物理动量知识点总结(精选5篇)
动 量
知识要点:
一、冲量
1、冲量:作用在物体上的力和力的作用时间的乘积叫做冲量。表示为I=F·t。
2、冲量是个矢量。它的方向与力的方向相同。
3、冲量的单位:在国际单位制中,冲量的单位是牛顿·秒(N·S)。
4、物体受到变力作用时,可引入平均作用力的冲量。IF·t。
要点:
1、冲量是力的时间积累量,是与物体运动过程相联系的量。冲量的作用效果是使物体动量发生改变,因此冲量的大小和方向只与动量的增量直接发生联系,而与物体动量没有什么直接必然联系。
2、冲量是矢量,因而可用平行四边形法则进行合成和分解。合力的冲量总等于分力冲量的矢量和。
二、动量
1、动量:物体质量与它的速度的乘积叫做动量。表示为P。mv
2、动量是矢量,它的方向与物体的速度方向相同。
3、动量的单位:在国际单位制中,动量的单位为千克·米/秒(kg·m/s)。
要点:
1、动量与物体的速度有瞬时对应的关系。说物体的动量要指明是哪一时刻或哪一个位置时物体的动量。所以动量是描述物体瞬时运动状态的一个物理量。动量与物体运动速度有关,但它不能表示物体运动快慢,两个质量不同的物体具有相同的速度,但不具有相同的动量。
2、当物体在一条直线上运动时,其动量的方向可用正负号表示。
3、动能与动量都是描述物体运动状态的物理量,但意义不同。物体动能增量与力的空间积累量——功相联系,而物体动量的增量则与力的时间积累量——冲量相联系。
三、动量定理
四、1、物体受到冲量的作用,将引起它运动状态的变化,具体表现为动量的变化。
2、动量定理:物体所受的合外力的冲量等于物体动量的增量。用公式表示为:
Ft·Pvmv 2P1m21合要点:
1、在中学阶段,动量定理的研究对象是一个物体。不加声明,应用动量定理时,总是以地面为参照系,即P1,P2,P都是相对地面而言的。
2、动量定理是矢量式,它说明合外力的冲量与物体动量变化,不仅大小相等,而且方向相同。在应用动量定理解题时,要特别注意各矢量的方向,若各矢量方向在一条直线上,可选定一个正方向,用正负号表示各矢量的方向,就把矢量运算简化为代数运算。
3、动量定理和牛顿
变速直线运动或曲线运动的情况,就更为简便。
四、动量守恒定律
1、动量守恒定律内容:系统不受外力或所受外力的合力为零,这个系统的总动量就保持不变。用公式表示为:
或 m PPPPvmvmvmv121211221122
2、动量守恒定律的适用范围:动量守恒定律适用于惯性参考系。无论是宏观物体构成的宏观系统,还是由原子及基本粒子构成的微观系统,只要系统所受合外力等于零,动量守恒定律都适用。
3、动量守恒定律的研究对象是物体系。物体之间的相互作用称为物体系的内力,系统之外的物体的作用于该系统内任一物体上的力称为外力。内力只能改变系统中个别物体的动量,但不能改变系统的总动量。只有系统外力才能改变系统的总动量。
要点:
1、在中学阶段常用动量守恒公式解决同一直线上运动的两个物体相互作用的问题,在这种情况下应规定好正方向,v方向由正、负号表示。、v、v、v1212
2、两个物体构成的系统如果在某个方向所受合外力为零,则系统在这个方向上动量守恒。
3、碰撞、爆炸等过程是在很短时间内完成的,物体间的相互作用力(内力)很大,远大于外力,外力可忽略。碰撞、爆炸等作用时间很短的过程可以认为动量守恒。
五、碰撞
1、碰撞:碰撞现象是指物体间的一种相互作用现象。这种相互作用时间很短,并且在作用期间,外力的作用远小于物体间相互作用,外力的作用可忽略,所以任何碰撞现象发生前后的系统总动量保持不变。
2、正碰:两球碰撞时,如果它们相互作用力的方向沿着两球心的连线方向,这样的碰撞叫正碰。
3、弹性正碰、非弹性正碰、完全非弹性正碰:
①如果两球在正碰过程中,系统的机械能无损失,这种正碰为弹性正碰。
②如果两球在正碰过程中,系统的机械能有损失,这样的正碰称为非弹性正碰。
③如果两球正碰后粘合在一起以共同速度运动,这种正碰叫完全非弹性正碰。
4、弹性正确分析:
①过程分析:弹性正碰过程可分为两个过程,即压缩过程和恢复过程。见下图。
②规律分析:弹性正碰过程中系统动量守恒,机械能守恒(机械能表现为动能)。则有下式:
mvmvmvmv①11221122 11212212 mvmvvvm②1122m11222222 解得v1m1m2v12m2v2m1m2
mmv2mv21211v 2mm12 mm讨论:①当m即mv,vv1、2交换速度。②当v12时,v20时,1221碰后,两球同向运动。0,v02mm2v2mv11v,v11,若mm,则v1mm212mm21121mm若m则v,即碰后1球反向运动,2球沿1球原方向运动。当m0,v012,2112时,v1v1,v20即m2不动,m1被反弹回来。
六、反冲运动
1、反冲运动:静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象叫反冲运动。
碰撞问题是高中物理动量守恒定律和能量转化与守恒定律的重要应用之一.在我们经常遇到的物理问题中,有些看上去并不是碰撞问题,但运用碰撞规律去分析求解却显得比较容易.下面我们一起对此类问题作较为深入的探讨.
1.碰撞的几种类型 图1
(1) 完全弹性碰撞
如图1所示,其特点是:在碰撞的过程中不仅没有动能损失,且动量守恒.于是可得:
m1v1 + m2v2=m1v1′+m2v2′,
1 2 m1v21+ 1 2 m2v22= 1 2 m1v1′2+ 1 2 m2v2′2.
联立上述方程并解之得:v1′=
(m1-m2)v1+2m2v2 m1+m2 ,v2′= (m2-m1)v2+2m1v1 m1+m2
说明 如果v2=0,即m2原来静止,则v1′= (m1-m2)v1 m1+m2 ,v2′= 2m1v1 m1+m2 .
①若m1 > m2,m1撞击m2后的速度方向不变,且m2的速度v2′ 大于v1;
②若m1 < m2,m1撞击m2后被反弹回来,且m2的速度v2′ 小于v1;
③若m1=m2,则碰撞后m1停止,m2的速度v2′ 和m1的速度v1相同.
(2) 完全非弹性碰撞
在这种类型的碰撞中,两物体碰撞之后不再分离,动能损失最大(转化为其它形式的能).由动量守恒可得:m1v1+m2v2=(m1+m2)v,则v= m1v1+m2v2 m1+m2 .
如果m2原来静止,则v= m1v1 m1+m2 .
碰撞过程损失的机械能为:ΔE= 1 2 m1v21+ 1 2 mv22- 1 2 (m1+m2)v2= m1m2 2(m1+m2) (v1-v2)2.
(3)非弹性碰撞
这种碰撞是日常生活中最常见的,具体的碰撞 结果与碰撞过程中损失的动能大小有关,碰撞过程中仍然满足动量守恒定律,即
m1v1+m2v2=m1v1′+m2v2′,
1 2 m1v21+ 1 2 m2v22- 1 2 m1v1′2- 1 2 m2v2′2=ΔEk.
2.规律的拓展与应用
图2
例1 如图2所示,水平地面上静止地放置一楔形物体,其质量为M,水平地面及楔形物体上下表面均光滑.现有一质量为m的小球在水平地面上以初速度v0滑上斜面.求小球能在楔形物体斜面上滑行的最大高度为多少?(设楔形物体斜面足够长)
解析 当小球滑上楔形物体后,系统在水平方向不受外力作用,所以在水平方向上动量守恒.其次由于小球高度升高,会使重力势能增大而系统动能减小.当小球上滑到最大高度时势能最大而系统动能损失最大,所以这个问题类似于完全非弹性碰撞.则
mv0=(M+m)v
mghm= 1 2 mv20- 1 2 (M+m)v2
联立以上两式并解之得:hm= mv20 2(M+m) .
图3
例2 如图3所示,放置在光滑水平地面上的两物体A、B,质量相等,它们之间用一轻弹簧连接.物体A靠在竖直墙上,向左推物体B使弹簧处于压缩状态后释放物体B,物体B向右弹出,两物体A、B与弹簧之间不分离.当弹簧第一次恢复原长时,物体B的速度为v.求当弹簧的长度最长时,物体A的速度为多大?
解析 当弹簧第一次恢复原长之后,物体A离开墙壁,弹簧开始伸长,弹性势能增大,系统的动能减小;当物体A离开墙壁后,系统在水平方向不受外力作用,动量守恒;当弹簧的长度伸长到最长时,弹簧的弹性势能最大而系统的动能损失最大,所以这个过程中相当于类完全非弹性碰撞,弹簧最长时,两物体A、B速度相同.所以
mBv=(mA+mB)vA,则vA= mBv mA+mB = 1 2 v.
3.类完全弹性碰撞问题
例3 在例2中,试分析当弹簧再次恢复原长时,A的速度是多大?
解析 从弹簧第一次恢复到原长到再次恢复原长的过程中动量守恒.弹簧先伸长后缩短,虽然在这个过程中系统的动能有变化,但初状态(弹簧第一次恢复原长)和末状态(弹簧再次恢复原长)相比较,系统的总动能是相同的.所以可把这个过程看作是类完全弹性碰撞.在两物体A、B的质量相同的情况下,其速度互换,即vA′=v.
例4 位于水平光滑桌面上的n个完全相同的小物块,沿一条直线排列,相邻小物块间都存在一定的距离.自左向右起,第一个小物块标记为P1,第二个小物块标记为P2,第三个小物块标记为P3,……,最后一个小物块即最右边的小物块标记为Pn.现设法同时给每个小物块一个方向都向右但大小各不相同的速度,其中最大是速度记作v1,最小的速度记作vn,介于最大速度与最小速度间的各速度由大到小依次记为v2, v3, …, vn-1,若当小物块发生碰撞时,碰撞都是弹性正碰,且碰撞时间极短,则最终小物块P1, P2, P3, …, Pn速度的大小依次为 .
解析 由于相邻的两个小物块发生弹性正碰,则满足动量守恒、机械能守恒.由于它们发生碰撞时交换速度,据此很容易得出结论,故应顺填:vn, vn-1, …, v3, v2, v1.
例5 相隔一定距离的A、B质量相等,假定它们之间存在着恒定的斥力作用,原来两球被按住并处于静止状态.现突然松开两球,同时给A球以速度v0,使之沿两球连线射向B球,B球初速度为零.求两球间的距离从最小值(两球未接触)到刚恢复原始值所经历的时间内球B在斥力作用下的加速度.
解析 对A、B球来说,当二者速度相等时,两球间距离最小,则根据动量守恒定律有:
mv0=2mv′,解得v′= v0 2 .
当二者距离恢复到原始值时,二者作用完毕,则有上述结论可知,A球速度为零,B球速度为v0,于是对B球有a= v0- v0 2 t = v0 2t .
图4
例6 如图4所示,在光滑水平面上停放着质量为m且装有光滑的弧形槽轨道AB的小车.一质量为m的小球以水平初速度v0从小车右端沿弧形槽轨道A端滑上小车,到达某一高度后,小球又返回弧形槽轨道A端,则下列判断正确的是( ).
A. 小球离开小车后向右做平抛运动
B. 小球离开小车后做自由落体运动
C. 此过程中小球对车做功为 1 2 mv20
D. 小球沿小车的弧形槽轨道上升的最大高度为 v20 2g
解析 小球滑上弧形槽后又滑下的过程中,小球与小车组成的系统在水平方向动量守恒.系统的动能先减小后增大,当小球返回弧形槽轨道A端时,系统的重力势能与小球滑上槽口时相同.因此初状态(小球滑上轨道A端)与末状态(小球返回轨道A端)系统的动能相同.所以可把这个过程看作是类完全弹性碰撞.根据完全弹性碰撞的规律可知:当小球返回轨道A端时,小车的速度为v1=v0.小球的末速度恰好为零.故小球离开车后做自由落体运动,在这一过程中小球对小车做的功为:W= 1 2 mv21= 1 2 mv20.故应选B和C. 图5
例7 如图5所示,质量为m的由绝缘材料制成的球与质量为M = 19m的金属球并排悬挂.现将绝缘球拉至与竖直方向成θ = 60°的位置自由释放,下摆后在最低点处于金属球发生弹性碰撞.在平衡位置附近存在垂直于纸面的磁场.由于磁场的阻尼作用,金属球将于再次碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角将小于45°.
解析 设在第n次碰撞前绝缘球的速度为vn-1,碰撞后绝缘球、金属球的速度分别为vn、Vn.由于碰撞过程中动量守恒,碰撞前后动能相等.设速度向左为正,则有
mvn-1=MVn-mvn ①
1 2 mv2n-1= 1 2 MV2n+ 1 2 mv2n ②
①可变形为m(vn-1+vn)=MVn ③
②可变形为 1 2 m(vn-1-vn)(vn-1+vn)= 1 2 MV2n ④
将③代入④得(vn-1-vn)=Vn ⑤
由③和⑤可得
vn= M-m M+m vn-1= 9 10 vn-1,Vn= 2m M+m = 1 10 vn-1.
第n次碰撞后绝缘球的动能为En= 1 2 mv2n=(0.81)nE0,(E0为第1次碰撞前的动能,即初始能量)
绝缘球在θ=θ0=60°与θ=45°处的势能之比为 E E0 = mgl(1-cosθ) mgl(1-cosθ0) =(0.81)n,易算出(0.81)2=0.656,(0.81)3=0.531,因此经过3次碰撞后θ小于45°.
二、磁场中双杆运动 能量守恒有妙用
对于双杆在磁场中运动的问题,稳定后回路中有感应电流存在,电流做功使系统发热,系统中总会涉及到能量的转化,因此双杆系统总要受到外力作用,外力给系统补充能量,才能维持双杆持续不断地生热而耗散的能量.安培力做功总是量度其它形式的能转化为内能的,若双杆的机械能不增加,则由能量转化与守恒知,外力做功的功率与安培力做功的功率必相等.稳定状态表现在双杆运动应该有恒定的速度差.差值是多少视具体情况而定,也可以为零.因双杆系统除受安培力,还受到其它力作用,在求表征单杆运动特征的某一物理量这样的局部问题时,用牛顿第二定律.求系统发热等全局问题时,应结合能量转化与守恒定律. 图6
例8 如图1所示,在水平面上有两条平行导轨MN、PQ,导轨间距离为l,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B,两根金属杆1、2摆在导轨上且与导轨垂直,它们的质量和电阻分别为m1、m2和R1、R2,两杆与导轨接触良好,与导轨间的动摩擦因数为μ.已知杆1被外力拖动,以恒定的速度v0沿导轨运动,达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻忽略不计,求杆2克服摩擦力做功的功率.
解析 设杆2的运动速度为v,由于两杆运动时,两杆间与导轨构成的回路中的磁通量发生变化,产生感应电动势
E=Bl(v0-v) ①
感应电流为I=E/(R1+R2) ②
杆2做匀速运动,它受到的安培力等于它受到的摩擦力,则有
Blv=μm2g ③
导体杆2克服摩擦力做功的功率
P=μm2gv ④
联立以上四式可解得P=μm2g[v0- μm2g B2l2 (R1+R2)].
点评 两杆受的安培力等大反向,稳定后系统受力平衡,则外力F=(m1+m2)gμ.外力做功全部转化为系统的内能,但通过了两种途径,一是感应电流做功发热,另一种是摩擦生热. 图7
例9 在如图7所示的导轨上,有竖直向下的匀强磁场,磁感应强度为B,左端间距L1=4L,右端间距L2=L.现在导轨上垂直放置ab和cd两金属棒,质量分别为m1=2m,m2=m;电阻R1=4R,R2=R.现使ab棒向右以初速度v0运动,求整个过程中cd棒产生的焦耳热和通过它的电量.
解析 设ab长为L1、cd长为L2,如图7所示.当ab棒刚开始运动时,回路中产生有顺时针方向的电流,由左手定则可以判断ab棒受到向左的安培力做变减速运动,cd棒受到向右的安培力做变加速运动,过程中电流不断减小.当回路电流为零时,ab棒和cd棒受到的安培力均为零,速度不再发生变化,各自做匀速直线运动,达到稳定状态.
收尾运动之前,因为Fab=BIL1、Fcd=BIL2,所以两棒受到的合力不为零,故系统动量不守恒,只能运用动量定理.设从开始运动到稳定状态回路中的平均电流(对时间)为I,对ab棒运用动量定理有
-BIL1Δt=m1vab-m1v0 ①
对cd棒运用动量定理有
BIL2Δt=m2vcd ②
由电流的定义知
q=IΔt ③
两棒稳定后,回路中电流I=0,所以Eab=Ecd,即BL1vab=BL2vcd,故此有
L1vab=L2vcd ④
由以上四式可解得 q= m1m2v0L1 m1BL22-m2BL21 ,vab= v0 9 ,vcd= 4 9 v0.
将L1=4L、L2=L、m1=2m、m2=m代入上式可求得q= 4mv0 9BL .
因回路电流始终为零,故两棒产生的热量之比等于其电阻之比: Qcd R2 = Qab R1 = Q R1+R2 .
故cd棒产生的焦耳热 Qcd= 1 5 ( 1 2 mv20- 1 5 m1v2ab- 1 2 m2v2cd)= 72 405 mv20.
点评 求解本题的关键在于当回路电流为零时,两导体棒做匀速直线运动,于是可求得两棒收尾速度的关系:vcd=4vab. 图8
例10 如图8所示,a1b1c1d1与a2b2c2d2为在同一竖直平面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直于导轨所在的平面(纸面)向里.导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2.x1、y1 与x2、y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m1、m2,它们都垂直于导轨并与导轨保持光滑接触.两杆与导轨构成的回路的总电阻为R.F为作用于金属杆x1y1上的竖直向上的恒力,已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率.
解析 设杆向上的速度为v,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少.由法拉第电磁感应定律知回路中的感应电动势的大小
E=B(l2-l1)v ①
回路中的电流I= E R ②
电流沿顺时针方向,两金属杆都要受到安培力作用,作用于杆x1y1的安培力为
f1=Bl1I ③
方向向上,作用于杆x2y2的安培力为
f2=Bl2I ④
方向向下,当杆做匀速运动时,根据牛顿第二定律有
F-m1g-m2g+f1-f2=0 ⑤
由以上各式可解得:I= F-(m1+m2)g B(l2-l1) ⑥
v= F-(m1+m2)g B(l2-l1) R ⑦
作用于两杆的重力的功率大小
P=(m1+m2)gv ⑧
电阻上的热功率Q=I2R ⑨
由后四式可解得P= F-(m1+m2)g B2(l2-l1) R(m1+m2)g,Q=[ F-(m1+m2)g B(l2-l1) ]2R.
点评 稳定后两杆都向上匀速运动,由于轨道不等宽,则两杆所受安培力大小不同,同时两杆也要受到重力作用.因此系统必受向上的拉力才能平衡.外力做功一部分转化为重力势能,另一部分转化为系统的内能.
例11 在例9中,若开始时两棒均静止,现给cd棒施加一个向右大小为F的恒力,如图9所示.求ab棒上消耗的最大电功率. 图9
解析 由于有恒定的外力F作用,两棒不可能匀速运动,很显然两棒在稳定状态时,回路电流不可能为零,cd棒开始在外力F和安培力作 用下向右做变加速运动,ab棒在安培力作用下也开始向右做变加速运动.回路中有逆时针方向逐渐增大的电流I.这就使得cd棒的加速度acd逐渐减小,ab棒的加速度aab逐渐增大.当回路中电流增大到最大值,这时两棒加速度达到稳定值,最终两棒均做匀加速运动.这时有E=BL2vcd-BL1vab,当两棒加速度达到稳定值的瞬时,设ab棒的速度为v1,加速度为a1,cd棒的速度为v2,加速度为a2,则有vab=v1+a1t,vcd=v2+a2t,所以I=
E/5R=BL/5R[(v2-4v1)+(a2-4a1)t],可见要使I恒定,只有
a2=4a1 ①
由牛顿第二定律,对ab棒有BIL1=m1a1 ②
对cd棒有F-BIL2=m2a2 ③
由以上三式可解得a1= 2F 9m , a2= 8F 9m , I= F 9BL .
因此ab棒上消耗的最大电功率Pabm=I2R1= 4F2R 81B2L2 .
此后,两棒上消耗的电功率不变,而外力F的功率仍在增大,使两棒的动能仍在增大.
点评 两棒收尾运动是匀加速运动,这时回路电流恒定,即不随时间变化,得到两棒的加速度关系,于是问题便迎刃而解. 图10
例12 如图10所示,足够长的光滑平行导轨水平放置,电阻不计,MN部分的宽度为2l,PQ部分的宽度为l,金属棒a、b的质量ma=2mb=2m,其电阻大小Ra=2Rb=2R,a和b分别在MN和PQ上,垂直导轨且相距足够远,整个装置处于竖直向下的匀强磁场中,磁感应强度为B.开始时a棒向右的速度为v0,b棒静止,两棒运动时始终保持平行,且a总在MN上运动.求a、b稳定运动前电路中产生的焦耳热.
解析 由法拉第电磁感应定律和 楞次定律可知,a棒运动后做加速度减小的减速运动,b棒从静止开始做加速度减小的加速运动,当两棒加速度同时减小到零,即电路中电流为零时,两棒运动达到稳 定,此时两棒速度关系为vb=2va(从阻碍磁通量变化的角度可知,两棒速度关系为vb=2va且恒定不变时,两棒与导轨构成的回路面积不再变化,电路达到稳定).
根据上述分析,从开始运动到稳定,对两棒分别运动动量定理有:
-BI ·t=2mva-mv0,-BI ·t=mvb-0 vb=2va.由以上三式可解得va= v0 3 , vb= 2 3 v0.
由能量守恒知,a、b稳定运动前电路产生的焦耳热为Q= 1 2 ×2mv20- 1 2 ×mv2a- 1 2 ×2mv2b,将va= v0 3 , vb= 2 3 v0,代入可求得Q= 2mv20 3 .
动量 第一节
冲量和动量
一.冲量的概念:
1. 定义:力和力与时间的乘积叫力的冲量。2. 表达式:I=Ft 3. 冲量是矢量:力的方向在作用时间内不变时,冲量方向与力的方向相同。
4. 冲量是反映力对时间积累效果的物理量。5. 冲量的单位;N.s 6. 冲量是过程量 7. 冲量与功的区别:
冲量是力对时间的积累效果,是矢量。功是力对空间的积累效果,是标量。二:动量的概念
1.定义:运动物体的质量与速度的乘积叫动量。2.表达式:P=m.v 3.动量是矢量:动量的方向与速度的方向相同。4.动量是描述运动物体状态的物理量。
5.动量的增量:末状态动量与初状态的动量的矢量之差。ΔP=2-P是矢量运算,同一条直线时引入正负号可以将矢量运算转化为代数运算
6动能与动量的联系与区别
⑴联系:EK=1/2mv
2p=mv p2=2mEK ⑵区别:动能是标量,动量是矢量。大小不同。一. 动量定理
1.动量定理的内容:合外力的冲量等于物体的动量的增量。2.数学表达式;I=P2-P1 3.几点说明:⑴冲量的单位与动量的单位等效
⑵F指的是合力,若F是变力,则其结果为力的平均值
二: 动量守恒定律
1. 动量守恒定律的推导:见课本
2. 动量守恒的条件:系统不受外力作用或系统所受的外力为零,由相互作用的物体(两个以上)构成的整体叫系统。该系统以外的物体对系统内物体的作用力称为外力,而该系统内部物体间的相互作用力称为内力。3. 动量守恒定律的内容及数学表达式:
⑴系统不受外力(或受外力为零),系统作用前的总动量,与作用后总动量大小相等,方向相同。⑵
m1v10+m2v20=m1v1+m2v2 4. 动量守恒定律的应用:
⑴分析:系统是由哪几个物体组成?受力情况如何?判定系统动量是否守恒?一般分为三种情况㈠系统不受外力或所受合外力为零。㈡虽然系统所受合外力不为零,但在某个方向合外力为零,这个方向的动量还是守恒的㈢虽然系统所受和外力不为零,系统之间的相互内力远大于系统所的外力,这时可以认为系统的动量近似守恒。
⑵高中阶段所涉及的问题都是正碰:所谓正碰,既物体碰前及碰后的速度均在一条直线上
⑶动量守恒的运算是矢量运算,但可以规定一个正方向,确定相互作用前后的各物体的动量的大小及正负,然后将矢量运算转化为代数运算 ⑷确定系统,认真分析物理过程,确定初始状态及末状态 ⑸物体的速度都是对地的 ⑹列出动量守恒的方程后求解 二. 弹性碰撞
1.弹性碰撞:碰撞过程中无永久性形变,(即碰后形变完全恢复),故弹性碰撞过程中无机械能损失。
2.物理情景:光滑的水平面上有两个小球,质量分别为m1、m2,m2静止在水平面上,m1以初速度V0撞m2:试讨论碰后两小球的速度?
3.物理过程的分析:小球的碰撞过程分为两个阶段,⑴压缩阶段
⑵恢复阶段,在前一个阶段形变越来越大,m2做加速运动,m1做减速运动,当形变最大时两者达到共同速度,后一个阶段为恢复阶段形变越来越小,m2继续做加速运动,m1继续做减速运动,当形变完全恢复时两着分离,各自做匀速直线运动。
4.根据动量守恒定律:m1v0=mvv1+m2v2
1/2m1v02=1/2m1v12+1/2m2v2
2v1=(m1-m2)v0/m1+m2
v1=2m1v0/m1+m2
讨论:五种情况: 例1:实验(五个小球)
例2:质量为2m的小球,在光滑的水平面上撞击几个质量为m的小球,讨论:将发生什么情况? 三. 完全非弹性碰撞
1.完全非弹性碰撞:碰撞过程中发生永久性形变,有机械能损失,且变热
2.物理情景:m1以初速度V0撞击m2结果两球有共同速度
方程:m1 v0=(m+M)V Q=1/2m v02-1/2(m+M)V2
例3.在光滑的水平面上,质量为2kg的小球以10m/s的速度,碰撞质量为3kg的原来静止的小球,则:碰后质量为2kg的小球速度的最小值的可能值为
A.4m/s
B.2m/s
C.-2m/s
D.零
例4.光滑的水平面上静止着球B,另一球A以一定的速度与B球发生了正碰当A、B的质量满足什么条件时,可使B球获得最大的:
A.动能
B。速度
C。动量 例5.质量为m的小球A,在光滑水平面上以速度v0与质量为2m的静止小球B发生正碰,碰撞后,A球的速度变为原来的1/3,那么碰撞后B球的速度可能值是:A.1/3 v0
B.-1/3 v0
C.2/3 v0
D.5/3 v0
例6.质量为M的小车在光滑水平地面上以速度V0,匀速向右运动,当车中的沙子从底部的漏斗不断流下时,车子速度将: A.减少;
B.不变;
C.增大;
D.无法确定 例7: 导学,第2页⑵ 例8:人船模型
⑴船的质量为M,人的质量为m,船长为L,开始时人和船都是静止的,不计水的阻力,人从船的一端走到船的另一端,求船的后退的距离? ⑵气球加软梯的总质量为M,人的质量为m,开始时,人距地面的高度为H,现在人缓慢的从软梯向下移动,为使人能安全的到达地面,软梯至少多长? ⑶质量为M的框架放在水平地面上,质量为m的木块压缩了框架左侧的弹簧并用线固定,木块框架右侧为d,现在把线剪断,木块被弹簧推动,木块达到框架右侧并不弹回,不计一切摩擦,最后,框架的位移为
.⑷小车置于光滑的水平面上,一个人站在车上练习打靶,除子弹外,车、人、靶、枪的总质量为M,n发子弹每发子弹的质量均为m,枪口和靶距离为d,子弹沿着水平方向射出,射中后即留在靶内,待前一发打入靶中,再打下一发,n发子弹全部打完,小车移动的总距离是
.例9.判定过程能否发生
原则:⑴动量守恒,⑵动能不增加,⑶不违背碰撞规律
方法:抓住初始条件利用三个原则判定结果
1.甲、乙两球在水平光滑轨道上,向同方向运动,已知它们的动量分别是
p甲=5kgm/s,P乙=7kgm/s,甲从后面追上乙并发生碰撞,撞后乙球的动量变为10kgm/s,则两球质量m甲与m乙间的关系可能是下面哪几种?
A.m甲=m乙
B.2m甲=m乙
C.4m甲=m乙
D.6m甲=m乙
2半径相等的两个小球甲和乙,在光滑的水平面上沿同一直线相向运动,若甲球的质量大于乙球的质量,碰撞后两球的运动状态可能是: A.甲球的速度为零而乙球的速度不为零.B.乙球的速度为零而甲球的速度不为零.C.两球的速度都不为零.D.D.两球的速度方向均与原方向相反,两球的动能仍相等
3.在光滑的水平面上,动能为E0动量大小为P0的小钢球1与静止的小钢球2发生碰撞,碰撞前后球1的运动方向相反,将碰撞后球1的动能和动量的大小分别为E1、P1,球2的动能和动量的大小分别记为E2、P2,必有:
A.E1<E0
B.P1<P0
C.E2>E0
D.P2>P0 5. 如图所示,有两个小球1、2它们的质量分别为m1、m2放在光滑的水平面上,球1以一定的速度向静止的球2运动并发生弹性碰撞,设球2跟墙相碰撞时没有能量的损失,则:
A. 若m1<m2,两球不会发生二次正碰 B. 若m1=m2两球只会发生二次正碰 C. 若m1<m2,两球不会发生一次正碰 D. 以上三种情况下两球都只会发生两次正碰
例10.质量为M的火箭,以V0匀速上升,瞬间质量为m的喷射物以相对与火箭的速度v向下喷出,求:喷射物喷出瞬间火箭的速度?
例11.总质量为M的热气球,由于故障在空中以v匀速下降,为阻止继续下降,在t=0时刻从热气球上释放一个质量为m的沙袋,不计空气阻力在t=
,时热气球停止运动这是沙袋的速度为。
例12.在光滑的水平面有A、B两个物块,A的质量为m,B的质量为2m,在滑块B上固定一个水平轻弹簧,滑快A以速度V0正碰弹簧左端,当的速度减少到V0/2,系统的弹性势能E= 5/16mv2
例13.甲、乙两船的质量为1t和500kg,当两船接近时,每船各将50kg的物体以本船相同的速度放入另一条船上,结果乙船静止,甲船以8.5m/s的速度向原方向前进,求:交换物体以前两船的速度各多大?(不计阻力,50kg的质量包括在船的质量内)9m/s、1m/s 例14.甲、乙小孩各乘一冰车在冰面上游戏,甲和冰车的总质量为30kg,乙和冰车的总质量也为30kg,游戏时甲推一质量为15kg的木箱,和他一起以大小为V0=2m/s的速度滑行,乙一同样大小的速度迎面而来,为避免相撞,甲突然将箱子沿水平面推给乙,箱子滑到乙处时乙迅速把它抓住若不计摩擦。求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免相撞?(5.2m/s)l 例15.在光滑的水平面上有A、B两辆小车,水平面左侧有一竖直墙,在小车B上坐着一个小孩,小孩与B的总质量是A的质量的10倍,两车从静止出发,小孩把车A以相对地面的速度V推出,车A与墙碰撞后仍以原速度返回,小孩接到车A后,又把它以相对于地面的速度V推出,车A返回后,小孩再把它推出,每次推出,小车相对地面速度大小都是V,方向向左,则小孩把A总共推多少次后,车返回时,小孩不能接到?(6次)
例16.两个木块A、B都静止在光滑的水平面上,它们质量都是M,两颗子弹a、b的质量都是m,且m<M a、b以相同的水平速度分别击中木块A、B,子弹a最终留在木块A中,子弹b穿过了木块B,若在上述过程最后a、b,A、B的动能分别为EA、Eb、EA、EB试比较它们的大小? 例17.质量为M的甲、乙两辆小车都静止在光滑的水平面上,甲车上站着一个质量为m的人,现在人以相对于地面的速度从甲车跳上乙车,接着以同样大小的速度反跳上甲车,最后两车速度大小分别为V甲、V乙
求:1.V甲与V乙的比值
2比较人对两车所做功的多少 例18.光滑的水平面上静止一小车质量为M,竖直线下有一质量为m的小球,将小球拉至在水平释放后,小球摆至最底点时车的速度? 上题中若将小车挡住后释放,求小球摆动的最大高度 例18在光滑的水平面上,两球沿球心连线以相同的速率相向而行,并发生碰撞,下列现象可能
A若两球质量相同,碰后以某一相同速率互相分开。B.若两球质量相同,碰后以某一相同速率同向而行。C.若两球质量不同,碰后以某一相同速率互相分开。D.若两球质量不同,碰后以某一相同速率同向而行。例19.放在光滑的水平面上的M、N两个物体,系与同一根绳的两端,开始时,绳是松弛的,M和N反向运动将绳子拉断,那么,在绳被拉断后,M、N可能运动情况是 A.M、N同时停止运动。
B.M、N按各自原来运动的方向运动。C.其中一个停下来,另一个反向运动
D.其中一个停下来,另一个按原来的方向运动。
例20.质量为100kg的小车,在水平面上运动的速度是2.2m/s,有一个质量为60kg的人以相对于地面是7m/s的速度跳上小车,问: 1.如果人从后面跳上小车,小车的速度多大?方向如何? 4m/s 与车原运动的方向一致
2.如果人从前面跳上小车,小车的速度多大?方向如何? 1.25 m/s与车原运动的方向 相反.例21.在光滑的水平面上有并列的木块A和B,A的质量为500g,B的质量为300g,有一质量为80 g的小铜块C(可以视为质点)以25m/s的水平速度开始在A的表面滑动,由于C与A、B的上表面之间有摩擦,铜块C最后停在B上,B和C一起以2.5m/s的速度共同前进,求:⑴木块A的最后速度vA
? ⑵C在离开A时的速度vC? 4m/s 2.1m/s 例22.光滑的水平面上放一质量为M的木板,一质量为m的木块以V0的速度冲上木板,最后与木板相对静止,已知木板与木块之间的动摩擦因数为μ,求为了使木块不从木板上滑下来木板至少多长?
例23.静止在光滑的水平面上的木版A质量是M,它的光滑水平面上放着一个质量为m的物块B,另有一块质量为M的木版C,以初速度V0向右滑行,C与A相碰并在极短的时间内达到共同速度,(但不粘连)由于C的上表面不光滑,经一段时间后,B滑行到C上并达到相对静止,B、C间的动摩擦因数为μ。
求:⑴B离开A时,A的速度?
⑵B、C相对静止时,B的速度? ⑶B在C上滑行的距离?
例24.平板车C静止在光滑的水平面上,现有A、B两个物体(可视为质点)分别从小车C的两端同时水平地滑上小车,初速度VA=0.6m/s,VB=0.3m/s,A、B、C间的动摩擦因数都是μ=0.1 A、B、C的质量相同,最后A、B恰好相遇未相碰,且A、B、c以共同的速度运动,g取10m/s2 求:⑴A、B、c共同的速度?
⑵B物体相对地面相左运动的最大位移? ⑶小车的长度?
例25.在光滑的水平面上,有一质量为2m的木版A,木版左端有一质量为m的小木块B,A与B之间的动摩擦因数为μ,开始时A与B一起以V0的速度向右运动,木版与墙发生碰撞的时间极短,碰撞过程中无机械能损失,求
⑴.由A开始反弹,到A、B共同速度的过程中,B在A上滑行的距离?
一、大纲解读
动量、能量思想是贯穿整个物理学的基本思想,应用动量和能量的观点求解的问题,是力学三条主线中的两条主线的结合部,是中学物理中涉及面最广,灵活性最大,综合性最强,内容最丰富的部分,以两大定律与两大定理为核心构筑了力学体系,能够渗透到中学物理大部分章节与知识点中。将各章节知识不断分化,再与动量能量问题进行高层次组合,就会形成综合型考查问题,全面考查知识掌握程度与应用物理解决问题能力,是历年高考热点考查内容,而且命题方式多样,题型全,分量重,小到选择题,填空题,大到压轴题,都可能在此出题.考查内容涉及中学物理的各个版块,因此综合性强.主要综合考查动能定理、机械能守恒定律、能量守恒定律、动量定理和动量守恒定律的运用等.相关试题可能通过以弹簧模型、滑动类模型、碰撞模型、反冲等为构件的综合题形式出现,也有可能综合到带电粒子的运动及电磁感应之中加以考查.
二、重点剖析
1.独立理清两条线:一是力的时间积累--冲量--动量定理--动量守恒;二是力的空间移位积累--功--动能定理--机械能守恒--能的转化与守恒.把握这两条主线的结合部:系统。即两个或两个以上物体组成相互作用的物体系统。动量和能量的综合问题通常是以物体系统为研究对象的,这是因为动量守恒定律只对相互作用的系统才具有意义。2.解题时要抓特征扣条件,认真分析研究对象的过程特征,若只有重力、系统内弹力做功就看是
否要应用机械能守恒定律;若涉及其他力做功,要考虑能否应用动能定理或能的转化关系建立方程;若过程满足合外力为零,或者内力远大于外力,判断是否要应用动量守恒;若合外力不为零,或冲量涉及瞬时作用状态,则应该考虑应用动量定理还是牛顿定律.
3.应注意分析过程的转折点,如运动规律中的碰撞、爆炸等相互作用,它是不同物理过程的交汇点,也是物理量的联系点,一般涉及能量变化过程,例如碰撞中动能可能不变,也可能有动能损失,而爆炸时系统动能会增加.
三、考点题型归纳:
例
1、如图所示,光滑曲面轨道的水平出口跟停在光滑水平面上的平板小车上表面相平,质量为m的小滑块从光滑轨道上某处由静止开始滑下并滑上小车,使得小车在光滑水平面上滑动。已知小滑块从高为H的位置由静止开始滑下,最终停到小车上。若小车的质量为M。g表示重力加速度,求:
(1)滑块到达轨道底端时的速度大小V0
(2)滑块滑上小车后,小车达到的最大速度V(3)该过程系统产生的内能Q(4)若滑块和车之间的动摩擦因数为μ,则车的长度至少为多少?
练
1、如图所示,木块质量m=0.4kg,它以速度v=20 m/s水平地滑上一辆静止的平板小车,已知小车质量M=1.6kg,木块与小车间的动摩擦因数为μ=0.2,木块没有滑离小车,地面光滑,g取10m/s2,求:
(1)木块相对小车静止时小车的速度;
(2)从木块滑上小车到木块相对于小车刚静止时,小车移动的距离.(3)小车至少多长
练11如图所示,质量M=1.0kg的长木板静止在光滑水平面上,在长木板的右端放一质量m=1.0kg的小滑块(可视为质点),小滑块与长木板之间的动摩擦因数μ=0.2.现用水平恒力F=6.0N向右拉长木板,使小滑块与长木板发生相对滑动,经过t=1.0s撤去力F.小滑块在运动过程中始终没有从长木板上掉下.求:
(1)撤去力F时小滑块和长木板的速度各是多大;(2)运动中小滑块距长木板右端的最大距离是多大.
例
2、如图所示,abc是光滑的轨道,其中ab是水平的,bc为与ab相切的位于竖直平面内的半圆,半径R=0.30m.质量m=0.20kg的小球A静止在轨道上,另一质量M=0.60kg、速度V=5.5m/s的小球B与小球A正碰.已知相碰后小球A经过半圆的最高点c落到轨道上距b点为L=4R处,重力加速度g取10m/s2,求:
(1)碰撞结束时,小球A和B的速度大小;
(2)试论证小球B是否能沿着半圆轨道到达c点?
练
2、在光滑的水平面上,一质量为mA=0.1kg的小球A,以V0=8 m/s的初速度向右运动,与质量为mB=0.2kg的静止小球B发生弹性正碰。碰后小球B滑向与水平面相切、半径为R=0.5m的竖直放置的光滑半圆形轨道,且恰好能通过最高点N后水平抛出。g=10m/s2。求:(1)碰撞后小球B的速度大小;
(2)小球B从轨道最低点M运动到最高点N的过程中所受合外力的冲量;(3)碰撞过程中系统的机械能损失。
例3:如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端与质量为m2的档板相连,弹簧处于原长时,B恰好位于滑道的末端O点。A与B碰撞时间极短,碰撞后结合在一起共同压缩弹簧。已知在OM段A、B与水平面间的动摩擦因数为μ,其余各处的摩擦不计,重力加速度为g,求:(1)物块A在档板B碰撞瞬间的速度v的大小;
(2)弹簧最大压缩时为d时的弹性势能EP(设弹簧处于原长时弹性势能为零)。
练
3、如图所示,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平面上的O点,此时弹簧处于原长.另一质量与B相同的滑块A从P点以初速度v0向B滑行,经过时间t时,与B相碰,碰撞时间极短,碰后A、B粘在一起运动.滑块均可视为质点,与平面间的动摩擦因数均为μ,重力加速度为g.求:
(1)碰后瞬间,A、B共同的速度大小;
(2)若A、B压缩弹簧后恰能返回到O点并停止,求弹簧的最大压缩量;(3)整个过程中滑块B对滑块A做的功.
例
4、质量为M=6kg的木板B静止于光滑水平面上,物块A质量为m=3kg,停在B的左端.质量为m0=1kg的小球用长为R=0.8m的轻绳悬挂在固定点O上,将轻绳拉着至水平位置后,由静止释放小球,小球在最低点与A发生碰撞,碰撞时间极短且无机械能损失,物块与小球可视为质点,不计空气阻力.已知A、B间的动摩擦因数μ=0.1,重力加速度g=10m/s2.求:(1)小球与A碰撞前的瞬间,绳子对小球的拉力F的大小;
(2)为使A、B达到共同速度前A不滑离木板,木板长L至少多长.
练
4、如图所示,长R=0.6m的不可伸长的细绳一端固定在O点,另一端系着质量m2=0.1kg的小球B,小球B刚好与水平面相接触。现使质量m1=0.3kg的物块A以vo=4m/s的速度向B运动,1A与水平面间的接触面光滑。A、B碰撞后,物块A的速度变为碰前瞬间速度的,小球B能
22在竖直平面内做圆周运动。已知重力加速度g=l0m/s,A、B均可视为质点。求:
①在A与B碰撞后瞬间,小球B的速度v2的大小;
②小球B运动到圆周最高点时受到细绳的拉力大小。
1、如图所示,足够长的水平粗糙轨道与固定在水平面上的光滑弧形轨道在P点相切,质量为m的滑块B静止于P点;质量为2m的滑块A由静止开始沿着光滑弧形轨道下滑,下滑的起始位置距水平轨道的高度为h,滑块A在P点与静止的滑块B碰撞后,两滑块粘合在一起共同向左运动.两滑块均可视为质点,且与水平轨道的动摩擦因素均为P点切线水平.求:(1)滑块A到达P点与B碰前瞬间的速度大小;(2)两滑块最终停止时距P点的距离.2、如图所示,水平桌面距地面高h=0.80 m,桌面上放置两个小物块A、B,物块B置于桌面右边缘,物块A与物块B相距s=2.0 m,两物块质量mA、mB均为0.10 kg.现使物块A以速度v0=5.0 m/s向物块B运动,并与物块B发生正碰,碰撞时间极短,碰后物块B水平飞出,落到水平地面的位置与桌面右边缘的水平距离x=0.80 m.已知物块A与桌面间的动摩擦因数μ=0.40,重力加速度g取10 m/s2,物块A和B均可视为质点,不计空气阻力.求:(1)两物块碰撞前瞬间物块A速度的大小;(2)两物块碰撞后物块B水平飞出的速度大小;(3)两物块碰撞过程中系统损失的机械能.
3、如图所示,质量为M=2kg的足够长的小平板车静止在光滑水平面上,车的一端静止着质量为MA=2kg的物体A(可视为质点)。一个质量为m=20g的子弹以500m/s的水平速度射穿A后,速度变为100m/s(子弹不会落在车上),最后物体A静止在车上。若物体A与小车间的动摩擦因数μ=0.5。则(取g=10m/s2)(1)平板车最后的速度是多大?(2)子弹射穿物体A过程中系统损失的机械能为多少?(3)A在平板车上滑行的距离为多少?
4、如图,质量为m的b球用长h的细绳悬挂于水平轨道BC的出口C处。质量也为m的小球a,从距BC高h的A处由静止释放,沿ABC光滑轨道滑下,在C处与b球正碰并与b粘在一起。已知BC轨道距地面的高度为0.5h,悬挂b球的细绳能承受的最大拉力为2.8mg。试问:
(1)a与b球碰前瞬间的速度多大?
(2)a、b两球碰后,细绳是否会断裂?若细绳断裂,小球在DE水平面上的落点距C的水平距离是多少?若细绳不断裂,小球最高将摆多高?
5、如图所示,长为L的不可伸长的绳子一端固定在O点,另一端系质量为m的小球,小球静止在光滑水平面上.现用大小为F水平恒力作用在另一质量为2m的物块上,使其从静止开始向右运动,一段时间后撤去该力,物块与小球发生正碰后速度变为原来的一半,小球恰好能在竖直平面内做圆周运动.已知重力加速度为g,小球和物体均可视为质点,试求:(1)小物块碰撞前速度V0的大小;(2)碰撞过程中系统损失的机械能;(3)恒力F作用时间.6、如图所示,内壁粗糙、半径R=0.4 m的四分之一圆弧轨道AB在最低点B与光滑水平轨道BC相切.质量m=0.2 kg的小球b左端连接一轻质弹簧,静止在光滑水平轨道上,另一质量m1=0.2 kg的小球a自圆弧轨道顶端由静止释放,运动到圆弧轨道最低点B时对轨道的压力为小球a重力的2倍,忽略空气阻力,重力加速度g=10 m/s2求:(1)小球a由A点运动到B点的过程中,摩擦力做功Wf;
(2)小球a通过弹簧与小球b相互作用的过程中,弹簧的最大弹性势能Ep;
1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体;
2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;
3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;
4、电荷的基本性质:能吸引轻小物体;
二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。
三、元电荷:一个电子所带的电荷叫元电荷,用e表示。
1、e=1.6×10-19c;
2、一个质子所带电荷亦等于元电荷;
3、任何带电物体所带电荷都是元电荷的整数倍;
四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,1、计算公式:F=kQ1Q2/r2(k=9.0×109N.m2/kg2)
2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)
3、库仑力不是万有引力;
五、电场:电场是使点电荷之间产生静电力的一种物质。
1、只要有电荷存在,在电荷周围就一定存在电场;
2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;
3、电场、磁场、重力场都是一种物质
六、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度;
1、定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷;
2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)
3、该公式适用于一切电场;
4、点电荷的电场强度公式:E=kQ/r2
七、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和;解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强;
八、电场线:电场线是人们为了形象的描述电场特性而人为假设的线。
1、电场线不是客观存在的线;
2、电场线的形状:电场线起于正电荷终于负电荷;G:用锯木屑观测电场线.DAT(1)只有一个正电荷:电场线起于正电荷终于无穷远;(2)只有一个负电荷:起于无穷远,终于负电荷;(3)既有正电荷又有负电荷:起于正电荷终于负电荷;
3、电场线的作用:
1、表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱电场强度小);
2、表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向;
4、电场线的特点:
1、电场线不是封闭曲线;
2、同一电场中的电场线不向交;
九、匀强电场:电场强度的大小、方向处处相同的电场;匀强电场的电场线平行、且分布均匀;
1、匀强电场的电场线是一簇等间距的平行线;
2、平行板电容器间的电是匀强电场;场
十、电势差:电荷在电场中由一点移到另一点时,电场力所作的功WAB与电荷量q的比值叫电势差,又名电压。
1、定义式:UAB=WAB/q;
2、电场力作的功与路径无关;
3、电势差又命电压,国际单位是伏特;
十一、电场中某点的电势,等于单位正电荷由该点移到参考点(零势点)时电场力作的功;
1、电势具有相对性,和零势面的选择有关;
2、电势是标量,单位是伏特V;
3、电势差和电势间的关系:UAB= φA-φB;
4、电势沿电场线的方向降低; 时,电场力要作功,则两点电势差不为零,就不是等势面;
4、相同电荷在同一等势面的任意位置,电势能相同;原因:电荷从一点移到另一点时,电场力不作功,所以电势能不变;
5、电场线总是由电势高的地方指向电势低的地方;
6、等势面的画法:相临等势面间的距离相等;
十二、电场强度和电势差间的关系:在匀强电场中,沿场强方向的两点间的电势差等于场强与这两点的距离的乘积。
1、数学表达式:U=Ed;
2、该公式的使适用条件是,仅仅适用于匀强电场;
3、d是两等势面间的垂直距离;
十三、电容器:储存电荷(电场能)的装置。
1、结构:由两个彼此绝缘的金属导体组成;
2、最常见的电容器:平行板电容器;
十四、电容:电容器所带电荷量Q与两电容器量极板间电势差U的比值;用“C”来表示。
1、定义式:C=Q/U;
2、电容是表示电容器储存电荷本领强弱的物理量;
3、国际单位:法拉 简称:法,用F表示
4、电容器的电容是电容器的属性,与Q、U无关;
十五、平行板电容器的决定式:C=εs/4πkd;(其中d为两极板间的垂直距离,又称板间距;k是静电力常数,k=9.0×10 9N.m2/c2;ε是电介质的介电常数,空气的介电常数最小;s表示两极板间的正对面积;)
1、电容器的两极板与电源相连时,两板间的电势差不变,等于电源的电压;
2、当电容器未与电路相连通时电容器两板所带电荷量不变;
十六、带电粒子的加速:
1、条件:带电粒子运动方向和场强方向垂直,忽略重力;
2、原理:动能定理:电场力做的功等于动能的变化:W=Uq=1/2mvt2-1/2mv02;
3、推论:当初速度为零时,Uq=1/2mvt2;
4、使带电粒子速度变大的电场又名加速电场;
九章 恒定电流
一、电流:电荷的定向移动行成电流。
1、产生电流的条件:(1)自由电荷;(2)电场;
2、电流是标量,但有方向:我们规定:正电荷定向移动的方向是电流的方向;
注:在电源外部,电流从电源的正极流向负极;在电源的内部,电流从负极流向正极;
3、电流的大小:通过导体横截面的电荷量Q跟通过这些电量所用时间t的比值叫电流I表示;(1)数学表达式:I=Q/t;(2)电流的国际单位:安培A(3)常用单位:毫安mA、微安uA;(4)1A=103mA=106uA
二、欧姆定律:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比;
1、定义式:I=U/R;
2、推论:R=U/I;
3、电阻的国际单位时欧姆,用Ω表示;
1kΩ=103Ω,1MΩ=106Ω;
4、伏安特性曲线:
三、闭合电路:由电源、导线、用电器、电键组成;
1、电动势:电源的电动势等于电源没接入电路时两极间的电压;用E表示;
2、外电路:电源外部的电路叫外电路;外电路的电阻叫外电阻;用R表示;其两端电压叫外电压;
3、内电路:电源内部的电路叫内电阻,内点路的电阻叫内电阻;用r表示;其两端电压叫内电压;如:发电机的线圈、干电池内的溶液是内电路,其电阻是内电阻;
4、电源的电动势等于内、外电压之和; E=U内+U外;U外=RI;E=(R+r)I
四、闭合电路的欧姆定律:闭合电路里的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比;
1、数学表达式:I=E/(R+r)
2、当外电路断开时,外电阻无穷大,电源电动势等于路端电压;就是电源电动势的定义;
3、当外电阻为零(短路)时,因内阻很小,电流很大,会烧坏电路;
五、半导体:导电能力在导体和绝缘体之间;半导体的电阻随温升越高而减小;
六:导体的电阻随温度的升高而升高,当温度降低到某一值时电阻消失,成为超导; 第十章 磁场
一、磁场:
1、磁场的基本性质:磁场对放入其中的磁极、电流有磁场力的作用;
2、磁铁、电流都能能产生磁场;
3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用;
4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向;
二、磁感线:在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是该点的磁场方向;
1、磁感线是人们为了描述磁场而人为假设的线;
2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极;
3、磁感线是封闭曲线;
三、安培定则:
1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;
2、环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向;
3、通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向;
四、地磁场:地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极);
五、磁感应强度:磁感应强度是描述磁场强弱的物理量。
1、磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。B=F/IL
2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向)
3、磁感应强度的国际单位:特斯拉 T,1T=1N/A。m
六、安培力:磁场对电流的作用力;
1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I和导线长度L三者的乘积。
2、定义式F=BIL(适用于匀强电场、导线很短时)
3、安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。
七、磁铁和电流都可产生磁场;
八、磁场对电流有力的作用;
九、电流和电流之间亦有力的作用;(1)同向电流产生引力;(2)异向电流产生斥力;
十、分子电流假说:所有磁场都是由电流产生的;
十一、磁性材料:能够被强烈磁化的物质叫磁性材料:(1)软磁材料:磁化后容易去磁的材料;例:软铁;硅钢;应用:制造电磁铁、变压器、(2)硬磁材料:磁化后不容易去磁的材料;例:碳钢、钨钢、制造:永久磁铁;
十二、磁场对运动电荷的作用力,叫做洛伦兹力
1、洛仑兹力的方向由左手定则判断:伸开左手让大拇指和其余四指共面且垂直,把左手放入磁场中,让磁感线垂直穿过手心,四指为正电荷运动方向(与负电荷运动方向相反)大拇指所指方向就是洛仑兹力的方向;
(1)洛仑兹力F一定和B、V决定的平面垂直。(2)洛仑兹力只改变速度的方向而不改变其大小(3)洛伦兹力永远不做功。
2、洛伦兹力的大小(1)当v平行于B时:F=0(2)当v垂直于B时:F=qvB、电阻定律:导体两端电阻与导体长度、横截面积及材料性质有关。R=pl/S(电阻的决定式)P只与导体材料性质有关。R与温度有关。
2、伏安特性曲线:描述电压与电流之间的函数关系的图象。
3、二极管:单向导电性;正极与电源正极相连。
4、串联特点:①总电压等于各部分电压之和。
②电流处处相等
③总电阻等于各部分电阻和
④总功率等于各部分功率和
5、并联特点:①总电压等于各支路电压 ②总电流等于各支路电流和
③总电阻的倒数等于各支路电阻倒数之和
④总功率等于各支路功率和
6、伏安法:(1)限流式;(2)分压式。
7、等效图的接法:(1)节点搭桥法;(2)等电势法(拉扯法)。
8、电动势:(1)定义:非静电力对电荷所做的功与被移送的电荷量之比。
(2)物理意义:反映电源提供电能的本领。
(3)公式:E电动势=W其/q(4)电动势只与电源性质有关
(5)电动势、内阻是电源性质的衡量指标。电动势以大为好,内阻以小为好。
9、闭合电路欧姆定律:E=U外+U内
10、外阻与路端电压成正比。
11、测量电源电动势与内阻的方法:伏安法、伏箱法、安箱法。
12、外接、内接的原则:观察分压、分流效果哪个明显。外接、内接的口诀:小外偏小、大内偏大。
13、表头改装电压表须串联大电阻 表头改装电流表须并联小电阻
14、多用电表→闭合电路欧姆定律→标欧姆表的刻度
15、功率
16、纯电阻电路:电能全部转化为热能的电路。
17、电源总功率:EI=IU外+IU内
18、与门电路、或门电路、非门电路(我只了解了解)
19、电学黑箱问题(我也了解一下)
20、I=Q/t=nqvS„„„„„„„„„S指电荷通过的截面;V指电荷定向移动的速度
【物理动量知识点总结】推荐阅读:
物理动量守恒教案06-18
高考物理汇编动量11-22
高中物理动量守恒定律10-03
高二物理动量守恒定律教案12-19
高二物理动量守恒定律说课稿04-16
动量冲量教案03-23
工程力学动量定理10-09
动量典型例题分析01-02
动量词语解释及造句06-16
动量守恒练习题09-08