教学模式。

3、随时总结,随时应用。

我觉得吴老师很注重在学生在掌握知识的同时,在能力上、情感上有更多的体验和收获,所以把习惯上的课后总结扩展为随时总结,随时应用,这样的处理会让学生更能很好的对百分数、分数和小数的互化方法进行梳理,通过应用对本课的基础知识掌握更加牢固。我想养成这样的好习惯对今后的学习有很大的帮助。

小学数学五年级《分数与小数的互化》说课稿 篇2

(二)通过教学,沟通分数与小数的联系,渗透事物是相互联系,可以相互转化的辩证唯物主义观点。

教学重点和难点

(一)分数与小数互化的方法。

(二)分数化小数的方法。

教学用具

投影片。

教学过程设计

(一)复习准备

1.读出下面各小数,并说出它们的意义。

0.3,0.25,0.14,1.34,4.06,0.08,1.042,0.315。

2.求下面各题的商。(小数、分数。)

3÷4 15÷45 1÷8

5÷10 9÷106÷15

3.把下面各数分解质因数。(请几人用投影片。)

4,8,25,40,125,10,100,1000。

0.8的大小。在我们的日常生活和进一步的学习中,常会遇到一些比较分数、小数大小的实际问题和分数、小数的混合运算。为了便于比较和计算,就需要把分数化成小数,或者把小数化成分数。这节课我们就来学习这个问题。

板书课题:分数和小数的互化。

(二)学习新课

1.小数化分数。

板书例1把0.9,0.03,1.21,0.425化成分数。

教师:想一想每个小数的意义,能把它们写成分数吗?

学生按每个数的意义直接写成分数(口述)教师板书:

教师:请观察化简前的分数,分母与小数有什么关系:有没有规律?

学生分小组讨论、汇报。

教师再概括并板书:原来有几位小数,就在1后面写几个零作分母,教师:请再观察分子与小数有什么关系?

学生讨论、口答后,教师板书:原来的小数去掉小数点作分子,

教师:请按照找出来的规律,(指板书)把下面的小数化成分数。(学生口答教师板书。)

教师:谁再说一说如何把小数化成分数。学生口答后教师板书补出:“化成分数后,能约分的要约分”。笔算练习:(请几位同学用投影片写,集体订正。)

0.7 6.13 0.08 0.5

0.66 1.75 0.1250.02

能不能直接把它们写成小数?

学生口答教师板书:

教师:说一说你是根据什么把这些分数改写成小数的?(小数的意义。)

教师:观察分母和小数部分,发现它们之间有什么关系?怎样能很快地把分母是10,100,1000,…的分数化成小数?

学生讨论、口答后教师归纳并板书:

去掉分母,看分母中1后面有几个零,就在分子中从最后一位起向左数出几位,点上小数点。

练习:(请一位同学板书,其余的写本上。)

把下面的分数化成小数:

教师:请对比这一组分数与例2中的分数有什么不同?(分母不是10,100,1000,…。)

教师:请想一想,用什么方法可以把它们化成小数?并请算出来。

同学分小组讨论、汇报时教师板书:(教师有意做如下排列)

教师:请再说说用的什么方法?口答后在左右两列式下板书出:

分子除以分母化成分母是10,100,…的分数

的方法来做?

学生讨论后教师说明:

因为10,100,1000等各数都只含有2和5两个质因数。9和14都含有2和5之外的质因数,即是找不到一个自然数与9,14相乘能得到10,100,1000等。

教师:能说一说分母不是10,100,1000等的分数化小数的方法吗?

学生口答后教师板书:

用分子除以分母,除不尽时,可以根据需要按四舍五入法保留几位小位。能化成有限小数的分数,还可以先转化为分母是10,100,1000等的分数,再写成小数。

生笔算,请4位同学写在投影板上订正,第5题板书介绍写法。)

(三)巩固反馈

1.(口答)把下面各小数化成分数。

0.01,0.4,0.8,1.05,2.73。

2.把下面分数化小数。(口答)

3.把下面分数化小数。

(四)课堂总结与课后作业

1.小数化分数的方法。

2.作业:课本147页练习三十三,3,4,5,6。

课堂教学设计说明

分数与小数的互化,运用的小数的意义,分数与除法的关系,分数基本性质等,都是学过的旧知识。所以小数化分数和十进分数化小数都采用引导学生自学的方式进行。分母是非10,100,1000等的分数化小数。给学生充分的时间讨论,让学生自己去发现利用分数与除法的关系,用分子除以分母,或利用分数基本性质,把分数化成十进分数再化成小数这样两种方法。学生在试算中,已经遇到了除不尽的情况,而恰是这种分数不能化为十进分数,抓住这个学生已经感知的问题,提出讨论,引导学生分析分母的质因数情况,认识到有限小数分母的特点。这样不仅使学生掌握了针对具体分数的情况去用合适的方法转化,也为下节课的学习作好了准备。本节教学中,分数与小数的相互转化,沟通了分数与小数的联系,既使学生对已学的旧知识加深了理解,也让学生认识到事物是相互联系,相互转化的。

本节新课教学分两部分。

第一部分引导学生利用小数意义自学小数化分数的方法。

第二部分学习分数化小数的方法。分两层,学习分母是10,100,1000等的分数化小数;学习利用分数与除法关系,或分数基本性质把分数化小数。

小学数学五年级《分数与小数的互化》说课稿 篇3

教学内容:课本第107~108页的例1,例2,完成“做一做”题目和练习二十八的第1、2、10题。

教学目的:使学生理解并掌握百分数和小数互化的方法,能正确地把小数化成百分数或把百分数化成小数,并培养学生的归纳总结能力。

教学过程:

一、复习。

1.百分数的意义是什么?

2.把下面的小数化成分数,并说一说是怎样化的? 0.45

1.2

0.367 3.把下面的分数化成小数,说一说是怎样化的?

6337

1002584.写出下面各百分数。

百分之十六

百分之七十二点五 百分之一百八十

百分之五百

5.把下面各数扩大100倍是多少?小数点是怎样移动的?如果把它们缩小100倍是多少?小数点是怎样移动的?

2.5

0.48

1.25

10.3

二、导入新课。

在生产生活中,进行统计、比较时,经常需要把小数或分数化成百分数,或者把百分数化成小数或分数。所以我们应当很好地掌握它们之间的互化方法。这节课我们就先学习百分数和小数的互化。

板书课题:百分数和小数的互化。

三、新授。1.教学例1。

(1)出示例1:把0.25、1.4、0.123化成百分数。

引导学生思考:要把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。

提问学生口述过程:

250.2525%

1001.41414140140% 101010012312.312.3% 1000100提醒学生:方框中的部分是表示把小数化成分母是100的分数的过程,请大家观察一个,如果不看这个过程,小数是可以怎样直接化成百分数的?

(2)引导学生归纳出小数化成百分数的方法:(多提问几个学生说一说)把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。

说明:(让学生理解)当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。

(3)完成第107页“做一做”。

先让学生按例题的做法,做直接化。2.教学例2。

(1)出示例2。把27%、124%、0.4%化成小数。

分数小数互化说课稿 篇4

1、知识内容:分数与小数的互化

2、教材的地位和作用: 本课教学是学生在学习了分数的加减乘除混合运算后,而对于分数与小数的混合运算该如何做呢?因而必须要全都是小数或全都是分数这样才能进行计算。这节课就在这基础上进行的,目的是使学生掌握分数化成小数的方法以及小数化成分数的方法,也让学生总结并掌握能化成有限小数的最简分数的特点,能判断一个最简分数能不能化成有限小数。这样就为今后学习分数与小数的混合运算打下良好的基础。在本节课的教学中,体现了数学知识的内在联系,让学生从已有的知识背景出发,通过习题练习、自主探索、合作交流等方式积极探索分数与小数互化的规律。

3、教学目标:

(1)知识目标:

①使学生理解分数化成小数的方法,能根据分数与除法的关系把分数化成小数。

②使学生认识能化成有限小数的最简分数的特点,能判断一个最简分数能不能化成有限小数。

(2)能力目标:

在学生对能化成有限小数的最简分数的过程的参与讨论中培养学生观察、归纳、解决问题的能力。

(3)情感目标:

在找出能化成有限小数的最简分数的规律过程中培养学生对待知识的科学态度和探索精神。

《分数与小数的互化》教学反思 篇5

分数与小数的互化,运用的小数的意义,分数与除法的关系,分数基本性质等,都是学过的旧知识。所以小数化分数和十进分数化小数都采用引导学生自学的方式进行。

分母是非10,100,1000等的分数化小数。给学生充分的时间讨论,让学生自己去发现利用分数与除法的关系,用分子除以分母,或利用分数基本性质,把分数化成十进分数再化成小数这样两种方法学生在试算中,已经遇到了除不尽的情况,而恰是这种分数不能化为十进分数,抓住这个学生已经感知的问题,提出讨论,引导学生分析分母的质因数情况,认识到有限小数分母的特点。这样不仅使学生掌握了针对具体分数的情况去用合适的方法转化,也为下节课的学习作好了准备。

本节教学中,分数与小数的相互转化,沟通了分数与小数的联系,既使学生对已学的旧知识加深了理解,也让学生认识到事物是相互联系,相互转化的。

小学数学五年级《分数与小数的互化》说课稿 篇6

为了更好地了解学生的学习起点,在上本节课前,我们精心设计了课前测题(展示题目),前测题由两大部份组成,1—3题是旧知“小数和分数的互化、小数点的移动引起小数大小的变化、分数和百分数的相互改写”的内容,意在了解学生掌握的程度;4、5题是新知“小数和百分数互化”的内容,意在调查学生对新知的了解程度。通过检测,我们发现学生虽然以前学过分数与小数的互化,但是已有所遗忘;小数点的移动(向左或向右)容易混淆;对刚学习过的百分数和小数的相互改写基本掌握;学生对新知百分数和小数的互化有模糊的认识,但对过程和理由不会表达。学生最需要教师点拨和引导的是百分数与小数互化的规律。另外,学生在经过5年多的小学数学学习之后,有一定的自学能力、小组合作学习能力、探究能力等。

根据学生学习的起点,有针对性地对本课的教学进行了精心设计,做好了以下几点:

一、引入新知。

通过复习题的引入,让学生体会到数的“互化”的必要性。同时通过百格题的训练,进行数形结合,让学生直观地感受小数和百分数的互化,从而为新知的探究作好铺垫。

二、自主探究。

作为六年级的学生已经具备了一定的自学能力、合作学习能力、探究能力等。因此,给学生提供自主探究的平台,让学生独立运用起点独立尝试把例1中的小数化成百分数,再在小组里进行交流,最后全班汇报。学生经历了小数化成百分数的过程后,根据迁移原理,引导学生探究并理解百分数转化成小数的思考过程,通过“说想法、说变化、说发现、说规律”等环节,探究并在理解的基础上掌握小数与百分数互化的规律。

三、巩固练习。

练习的设计遵循由浅入深,由易到难,循序渐进的原则分层次进行设计,达到如下效果:

1、让学生体会到用规律可以很快进行小数与百分数的互化。

2、通过互化可以比较小数与百分数的大小。

3、用互化规律解决实际生活中的问题。值得一提的是,其中有两处进行了精心设计:一是改错题,让学生在“找错、设错”中提升认识;二是改动了课本中的`题目,让部分“粗心”的学生掉入圈套而加深认识。通过有效的练习,让学生今天所学习和掌握的知识,成为明日学习的起点。

分数与小数的互化教学设计 篇7

1、利用已有知识迁移、类推、发现百分数化分数、小数的规律和方法。

2、在掌握百分数化分数、小数方法的基础上,利用逆向思维发现分数、小数化百分数的规律和方法,感受数学知识间的联系和区别。

3、理解、掌握百分数和分数、小数互化的方法,并能熟练运用。

4、通过合作交流、探索发现等数学学习活动教给学生学习方法、渗透数学思想方法,培养学生勤于思考、勇于探索的优良品质。

教学重、难点:探索、发现百分数和分数、小数的互化方法。

教学过程:

一、创设情境,引出可供研究的材料

1、师:上节课我们研究了百分数的意义和写法,谁能说一说什么是百分数?百分数与分数有什么联系与区别?

生:答略。

师:你能说几个百分数吗?谁能联系生活实际说几个百分数?

生:地球上陆地面积约占29%,海洋面积约占71%;空气中氧气约占20%……(教师有针对性地板书)。

2、师:同学们知道的真多!是呀,百分数在生活中运用得非常广泛,其实我们平时的语言中也经常用到百分数的知识,比如:我们评价一个人时会说“褒贬参半”,“褒贬参半”用百分数表示是多少?

生:50%(板书)。

师:老师批评学生学习不刻苦时会说“三天打鱼两天晒网”,谁能用百分数解释一下?

生:学习的时间占60%,玩耍的时间占40%。

师:形容一个人非常突出会说“百里挑一”,“百里挑一”用百分数表示是多少?

生:1%(板书)

师:一个人考虑问题非常全面,事情处理得很完美,领导会说“我十二分满意”,“十二分满意”用百分数怎么表示?

生:120%(板书)

设计意图:巧用生活中的语言引出百分数,既得到了可供研究的材料又激发了学生的学习兴趣,自然,亲切!

二、探索新知,发现规律

1、百分数化分数、小数的规律。

(1)根据旧知把百分数化成分数和小数。

过渡:现在黑板上已经写出了很多百分数,看着这些百分数你还想研究些什么?

生:怎样把百分数化成分数和小数。

师:请你从黑板上任意选择一个百分数,把它化成分数和小数。

生:我选50%,50%化成分数是,化成小数是0.5。

师:能说说你是怎么想的吗?

生:50%写成分数形成就是,约分化简后就是;根据分数与除法的关系可知相当于50÷100,所以50%化成小数是0.5。

师:你说的真好!还有谁想说?

……

教师根据学生的口答板书如下:

27% = 0.27 =

50% = 0.5 =

1% = 0.01 =

53.8% = 0.538 = =

120% = 1.2 =

(2)总结过渡:想一想解答这类问题有没有规律?能不能总结出一个方法?下面就请同学们以小组为单位,观察、讨论:把百分数化成小数和分数有什么规律?

设计意图:不仅给学生梳理、总结了知识,教给学习方法,而且润物无声地对学生进行了思想教育,渗透了重要的数学思想方法,还巧妙地过渡到下一环节,可谓一举三得。

(3)探索百分数化分数、小数的规律。

①小组讨论(教师参与某小组一起活动)。

②全班交流。

师:谁愿意说一说你的发现?

生1:把百分数化成分数,只要把百分数先写成分数形式,再约分化简。(板书)

生2:我发现把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。(板书)

师:你能解释一下吗?

生:去掉百分号,这个数就扩大了100倍,要使数的大小不变就要把它的小数点向左移动两位,也就是缩小100倍。

2、探究小数、分数化百分数的规律。

(1)过渡。

你还有什么发现?(生:一片茫然!)下面我们进行一个竞猜活动:在老师的提示下你能猜出下面我们要研究的内容的就请举手!

师:这体现了一种思维方式,人们思考问题时往往从正面入手,逐步推理直至解决问题,我们称为顺向思维(已有个别学生举起了小手);但有时在顺向思维难以奏效的情况下或为使解题途径多样化而另辟溪径还会从反面入手(很多同学举手),我们称之为逆向思维(几乎全举起了手)。同学们,你们猜出了下面我们将要研究的内容了吗?

生齐答:怎样把小数、分数化成百分数?

师:刚才我们从左往右观察,发现了百分数化分数、小数的规律。如果我们反过来,从右向左观察,你会有什么发现呢?请同学们在小组内讨论、交流。

设计意图:通过竞猜活动巧妙地将两块知识联系起来,顺利过渡到下一环节,同时渗透了“逐步逼近”的思想方法。

(2)小组讨论交流。

(3)全班交流。

生1:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。(板书)

师:你能解释一下吗?

生1:如果在小数的后面直接添上百分号,这个数就缩小了100倍,为使数的大小不变,所以要把原小数的小数点向右移动两位,也就是扩大100倍。

生2:把分数化成百分数,要先把分数化成小数,再把小数化成百分数。(板书)

生3:首先,我同意他的方法,但我想给他补充两个字——“通常”。

师:能具体说说你的想法吗?

生3:因为除了这个方法以外还有一些特殊的方法,比如可以直接把分子分母同时乘4就可化成12%;也就是说,当一个分数的分母是100的约数时,可以把分数的分子、分母同时扩大相同的倍数直接化成百分数。

生4:受这位同学的启发,如果一个分数的分母是100的 倍数可以直接把这个分数的分子分母同时缩小相同的倍数化成百分数。比如,把分子、分母同时除以3就得到了59%。

设计意图:抓住“通常”二字作足文章,体现“算法多样化”的理念,培养学生的发散思维。

三、看书质疑

1、揭示课题。

师:通过以上研究,我们发现了“百分数和分数、小数互化”的方法,这就是今天这节课的研究内容。(板书课题)

2、看书梳理。

师:这部分内容在书上92~93页,请同学们打开课本从例1看到例4。

3、质疑问难。

师:你还有什么不明白或要提醒同学们注意的地方?

生:当分数不能化成有限小数时,把分数化成百分数要怎么处理?要注意些什么?

师:谁能解答这个问题?

生1:当分数不能化成有限小数时,一般保留三位小数,再把小数化成百分数。

生2:要注意“≈”的运用,如:≈0.167=16.7%,如果省略中间一步应写成≈16.7%。

师:这样回答你满意吗?还有疑问吗?

四、练习巩固,内化新知

1、完成教材93页两个“练一练”。

2、完成练习二十第3,4题。

3、填表:在空格里填上适当的数。

分 数

小 数

0.7

0.36

百分数

70%

7.5%

五、总结回顾,梳理方法

师:今天这节课我们研究了百分数和分数、小数的互化,回忆一下,我们是怎么获得这一知识的?你有哪些收获?

六、作业:练习二十第1,2,5,6四题。

板书设计:

百分数和分数、小数的互化

27% = 0.27 =

50% = 0.5 =

1% = 0.01 =

53.8% = 0.538 = =

小学数学五年级《分数与小数的互化》说课稿 篇8

1、理解分数、小数互相转化的必要性,掌握分数和小数互化计算的方法。

2、能正确地将简单的分数化为有限小数,并能在解决实际问题时灵活运用。

3、通过对规律的猜想、验证和总结建立事物相互联系相互转化的辩证唯物主义观点。

教学过程:

(一)创设情境,自主探索

1、在比较中认识互化的必要性

师(课件出示课本情境图):请观察图表,说一说图的意义。

(在学生说的过程中,板书:林林0.4(小时);明明1/4(小时))

师:请同学们比一比,谁用的时间多一些?

(在比较时,可以先让学生估计,然后再精确比较)

生1:我们小组是把小时化成分钟来比较的。小数化成分数来比较大小的。0.4小时是24分钟,1/4小时是15分钟,所以林林用的时间多一些。

生2:我们小组用画图的方法来比较的。我画了10个同样的小格,0.4涂4格,而只涂2格半,所以林林用的时间多一些。

生3:我们小组也是用画图的方法来比较的。我画了100个同样的小格,0.4能涂40格,而只涂25格,所以林林用的时间多一些。

生4:我们小组把小数化成分数的方法来比较的。0.4是4个1/10,也就是4/10,约分后是2/5,大于1/4,所以林林用的时间多一些。

生5:我们小组把分数化成小数的方法来比较的。1/4=1÷4=0.25,0.4>0.25,所以林林用的时间多一些。

师:你们最喜欢哪种方案,为什么?

生1:我喜欢分数化成小数那个小组的方案。因为画图太麻烦了,而分数化成小数,直接用分数的分子除以分母就可以了。

生2:我喜欢小数化成分数的那个小组的方案。分数化小数有的时候除不尽很麻烦,画图也很麻烦,比较时间能化成分钟来比,如果其它单位的还得又一种化法。所以我喜欢把小数化成分数的方案。

生3:把小数化成分数再比较大小,分母不同的时候还得通分,也很麻烦,还不如具体问题具体分析。

......

师(小结):同学们回答的都很好,在我们的日常生活和进一步的学习中,常会遇到一些比较分数、小数大小的实际问题和分数、小数的混合运算。为了便于比较和计算,就需要把分数化成小数,或者把小数化成分数。

2、探索分数化小数

师:谁来说一说第5小组是用什么方法把分数化成小数的?

生:用分子除以分母的方法。

师:你是怎么想到用分子除以分母的方法化成小数的?

生:因为分数的分子相当于被除数,而分母相当于除数。

师:请你把71页“试一试”第2题这几个分数化成小数。

(学生独立解答,教师巡视指导。)

3、探索小数化分数的基本方法

师:老师问一下第4小组的同学,你们是用什么方法把小数化成分数的?

生:我们是根据小数的意义把小数化成分数的。

师:能具体的说一说吗?

生:0.4是4个十分之一,也就是十分之四,约分后是五分之二。

师:那0.04,0.004呢?

生:0.04是4个百分之一,也就是百分之四,约分后是二十五分之一;0.004是4个千分之一,也就是千分之四,约分后是二百五十分之一。

师:说的真不错,化成分数后,能约分的要约分,一直约分成最简分数。

师:请观察化简前的分数,分母与小数有什么关系?有没有规律?

(学生分小组讨论,汇报。)

生1:小数的位数与分母1后面的零的个数一样多。

生2:原来有几位小数,就在1后面写几个零作分母。

师:请再观察分子与小数有什么关系?

生:原来的小数去掉小数点后的数作分子,

师:请按照找出来的规律,把课本第71页“试一试”的第1题做到练习本上。

(二)练习提高

1、课本第72页练一练第1题,分数化小数。

2、判断是否正确,如果不对,请改正。

3、数学游戏:你说我答:同桌之间一个说分数一个说小数,互相交换着说。

(让学生熟记一些常用的分数与小数互化的结果)

4、比较各组数的大小(主要是对分数和小数的互化进行练习)。

5、在直线上面的括号里填上适当的分数,在下面的括号里填上适当的小数。

(三)小结延伸

师:本节课的学习你有哪些收获?

(四)实践活动

在生活中寻找用分数或小数表示的信息。

分数和小数的互化 篇9

(一)理解并掌握小数化分数和分数化小数的方法。

(二)通过教学,沟通分数与小数的联系,渗透事物是相互联系,可以相互转化的辩证唯物主义观点。

教学重点和难点

(一)分数与小数互化的方法。

(二)分数化小数的方法。

教学用具

投影片。

教学过程设计

(一)复习准备

1.读出下面各小数,并说出它们的意义。

0.3,0.25,0.14,1.34,4.06,0.08,1.042,0.315。

2.求下面各题的商。(小数、分数。)

3÷4 15÷451÷8

5÷10 9÷10 6÷15

3.把下面各数分解质因数。(请几人用投影片。)

4,8,25,40,125,10,100,1000。

上一篇:小学生课外阅读指导下一篇:网络安全课程设计要求