平行线的判定例题(通用7篇)
1.平行线的判定公理
(1)平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单记为:同位角相等,两直线平行. 如图,推理符号表示为:
∵∠1=∠2,∴AB∥CD
.谈重点同位角相等,两直线平行
①平行线的判定公理是证明两直线平行的原始依据;②应用时,应先确定同位角及形成同位角的是哪两条直线;③本判定方法是由两同位角相等(数量关系)来确定两条直线平行(位置关系),所以在推理过程中要先写“两角相等”,然后再写“两线平行”.
(2)平行公理的推论:
①垂直于同一条直线的两条直线平行.若a⊥b,c⊥b,则a∥c;
②平行于同一条直线的两条直线平行.若a∥b,c∥b,则a∥c.【例1】 工人师傅想知道砌好的墙壁的上下边缘AB和CD是否平行,于是找来一根笔直的木棍,如图所示将其放在墙面上,那么,他通过测量∠EGB和∠GFD的度数,就知道墙壁的上下边缘是否平行了.请问:∠EGB和∠GFD满足怎样的条件时,墙壁的上下边缘才会平行?你的依据是什么?
解析:判定两条直线是否平行,常根据两条直线被第三条直线所截而构成的角来判断.题中∠EGB和∠GFD是直线AB和直线CD(墙的上下边缘)被直线EF所截时形成的同位角,根据“同位角相等,两直线平行”,可知只有∠EGB和∠GFD相等时,墙壁的上下边缘才会平行.
答案:∠EGB和∠GFD相等时,墙壁的上下边缘才会平行.其依据是同位角相等,两
直线平行.
2.平行线的判定定理
(1)判定定理
1两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 简单记为:同旁内角互补,两直线平行.
符号表示:如下图,∵∠2+∠3=180°,∴AB∥CD
.谈重点同旁内角互补,两直线平行
①定理是根据公理推理得出的真命题,可直接应用;②应用时,找准哪两个角是同旁内
角,使哪两条直线平行.
(2)判定定理2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单记为:内错角相等,两直线平行.
符号表示:如上图,∵∠2=∠4,∴AB∥CD.【例2-1】 如图,小明利用两块相同的三角板,分别在三角板的边缘画直线AB和CD,这是根据________,两直线平行.
解析:由题图可看出,直线AB和CD被直线BC所截,此时两块相同的三角板的两个
最小角的位置关系正好是内错角,所以这是根据内错角相等,来判定两直线平行的.
答案:内错角相等
【例2-2】 如图,下列说法中,正确的是().
A.因为∠A+∠D=180°,所以AD∥BC
B.因为∠C+∠D=180°,所以AB∥CD
C.因为∠A+∠D=180°,所以AB∥CD
3.平行线的判断方法
平行线的判定方法主要有以下六种:
(1)平行线的定义(一般很少用).
(2)同位角相等,两直线平行.
(3)同旁内角互补,两直线平行.
(4)内错角相等,两直线平行.
(5)同一平面内,垂直于同一条直线的两条直线相互平行.
(6)如果两条直线都和第三条直线平行,那么这两条直线平行.
析规律如何选择判定两直线平行的方法
①在利用平行线的公理或定理判定两条直线是否平行时,要分清同位角、内错角以及同旁内角是由哪两条直线被第三条直线所截而构成的;
②证明两条直线平行,关键是看与待证结论相关的同位角或内错角是否相等,同旁内角是否互补.
【例3】 如图,直线a,b与直线c相交,形成∠1,∠2,„,∠8共八个角,请你填上你认为适当的一个条件:__________,使a∥b.解析:本题主要是考查平行线的三种判定方法.
若从“同位角相等,两直线平行”考虑,可填∠1=∠5,∠2=∠6,∠3=∠7,∠4=∠8中的任意一个条件;
若从“内错角相等,两直线平行”考虑,可填∠3=∠6,∠4=∠5中的任意一个; 若从“同旁内角互补,两直线平行”考虑,可填∠3+∠5=180°,∠4+∠6=180°中的一个条件;
从其他方面考虑,还可以填∠1=∠8,∠2=∠7,∠1+∠7=180°,∠2+∠8=180°,∠4+∠7=180°,∠3+∠8=180°,∠2+∠5=180°,∠1+∠6=180°中的任意一个条件.
答案:答案不唯一,如可填下列之一:∠1=∠5或∠4=∠5或∠3+∠5=180°„
4.平行线判定的应用
(1)平行线的生活应用
数学来源于生活,同样生活中也有大量的平行线,其判定平行的方法也常在生活中遇到.如木工师傅判定所截得的木板的对边是否平行,工人师傅判定所制造的机器零件是否符合平行的要求„„
对于生活中的平行线判断,关键是利用工具确定与平行有关的角是否相等,比较常用的是利用直角尺判断同位角是否相等,从而判定两直线是否平行.
(2)平行线在数学中的运用平行线判定方法在数学中的运用主要通过角之间的关系判定两条直线平行,进一步解决其他有关的问题.常见的条件探索题就是其应用之一.探索题是培养发散思维能力的题型,它具有开放性,所要求的答案一般不具有唯一性.解决探索性问题,不仅能提高分析问题的能力,而且能开阔视野,增加对知识的理解和掌握.
释疑点判定平行的关键 判定两直线平行,关键是确定角的位置关系及大小关系.
【例4-1】 如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?__________(填“合格”或“不合格”).
解析:要判断AB边与CD边平行,则需满足同旁内角互补的条件.∵∠ABC=120°,∠BCD=60°,∴∠ABC+∠BCD=120°+60°=180°.∴AB∥CD.∴这个零件合格.
答案:合格
【例4-2】 已知:如图在四边形ABCD中,∠A=∠D,∠B=∠C,试判断AD与BC的位置关系,并说明理由.
分析:根据四边形ABCD的内角和是360°,结合已知条件得到∠A+∠B=180°,根据同旁内角互补,两直线平行得AD∥BC.解:AD与BC的位置关系是平行.
理由:∵四边形ABCD的内角和是360°,∴∠A+∠B+∠C+∠D=360°.∵∠A=∠D,∠B=∠C,∴∠A+∠B=180°.∴AD∥BC(同旁内角互补,两直线平行).
传统课堂教学与基于电子白板的课堂教学
在传统的课堂教学中, 教师主要是通过“粉笔+黑板”或是单纯的PPT形式来进行教学, 这种课堂传授形式单一并且枯燥, 学生缺乏与教师的互动, 只是被动地接受知识, 主动性和创造性难以发挥。
基于电子白板的课堂教学利用电子白板作为构建信息化教育的基础平台, 可以应用于各个班级、开展多种类型的教学活动来提高信息技术与课程整合的效果。同时, 在软件程序的支持下, 电子白板与计算机结合可以营造一个大屏幕、交互式的教学环境。
从总体上看, 电子白板继承了传统黑板的优势, 同时整合了多媒体的优势, 在充分吸收两种教学手段精华的基础上, 拓展了教学过程中师生交互的广度和深度。
电子白板的课堂教学优势
基于电子白板的课堂具有传统课堂教学所不具备的更强的教学互动性, 教学设计的中心转移到了“以学生为中心”的核心点上, 强调学生的课堂参与, 关注学生的学习过程。因此, 教学设计的基本要素在电子白板的课堂教学中发生了相应的变化。
1.教师和学生
电子白板为师生之间搭建了一个交流、协作的互动平台和教学环境, 师生共同参与到课堂之中, 从而形成一个以教师为主导、学生为主体, 电子白板为中间媒介的学习共同体。
2.教学目标
电子白板下的课堂, 能够有力地支持三维目标的整合与实现。首先, 能够提供抽象与具体的教学内容, 使教学内容具体化, 促进学生的学习, 提高学生的认知能力, 有利于学生知识的掌握和能力的培养;其次, 电子白板使教师回归课堂, 促进了师生间的情感交流;再次, 电子白板能够促进师生、生生间的交流、协作、共享、体验等过程, 实现学生情感态度与价值观的目标。
3.教学内容和教学资源
基于电子白板的课堂教学内容与教学资源的安排与选择, 应该仅仅围绕良好的信息呈现与有效的教学互动为中心, 进而组织教学资源。同时, 网络与电子白板能够实现优质教学资源的共享和交流。
4.教学策略
基于电子白板的课堂可以有效地整合课堂教学资源, 创设教学情境, 构建知识, 突破教学中重点和难点。在教学中设置“交互点”能促进教学互动和生成, 提高学生的动手能力和思考能力。
5.教学评价
电子白板具有自动录制、数据保存、学习路径记录等功能, 能够将课堂学习活动的过程记录并保存下来。便于采用学生自评、学生互评、教师评价等多种评价方式相结合的教学评价, 对教学作出全方位的评价。
有效学习的发生需要适合的教学媒体和良好的课堂教学设计的支持。电子白板为课堂教学各个层面的交互提供了丰富的、更直接的功能, 使教师、学生、教学内容间以更接近真实环境的方式进行教学互动和交流。课堂交互是实现课堂教学目标的手段, 也是电子白板有机融入课堂教学的设计目标。
电子白板环境下《平行线的判定》教学设计
1.教材分析
本节主要内容是让学生在充分感性认识的基础上体会平行线的三种判定方法, 它是空间与图形领域的基础知识, 是《相交线、平行线与平移》的重点, 学习它能为后面的学习平行线性质、三角形、四边形等知识打下坚实的基础。同时, 本节学习将加深对“角与平行线”的认识, 建立空间观念, 发展思维, 并能让学生在活动的过程中交流分享探索的成果, 体验成功的乐趣, 提高运用数学的能力。
2.教学方法
本节课利用电子白板, 通过自学、指导探究的方法进行教学, 师生互动, 共同探索。并根据学生实际情况, 整堂课围绕“情境问题—学生体验—合作交流”模式, 鼓励学生积极合作, 充分交流, 既满足了学生对新知识的强烈探索欲望, 又排除了学生学习几何方法的缺乏和学无所用的思想顾虑。电子白板的使用, 也增强了师生间的互动, 激发了学生的学习兴趣, 使每位学生在轻松、快乐的氛围中实现知识的获得。
3.教学目标
知识与技能目标:了解平行线判定的必要性。经历观察、操作、推理、交流等活动, 探索并掌握平行线的三个判定方法, 并会正确识别图中的同位角、内错角和同旁内角。
过程与方法目标:经历探索直线平行的条件的过程, 发展空间观念和有条理的表达能力。
情感态度与价值观目标:感受数学来源于生活, 激发学习数学的兴趣, 培养逻辑思维。在独立思考的基础上, 积极参与小组活动对直线平行条件的讨论, 敢于表达观点, 并从中受益。
4.教学重、难点
重点:平行线的判定公理及两个判定定理。
难点:理解由判定公理推出判定定理的过程。
5.教学过程
第一部分:课前预习
自主预习任务一:同位角相等, 两直线平行。
◇问题:如果只有a、b两条直线, 如何判断它们是否平行?能否由平行线的画法找到判断两直线平行的条件, 演示已知直线a外一点p画a的平行线b。
◇进行观察比较, 得出初步结论, 由刚才的演示法得出“平行线的判断公理”。
◇练习:如图1, ∠1=150°, ∠2=150°, a//b吗?
自主预习任务二:内错角相等两直线平行。同旁内角互补, 两直线平行。
◇阅读课本35页的交流与发现。
◇练习:如图2, 若∠A=∠3, 则∥, 若∠2=∠E, 则∥, 若∠+∠=180°, 则∥。
设计意图:预习的目的是为了让学生在学习新知之前对知识内容有初步的了解, 学生带着自学时的疑惑再进行课堂学习, 这样有利于提高课堂效率, 有利于师生的课堂互动, 有利于学生对知识的把握和理解。
第二部分:课中实施
◇任务驱动。
教师在电子白板中布置任务, 学生分小组完成。小组讨论交流后, 完成任务方案, 每组派一名同学在电子白板上演示本组的方案。
设计意图:教师通过任务驱动的方式, 激起了学生的探究欲望, 启发学生动脑思考。在学习平行线判定的公理之前, 学生先对平行线有个大体的了解, 为引出公理打下基础。电子白板的运用也极大地激发了学生的兴趣, 学生上前展示自己的成果, 既培养了动手能力, 也增强了生生、师生间的情感互动, 使整个课堂氛围变得轻松、愉快。
◇展示交流。
a.展示交流公理:
情景1:学生动手:①先画一条直线c;②将直尺一边靠在直线c上;③用三角板画平行线a、b。
思考:①在画平行线的过程中, 保持了哪两个角不变?并将这两个角分别用∠1、∠2表示。②教师提出问题:如果∠1≠∠2, 这两条直线能平行吗?教师利用三角板演示。③通过大家的画图, 你能得到什么结论? (如果∠1=∠2, 那么a∥b;如果∠1≠∠2, 直线a与b不平行) 。
情景2:在电子白板上画出两根竹针a、b与第三根竹针c相交, 竹针b固定不动, 将竹针a绕着点M顺时针旋转, 学生观察∠1的变化, 同时观察竹针a与竹针b所在直线是否相交, 当∠1<∠2或∠1>∠2时, 直线a与b相交, 当∠1=∠2时, 直线a与b平行。
结论:同位角相等, 两直线平行。
设计意图:深刻体会、理解同位角相等与两条直线平行的关系。使每位学生都能积极动脑, 初步感受新知, 挖掘每位学生潜能, 培养自学能力。教师可在电子白板上随意画出需要的图形, 电子白板中的工具栏可提供各种教学工具以供使用。
b.展示交流判定2、3:
首先以简单的实例表明需要, 引出新问题 (“内错角相等, 两直线平行”的判定) :如图3, 如何判断这块玻璃板的上、下两边平行?添加出截线后 (如图4) , 比照判定公理图, 发现无法定出∠1的同位角, 再结合图5, 让学生思考、试答。至发现内错角相等的条件后, 让学生说明道理, 而后师生共同修改。以实际需要引出新问题 (“同旁内角互补, 两直线平行”的判定) 。如何判断如图6所示的玻璃板的上下两边平行?至发现“同旁内角互补”的条件后, 让学生结合图7说明道理, 最后, 让学生仿照“内错角相等, 两直线平行”的说理, 写出完整的过程, 并让学生相互交流, 然后总结结论。
总结:内错角相等, 两直线平行。同旁内角互补, 两直线平行。
设计意图:培养学生逻辑、推理能力。体会数学来源于生活又服务于生活。
第三部分:反思拓展 (如图8)
设计意图:通过例题讲解, 完成性质与判定的综合。体会“由线定线”的逻辑思维过程。即已知两直线平行→ (性质) 角的关系→ (判定) 确定其他两直线平行。体会“由角定角”的逻辑思维过程。即已知角的关系→ (判定) 两直线平行→ (性质) 确定其他角的关系。通过电子白板给出的拓展练习完成学生对知识的巩固。
第四部分:系统总结 (电子白板展示)
总结知识、方法以及特例。
6.教学反思
本节课中, 笔者鼓励学生试着自己归纳总结本节课的知识点, 并综合学生的回答, 将其呈现在电子白板上, 使知识条理化、系统化, 以便于学生更好地理解。课堂中, 利用电子白板的互动, 使学生积极参与到集体学习和交流互动中, 培养了学生的动手能力和思考能力。本课的教学遵循了由感性到理性, 由抽象到具体的认识过程, 通过生活中的实际问题, 启发学生的思考, 不断提高他们运用数学方法分析问题、解决问题的能力。让学生在和谐的课堂氛围中, 在教师和同学的鼓励与欣赏中找到自信, 体验成功的乐趣。
摘要:电子白板是信息技术与课程整合进程中出现的一种新技术手段, 它的出现有力地推动了教育信息化的发展。本文通过对电子白板的分析, 结合中学数学学科, 给出了《平行线的判定》这一课的教学设计, 希望能为一线教师如何利用电子白板创新教学提供实践参考。
关键词:电子白板,课堂教学,教学设计
参考文献
[1]罗允平.基于电子白板的自然课堂教学设计及案例[J].教育信息技术, 2011 (4) .
[2]李文光, 荣芳.从教学适用性角度考察交互式电子白板[J].中国现代教育装备, 2010 (6) .
[3]张敏霞, 王陆.电子白板构建信息化教育的基础平台——电子白板与教学创新专著基本思想论述[J].现代远程教育研究, 2010 (1) .
《平行线的判定》
说课人: 白道口镇二中
(一)说教材
1、教材的地位与作用
七年级下册第五章第二节第二课时《平行线的判定》是 “平行线”内容的进一步拓展,是为学生进一步学习习近平行线的有力工具,是学生学习特殊四边形的性质及其判定的基础,在整个初中数学学习中占有举足轻重的地位。
2、教学目标
基于上述分析,在新课程的理念下,数学教学应以学生的发展为本,以学生的能力培养为重。由此确定本节课的教学目标为:
知识目标:
1、理解数学证明推理题的基本格式,掌握平行线判定的方法。
2、掌握平行线的判定,并能应用这些判定解决实际问题。
能力目标:掌握平行线判定的推理过程,体会“数学转化思想”在推导过程中的应用。
情感目标:让学生经历平行线的判定的推理过程,使学生了解数学知识的联系性,在观察、猜想、思考、推理的过程中培养学生的合作交流意识。
3、教学重难点 重点:探索并掌握平行线的判定方法。
难点:理解平行线的判定的推理过程,并能熟练应用平行线的判定解决实际问题。
(二)说教法
根据七年级学生的认知水平和逻辑思维能力,本着“教师为主导,学生为主体”的教学原则,采用教师引导——学生自主探索——师生合作交流的教学模式,在整个教学过程中,充分体现教师的主导作用与学生的主体地位。
(三)说学法
因为学生已经在小学阶段学习、接触过平行线,对于平行线的画法以及含义有了基本掌握。同时由于上一个课时,我们再一次学习习近平行线的基础知识,学生对平行线的研究方法有了一定的了解由此确定本节课的学法为:
1、通过教师正确引导,学生积极思维,发现定理,解决重点。
2、通过教师指导,学生自行完成推理过程,突破难点解决疑点。
(四)说教具:三角板,直尺,多媒体
直尺,三角板是为画平行线准备的。本节课采用多媒体课件辅助教学,可以更形象的将平行线的判定推理过程直观形象的展示出来,不但可以提高整节课的教学效率和教学质量,而且更容易激发学生们的学习兴趣和求知欲。
(五)说教学过程
主要教学过程分为以下几个方面:复习回顾,情境引入,讲授新课,巩固练习,反馈纠正,巩固小结,布置作业。
1、复习回顾。有针对性的复习所学知识,为新知识的学习做好铺垫。
(1)平行线的定义,平行公理及其推论。(2)复习“三线八角”。
(3)如何过直线外一点作已知直线的平行线?
2、情景引入。通过垂直的判定,类比角度对垂直判定的有关证明过程,思考角度对于平行线的判定有什么影响呢?除了平行的定义能够证明两直线平行外有没有更好的方法呢?
3、讲授新课。
(1)演示过直线外一点作已知直线的平行线的作法,并思考:
① 画平行线四要点 “落”“靠”“移”“画”中“落”“靠”的作用。
② 三角板、直尺在作图中所起的作用是什么?
通过推平行线法,引导学生思考,三角板的两个位置确定的是两个同位角,直尺起截线的作用,依此得出结论“同位角相等,两直线平行”。
(2)演示作图过程,用语言描述后概括,并应用数学语言将推理过程书写出来,注意让学生模仿书写证明推理的格式。(3)类比“同位角相等,两直线平行”,引导学生发现“内错角相等,两直线平行”“同旁内角互补,两直线平行”的转化,进一步体会转化思想。
(4)巩固练习。课本练习、例题、作为巩固练习的习题,多媒体展示,教师板演其中的一种证明方式,学生模仿书写出其他的两种证明过程,意在规范学生的做题步骤。练习的安排遵循了由浅入深的原则,让学生在观察后再动手。(5)反馈纠正。“配套练习”中的问题比较的简单,主要考察基本知识点的应用的。有针对性的选择其中的习题,重点针对平行线的判定练习,注重做题步骤,让学生们独立完成。(6)归纳小结。让学生自己总结,形成良好的学习思路,教师帮助学生总结本节课的收获与不足,让学生体会成功的喜悦,加深自身学习数学的信心。
(7)布置作业。讲课后的练习题作为必做题,让学生们适当的复习所学知识。并尽可能的查找在授课过程中的不足与遗漏。将教辅资料中稍有难度的题目作为选做题,目的在于让学有余力的学生不仅能更好的巩固本节课的基本知识,更能通过较复杂问题的思考解决提高自身的学习能力。
(六)板书设计平行线的判定
同位角相等,两直线平行。
∵∠1=∠2 ∴AB∥CD(同位角相等,两直线平行)内错角相等,两直线平行。同旁内角互补,两直线平行。
板书的设计一目了然,目的让学生有目的的关注板书,加深对知识的记忆和巩固。
(七)课后反思
姓名:李运秀
学号:10583123 专业:10数学与应用数学
一、教材分析
1、教材的地位和作用
本课位于人民教育出版社义务教育课程标准实验教科书七年级下册第五章第二节第一课时。主要内容是让学生在充分感性认识的基础上体会平行线的三种判定方法,它是空间与图形领域的基础知识,是《相交线与平行线》的重点,学习它会为后面的学习习近平行线性质、三角形、四边形等知识打下坚实的“基石”。同时,本节学习将为加深“角与平行线”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,提高运用数学的能力。
2、教学重难点
根据新课标的要求及七年级学生的实际情况,确定本节课的教学重难点:
重点:经历观察、操作、想象、推理、交流等活动,探索得到直线平行的条件。
难点:同位角的寻找以及在具体的情境中利用“同位角相等,两直线平行”解决一些简单的问题。
二、教学目标
知识目标: 了解同位角、内错角、同旁内角等角的特征,认识“直线平行”的三个充分条件及在实际生活中的应用。
能力目标: ①通过观察、思考探索等活动归纳出三种判定方法,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。
②通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题。
情感目标 :①感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯。
通过学生体验、猜想并证明,让学生体会数学充满着探索和创造,培养学生团结协作,勇于创新的精神。
②通过“转化”数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的辩证唯物主义思想。
三、学情分析
从认知结构的角度,七年级的学生已经具备一定的生活经验和数学活动经验,并且对基本几何图形有一定的认识,学生已经学了平行线的定义、平行公理及其推论,具备了探究直线平行的条件的基础,但在逻辑思维和合作交流的意识方面发展不够均衡。
四、教学内容及方法
在做好前两步的基础上开始设计教学内容才能更适合学生,将本堂课的知识多层次体现出来。本堂课主要的内容是讲两直线的平行线判定方法,这就像一朵大红花,而其他的部分是绿叶。这样就分成五部分讲
1、回顾三线八角
2、平行线概念
3、两直线的平行线判定方法
4、本课重难点
5、总结与练习
(一)创设情景,激发求知欲望
对于七年级下的学生她们是“平行线”是我们在日常生活中都经常接触到的。那应该如何判定?它是学生学习几何的重要基础之一,也是学习其他学科知识的重要基础。在以前的学习中,学生已经学习了平行线的概念,知道平行线的表示方法,以及过直线外一点画一条直线与已知直线平行的画法。在前一节课,学生接触了“三线八角”,了解同位角、内错角、同旁内角等概念,我再将其提一下。
(二)引导活动,揭示知识产生过程(重要部分)
基于七年级学生的形象思维,遵循 “教为主导,学为主体,练为主线”的教育思想,从实例出发,让学生亲历观察、发现、探究、归纳等一系列过程,再现了知识的发生、发现及发展的过程。在新知识学习和例题的教学中,教师始终以引导者的形象出现并在适当的时候对学生适当的启发。所以在本节课中我采取的教学方法是启发式引导发现法.让学生合作、探究,主动发现.为此,本节课我设计了如下的系列活动,旨在让学生通过动手操作、合作探究来揭示平行线判定方法这一知识的产生过程.从中我主要起到引导作用。
活动一:让学生通过举生活中的平行线的例子,尽量让多一点的学生说自己的想法,因为这个问题比较简单能回答的人比较多。也比较适合集体回答的问题。
活动二:让学生通过画图,体验推平行线的过程,其中是一个平移变换,那么中画图过程中,同位角始终保持相等。引导学生自己发现平行线判定的方法。
活动三:出示课件上的图,让学生通过观察、进行猜想,作图(推平行线法)来得出平行线判定方法。
其中其他的判定方法由例题推出,例题教学,发挥示范功能在讲完一种判定方法后再引导学生挖掘其他的判定方法。还有让学生思考一些特殊情况如两本书的边缘是否平行。再得出:垂直于同一条直线的两条直线平行。
主要是让学生体验研究问题通常可以先从特殊情况考虑,再延伸到一般情况。
教法:引导学生,讲练结合,实验演示,多媒体教学法。学法:动手实践、师生交流,学习模范。
(三)归纳总结:判定两条直线是否平行的方法有
1,同位角相等,两直线平行。2,内错角相等,两直线平行。3,同旁内角互补,两直线平。本节课重点学习的是1、2、3。
4,平行于同一条直线的两直线平行。5,垂直于同一条直线的两条直线平行。6,平行线的定义。
提出本节的方法难点的归纳与综合运用
这一节课将在学生这样的知识基础上继续学习判定两直线平行的另两种方法:“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。在老教材中,平行线的判定是作为公理出现的,在新教材中却至始至终没有出现“公理”二字,只是作为一种方法出现。它是学生在已学知识的基础上通过合作、探究得到的判定两直线平行的方法,这里更注重学生的观察、分析、概括能力的培养。虽然这部分的知识在八年级下第四章会讲,但作为老师对公理要有了解。
在七年级的学习中,学生已经初步接触了简单的说理过程。因此本节学习时,将在直观认识的基础上,继续加强培养学生这方面的能力。还要强调规范书写。
五、练习设计
课堂尾声一些习题的练习,一方面可以帮助学生更好的吸收本堂课知识,另一方面也是对教师反映学生的一些问题让教师对其进行及时补充。还要做一些变式练习,提高学生综合运用的能力。
练习分析与应用(1)如图1,∠C=57°,当∠ABE= 57°时,就能使BE∥CD.(此题属于比较简单的题目,是为了巩固同位角相等,两直线平行这个知识点又有点逆向思维的运用。)
(2)如图2,∠1=120°,∠2=60°. 问a与b的关系? a∥b(此题可以用同位角相等,两直线平行也可以用同旁内角互补,两直线平行让学生明白在巩固判定方法的同时了解其间的联系)(3)如图,不能判定 L1//L2 的是(D)(A)∠2=∠3(B)∠1=∠4(C)∠1=∠2(D)∠1=∠3(此题则对本节的知识整体的一个思考,难度比较低。主要是为了考察学生对本节知识是否了解以及方便教师再次和学生一起总结本堂课的知识)
对平行线判定进一步理解: 强调一下“内错角不一定相等”,内错角相等是两直线平行的条件。还有同位角相等是指两条直线被第三条直线截得的四对同位角中的任何一对同位角相等两直线必平行。同理其它的几条也是这么理解。
六、布置作业
课本习题5.2第1、9题.P16,P19
一、本课是平行线的后续部分,是研究后面平移以及几何推理等内容基础,也是空间与图形的重要组成部分。
二、学生分析
在本节课前要分析学生的起点能力和学习条件,这节课之前,刚学过同位角,内错角,同旁内角的概念,七年级的学生已经具备辨别能力,作图能力,简单推理能力。本科导入通过回顾平行的由来以及平行线的画法来引出本节课新内容,在上课前,应通知学生准备好尺子,我呢,则准备好教具。
三、教学目标分为教学目标、教学重点,教学难点。
教学目标
有这样几点。
1.理解平行线的判定方法。
2.能运用所学过的平行线的判定方法进行简单的推力计算。
教学难点
判定方法的推理和应用。
教学难点
问题的思考和推理过程
四、教学内容及教法
1.回顾平行线的由来及其做法。
2、平行线判定第一条。
【教学目标】:
1、组织学生复习近平行线的判定和性质,进一步体会几何说理的过程,叙述方式及表达要求;
2、加深认识平行线的判定和性质之间的区别与联系,提高推理能力和有条理表达的能力,发展基础性逻辑思维能力;
3、引导学生尝试从不同的角度寻求解决问题的方法,同时体会从特殊到一般的思想方法。
【教学过程】 :
知识点回顾
两直线平行的条件:(1),两直线平行。(2),两直线平行。
M
AB
(3),两直线平行。 两直线平行的性质:
C
(1)两直线平行。,。(2)两直线平行。,。(3)两直线平行。,。基础巩固
1、如图,直线a、b被直线l所截,a∥b,170,则2.3、两条平行线被第三条直线所截,所得一组同位角的角平分线的位置关系是.所得一组内错角的角平分线的位置关系是所得一组同旁内角的角平分线的位置关系是
强化应用
1、如图,AD∥BC,AC,证明AB∥DC.2、如图,已知DE∥BC,12,CDAB于点D,证明:FGAB
3、如图所示,已知AB∥CD,A110,C140,求P的度数.A
F
C
【巩固提高】:
一、填空题
1、两条直线被第三条直线所截,总有()A、同位角相等B、内错角相等C、同旁内角互补D、以上都不对
2、如图1,下列说法正确的是()A、若AB∥CD,则∠1=∠2B、若AD∥BC,则∠3=∠4 C、若∠1=∠2,则AB∥CDD、若∠1=∠2,则AD∥BC
(1)(2)(3)(4)
3、如图2,能使AB∥CD的条件是()A、∠1=∠BB、∠3=∠AC、∠1+∠2+∠B=180°D、∠1=∠A
4、如图3,AD∥BC,BD平分∠ABC,若∠A=100°,则∠DBC的度数等于()A、100°B、85°C、40°D、50°
5、如图4所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠BDE等于()A、40°B、50°C、60°D、不能确定
6、如图5所示,直线L1∥L2,L3⊥L4,有三个命题:①∠1+∠3=90°,②∠2+∠3=90°,③∠2=∠4.下列说法中,正确的是()
A、只有①正确B、只有②正确C、①和③正确D、①②③都正确
(5)
B D
F
(6)
C7、如图6,把矩形ABCD沿EF对折后使两部分重合,若150°,则AEF=()A、110°B、115°C、120°D、130°
二、解答题
8、根据题意结合图形填空:
已知:如图,DE∥BC,∠ADE=∠EFC,将说明∠1=∠2成立的理由填写完整.解:∵ DE∥BC()
∴∠ADE=______()∵∠ADE=∠EFC()∴______=______
∴DB∥EF()B∴∠1=∠2()
D
E
F
C9、如图,AB、CD被EF所截,MG平分∠BMN,NH平分∠DNM,已知∠GMN+ ∠HNM=90°,试问:AB∥CD吗?请说明理由。
10、已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线 吗?若是,请说明理由。
11、如图所示,潜望镜的两个镜子是平行放置的,光线经过镜子反射后,有∠1=∠3,∠4=∠6,请你解释为什么进入潜望镜的光线和离开潜望镜的光线是平行的?
12、已知如图,AB//CD,试解决下列问题:(1)∠1+∠2=______;(2)∠1+∠2+∠3=_____;
(3)∠1+∠2+∠3+∠4=_____;
编 稿:史卫红
审 稿:张 杨
责 编:姚一民
平行线的判定和性质(综合篇)
一、重点和难点:
重点:平行线的判定性质。
难点:①平行线的性质与平行线的判定的区分 ②掌握推理论证的格式。
二、例题:
这部分内容所涉及的题目主要是从已知图形中辨认出对顶角、同位角、内错角或同旁内角。解答这类题目的前提是熟练地掌握这些角的概念,关键是把握住这些角的基本图形特征,有时还需添加必要的辅助线,用以突出基本图形的特征。
上述类型题目大致可分为两大类。
一类题目是判断两个角相等或互补及与之有关的一些角的运算问题。其方法是“由线定角”,即运用平行线的性质来推出两个角相等或互补。
另一类题目主要是“由角定线”,也就是根据某些角的相等或互补关系来判断两直线平行,解此类题目必须要掌握好平行线的判定方法。
例1.如图,已知直线a,b,c被直线d所截,若∠1=∠2,∠2+∠3=180°,求证:∠1=∠7
分析:运用综合法,证明此题的思路是由已知角的关系推证出两直线平行,然后再由两直线平行解决其它角的关系。∠1与∠7是直线a和c被d所截得的同位角。须证a//c。
法
(一)证明:∵d是直线(已知)
∴∠1+∠4=180°(平角定义)
∵∠2+∠3=180°,∠1=∠2(已知)
∴∠3=∠4(等角的补角相等)
∴a//c(同位角相等,两直线平行)
∴∠1=∠7(两直线平行,同位角相等)
法
(二)证明:∵∠2+∠3=180°,∠1=∠2(已知)
∴∠1+∠3=180°(等量代换)
∵∠5=∠1,∠6=∠3(对顶角相等)
∴∠5+∠6=180°(等量代换)
∴a//c(同旁内角互补,两直线平行)
∴∠1=∠7(两直线平行,同位角相等)。
例2.已知如图,∠1+∠2=180°,∠A=∠C,AD平分∠BDF,求证:BC平分∠DBE。
分析:只要求得∠EBC=∠CBD,由∠1+∠2=180°推出∠1=∠BDC,从而推出AE//FC,从而推出∠C=∠EBC而
∠C=∠A于是可得∠A=∠EBC。因此又可得AD//BC,最后再运用平行线性质和已知条件便可推出∠EBC=∠DBC。
证明:∵∠2+∠BDC=180°(平角定义)
又∵∠2+∠1=180°(已知)
∴∠BDC=∠1(同角的补角相等)
∴AE//FC(同位角相等两直线平行)
∴∠EBC=∠C(两直线平行内错角相等)
又∵∠A=∠C(已知)
∴∠EBC=∠A(等量代换)
∴AD//BC(同位角相等,两直线平行)
∴∠ADB=∠CBD(两直线平行,内错角相等)
∠ADF=∠C(两直线平行,同位角相等)
又∵DA平分∠BDF(已知)
∴∠ADB=∠ADF(角平分线定义)
∴∠EBC=∠DBC(等量代换)
∴BC平分∠DBE(角平分线定义)
说明:这道题反复应用平行线的判定和性质,这是以后在证题过程中经常使用的方法,见到“平行”应想到有关的角相等,见到有关的角相等,就应想到能否判断直线间的平行关系。
把平行线的判定与性质紧密地结合在一起也就是使直线平行和角相等联系在一起,这样解题能得心应手,灵活自如。
三、小结:证明角相等的基本方法
1、第一章、第二章中已学过的关于两个角相等的命题:
(1)同角(或等角)的余角相等;
(2)同角(或等角)的补角相等;
(3)对顶角相等;
(4)两直线平行,同位角相等;内错角相等;同旁内角互补。
以上四个命题是我们目前论证两个角相等的武器,但是何时用这些武器,用什么武器,怎样使用,这是遇到的一个具体问题,需要认真进行分析。首先必须分析,在题设中给出了哪些条件,与其相关的图形是什么!其次再分析一下要证明的两个角在图形的具体位置,与已知条件有什么关联,怎样运用一次推理或几个一次推理的组合而来完成题设到结论的过渡。
例3,如图∠1=∠2=∠C,求证∠B=∠C。
分析:题设中给出三个相等的角,其中∠2和∠C是直线DE和BC被AC所截构成的同位角,由∠2=∠C则DE//BC。再看题中要证明的结论是∠B=∠C,由于∠C=∠1,所以只要证明∠1=∠B,而∠1与∠B是两条平行直线DE,BC被直线AB所截构成的同位角,∠1=∠B是很显然的,这样我们就理顺了从已知到求证的途径:
证明:∵∠2=∠C(已知),∴DE//BC(同位角相等,两直线平行),∴∠1=∠B(两直线平行,同位角相等),又∵∠1=∠C(已知),∴∠B=∠C(等量代换)。
例
4、已知如图,AB//CD,AD//BC,求证:∠A=∠C,∠B=∠D。
分析:要证明∠A=∠C,∠B=∠D,从这四个角在图中的位置来看,每一组既不构成同位角,也不是内错角或同旁内角,由此不可能利用题设中的平行关系,经过一次推理得到结论,仍然如同例10一样通过等角进行转化,从题设条件出发,由AB//CD,且AB与CD被直线BC所截,构成了一对同旁内角,∠B、∠C,因此∠B+∠C=180o,同时∠B又是另一对平行线AD、BC被直线AB所截,构成的一对同旁内角∠B、∠A,∠B+∠A=180o,通过∠B的中介,就可以证明得∠A=∠C。同理,也可得到∠B=∠D,整个思路为:
证明:AD//BC(已知),∴∠A+∠B=180o(两直线平行,同旁内角互补),∵AB//CD(已知),∴∠B+∠C=180o(两直线平行,同旁内角互补),∴∠A=∠C(同角的补角相等),同理可证∠B=∠D。
例
5、已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3,求证:∠1=∠2。
分析:要证明∠1=∠2,而从图中所示的∠1和∠2的位置来看,根据题设或学过的定义、公理、定理无法直接证明这两个角相等,因我们可将视野再拓广一下,寻找一下∠
1、∠2与周边各角的关系,我们看到直线AD与GE被直线AE所截,形成同位角∠
1、∠E;被AB所截,形成内错角∠
2、∠3;而题设明确告诉我们∠3=∠E,于是目标集中到证明AD//GE,根据题设中AD⊥BC,EG⊥BC,我们很容易办到这一点,总结一下思路,就可以得到以下推理程序:
证明:∵ AD⊥BC于D(已知),∴∠ADC=90o(垂直定义),∵EG⊥BC于G(已知),∴∠EGD=90o(垂直定义),∴∠ADC=∠EGD(等量代换),∴EG//AD(同位角相等,两直线平行),∴∠1=∠E(两直线平行同位角相等),∠2=∠3(两直线平行内错角相等),又∵∠E=∠3(已知),∴∠1=∠2(等量代换)。
四、两条直线位置关系的论证。
两条直线位置关系的论证包括:证明两条直线平行,证明两条直线垂直,证明三点在同一直线上。
1、学过证明两条直线平行的方法有两大类
(一)利用角;
(1)同位角相等,两条直线平行;
(2)内错角相等,两条直线平行;
(3)同旁内角互补,两条直线平行。
(二)利用直线间位置关系:
(1)平行于同一条直线的两条直线平行;
*(2)垂直于同一条直线的两条直线平行。
例
6、如图,已知BE//CF,∠1=∠2,求证:AB//CD。
分析:要证明AB//CD,由图中角的位置可看出AB与CD被BC所截得一对内错角∠ABC和∠DCB,只要证明这对内错角相等,而图中的直线位置关系显示,∠ABC=∠1+∠EBC,∠BCD=∠2+∠FCB,条件中又已知∠1=∠2,于是只要证明∠EBC=∠BCF。
证明:∵ BE//CF(已知),∴∠EBC=∠FCB(两直线平行,内错角相等)
∵∠1=∠2(已知),∴∠1+∠EBC=∠2+FCB(等量加等量其和相等),即∠ABC=∠BCD(等式性质),∴AB//CD(内错角相等,两直线平行)。
例
7、如图CD⊥AB,EF⊥AB,∠1=∠2,求证:DG//BC。
分析:要证明DG//BC,只需证明∠1=∠DCB,由于∠1=∠2,只需证明∠2=∠DCB,∠2与∠DCB又是同位角,只需证明CD//EF。根据题设CD⊥AB,EF⊥AB,CD//EF,很容易证得,这样整个推理过程分成三个层次。
(1)(平行线的判定)
(2)CD//EF∠2=∠DCB(平行线的性质)
(3)∠1=∠DCBDG//BC(平行线判定)
在这三个推理的环节中,平行线的判定和性质交替使用,层次分明。
证明:∵CD⊥AB于D(已知),∴∠CDB=90o(垂直定义),∵EF⊥AB于F(已知),∴∠EFB=90o(垂直定义),∴∠CDB=∠EFB(等量代换),∴CD//EF(同位角相等,两直线平行),∴∠2=∠DCB(两直线平行,同位角相等)
又∵∠1=∠2(已知),∴∠1=∠DCB(等量代换),∴DG//BC(内错角相等,两直线平行)。
说明:从以上几例我们可以发现,证明两条直线平行,必须紧扣两直线平行的条件,往往归结于求证有关两个角相等,根据图形找出两直线的同位角、内错角或同旁内角,设法证明这一组同位角或内错角相等,或同旁内角互补。而证明两角相等,又经常归于证明两直线平行。因此,交替使用平行线的判定方法和平行线的性质就成为证明两直线平行的常用思路。
2、已经学过的证明两直线垂直的方法有如下二个:
(1)两直线垂直的定义
(2)一条直线和两条平行线中的一条垂直,这条直线也和另一条垂直。(即证明两条直线的夹角等于90o而得到。)
例
8、如图,已知EF⊥AB,∠3=∠B,∠1=∠2,求证:CD⊥AB。
分析:这是一个与例14同样结构的图形,但证明的目标却是两条直线垂直。证明CD⊥AB,根据“一条直线垂直于两条平行线中的一条,必垂直于另一条。”又由于已知条件EF⊥AB,只要证明EF//CD,要证EF//CD,结合图形,只要证明∠2=∠DCB,因为∠1=∠2,只需证明∠DCB=∠1,而∠DCB与∠1是一对内错角,因而根据平行线的性质,就需证明DG//BC,要证明DG//BC根据平行线的判定方法只需证明∠3=∠B,而这正是题设给出的条件,整个推理过程经过以下几个层次:
∠3=∠BDG//BC∠DCB=∠2
(1)平行线判定
(2)平行线性质
CD⊥AB
(3)平行线判定性质(4)垂直定义
证明:∵∠3=∠B(已知),∴DG//BC(同位角相等,两直线平行)
∴∠1=∠DCB(两直线平行,内错角相等),∵∠1=∠2(已知),∴∠DCB=∠2(等量代换),∴DC//EF(同位角相等,两直线平行),有括号部分的五步也可以用以下证法:
接DC//EF(同位角相等,两直线平行),又∵EF⊥AB(已知),∴CD⊥AB(一条直线和两条平行线中的一条垂直,这条直线也和另一条垂直。)
3、已经学过的证明三点共线的方法在前面的几讲中已分析过,若证明E、O、F三点共线,通常采用
∠EOF=180o,利用平角的定义完成三点共线证明。此方法不再举例。
五、一题多解。
例
9、已知如图,∠BED=∠B+∠D。求证:AB//CD。
法
(一)分析:要证明AB//CD,从题设中条件和图形出发考虑,图形中既不存在“三线八角”,又不存在与AB、CD同时平行的第三条直线或与AB、CD同时垂直的直线,这样就无法利用平行线公理的推理或平行线的判定方法来证明两条直线平行。能不能为此创造条件呢?如果我们能够在图中添置一条直线,使这条直线和AB、CD中的一条平行,那么我们就有可能证明它也平行于另一条,从而得到AB//CD。根据平行公理,经过直线外一点,有且只有一条直线与这条直线平行,所以这样的直线是存在的。接下来的问题是:过哪一点作这条平行线,考虑题设中的已知条件,三个角的关系围绕着E点展开的,因而选择E点作AB的平行线是较为理想的位置。
证明:过点E作EF//AB,∴∠B=∠1(两直线平行,内错角相等),∵∠BED=∠1+∠2(全量等于部分之和),∴∠2=∠BED-∠1(等式性质),又∵∠BED=∠B+∠D(已知),∴∠D=∠BED-∠B(等式性质)
∴∠2=∠D(等量代换)
∴EF//CD(内错角相等,两直线平行),∵EF//AB(作图),∴AB//CD(平行于同一直线的两直线平行)。
说明:在光凭题设条件无法直接证得结论时,在图中添置新的线,以构成一个条件充分的图形,从而得出所求证的结论,像这样添置的线叫做辅助线,在画图时,辅助线用虚线画出。
法
(二)分析:如果在E点的另一侧添置AB的平行线(如图),同样可以凭此证得结论,但是由于所取的角的位置不同,推理的依据过程也有所不同。
证明:过点E作EF//AB(如图),∴∠B+∠1=180o(两直线平行,同旁内角互补),∵∠1+∠2+∠BED=360o(周角定义),∠BED=∠B+∠D(已知),∴∠B+∠D+∠1+∠2=360o(等量代换),∴∠D+∠2=360o-(∠B+∠1)(等式性质)
=360o-180o(等量代换)
=180o
∴EF//CD(同旁内角互补,两直线平行),∵EF//AB(作图),∴AB//CD(平行于同一直线的两条直线平行)。
注意:在添置辅助线EF时,只能过E点作直线EF平行于直线AB、CD中的一条,而不能同时平行于AB和CD。
从另一个方面考虑这个命题,仍然是这个图形如果我们交换题设和结论部分:即已知AB//CD,能否得到∠BED=∠B+∠D的结论,仍然像例16法
(一)那样添置AB的平行线EF,可得到∠B=∠BEF,又由于AB//CD,则EF//CD。于是又有∠D=∠DEF,很显然∠B+∠D=∠BEF+∠DEF=∠BED。可知,交换原命题的题设和结论部分,仍然得到一个真命题。
北 京 四 中
池塘中的水浮莲
有一种水生植物水浮莲,生长速度很快,每昼夜能长一个新的水浮莲。就是说,一昼夜能一变二,两昼夜后,就成4棵,这样一天一天地增多。有一个小的池塘,放进1棵水浮莲,20天后,就长满了整个池塘。如果开始时放进2棵水浮莲,几天可以长满池塘?是10天吗?
想一想,你会得出正确答案的!
答案:19天.因为水浮莲的繁殖速度是经过一天,就一变二,放进1棵,第二天就变成了2棵。现在第一天放进2棵,就相当于放1棵经过一昼夜繁殖后池塘中的棵数。经过19天后,池溏也同样满了。放进1棵到池塘,其生长状况是:1,2,4,8,16,32,64,…,放进2棵后的生长状况是2,4,8,16,32,64,128,…,从比较可以看出,放进2棵,只相当于提早了一天。
北 京 四 中
平行线的性质
考点扫描:
会用一直线截两平行线所得的同位角相等、内错角相等、同旁内角互补等性质进行推理和计算.
名师精讲:
平行线的性质是指在两条直线平行的前提条件下,能够得到的与图形有关的位置及数量关系.平行线的性质有:
(1)平行线永远不相交(定义);
(2)两直线平行,同位角相等(性质公理);
(3)两直线平行,内错角相等(性质定理1);
(4)两直线平行,同旁内角互补(性质定理2).
平行线的判定和平行线的性质不能混淆,应分清定理(或公理)的条件结论:
(1)判定定理说的是满足了什么条件(性质)的两条直线是互相平行的.
(2)性质定理说的是如果两条直线平行,它具有什么性质.
由此可见,判定定理与性质定理是因果关系倒置的两类定理(称为“互逆”定理).
中考典例:
1.(北京海淀区)已知:如图,AB∥CD,CE平分∠ACD,∠A=110°,则∠ECD的度数等于()
A、110°
B、70°
C、55°
D、35°
考点:平行线的性质,角平分线
评析:因为∠A与∠ACD是同旁内角,又AB∥CD,由平行线的性质:两直线平行,同旁内角互补,可知
∠A+∠ACD=180°.当∠A=110°时,∠ACD=70°.又CE平分∠ACD,所以∠ACE=∠ECD=∠ACD=35°,故应选D.
2.(福建福州)如图,已知:l1//l2,∠1=100°,则∠2=
.
考点:平行线的性质
评析:∠1与∠3是同位角,根据“两直线平行,同位角相等”的性质:可知∠1=∠3=100°.又∠2与∠3是邻补角,所以∠2=180°–100°=80°
真题专练:
1.(山西省)如图,直线a、b被直线c所截,且a//b,若∠1=118°,则∠2的度数为_________.
⑴
2.(龙岩市)如图AB∥CD,若∠ACD=69°,则∠CAB= __________
3.(苏州市)如图AB∥CD,直线EF分别交AB、CD于点E、F,ED平分∠BEF, 若∠1=72°,则∠2=_______
(3)
4.(仙桃市)如图直线L1∥L2、L3分别与L1,L2相交,则∠1与∠2的关系为()
(4)
A、∠1=∠B、∠1+∠2=180°
C、∠1+∠2=90°
D、∠1+∠2=360°
5.(镇江市)如图l1∥l2, ∠α是∠β的2倍, 则∠α等于()
A:60°
B:90°
C:120°
D:150°
6.(临沂市)如图AB∥CD,那么∠1+∠2+∠3=()
A、180°
B、360°
C、540°
D、720°
7.(呼和浩特市)如图DE∥BC,EF∥AB,图中与∠BFE互补的角共有(A、3个
B、2个
C、5个
D、4个
答案: 1、62°2、111°3、54°
4、B5、C)
6、B(提示:过E作EF∥AB(或连结AC)
利用平行线间的同旁内角互补可知∠1+∠AEF=180°∠3+∠CEF=180°
∴∠1+∠2+∠3=360°;
7、D(提示:图中∠
1、∠
2、∠
【平行线的判定例题】推荐阅读:
平行线的判定知识梳理09-24
《平行线的判定二》评课稿02-12
5.2.2 平行线的判定(教案)06-02
平行线的判定练习题(有答案)02-24
七年级下《平行线的判定》教学反思03-26
平行线经典例题09-14
《平行四边形的判定》教学反思01-22
平行线及其判定与性质练习题09-24
平面与平面平行的判定的教学反思06-02
直线平面平行判定性质10-10