等差、等比数列问题

2024-12-08 版权声明 我要投稿

等差、等比数列问题(通用11篇)

等差、等比数列问题 篇1

一、等差数列、等比数列基本数列问题

1.等差数列an,s636,sn6144,sn324,求n的值

1)an2an11;2)an2an1n1;3)an2an1n2n1; 4)an2an12n;5)an2an13n

1)sn2an1;2)sn22n1n1;3)sn2an1n2n1; 4)sn2an12n;5)sn2an13n 2.已知数列,aan满足:a=m(m为正整数)

anA7n5

2.已知两个等差数列an和bn的前n项和分别为An,Bn,且n,则使得为整数

bnn3Bn的的正整数n个数为:

3.已知等差数列an,a1a3a5a9936,公差d2,求s100的值。

4、已知等差数列an的第2项为8,前10项和为185。1)求an的通项公式;2)若数列依次取出a2,a4,a8,,a2n

n1

an中

an当a为偶数时

n,若a6=1,则m所有2

当an为奇数时3an1

得到新数列bn,求数列bn的通项公式。

可能的取值为

四、数列与其它

1.已知数列an的通项公式annnN,则数列an的前30项中,最大项和最小项分别

n是

2.已知数列an是递增数列,且ann2n,则实数3.(Ⅰ)设

4.设等比数列an的公比为q(q>0),它的前n项和为40,前2n项和为3280,且前前n项中数值最大的项为27,求数列的第前2n项。

5.已知数列an的首项为23,公差为整数,且前6项为正,从第7项起为负数,求Sn的最大值。

范围是

an为正整数,6.数列{an}为等差数列,其前n项和为Sn,数列{bn}为等比数列,且a1

数列{ban}是公比为64的等比数列,b2S264.(1)求an,bn;(2)求证1113.S1S2Sn

4二、数列思想问题

1.数列an的前n项和Sn,又bn2.求和sn

3,b11,a1,a2,,an是各项均不为零的等差数列(n4),且公差d0,若将此数列删

a1的数值;②求n的所有可d

去某一项得到的数列(按原来的顺序)是等比数列:①当n =4时,求

能值;

(Ⅱ)求证:对于一个给定的正整数n(n≥4),存在一个各项及公差都不为零的等差数列

an

b1,b2,,bn,其中任意三项(按原来顺序)都不能组成等比数列.,求bn的前n项和

123n23n aaaa

3.等差数列an和等比bn,求数列anbn的前n项和 4.111

1*2

2*3

3*4

n1n 1213243



n*n11*22*33*4n*n15.已知数列an满足a12a23a3nannn1,求数列an的通项公式

三、复合数列问题

等差、等比数列问题 篇2

引理1 已知三角形三个顶点A (x1, y1) , B (x2, y2) , C (x3, y3) , 则三角形的面积的绝对值.

证明 由三角形的面积“undefined底×高”可证.

引理2 平面上三点A (x1, y1) , B (x2, y2) , C (x3, y3) 共线的充要条件为

证明 平面上三点A (x1, y1) , B (x2, y2) , C (x3, y3) 共线的充要条件为以三点为顶点的三角形面积为零, 由引理1则引理2得证.

由引理2, 对于一次函数f (x) =ax+b, 我们得出

undefined

对于等比数列的通项公式an=a1qn-1 (q≠0) , 有loga|an|=loga|a1|+ (n-1) loga|q|= (loga|q|) n+loga|a1|-loga|q| (a>0, a≠1) 是n的一次函数, 由公式 (1) , 三点 (m, loga|am|) , (n, loga|an|) , (k, loga|ak|) 是同一等比数列中的项数与相应项的充要条件是

undefined

其中m, n, k为互不相等的自然数.

对于等差数列的通项公式an=a1+ (n-1) d=dn+a1-d是n的一次函数, 由公式 (1) , 三点 (m, am) , (n, an) , (k, ak) 是同一等差数列中的项数与相应项的充要条件是

undefined

其中m, n, k为互不相等的自然数.

例1 (1) 求等比数列2, 6, 18, …的第7项.

(2) 试在3和3888之间插入3个正数, 使5个数组成等比数列.

解 (1) 依题意, 由公式 (2) 有

undefined

(2) 依题意, 由公式 (2) 有

undefined

所求等比数列为3, 18, 108, 648, 3888.

例2 已知数列{an}:6, 9, 14, 21, 30, …求此数列的通项公式.

解 由a1=6, a2=9, a3=14, a4=21, a5=30, …可设

undefined

易知数列{bn}:3, 5, 7, …, bn, …为一等差数列, 故有, 将上行列式化简整理得出bn=2n+1, 从而bn-1=2n-1.

将前面 (※) 式中各式相加得出:

an-a1=b1+b2+…+bn-1=n2-1.所以an=n2+5.

二、证明问题

定理 若a, b, c成等差数列, 且公差d≠0, 则x, y, z也成等差数列的充要条件为

undefined

证明 设

因为d≠0, 所以I=0⇔x+z-2y=0, 即x, y, z成等差数列.

推论 若a, b, c成等差数列, 且公差d≠0, 则三正数x, y, z成等比数列的充要条件是

undefined

证明 ⇒设三正数x, y, z成等比数列, 则y2=xz, 2logmy=logmx+logmz, 即logmx, logmy, logmz成等差数列.由定理有

⇐假设, 由定理知logmx, logmy, logmz成等差数列, 即2logmy=logmx+logmz, 则y2=xz.

所以三正数x, y, z成等比数列.证毕.

例3在ABC中, tanA是以-4为第3项, 4为第7项的等差数列的公差, tanB是以13为第3项, 9为第6项的等比数列的公比, 求证:ABC是锐角三角形.

证明依题意, 由公式 (2) , (3) 有

由行列式的性质, 分别将上两式中的两个行列式化简, 整理可得tanA=2, tanB=3, 则, 所以C=45°.又tanA=2>0, tanB=3>0, 且0

三、计算问题

例4设a, b, c分别是一等差数列的第p, m, n项, 也是一等比数列的第p, m, n项, 试求ab-cbc-aca-b.

解依题意, 由公式 (2) , (3) 有

将上面两行列式化简, 整理可得

等差、等比数列问题 篇3

1.学习一个数学公式的基本任务有哪些?

(1)等差数列、等比求和公式内容是什么?公式怎么用?

(2)推导公式的方法怎么用?

2.拿到一个新题目怎么想?

(1)现有的相关公式能否用上?

(2)非等差、等比数列求和能否化为等差、等比数列求和?

(3)已经用过的相关方法能否用上?

问题一:求数列,,,…,,…的前n项和;

分析:数列的分子成等差数列,分母成等比数列,可用错位相减法求和;

Sn=+++…++其中等比数列的公比q=;

Sn=+++…++;

两式错位相减得:

Sn=++++…-

=-+2(++++…+)-

∴Sn=3-

小结:设数列an的等比数列,数列bn是等差数列,则数列anbn的前n项和Sn求解,均可用错位相减法.

问题二:已知a≠0,求数列a,2a2,3a3,…,nan,…前n项和.

点拨:字母的系数等差,字母项等比,但需要对字母讨论.

解:Sn=a+2a2+3a3+…+nan,

当a=1时,Sn=1+2+3+…+n=,

当a≠1时,Sn=a+2a2+3a3+…+nan,

aSn=a2+2a3+3a4+…+nan+1,

两式相减(1-a)Sn=a+a2+a3+…+an-nan+1,

=-nan+1

∴Sn=.

小结:采用乘公比,错位相减,可以得到一组等比数列,求和用公式但必须注意公比是否为1,否则须讨论.

问题三:设Sn=-1+3-5+7-9+…+(-1)n(2n-1),则Sn=(-1)nn

方法一:分析:由此数列的通项an=(-1)n(2n-1);其是等差数列与等比数列的积这一类型的数列求和,故用错位相减法.

所以Sn=-n(n为奇数)

n(n为偶数),即Sn=(-1)nn.

总结:一个数列cn可以看成是一个以公差为d的等差数列(d不等于零)和一个是公比为q的等比数列(q不等于1)的乘积形式,则数列cn的前n项求和的方法可采用做错位相减法.

方法二:分析:通过观察可发现此数列具有正负相间,且正数项和负数项分别成等差数列这一特征.因此可以将正数项和负数项分别进行分组求和.但此数列有多少正数项和负数项呢?还要对项数n的奇偶性进行讨论.

略解:Sn=-n(n为奇数)

n(n为偶数),即Sn=(-1)nn.

总结:我们通过分组转化成两个等差数列,然后通过已有的等差数列求和求解。这种方法叫做分组求和法。

方法三:分析:通过观察可发现此数列具有这样的特征,即第一项与第二项,第三项与第四项,第五项与第六项,……,第n-1项与第n项的和都等于2,共多少个2呢?还要对项数n进行奇偶性讨论.

总结:通过将数列相邻的两项并成一项得到一个新的容易求和的数列,这种方法叫做并项求和。

通过对以上问题几种方法的探讨,不难看出,实际上所有与项的序号的奇偶性有关的数列求和问题,通过认真审题,抓住数列的通项,灵活地运用分类讨论、转化和化归数学思想,就可将其变为熟悉、简单的等差数列或等比数列来处理,辅助以适当的解题方法技巧,问题就会迎刃而解.

等差数列与等比数列的性质 篇4

●考试目标主词填空

1.等差数列的性质.

①等差数列递增的充要条件是其公差大于0,②在有穷等差数列中,与首末两端距离相等的和相等.即a1+an=a2+an-1=a3+an-2=„=ak+an+1-k,③在等差数列{an}中,使am+a0=ap+aq成立的充要条件是是等差数列,⑤若数列{an}与{bn}均为等差数列,且m,k为常数,则{man+kbn}Sn=an2+bn+c能表示等差数列前n项和的充要条件是2.等比数列的性质.①在等比数列{an}中,公比为q,其单调性的考察应视a1及q的取值范围而定.②在有穷的等比数列{an}即:a1an=a2·an-1=a3·an-2=„=ak·an+1-k.

③在等比数列{an}中,使am·a0=ap·ak成立的充要条件是m+n=p+k. ④在等比数列中,每隔相同的项抽出来,依原来的顺序构成一个新数列,则此新数列仍是等比数列.man⑤若数列{an}与{bn}均为等比数列,m是不等于零的常数,则{m·an·bn}与仍为等比数列.bn

●题型示例点津归纳

【例1】证明下列论断:

(1)从等差数列中每隔相同的项抽取一些项依原顺序构成的新数列仍然是等差数列.(2)从等比数列中每隔相同的项抽取一些项依原顺序构成的新数列仍然是等比数列.

【解前点津】等差数列的公差以及等比数列的公比都是已知常数,且每隔k项抽取一个数中的k边应视为已知正整数,按定义证明即可.【规范解答】(1)设{xn}是公差为d的等差数列,抽取的第一个数为xm,隔k项抽取的第二个数为xm+k,再隔k项抽取的第三个数为xm+2k,依次类推,则新数列的第p项(p≥1)必为xm+(p-1)k ·第p+1项为xm+pk.由通项公式:

∵xm+pk-xm+(p-1)k=x1+(m+pk-1)d-[x1+(m+pk-k-1)d]=(k-1)d是一个p无关的常数,故新数列是一个公差为kd的等差数列.(2)设{yn}是一个公比为q的等比数列,抽取的第一个数为ym,隔k项抽取的第二个数为ym+k,再隔k项抽取的第三个数为ym+2k,依次类推,则新数列的第p项(p≥1)必为ym+(p-1)k,第p+1项为ym+pk.由等比数列通项公式: ∵ympk

ym(p1)ky1qmpk1k==q是一个与p无关的常数.mpkk1y1q

故新数列是一个公比为qk的一个等比数列.【解后归纳】证明{xn}是一个等差数列,只须证明xn-xn-1=常数即可,类似地,证明{yn}是一个等比数列,只证明yn=常数即可. yn

1【例2】设x,y,z∈R,3x,4y,5z成等比数列,且

111xz,成等差数列,求的值.xzxyz

【解前点津】依条件列方程组,从方程组中推导

xz

之值. zx

(4y)2(3x)(5z)

2xz

y=【规范解答】由题意得:211代入第一个方程消去y得:

xzyxz

2xz2xz34(xz)26416()=15xz=,故=.xz15zx15xz

【解后归纳】因(xz

)中不含y,故在方程组中,y成为消去的对象.zx

【例3】已知数列{an}满足3an+1+an=4(n≥1),且a1=9,其前n项之和为Sn,求满足不等式|Sn-n-6|<的最小正整数n. 12

5【解前点津】构造“新数列”,求出通项公式,注意到3(an+1-1)=-(an-1).【规范解答】由条件得:3(an+1-1)=-(an-1).视为3xn+1=-xn,∵a1-1=8,故新数列{an-1}是首项为8,公比为-的一个等比数列.故:

31n81

31n-11n-1=6-6×(-1)n,an-1=8(-),即an=1+8(-)Sn-n=

3331

13

11n-1

∴|Sn-n-6|=6×()n <3>250>35n-1>5.3125

∴n>6从而n≥7.故n=7是所求的最小正整数.

【解后归纳】将一个简单的递推公式进行变形,从而转化为一个等差数列,或一个等比数列的模型.这是一种“化归”的数学思想.【例4】设{an}为等差数列,{bn}为等比数列,且b1=a1,b2=a2,b3=a3(a1

n

2+bn)=2+1,试求{an}的首项与公差.【解前点津】设

b2b

=q,则1=2+1.1qb1

【规范解答】设{an}的公差为d,{bn}的公比为q,则由条件知,b2=b1b3(a2)2=(a1)·(a3)

a2

=(1+2)(2+1)

a1

(a1+d)

4=a22,a12a22=a1

·(a1+2d)(a1+d)=|a1(a1+2d)|又b1=(1+q)(22

2+1),故

2a1

42即a1=[a1+(a1+d)2](2+1),解关于a1及d的方程组得:a1=-2,d=22-2.

【解后归纳】将所列方程组转化为关于基本量a1,d的方程,是常规思路.此题是否有另外思路?读者可自己寻找.●对应训练分阶提升

一、基础夯实

1.在等比数列{an}中,a9+a10=a(a≠0),a19+a20=b,则a99+a100等于()

bbb9b10

A.8B.()C.9D.()10

aaaa

2.已知等差数列{an}中,|a3|=|a9|,公差d<0,则使前n项和Sn取得最大值的自然数n是()

A.4和5B.5或6C.6或7D.不存在3.若{an}为一个递减等比数列,公比为q,则该数列的首项a1和公比q一定为()A.q<0,a1≠0B.a1>0,01 C.q>1,a1<0D.00

4.由公差为d的等差数列a1,a2,a3,„,重新组成的数列a1+a4,a2+a5,a3+a6,„是()A.公差为d的等差数列B.公差为2d的等差数列 C.公差为3d的等差数列D.非等差

5.设2a=3,2b=6,2c=12,则a、b、c()A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列 C.既不是等差数列,又不是等比数列D.既是等差数列,又是等比数列

6.若{an}是等比数列,a4a7=-512,a3+a8=124,且公比q为整数,则a10的值是()A.256B.-256C.512D.-51

27.设{an}是由正数组成的等比数列,且a5·a6=81,那么log3a1+log3a2+log3a3+„+log3a10的值是()A.5B.10C.20D.30

8.在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则这两个数的和是()A.1

11111B.12C.13D.14 444

49.在等比数列{an}中,已知对任意自然数n,a1+a2+„+an=2n-1,则a1+a2+„+a2n=()A.(2n-1)2B.1n2n1

(2-1)C.4-1D.(4n-1)3

310.上一个n级的台阶,若每次可上一级或两级,设上法的总数为f(n),则下列猜想中正确的是()

A.f(n)=nB.f(n)=f(n-1)+f(n-2)

n(n1,2)

C.f(n)=f(n-1)·f(n-2)D.f(n)=

f(n1)f(n2)(n3)

二、思维激活

11.在等差数列{an}中,若Sm=n,Sn=m(Sn为前n项和)且m≠n,则Sm+n

三、能力提高

12.在等差数列{an}中,a1,a4,a25三个数依次成等比数列,且a1+a4+a25=114,求这三个数.13.已知{an}为等差数列,(公差d≠0),{an}中的部分项组成的数列ak1,ak2,ak13,„,ak,„,n

恰好为等比数列,其中k1=1,k2=5,k3=17,求k1+k2+k3+„+kn.14.设f(x)=a1x+a2x2+„+anxn(n为正偶数),{an}是等差数列,若f(1)=(1)求an;(2)求证:f(1nn(n+1),f(-1)=. 22)<2. 2

15.数列{an}的前n项和Sn=100n-n2(n∈N).(1){an}是什么数列?

(2)设bn=|an|,求数列|bn|的前n项和.第3课等差数列与等比数列的性质习题解答

1.A先求a1与公比q.2.B∵d<0,∴a3>a9,∴a3=-a9.3.B分别考察a1>0与a1<0两种情况.4.B∵(an+an+3)-(an-1+an+2)=(an-an-1)+(an+3-an+2)=d+d=2d.5.A∵62=3×12,∴(2b)2=2a·2c2b=a+c且b2≠ac.6.C∵a4a7=a3a8=-512,a3+a8=124,∴a3,a8是x2-124x-512=0的两根.解之:a3=-4,a8=128或a3=128,a8=-4q=-2或-

但q=-不合题意,∴a10=a8·q2=512.22

7.C其值为log3(a1a2„a10)=log3(a1a10)·(a2a9)„(a5a6)=log3(a5a6)5=5log3(a5·a6)=5log381=20.9

xx23y28.A设这两个正数为x,y,由题意可得:.272yx9y4

9.D∵Sn=2n-1,∴an+1=Sn+1-Sn=2n+1-1-(2n-1)=2n,又a1=S1=21-1=1=21-1,∴an=2n-1.10.D每次可上一级或两级,故需分段考虑.11.Sm+n=-(m+n)运用公式求和.2a4(a13d)2a1(a124d)a1a25

12.设公差d,依题意得:

a1a4a251143a127d114

a438a4a13d23414a138a12

或,或

a38aa24d224498d0d425125

∴这三个数是38,38,38或2,14,98.

13.∵a1,a5,a17成等比数列,∴(a1+4d)2=a1(a1+16d)d=

aa11,an=a1(n+1),a5=a1+4d=3a1,∴q=5

22a1

=3,akn=

k11

a1(kn+1)akn=a1·qn-1=a1×3n-1,∴na1=a1×3n-1,∴kn=2×3n-1-1k1+k2+k3+„22

n-1

2(13n)

+kn=2(1+3+9+„+3)-n= =3n-n-1.(13)n

14.(1)设{an}的公差为d,则f(1)=a1+a2+„+an=d=1,由na1+

1nn

n(n+1),f(-1)=-a1+a2-a3+a4+„-an-1+an=d=,∴222

n(n1)n(n1)

得a1=1,∴an=n. 22

2n

1123111111n(2)f()=+2+3+„+(1-)]f()=+2+3+„+n+n1

22222222222

两式相减:

1

11n

1111n2nnf()=1++2+„+n1-n=-n=2-2n1-2n<2. 2222212

12

15.(1)an=Sn-Sn-1=(100n-n2)-[100(n-1)-(n-1)2]=101-2n(n≥2),∵a1=S1=100×1-12=99=101-2×1,∴数列{an}的通项公式为an=101-2n又∵an+1-an=-2为常数.∴数列{an}是首项为a1=99,公差d=-2的等差数列.(2)令an=101-2n≥0得n≤50(n∈N*),①当1≤n≤50时,an>0,此时bn=|an|=an,所以{bn}的前n项和Sn′=100n-n2且S50′=100×50-502=2500,②当n≥51时,an<0,此时bn=|an|=-an由b51+b52+„+bn=-(a51+a52+„+an)=-(Sn-S50)=S50-Sn得数列{bn}前n项和为Sn′=S50+(S50-Sn)=2S50-Sn=2×2500-(100n-n2)=5000-100n+n2.(nN*,1n50)100nn

由①②得数列{bn}的前n项和为Sn′=.2*

等差与等比数列综合专题练习题 篇5

值时,n=()A.11a<-1,且它的前n项和Sn有最大值,那么当Sn取得最小正a10

anB.17C.19D.21 2.已知公差大于0的等差数列{

求数列{an}的通项公式an. }满足a2a4+a4a6+a6a2=1,a2,a4,a8依次成等比数列,3.已知△ABC中,三内角A、B、C的度数成等差数列,边a、b、c依次成等比数列.求证:△ABC是等边三角形.

4.设无穷等差数列{an}的前n项和为Sn.是否存在实数k,使4Sn=(k+an)2对一切正整数n成立?若存在,求出k的值,并求相应数列的通项公式;若不存在,说明理由.

答:存在k=0,an=0或k=1,an=2n-1适合题意.

5.设数列{an}的前n项和为Sn,已知a1=1,Sn=nan﹣2n(n﹣1),(n∈N*)(Ⅰ)求证数列{an}为等差数列,并写出通项公式;(Ⅱ)是否存在自然数n,使得S1S22S3

3Sn

n400?

若存在,求出n的值;若不存在,说明理由;

6.已知等差数列{an}的前n项和为Sn,且S10=55,S20=210.(1)求数列{an}的通项公式;

a(2)设bnm、k(k>m≥2,m,k∈N*),使得b1、bm、bk成等比数列?若存在,an+1

求出所有符合条件的m、k的值;若不存在,请说明理由.

2a1+9d=11a1=1,解:(1)设等差数列{an}的公差为d,即,解得所以an=a1+(n-1)d2a1+19d=21d=1.**2=n(n∈N).(2)假设存在m、k(k>m≥2,m,k∈N),使得b1、bm、bk成等比数列,则bm=

an1mkm21kb1bk.因为bn=,所以b1=,bm=,bk=所以(=×.整理,22k+1an+1n+1m+1k+1m+1

2m2

得k=-m+2m+1

以下给出求m、k的方法:因为k>0,所以-m2+2m+1>0,解得1-2

已知二次函数y=f(x)的图象经过坐标原点,其导函数为f(x)=3x2-2x,.数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上

3m(1)求数列{an}的通项公式;(2)设bn=,Tn是数列{bn}的前n项和,求使得Tn<对所20anan+1

有n∈N*都成立的最小正整数m.17.已知点(1是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)3

-c,数列{bn}的首项为c,且前n项和Sn满足Sn-Sn-1Sn+Sn+1(n≥2).(1)求数列{an}

11000和{bn}的通项公式;(2)若数列{前n项和为Tn,问Tn>n是多少? 2009bnbn+1

8.已知定义域为R的二次函数f(x)的最小值为0,且有f(1+x)=f(1-x),直线g(x)=4(x-1)的图象被f(x)的图象截得的弦长为4,数列{an}满足a1=2,(an+1-an)g(an)+f(an)=0

等差数列习题 篇6

A.等比数列,但不是等差数列B.等差数列,但不是等比数列

C.等差数列,而且也是等比数列D.既非等比数列又非等差数列

2.(06全国I)设an是公差为正数的等差数列,若a1a2a315,a1a2a380,则a11a12a13(B)

A.120B.105C.90D.75

3.(02京)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有(A)

A.13项B.12项C.11项D.10项

4.(01全国理)设数列{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(B)

A.1B.2C.4D.6

5.(06全国II)设Sn是等差数列{an}的前n项和,若

A.1S3S=,则6=(A)3S6S121113B.C.D. 38910

6.(00全国)设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列{Sn}的前n项和,求Tn。n

7.(98全国)已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=100.(Ⅰ)求数列{bn}的通项bn;(2n-1)

(Ⅱ)设数列{an}的通项an=lg(1+1),记Sn是数列{an}的前n项和,试比bn

较Sn与lgbn+1的大小,并证明你的结论。

8.(02上海)设{an}(n∈N*)是等差数列,Sn是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是(C)..

A.d<0B.a7=0C.S9>S5D.S6与S7均为Sn的最大值

9.(94全国)等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为(C)

等差、等比数列性质的类比 篇7

与推广1不一样.当然也可以依照同样的办法写出与推广1类似的结论 (略) .

(b1b2…bt) (r-s) rs (b1b2…br) (s-t) st (b1b2…bs) (t-r) t=1, 所以得到类似的结论:已知等比数列{bn}, r, s, t是互不相等的正整数, Tn是前n项积, Tt (r-s) rsTr (s-t) stTs (t-r) t=1.

等差、等比数列作为江苏现高考的C级要求, 不少老师在钻研, 出了很多题目, 其中有不少类似上面性质运用的, 让我们学生觉得困惑, 下面来稍作分析.

分析有许多学生不知如何入手, 或者说得到的不是类似的性质, 不妨这样考虑:设an=lgbn, {an}成等差数列, {bn}成等比数列且bn>0,

上面的性质比较简单, 有一些学生是可以做的, 但遇到稍微复杂的就不行了, 如下例:

当然还有许多类似的性质, 这里就不再一一举例了, 总之等差数列有的性质等比肯定有与之相对应的性质, 反之一样.

参考文献

[1]侯雪花.等差、等比数列的一个新的性质.数学通讯, 2007 (19) .

第18讲 等差数列、等比数列 篇8

等差数列和等比数列与高中数学的有些章节具有相应的应用与交汇.各地以往的高考中一般在选择题、填空题中考查等差(比)数列的定义、基本量的运算和特有性质,而在解答题中考查等差(比)的判断与证明、求通项公式、与函数及不等式的综合考查等.

统计表明,各地高考试卷大多设置一大一小两题,涉及该讲知识的大约10分.其中的小题,并多在选择题居中的位置,或填空题靠后的位置,一般为基本运算或类比推理等.而大题位置靠前,并设置在本道题的第一小问,一般以考查等差(比)基础知识和基本运算为主,更多地是为第二问及以后的运算解答提供支持与铺垫.

各地文、理科试卷在选择部分与大题中出现时的差别不大,往往文理科试卷题完全一样,而若以填空题出现时文理通常以姊妹题的方式出现.

命题特点

等差、等比数列是一个重要的数列类型,高考命题主要考查等差、等比数列的概念、基本量的运算及由概念推导出的一些重要性质,灵活运用这些性质解题,可达到避繁就简的目的.解等差、等比数列的问题时,通常考虑两类方法:①基本量法,即运用条件转化成关于[a1]和[d](或[q])的方程(组);②巧妙运用等差、等比数列的性质.

1. 等差、等比数列的基本运算

例1 等比数列[x,3x+3,6x+6,…]的第四项等于 ( )

A.-24 B.0

C.12 D.24

解析 因为[x,3x+3,6x+6,…]成等比,则[(3x+3)2=x(6x+6)],解得:[x=-3].由等比数列性质[a1?a4=a2?a3]得:[-3×a4=-6×(-12)],解得第四项等于-24.

点拨 解决特殊数列——等差或等比数列的基本运算问题的关键是利用好公式.以本题为例,首先利用等比中项知识建立了关于未知数[x]的方程,再利用等比的性质:当正整数[p,q,r,s]满足[p+q=r+s]时,[ap?aq=ar?as],从而获解.

例2 已知[△ABC]的一个内角为[120°],并且三边长构成公差为4的等差数列,则[△ABC]的面积为________.

解析 设三边长分别为[a-4,a,a+4(a>4)],显然边[a+4]所对的内角为[120°],由余弦定理得:[(a+4)2=a2+(a-4)2-2a(a-4)cos120°?a=10],即三边长为[6,10,14],因此[SΔABC=12×10×6sin120°=153].

点拨 本题对三角形三边赋值时采用了常用的技巧——对称设法,此时三个数成等差时设为:[a-d,a,a+d;]四个数成等差可设为:[a-3d,a-d,a+d,a+3d]等.

例3 对于整数数列[an],如果[ai+i][(i=1,2,3,…)]为完全平方数,则称数列[an]具有“高大上品质”.不论数列[an]是否具有“高大上品质”,如果存在与[an]不是同一数列的[bn],且[bn]同时满足下面两个条件:①[b1,b2,b3,...,bn]是[a1,a2,a3,...,an]变换次序后的另一个排列;②数列[bn]具有“高大上品质”,则称数列[an]具有“高大上潜质”.下面三个数列:①数列[an]的前[n]项和[Sn=n3(n2-1)];②数列1,2,3,4,5;③1,2,3,…,11.具有“高大上品质”的为________;具有“高大上潜质”的为___________.

解析 对于①,当[n≥2]时,[an=Sn-Sn-1=n2-n,]又[a1=0],[所以an=n2-n(n∈N*)].所以[ai+i=i2(i=1,2,3,…)]是完全平方数,数列[an]具有“高大上品质”.对于②,数列1,2,3,4,5具有“高大上潜质”,数列[bn]为3,2,1,5,4.对于③,数列1,2,3,…,11不具有“高大上潜质”,因为11,4都只有5的和才能构成完全平方数,所以数列1,2,3,…,11不具有“高大上潜质”.故具有“高大上品质”的为①;具有“高大上潜质”的为②.

点拨 本题是由数列的基础知识引出的一种探索问题,构思起点高,但解决问题的手段很常规.考生在碰到此类问题时要细致品味个中涵义,不能被表面的文章所禁锢.

2. 等差、等比数列的判定

等差、等比数列的判定通常作为解答题的第1问来考查,一般用下面的基本方法来判定:①利用定义:[an+1-an=]常数,或[an+1an=]常数;②利用中项的性质:[2an=an-1+an+1(n≥2)]或[a2n=an-1?an+1(n≥2)].

例4 已知数列[an]满足:[a1=1,a2=3],且[an+2=3an+1-2an],令[bn=an+1-an].

(1)证明:数列[bn]是等比数列;

(2)求数列[an]的通项公式.

解析 (1)因为[an+2=3an+1-2an],

∴[an+2-an+1=2(an+1-an)].

又因为[a1=1,a2=3],所以[b1=a2-a1=2],则[bn+1bn=2].

故数列[bn]是首项为[2],公比为2的等比数列.

(2)由(1)得,[bn=2n],

所以[an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1]

[=bn-1+bn-2+b1+a1][=2n-1+2n-2+…+2+1=2n-1].

点拨 本题主要考查等比数列的判定及数列求和,同时考查推理论证能力及转化化归能力.

3. 创新与拓展

例5 古希腊毕达哥拉斯学派的数学家研究过各种多边形数. 如三角形数1,3,6,10,[1,a1,a3],第[n]个三角形数为[n(n+1)2=12n2+12n]. 记第[n]个[k ]边形数为[N(n,k) (k≥3)],以下列出了部分[k ]边形数中第[n]个数的表达式:

nlc202309032100

三角形数 [N(n,3)=12n2+12n],

正方形数 [N(n,4)=n2],

五边形数 [N(n,5)=32n2-12n],

六边形数 [N(n,6)=2n2-n],

可以推测[N(n,k)]的表达式,由此计算[N(10,24)=]_________.

解析 三角形数[N(n,3)=12n2+12n],正方形数[N(n,4)=n2=(12+12︸2×12)n2+(12-12)n,],五边形数[N(n,5)=32n2-12n=(12+12+12︸3×12)n2+(12-12-12)n],六边形数[N(n,6)=2n2-n=(12+12+12+12︸4×12)n2+(12-12-12-12︸2×(-12))n],

推测[k]边形

[N(n,k)=(12+12+...+12+12︸(k-2)×12)n2+(12-12-12-12-...-12︸(k-4)×(-12))n][=12(k-2)n2-12(k-4)n].

所以[N(10,24)=12×(24-2)×102-12×(24-4)×10]

[=1100-100=1000].

点拨 对课本上出现的三角形数、四边形数加以引申与拓展,利用类比和推理的方式思考问题,展现出数学学习中不断深化、不断提高、循序渐进的理念.对问题的不断探求有助于加深我们对基础知识的认知.

备考指南

(1)要把握基础知识, 在复习时,首先要把握好等差、等比数列的概念与通项公式的推导方法,熟练掌握它们基本量与其他量间的互化关系.同时要熟练并准确掌握与之相关的等差、等比中项概念与运算公式等.

(2)重点掌握等差、等比数列各自特殊的性质,并达到准确熟练运用的能力.

(3)善于利用类比和归纳推理的方法将非等差(比)数列,通过适当变形、换元等方式,从而转化变成等差(比)数列,达到从一般到特殊的转化目标.

限时训练

1.在等差数列[an]中,[a3+a4+a5=12],那么[a1+a2+…+a7=] ( )

A.14 B.21 C.28 D.35

2.在[a,b]之间插入[n]个数构成等差数列,则其公差为 ( )

A.[b-an] B.[a-bn+1] C.[b-an+1] D.[b-an-1]

3. 在等比数列[an]中,已知[a1=19,a5=9] ,则[a3=] ( )

A.1 B.3 C.[±1] D.[±3]

4. 数列[an]是公差不为0的等差数列,且[a1,a3,a7]为等比数列[bn]的连续三项,则数列[bn]的公比为 ( )

A. [2] B. [4] C. [2] D. [12]

5. 如果[-4,a,b,c,-9]成等比数列,那么 ( )

A. [b=6,ac=36] B. [b=-6,ac=36]

C.[b=±6,ac=-36] D. [b=±6,ac=36]

6. 数列[an]的首项为3,[bn]为等差数列且[bn=an+1-an],若[b3=-2,b10=12],则[a8=] ( )

A. 0 B. 3 C. 8 D. 11

7. 两个正数[a,b(a>b)]的等差中项是[52],[-6]是它们的等比中项,则双曲线[x2a2-y2b2=1]的离心率[e]= ( )

A. [52] B. [132] C. [53] D. [133]

8. 已知方程[(x2-2x-m)(x2-2x+n)=0]的四个根组成一个首项为[14],公差为正的等差数列,则[m-n=] ( )

A. [-118] B. [±118] C. [±12] D. [12]

9. 已知等比数列[an],记[bn=am(n-1)+1+am(n-1)+2+...][+am(n-1)+m],[cn=am(n-1)+1?am(n-1)+2?...?am(n-1)+m(m,n∈N*)],记公比为[q],则一定正确的是 ( )

A. 数列[bn]为等差数列,公差为[qm]

B. 数列[bn]为等比数列,公比为[q2m]

C. 数列[cn]为等比数列,公比为[qm2]

D. 数列[cn]为等比数列,公比为[qmm]

10.已知数列[an]满足[3an+1+an=0,a2=-43,]则[an]的前10项积等于 ( )

A.[31-3-10] B.[31+3-10]

C.[-410345] D.[410345]

11.若[2,a,b,c,9]成等差数列,则[c-a=]_________.

12.设等比数列[an]的首项为[1],公比为[-2],则[a1+|a2|+a3+|a4|=]_________.

13.等差数列[an]中,公差[d≠0],且[2a3-a72+2a11=0],数列[bn]是等比数列,且[b7=a7],则[b6b8]=___________.

14.观察下列等式:

(1+1)=2×1

(2+1)(2+2)=[22×1×3]

(3+1)(3+2)(3+3)=[23×1×3×5]

照此规律, 第[n]个等式可为________.

15.已知等差数列[an]的公差[d=1],前[n]项和为[Sn].

(1)若[1,a1,a3]成等比数列,求[a1];

(2)若[S5>a1a9],求[a1]的取值范围.

16. 已知数列[an]满足:[a1=1,a2=a(a>0).]数列[bn]满足[bn=anan+1].

(1)若[an]是等差数列,且[b3=12,]求[a]的值及[an]的通项公式;

(2)当[bn]是公比为[3a+4]的等比数列时,[an]能否能构成等比数列?若能,求出[a]的值;若不能,请说明理由.

17. 等差数列[an]的前[n]项和为[Sn],已知[a1=2,][S6=22].

(1)求[Sn];

(2)若从[an]中抽取一个公比为[q]的等比数列[akn],其中[k1=1],且[k1

18. 给定常数[c>0],定义函数[f(x)=2|x+c+4|-|x+c|],数列[a1,a2,a3,…]满足[an+1=f(an),n∈N*].

(1)若[a1=-c-2],求[a2]及[a3];

(2)求证:对任意[n∈N*,an+1-an≥c];

(3)是否存在[a1],使得[a1,a2,…an,…]成等差数列?若存在,求出所有这样的[a1],若不存在,请说明理由.

等差数列教案(精选) 篇9

一、教材分析

从教材的编写顺序上来看,等差数列是必修五第二章的第二节的内容,一方面它是数列中最基础的一种类型、与前面学习的函数等知识也有着密切的联系,另一方面它又为进一步学习等比数列及数列的极限等内容作准备.就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,对其在性质的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体.

依据课标 “等差数列”这部分内容授课时间3课时,本节课为第2课时,重在研究等差数列的性质及简单应用,教学中注重性质的形成、推导过程并让学生进一步熟悉等差数列的通项公式。

二. 教学目标

依据课程标准,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:

知识与技能目标:理解等差数列的定义基础上初步掌握等差数列几个特征性质并能运用性质解决一些简单问题.

过程与方法目标:通过性质的推导过程,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质.

情感与态度目标:通过其性质的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美.

三.教学的重点和难点

重点:等差数列的通项公式的性质推导及其简单应用.从教材体系来看,它为后继学习提供了知识基础,具有承上启下的作用;从知识特点而言,蕴涵丰富的思想方法;就能力培养来看,通过发现性质培养学生的运用数学语言交流表达的能力.突出重点方法:“抓三线、突重点”,即(一)知识技能线:问题情境→性质发现→简单应用;

(二)过程与方法线:特殊到一般、猜想归纳→转化、方程思想;

(三)能力线:观察能力→数学思想解决问题能力→灵活运用能力及严谨态度.难点:等差数列的性质的探究,从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高.它需要对等差数列的概念充分理解并融会贯通,而知识的整合对学生来说恰又是比较困难的。

突破难点手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点,激发他们的兴趣,鼓励学生大胆猜想、积极探索,及时地给以鼓励,使他们知难而进;二抓知识选择的切入点,给予恰大的引导,让学生能在原有的认知水平和所需的知识特点入手。四.教学方法

利用多媒体辅助教学,采用启发和探究-建构教学相结合的教学模式

五.教学过程.1.复习引入

回顾等差数列的定义:一般的,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即anan1d(n2.nN)

(让学生自己列举等差数列的例子,教师给出一特殊等差数列)2.根据给出的数列引导学生发现等差数列的性质:

①有穷等差数列中,与首末两项等距离的两项之和等于其首末两项之和

a1ana2an1a3an2

②已知aman 为等差数列的任意两项,公差为d,则d=(公差的计算:d =anan1)

③等差数列中,若mnpq,则amanapaq(让学生推

广:mn 的情况)

④若anbn是等差数列,则ankkananbn也是等差数列,公差分别为d、kd、d1+d2

3.知识巩固

例1.等差数列an中,已知a2a79,a34,则a6解析一:由等差数列通项公式得:a2a7=a1da16d9

a3a12d4

解得:

aman

mn

101则a6a15d5 a d

3解析二:由性质③得a2a7a3a6易得a65

变式:等差数列an中,a58,a22.则a8例2.已知等差数列an满足a1a2a3a1010,则有()

A、a1a1010 B、a2a1010C、a3a990D、a5151 解析:根据性质1得:a1a101a2a100a49a502a51,由于

a1a2a3a1010,所以a510,又因为,a3a992a510,故正确

答案为C。

课堂练习:等差数列an中,a第六项是多少? 4.小结

引导学生回顾等差数列定义,从通项公式中发现性质。5.作业布置:

(1).书面作业:教材P681.3

(2)请同学们课后思考:除了上述特征性质外,还能不能

发现其他的性质?

六.教学设计说明

1.复习引入.本着遵循掌握知识,熟能生巧的方针,温故而知新。让学生自己例举等差数列,进一步让学生真正知道什么是等差数列,然后采用图片形式创设问题情景,意在营造和谐、积极的学习气氛,激发学生的探究欲.2.性质发现

教学中本着以学生发展为本的理念,充分给学生想的时间、说的机会以及展示思维过程的舞台,通过他们自主学习、合作探究,展示学生解决问题的思想方法,共享学习成果,体验数学学习成功的喜悦.通过师生之间不断合作和交流,发展学生的数学观察能力和语言表达能力,培养学生思维的发散性和严谨性.3.知识巩固

通过例题说明灵活的应用这些性质和变形公式,可以避繁就简,有思路的功效。对数列性质的灵活应用反应学生的知识结构特征掌握程度,有助于学生形成知识模块,优化知识体系.2,a5.则数列a4的n

4.作业布置弹性化.

等差数列证明[推荐] 篇10

解:证法一:令d=a2-a1,下面用数学归纳法证明an=a1+(n-1)d(n∈N*)①当n=1时,上述等式为恒等式a1=a1,当n=2时,a1+(2-1)d=a1+(a2-a1)=a2,等式成立.②假设当n=k(k∈N,k≥2)时命题成立,即ak=a1+(k-1)d 由题设,有Sk

k(a1ak)(k1)(a1ak1),Sk1,22

(k1)(a1ak1)k(a1ak)

+ak+1

又Sk+1=Sk+ak+1,所以

将ak=a1+(k-1)d代入上式,得(k+1)(a1+ak+1)=2ka1+k(k-1)d+2ak+1 整理得(k-1)ak+1=(k-1)a1+k(k-1)d ∵k≥2,∴ak+1=a1+[(k+1)-1]d.即n=k+1时等式成立.由①和②,等式对所有的自然数n成立,从而{an}是等差数列.证法二:当n≥2时,由题设,Sn1

(n1)(a1an1)n(a1an),Sn

所以anSnSn1

n(a1a2)(n1)(a1an1)

 22

(n1)(a1an1)n(a1an)

同理有an1

从而an1an

(n1)(a1an1)(n1)(a1an1)

n(a1an)

等差数列解题思路与方法初探 篇11

【关键词】等差数列 ; 解题方法 ; 技巧

【中图分类号】G633.6 【文献标识码】B 【文章编号】2095-3089(2015)36-0260-01

数列是高中数学学习的重要内容之一,它不仅知识内涵丰富,与其他知识联系紧密,而其应用非常广泛。等差数列是本章中的重点和难点,由于这部分知识公式较多,学生学习起来有一定的难度,心理上存在一些畏惧情绪,因此掌握好的解题技巧,这部分内容就会迎刃而解。本文是在实践教学中总结的一些解题思路和方法,在教给学生基础知识的同时,也要注意方法的传授,这样才能增强学生学习数学的成就感,激发学生对数学的学习兴趣。

一、等差数列

如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,一般用字母d表示。等差数列的通项公式为

■;前n项和公式为■或■

■。

二、等差数列的解题思路与方法

1.利用等差数列的性质解题。

等差数列是一种非常重要的数列,特别是它有许多有用且有趣的性质,掌握这些性质对解有关等差数列的题目往往会起到事半功倍的作用。

性质1在等差数列■中,■?圳■。

【例1】 已知等差数列■中,■,则■

■( )

A.20 B.22 C.24 D.-8

解:∵■,■

又■,所以选C

解题关键:等式不可能求出■和d,问题看似无解,但巧用性质1,则问题就迎刃而解。

性质2在等差数列中■,若,■且■,则■。

特别地,当m+n=2p时,有am+an=2ap。

【例2】在等差数列{an}中,3(a3+a5)+2(a7+a10+a13)=24,则S15=( )

A.13 B.26 C.52 D.56

解:∵3+5=4+4 ∴ ■

又7+13=10+10,∴■

结合已知条件等式,得■■

■,

∴■

∴■,故选B

2.以方程的意识,求值问题。

有些求值或化简题,如果纳入方程的思想方法体系,往往方法巧妙,过程简捷。等差数列的通项公式与前n项和公式紧密地联系着五个量■,“知三求二”是最基本的方程运算。

【例3】设■是递增等差数列,前三项的和为12,前三項的积为48,则它的首项是( )

A.1 B.2 C.4 D.6

解析题中给出两个相等关系,运用方程的思想方法,设出■和■,依题意列方程组:

(a2-d)+a2+(a2+d)=12(d>0)(a2-d)a2(a2+d)=48得解a2=4d=2(舍去d=-2)

∴a1=2,应选B

【例4】已知等差数列前三项为a,4,3a,前n项和为Sn,Sk=2550,求a及k的值。

分析:已知几个相等关系,运用方程的思想方法求a和k。

解: 依题意列方程组

■解得■

∴■

3.利用二级等差数列及其变式解题。

一般地,一个数列相邻的两项作差,得到的新数列为等差数列,则称原数列为二级等差数列。

解题策略:观察数列特征,大部分二级等差数列为递增或递减的形式;尝试作差,一般为相邻两项之间作差,注意作差时相减的顺序要保持不变;猜测规律、检验、重复步骤直至规律吻合。

【例5】11,12,15,20,27,( )

A.32 B.34 C.36 D.38

解题关键:原数列后项减前项构成等差数列,故选C。

【例6】32,27,23,20,18,( )

A.14 B.15 C.16 D.17

解题关键:原数列后项减前项构成等差数列,故选D。

【例7】11,13,16,21,28,( )

A.37 B.39 C.41 D.47

解题关键:相邻两项之差连续质数,得到质数列,故选B。

【例8】1,2,6,15,( )

A.19 B.24 C.31 D.27

解题关键:数列特征明显单调且倍数关系不明显,优先做差,相邻两项之差是平方数列,故选C。

【例9】1,4,8,13,16,20,( ),

A.20 B.25 C.27 D.28

解题关键:该数列相邻两项的差成3,4,5一组循环的规律,所以空缺应为20+5=25,故选B。

上一篇:如何成为一名五好干部下一篇:一带一路对全球化的影响