四边形证明解答题

2025-02-04 版权声明 我要投稿

四边形证明解答题(共11篇)

四边形证明解答题 篇1

1四边形解答证明题

1、已知:如图,E、F是平行四边形ABCD•的对角线AC•上的两点,AE=CF.

求证:四边形DEBF是平行四边形

2、如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.观察猜想BE与DG之间的大小关系,并证明你的结论;

3、菱形周长是24㎝,其中一个内角60°,求菱形对角线的长和面积

4.已知:如图Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CEDF是正方形.5.已知,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于

点F.求证:四边形AEDF是菱形.CB

C7、如图,点E、F分别是正方形ABCD的边CD和AD的中点,BE和CF交于点P.求证:AP=AB.8、如图,已知点F是正方形ABCD的边BC的中点,CG平分∠DCE,GF⊥AF.求证:AF=FG.9.菱形周长为40cm,它的一条对角线长10cm.⑴求菱形的每一个内角的度数.⑵求菱形另一条对角线的长.⑶求菱形的面积.10、已知:如图,⊿ABC中,∠BAC=90°,AD是高,BE平分 ∠ABC交AD于M,AN平分∠DAC,求证:平行四边形AMNE是菱形。

11.已知:平行四边形ABCD是,E,F分别是AB,CD的中点,AF,DE交于G,BF,CE交于点H,求证:平行四边形EHFG是平形四边形。

E

D

E

12.已知:⊿ABC中,∠ACB=90°,∠CBA=30°,⊿ABD,⊿BCE均是在⊿ABC外的等边三角形,DE交AB于点F,求证:DF=EF。

13.已知:⊿ABC中,AB=BC,∠ABC=90°,D是AC上一点,DE⊥AB于E,DF⊥BC于G,P是AC的中点,求证:PE=PF。

A

DN

14.已知:如图,在正方形ABCD中,M,N分别是BC,CD上的点。(1)若∠MAN=45°,求证:MB+ND=MN。(2)若MB+ND=MN,求证:∠MAN=45°。

15、在16、如图所示,四边形ABCD是平行四边形,且∠EAD=∠BAF。① 求证:ΔCEF是等腰三角形; ② 察图形,ΔCEF的哪两边之和恰好等于

ABCD的周长?并说明理由。

ABCD中,E、F分别在DC、AB上,且DE=BF。

求证:四边形AFCE是平行四边形。

B

M

C

A

E

C

B

AF

B

DC17、如图所示,18、如图所示,在ΔABC中,AE平分∠BAC交BC于E,DE∥AC交AB于D,过D作DF∥BC交AC于F。求证: AD=FC

19..如图,20、如图所示,在21、如图所示,GH互相平分。

ABCD中,P是AC上任意一点,求证:SAPD=SABP

A

F

B

D

G

C

ABCD中的对角线AC、BD相交于O,EF经过点O与AD延长线交于E,与CB延长线交于F。求证:OE=OF

ED

A

BA

ABCD 中,G是CD上一点,BG交AD延长线于E,AF=CG,DGE100.E

CB

EF

C

(1)求证:DF=BG;(2)求AFD的度数.A

C

D

ABCD中,E、F分别为AD、BC的中点,AF与BE相交于G,DF与CE相交于H,连结EF、GH。求证:EF、AF

ED22、如图,在□ABCD中,E、F、G、H分别是四条边上的点,且满足BE=DF,CG=AH,连接EF、GH。求证:EF与GH互相平分。

AB

F

四边形证明解答题 篇2

例1 (2015·盐城) 如图1, 在△ABC中, ∠CAB=90°, ∠CBA=50°, 以AB为直径作⊙O交BC于点D, 点E在边AC上, 且满足ED=EA.

(1) 求∠DOA的度数;

(2) 求证:直线ED与⊙O相切.

【思路讲解】 (1) ∠DOA=100°.

(2) 连接OE, 如图2,

∴直线ED与⊙O相切.

【反思回顾】切线的判定与性质是必考知识点, 就证明来看, 通常都是简单的送分题, 这时注意规范证明步骤和几何语句的表达是很关键的, 不能随意跳过程.

例2 (2015·南京) 如图3, 四边形ABCD是⊙O的内接四边形, BC的延长线与AD的延长线交于点E, 且DC=DE.

(1) 求证:∠A=∠AEB;

(2) 连接OE, 交CD于点F, OE⊥CD, 求证:△ABE是等边三角形.

【思路讲解】 (1) 根据圆内接四边形的性质可得∠A+∠BCD=180°, 根据邻补角定义可得∠DCE+∠BCD=180°, 进而得到∠A=∠DCE, 然后利用等边对等角可得∠DCE=∠AEB, 进而可得∠A=∠AEB.

(2) 首先证明△DCE是等边三角形, 进而可得∠AEB=60°, 再根据∠A=∠AEB, 可得△ABE是等腰三角形, 进而可得△ABE是等边三角形.

【规范解答】

证明: (1) ∵四边形ABCD是⊙O的内接四边形,

(2) ∵OE过圆心, EO⊥CD,

∴CF=DF,

∴EO是CD的垂直平分线,

∴△DCE是等边三角形,

∴∠AEB=60°, 由 (1) ∠A=∠AEB,

∴△ABE是等边三角形.

特殊四边形证明题(正方形) 篇3

1.如图,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.求证:DE-BF = EF.

2.如图,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG于 F. A D

(1)求证:△ABF≌△DAE;(2)求证:DEEFFB.

3.如图,在正方形ABCD中,CEDF.若CE10cm,求DF的长.

4.正方形ABCD中,MNGH,求证:MN=HG。

5.在正方形ABCD的边CD上任取一点E,延长BC到F,使CF=CE,求证:BEDF

6.在正方形ABCD的CD边上取一点G,在CG上向原正方形外作正方形GCEF,求证:DEBG,DE=BG。

F B C

A

E B

F

C

_B _C_E

7.已知如图,四边形ABCD是正方形,F、E分别为BC、CD上的点,且EF=BF+DE,AM⊥EF,垂足为M,求证:(1)AM=AB;(2)连AF,连AE,求∠FAE.

D

E

8.正方形ABCD中,∠EAF=45.求证:BE+DF=EF。

9.若分别以三角形ABC的边AB、AC

为边,在三角形外作正方形ABDE、ACFG,求证:BG=EC,BGEC。

10.若以三角形ABC的边AB、AC为边 向三角形外作正方形ABDE、ACFG,求证:SAEG

=SABC。

C

_ F

B_

_ E

_ B

_C

11.若以三角形ABC的边AB、BC为边向 三角形外作正方形ABDE、BCFG,N为AC 中点,求证:DG=2BN,BMDG。

12.正方形ABCD的边AD上有一点E,满足BE=ED+DC,如果M是AD的中点,求证:∠EBC=2∠ABM,_B_

C

_A_

N_C

_B

_C

13.正方形ABCD中,E是边CD的中点,F是线段CE的中点

求证:∠DAE=∠BAF。

_ E _ B

_C

14.已知,如图,正方形ABCD中,AC、BD交于O点,EA平分∠BAC交BD于F点.求证:FO=

D

C

EC.

215.如图,正方形ABCD对角线BD、AC交于O,E是OC上一点,AG⊥DE交BD于F,B求证:EF∥DC。A

C DG

16.如图,正方形ABCD中对角线AC、BD相交于O,E为AC上一点,AG⊥EB交EB于G,AG交BD于F。(1)说明OE=OF的道理;

(2)在(1)中,若E为AC延长线上,AG⊥EB交EB的延长线于G,AG、BD的延长线交于F,其他条件不变,如图2,则结论:“OE=OF”还成立吗?请说明理由。

AD

D

B

C

F

G

E

17.在正方形ABCD中,直线EF平行于对角线AC,与边AB、BC的交点 为E、F,在DA的延长线上取一点G,使AG=AD,若EG与DF的交点为H,求证:AH与正方形的边长相等。

_B

_ F

_

C

18.若以直角三角形ABC的边AB为边,在三角形ABC的外部作正方形ABDE,AF是BC边的高,延长FA使AG=BC,求证:BG=CD。

19.正方形ABCD,E、F分别是AB、AD延长线上的一点,且AE=AF=AC,EF交BC于G,交AC 于K,交CD于H,求证:EG=GC=CH=HF。

20.在正方形ABCD的对角线BD上,取BE=AB,若过E作BD的垂线EF交CD于F,求证:CF=ED。

21.在正方形ABCD中,P是BD上一点,过P引PEBC交BC于E,过P 引PFCD于F,求证:APEF。

22.过正方形ABCD的顶点B引对角线AC的平行线BE,在BE上取一点F,使AF=AC,若作菱形CAFÉ,求证:AE及AF三等分∠BAC。

_ B_ F_C

_A

_ B_ E

_D

_ F

_ B

_C

_D

_F

_C

_ E

23.正方形ABCD中,M为AB的任意点,MNDM,BN平分∠CBF,求证:MD=NM

24.从正方形ABCD的一个顶点C作CE平行 于BD,使BE=BD,若BE、CD的交点为F,求证:DE=DF。

_

_ B

C_

25.如图,M、N分别是正方形ABCD两边AD、DC的中点,CM与BM交于点P.求证:PA=AB.

26.如图,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P。(1)若AG=AE,证明:AP=AH;

(2)若∠FAH=45°,证明:AG+AE=FH;

(3)若Rt△GBH的周长为1,求矩形EPHD的面积;

(4)若矩形AEGP的面积为矩形PFCH面积的一半,求∠FAH的度数。

27.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;

(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)

第24题图①

第24题图②

第24题图③

D

D

28.如同,在正方形ABCD中,对角线AC与BD

相交于点E,AF平分∠BAC,交BD于点F。(1)EF+0.5AC =AB;

(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与点A1运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动。如图,AF1平分∠B A1 C1,交BD于F1,过F1作F1E1⊥A1 C1,垂足为E1,试猜想F1E1,0.5 A1 C1与AB之间的数量关系,并证明你的猜想。

特殊平行四边形:证明题 篇4

1、如图8,在ABCD中,E,F分别为边AB,CD的中点,连接DE,BF,BD. 

(1)求证:△ADE≌△CBF.

(2)若ADBD,则四边形BFDE是什么特殊四边形?请证明你的结论.

F C

A E B2、如图,四边形ABCD中,AB∥CD,AC平分BAD,CE∥AD交AB于E.

(1)求证:四边形AECD是菱形;

(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.

3.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.

(1)求证:AD=CE;

(2)填空:四边形ADCE的形状是.

A

DMN

B

4.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.

(1)求证:△ABE≌△ACE

(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.

5.如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.

(1)求证:△ABC≌△DCB ;

(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.

6、如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB,CD的延长线分别交于E,F.

(1)求证:△BOE≌△DOF;

(2)当EF与AC满足什么关系时,以A,E,C,F为顶点的四边形是菱形?证明你的结论.

F

A

B

E

D B N

7.600,它的两底分别是16cm、30cm。求它的腰长。

(两种添线方法)

C

8.如图

(七),在梯形ABCD中,AD∥BC,ABADDC,ACAB,将CB延长至点F,使BFCD.

(1)求ABC的度数;

(2)求证:△CAF为等腰三角形.

C

四边形证明解答题 篇5

(2)四边形ABCD是平行四边形.

2、如图,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.

求证:AE=CF.

4、如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于

点F.试证明四边形DFBE为平行四边形.5、如图,在□ABCD中,点E、F是对角线AC上两点,且AE=CF.

求证:∠EBF=∠FD

(对角线互相平分的四边形为平行四边形)

6,如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.

求证:四边形AECF是平行四边形.

7,如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.

8,如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.

(1)求证:△ABE≌△CDF;

四边形证明解答题 篇6

2011乌鲁木齐

20如图,在ABCD中,∠DAB=60°,AB=2AD,点E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G。

(1)求证:四边形DEBF是菱形;

(2)请判断四边形AGBD是什么特殊四边形?并加以证明。

C

2012南京中考(8分)如图,梯形ABCD中,AD//BC,AB=CD,对角线AC、BD交于点O,ACBD,E、F、G、H分别为AB、BC、CD、DA的中点

(1)求证:四边形EFGH为正方形;(2)若AD=2,BC=4,求四边形EFGH的面积。

(2011甘肃兰州,27,12分)已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折

叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE.

(1)求证:四边形AFCE是菱形;

(2)若AE=10cm,△ABF的面积为24cm,求△ABF的周长;

(3)在线段AC上是否存在一点P,使得2AE=AC·AP若存在,请说明点P的位置,并予以证明;若不存在,请说明理由. 2

2A E D

B

特殊的平行四边形

2010河南中考

(9分)如图,在梯形ABCD中,AD//BC,E是BC的中点,AD=5,BC=12,CD=42,∠C=45°,点P是BC边上一动点,设PB的长为x.

(1)当x的值为____________时,以点P、A、D、E为顶点的四边形为直角梯形;

(2)当x的值为____________时,以点P、A、D、E为顶点的四边形为平行四边形;;

(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.

AD

怎么证明四边形是菱形 篇7

1、在同一平面内,一组邻边相等的平行四边形是菱形。

2、在同一平面内,对角线互相垂直的平行四边形是菱形。

3、在同一平面内,四条边均相等的四边形是菱形。

4、在同一平面内,对角线互相垂直平分的四边形是菱形。

5、在同一平面内,两条对角线分别平分每组对角的四边形是菱形。

6、在同一平面内,有一对角线平分一个内角的平行四边形是菱形。

菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。

菱形的一条对角线必须与x轴平行,另一条对角线与y轴平行。不满足此条件的几何学菱形在计算机图形学上被视作一般四边形。

菱形的性质与判定是什么

菱形具有平行四边形的一切性质:菱形的四条边都相等、菱形的对角线互相垂直平分且平分每一组对角、菱形是轴对称图形、菱形是中心对称图形。菱形的判定:同一平面内一组邻边相等的平行四边形是菱形、对角线互相垂直的平行四边形是菱形、四条边均相等的四边形是菱形、对角线互相垂直平分的四边形、两条对角线分别平分每组对角的四边形、有一对角线平分一个内角的平行四边形。

菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。计算机图形学约束中,菱形的一条对角线必须与x轴平行,另一条对角线与y轴平行。不满足此条件的几何学菱形在计算机图形学上被视作一般四边形。

性质:

1、菱形具有平行四边形的一切性质;

2、菱形的四条边都相等;

3、菱形的对角线互相垂直平分且平分每一组对角;

4、菱形是轴对称图形,对称轴有2条,即两条对角线所在直线;

5、菱形是中心对称图形;

判定:

前提条件:在同一平面内

1、一组邻边相等的平行四边形是菱形;

2、对角线互相垂直的平行四边形是菱形;

3、四条边均相等的四边形是菱形;

4、对角线互相垂直平分的四边形;

5、两条对角线分别平分每组对角的四边形;

6、有一对角线平分一个内角的平行四边形;

菱形与平行四边形区别

1、平行四边形:两组对边分别平行的四边形叫做平行四边形。

2、菱形:一组邻边相等的平行四边形是菱形;四边都相等的四边形是菱形。

根据菱形和平行四边形的定义和性质,两者的区别有以下几点:

1、菱形邻边相等,平行四边形邻边不一定相等。

2、菱形对角线平分一组对角,平行四边形的对角线不一定平分对角。

3、菱形的两条对角线互相垂直平分,平行四边形对角线不一定互相垂直平分。

4、菱形的四条边相等,平行四边形的四条边不一定相等。

5、菱形是轴对称图形、中心对称图形,平行四边形不是。

直线型(四边形)证明专题训练 篇8

F,当∠BED=120°时,求∠EFD的度数.

A

2B

E

F

D

C

图6

2平行四边形ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.如图,已知:ABCD中,BCD的平分线CE交边AD于

E,ABC的平分线BG

交CE于F,交AD于G.求证:AEDG.

E G

图7

B C 3如图,已知平行四边形ABCD,DE是ADC的角平分线,交BC于点E.(1)求证:CDCE;

(2)若BECE,B80,求DAE的度数.

4.如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形.求证:四边形ADCE是矩形.A

D

B

C

5.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE。已知∠BAC=30º,EF⊥AB,垂足为F,连结DF。(1)试说明AC=EF;

(2)求证:四边形ADFE是平行四边形。

6.如图,在□ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E.F.已知BE=BP.求证:(1)∠E=∠F(2)□ABCD是菱形.

AE

6,AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且AE=AF.求证:△ACE≌△ACF.

47已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;

(2)当BE⊥AD于E时,试证明:BE=AE+CD.

8如图已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长 .

9如图,在□ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作AGDB交CB的延长

线于点G. A

(1)求证:DE∥BF;

D(2)若∠G=90,求证四边形DEBF是菱形.

10如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,B 交BC于点F.

⑴求证:△ABF≌△ECF ⑵若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.

11如图,E、F分别是矩形ABCD的对角线AC和BD上的点,且AE=DF。求证:BE=CF

12.如图,矩形ABCD的对角线相交于点

O,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;

(2)若∠ACB=30,菱形OCED的面积为83,求AC的长.

A

D

E

13.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.⑴说明四边形ACEF是平行四边形;

⑵当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.

第25题图

14.如图,P是矩形ABCD下方一点,将△

PCD绕P点顺时针旋转60°后恰好D点与A点重合,得到△PEA,连接EB,问△ABE是什么特殊三角形?请说明理由.15.如图,在梯形ABCD中,DC‖AB,AD=BC, BD平分ABC,A60.

过点D作DEAB,过点C作CFBD,垂足分别为E、F,连接EF,求证

:△DEF为等边三角形.16.如图,四边形ABCD是等腰梯形,AD∥BC,点E,F在BC上,且BE=CF,连接DE,AF.求证:DE=AF.AD

B

E

F

C

17.如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD =2,BD⊥CD .过点C作CE⊥AB于E,交对

角线BD于F.点G为BC中点,连结EG、AF.(1)求EG的长;

(2)求证:CF =AB +AF.

18.如图,在等腰△ABC中,点

D、E分别是两腰AC、BC上的点,连接AE、BD相交于点O,∠1=∠2.

(1)求证:OD=OE;(2)求证:四边形ABED是等腰梯形;(3)若AB=3DE, △DCE的面积为

2, 求四边形ABED的面积.

题图

24.如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.⑴ 求证:AD=AE;

⑵ 若AD

证明平行四边形 篇9

(三)平行四边形导纲

一、引入:

平行四边形的定义:

A

平行四边形定义的应用:B⑴∵AB∥CD,AD∥BC

∴四边形ABCD是⑵∵四边形ABCD是平行四边形 ∴

二、自主探究:

证明:平行四边形的对边相等,对角相等。已知: □ABCD(如图)

求证:AB=CD,BC=DA;∠B=∠D,∠BAD=∠DCB 证明:∵四边形ABCD是平行四边形

D

AB

D

三、性质应用:.在□ABCD中,已知∠A =32。,求其余三个角的度数 解:∵四边形ABCD是平行四边形∴

D

2.已知在□ ABCD中AB=6cm,BC=4cm,求□ ABCD 的周长。解:∵四边形ABCD是平行四边形∴

3.连结AC,已知□ABCD的周长等于20 cm,AC=7 cm,求△ABC的周长。

C

B

A

四、小组合作探究:

证明:平行四边形的对角线互相平分

五.总结性质:

A D

D

B

C

六、巩固练习:

1.已知O是□ ABCD的对角线交点,AC=10cm,BD=18cm,AD=•12cm,则△BOC•的周长是_______

2.如图所示,平行四边形ABCD的对角线相交于O点,且AB≠BC,过O点作OE⊥AC,交BC于E,如果△ABE的周长为b,则平行四边形ABCD的周长是()。

A.b B.1.5bC.2bD.3b

AD

BEC

七、学以致用:

证明:夹在两条平行线间的平行线段相等。

八、巩固练习:

1、已知:如图平行四边形ABCD,E,F是直线BD上的两点,且∠E= ∠F。求证:AE=CFC2、已知:如图,□ABCD的对角线AC,BD相交于点O,过点O的直线与AD,BC分别相交

于点E,F.D 求证:OE=OF.B

F

九、自我检测:

1.在□ABCD中,∠A= 50 ,则∠°

2.如果□ABCD中,∠A+∠C=240°,则∠°

3.如果□ABCD的周长为28cm,且AB:BC=2∶5,那么,cm,cm,.

3、已知:如图,AC,BD是□ABCD的两条对角线,且AE⊥BD,CF⊥BD,垂足分别为E,F,求证:AE=CF.B

十、能力提高:

4、已知:在□ABCD中,点E,F在对角线AC上,且AF=CE.D

线段BE与DF之间有什么关系?请证明你的结论.A

平行四边形的证明 篇10

(一).检查作业

(二).平行四边形

①定义

②性质

③判定定理

二,教学内容

1、课本给的判定定理之外的证明方法:(证明方法详情PPT)

一组对边平行一组对角相等的四边形是平行四边形

两组对角分别相等的四边形是平行四边形

两组邻角互补的四边形是平行四边形

2、中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。中位线:中点与中点的连线;

中 线:顶点与对边中点的连线.

例1(教材P98例4)如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且DE=1BC.

2方法1:如图(1),延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=11DF,所以DE∥BC且DE=BC. 22

(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同)

方法2:如图(2),定义:连接三角形两边中点的线段叫做三角形的中位线.

【思考】:

(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?

(2)三角形的中位线与第三边有怎样的关系

三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.

〖拓展〗利用这一定理,你能证明出在三角形三边中位线中分割出来的四个小三角形全等吗?

例2 已知:如图(1),在四边形ABCD中,E、F、G、H

分别是 AB、BC、CD、DA的中点.

求证:四边形EFGH是平行四边形.

证明:连结AC(图(2)),△DAG中,∵AH=HD,CG=GD,1AC(三角形中位线性质).

21同理EF∥AC,EF=AC. 2∴HG∥AC,HG=

∴HG∥EF,且HG=EF.

∴四边形EFGH是平行四边形.

此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.

3、平行线间的距离处处相等。(相关证明PPT)

三,教学练习

1.A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC=AD;④BC∥AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有()

A.3种B.4种C.5种D.6种

2.在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下六个说法中,正确的说法有()

(1)如果再加上条件“AD∥BC”,那么四边形ABCD一定是平行四边形;

(2)如果再加上条件“AB=CD”,那么四边形ABCD一定是平行四边形;

(3)如果再加上条件“∠DAB=∠DCB”那么四边形ABCD一定是平行四边形;

(4)如果再加上“BC=AD”,那么四边形ABCD一定是平行四边形;

(5)如果再加上条件“AO=CO”,那么四边形ABCD一定是平行四边形;

(6)如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.A.3个B.4个C.5个D.6个

图1图

23.如图1,AB∥CD∥EF,BC∥AD,AC为∠BAD的平分线,图中与∠AOE相等(不含∠AOE)的角有()

A.2个B.3个C.4个D.5个

4.□ABCD中,对角线AC、BD相交于点O,E、F分别是OB、OD的中点,四边形AECF是

_______.5.如图,A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20 m,那么A、B两点的距离是m,理由是.

6.如图,D、E是△ABC的边AB和AC中点,延长DE到F,使EF=DE,连结CF.四边形BCFD是平行四边形吗?为什么?

7.如图,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?

四,教学总结

1、判定方法:两组对边分别平行的四边形是平行四边形(定义)

两组对边分别相等的四边形是平行四边形

一组对边平行且相等的四边形是平行四边形

对角线互相平分的四边形是平行四边形

2、可以证明的方法:一组对边平行一组对角相等的四边形是平行四边形

两组对角分别相等的四边形是平行四边形

两组邻角互补的四边形是平行四边形

4、得出的结论:①中位线定理

②平行线间的距离处处相等,夹在两条平行线间的平行线段相等 五,布置作业

1、能够判别一个四边形是平行四边形的条件是()

A.一组对角相等

B.两条对角线互相垂直且相等

C.两组对边分别相等

D.一组对边平行

2、下列条件中不能确定四边形ABCD是平行四边形的是()

A.AB=CD,AD∥BCB.AB=CD,AB∥CD

C.AB∥CD,AD∥BCD.AB=CD,AD=BC3、如图,DE∥BC,AE=EC,延长DE到F,使EF=DE,连结AF、FC、CD,则图中四边形ADCF是______.4、在□ABCD中,点E、F在对角线AC上,其中AE=CF,求证:四边形BEDF是平行四边形

证明三:平行四边形(一、二) 篇11

(一)教师:张贤班级:九(5)、(10)

执行时间:2013年10月9日

一、温故知新

1、平行四边形的概念

2、平行四边形的性质

①边②角③对角线④对称性⑤面积

二、合作探究

1、证明:平行四边形的对边相等

已知:

求证:

证明:

2、平行四边形的对角相等

已知:

求证:

证明:

3、等腰梯形同一底上上的两底角相等

已知:

求证:

证明:

三、练一练:同一底上两个底角相等的梯形是等腰梯形

四、小结:通过这节课的学习,同学们有什么收获?

五、当堂检测

1、等腰梯形的腰与上底相等且等于下底的一半,则该梯形的腰与下底的夹角为.2、梯形ABCD中,AD∥BC,BD平分∠ABC,∠C=60°,当AB=CD=4时,梯形ABCD的周长

3.如图在中,AE平分∠BAD交DC于点E,AD=5cm,AB=8cm,求EC的长.(6分)

4.如图.在中,AD⊥DB,AC与BD相交于点O,OD=1,∠CAD=30°,求AC和DC的长.(8分)

平行四边形

(二)教师:张贤班级:九(5)、(10)

执行时间:2013年10月10日

一、温故知新:

(一)平行四边形的判别条件1、2、3、4、二、合作交流

1、证明:两组对边分别相等的四边形是平行四边形

已知:

求证:

证明:

2、证明:一组对边平行且相等的四边形是平行四边形

已知:

求证:

证明:

三、练一练

证明;对角线互相平分的四边形是平行四边形

四:课堂小结:通过这节课的学习,同学们有什么收获?

五、达标检测

1、下面给出的条件中,能判定一个四边形是平行四边形的是()

A.一组对边平行,另一组对边相等B.一组对边平行,一组对角互补

C.一组对角相等,一组邻角互补D.一组对角相等,另一组对角互补

2、在下面给出的条件中,能判定四边形ABCD是平行四边形的是()

A.AB=BC,AD=CDB.AB∥CD,AD=BC

C.AB∥CD,∠B=∠DD.∠A=∠B,∠C=∠D

3、如图,在平行四边形ABCD中,EF∥AD,MN∥AB,EF,MN相交于点P,则除平行四边形ABCD外,图中共有平行四边形()

A.4个B.6个C.8个D.10个

4、用两个全等的三角形按不同的方法拼成四边形,在这些拼出的四边形中,平行四边形最多有()A.1个B.2个C.3个D.4个

5、在下列条件中,能判定四边形ABCD为平行四边形的是()

A.AB=AD,CB=CDB.AB∥CD,AD=BC

C.AB=CD,AD=BCD.∠A=∠B,∠C=∠D

6.已知:如图在中,AC,BD交于点O,EF过点O,分别交CB,AD•的延长线于点E,F,求证:AE=CF.(10分)

6、已知:如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E,F在AC上,且AE=CF.

求证:四边形EGFH是平四边形.(10分)

上一篇:公益活动致辞范例下一篇:针对销售的运营方案