中科大材料合成化学

2025-01-08 版权声明 我要投稿

中科大材料合成化学(精选9篇)

中科大材料合成化学 篇1

学校:中科大

Offer: Stanford MSE PhD, UC Berkeley MSE PhD, Columbia Chemistry PhD

序言

世界那么大,我想去看看。小时候一直向往着远方,向往大海。即便没有那番惊涛骇浪,也好歹品味一点波澜壮阔。大概我最初的动力在这吧。可是一段时间过后,发现出国并非自己想象的那么美好,并不是所谓的“赢取白富美,走上人生巅峰”。后来经历了许多挫折,想了很多,终于明白其实最重要的是实现自己的理想和价值,出国与否并不重要。现在的我认为出国并不是什么目的,是提升自己的手段罢了。人生中可以选择的路很多,机会也很多,需要自己理性分析并筛选出最适合自己的那些方法。出国也是如此,很多人总觉得申请有许多捷径可以走,但是在这里我不得不打击一下,机会和条件是自己争取来的,并没有那么多捷径。舞台上耀眼的明星背后是数年来默默的汗水;宏伟的建筑下是多少人的齐心协力。虽然不想写一篇鸡汤文,但是还是先强调一下“no pains, no gains”。所以奉劝各位读者,无论什么选择,一定要有为了它去努力奋斗的毅力和勇气。

那么就申请而言,该如何做呢?

如果你是一个导师,你会招什么样的学生?回答了这个问题,各个申请元素就会出现。我整个申请流程也是按照这个思想来定的。当然每个人都有一套自己的想法,那么不妨按照自己的想法来认真实施。

世毕盟留学:志存高远,与优秀的人为伍,脚踏实地,人生必定辉煌。

申请元素

一、学习

年级越高,就越容易发现其实学习是最easy,省心的事情,因为这基本上是最公平的,只要付出,都会有回报。当然我这里所说的学习并不是指绩点高低,而是说扎扎实实学习到对自己有帮助的课程和技能,不要因为某门课太难就放弃,也不必花费太多时间在一些不重要的内容上,毕竟每人精力有限。

二、科研

对于自己所属的化学与材料的范畴申请者来说,科研是非常重要的。其实,那么如何提高自己在这些方面的能力呢?我给出的最大建议就是早涉足、接触这些领域。作为本科生,科研水平想要超过别人最简单的方式就是在时间上。试想如果大一就进入实验室,那么你大四时也有近3年的经验,相比别人的1到2年就至少超过了许多。当你开展自己的课题时,一些比较好的尝试比如说阅读综述等等。当然在实验室里干活就应该积极主动些,体现自己的价值而不是机械的重复或者做一个高级打工仔,至少要保证自己清楚所做的每一步的前因后果是什么,不要放过任何一个学习的机会。

当然你也有许多其他的方式来提升自己的科研能力,这些项目核心的地方就在于能够增长自己的科研技能和水平,比如:

1.暑期校外交流

2.交换项目

3.大创或者国创

这些机会当然会有一些bonus,那便是得到推荐信。比如出国交流时summer researchprogram对自己能够增大自己获得牛推的概率,同时这也能够提供自己和很多教授当面交流的机会,如果这些时候能够展现自己的不错的实力,有很大概率能够拿下口头offer。对于没有境外交流的同学而言,也未必说明自己申请世毕盟留学:志存高远,与优秀的人为伍,脚踏实地,人生必定辉煌。

会很不利。比如说自己如果能够在本校的实验室干得很好,或者能够在一些该领域很有名的导师组中研究也是有很大优势的。

三、申请

申请中的材料包括许多诸如SOP,CV,等等要素。这个时候要充分利用自己的想象力申请,不要仅仅受限于一个专业或者方向。最简单来说可以列一个list确定自己的学校名单,以及专业,然后根据个人情况结合往届条件进行选择筛选,凑出一定数量的学校来。总体来说尽量做到在确保自己经历足够的情况下多选。(前提一定是精力充足!)选校方式有两种:US news ranking或者根据自己领域的牛人来排序。

调整排序方式可以参考地理位置,校友资源,linkedin,往届录取情况等等,必要时可以和这些学校的学长学姐们邮件联系,一般学校会有各个graduate student profile或者各个老师research page网页中会提及自己所带的学生,可以参考他们去向等等。对于网页的制作个人觉得如果你自己时间充足可以考虑。制作时可以用一些模板,或者利用一些提供空间的网站,当然也可以用科大自己的空间来制作。

CV和SOP的书写中,CV是整理自己科研经历的一大必须,所以也要认真对待。此外如果申请境外交流CV也是必备之物,所以可以尽早准备及时更新。

SOP的书写建议按照自己的个性和风格来写,可以多给师兄师姐看看改改,如果有机会找老师改那当然更好。一般来说要综合概括自己的passion和motivation, research和为啥选择这所学校,同时最好有个性。比如说有些人能够结合自己个人特色写出非常新颖的SOP,比如把自己的名字和特长和对方学校组合等等,有些人则是选择中规中矩的平铺直叙,建议大家根据自己的情况来书写。

四、标准化测试

1、攻略

托福二战113 GRE一战162+170+4.0经验分享 我的GRE总结 作者: 黄启凡 Verbal workout for GRE 5thedition 世毕盟留学:志存高远,与优秀的人为伍,脚踏实地,人生必定辉煌。

Magoosh 决胜机考吴中东

GRE_Verbal_Reasoning_Practice_Questions_Vol_One1 新GRE写作5.5(最新修订版)+李建林 Kaplan 模考软件 Barron 模考软件

新东方红皮书阅读,作文,填空。

2、Vocabulary

系统学习,尽量把时间拖长,就算每次单词时间不长也好。这样后期会很有效果。混合背各种单词书可能效果会好些,先挑些简单的,最好一页有一半都认识的那种,效果可能好些。

后期我仿照第二篇文章的做法用了anki,觉得很好。不过我的单词词库大概是词以类记的那个。关键是记住同近义词,然后大致的用法,这对阅读是很有帮助的,后期坚持下来背单词会发现阅读理解中那些超级恶心的词基本看看就知道说什么,不用费心思去猜测。

3、Verbal

我感觉主要阅读速度快,就容易上手,我自己每次做阅读一般都规定时间做的,大致根据难度是题目数(1.8 — 2)分钟,一次大致10-14题吧。填空我一直没花太多时间单独做题,强烈建议看看magoosh和Princeton上的题,那个很容易帮助记单词的。还要强调的是注重从头开始就定时做,半小时为单位来做题训练。

后记

在这里想感谢一下在申请过程中帮助过自己的人,指导我的实验室的导师、师兄、师姐们和申请中的小伙伴。感谢世毕盟的mentor和培训师,两位真的为我申请减轻了很多负担。感谢科大学长学姐们的支持和帮助,以及我在咨询学校时候其他学校为我耐心讲解的学长学姐们。最后祝大家毕业时无论选择什么,都能够拿到自己满意的offer!

中科大材料合成化学 篇2

丁奎岭强调, 合成化学区别于其他学科的最显著特点就在于它具有强大的创造力, 不仅可以制造出自然界业已存在的物质, 还可以创造出具有理想性质和功能的、自然界中不存在的新物质。丁奎岭从合成化学与健康、农业、生命和材料科学等领域的密切关联, 阐述其基础与核心地位以及未来的发展趋势。他认为, 目前合成化学已经达到了空前的成熟水平, 无论分子多么复杂, 经过一段时间的摸索人们总会顺利合成获得。

“合成化学通过与其他学科的交叉与融合, 产生出了越来越多的跨学科前沿交叉新领域, 为合成化学的发展提供了新的机遇, 同时也对合成化学本身在不同时空尺度上提出了更高的要求和更大的挑战。因此, 合成科学需要更高水平的科学创造力, 以探索其无限的可能性。”丁奎岭说。

他指出, 合成科学的主要任务是功能分子创制, 是多个基础和应用学科领域的基石, “功能分子创制主要依靠合成化学和合成生物学的手段实现。”他进一步解释说, 前者的优势在于可设计性强、灵活多变, 善于运用简单的催化体系和反应试剂构建复杂分子, 且不局限于自然界存在的官能团和结构基元, 能够获得自然界稀缺的分子。后者的优势则在于理解、利用并改造细胞合成工厂, 对特定目标分子的合成效率极高, 成本较低, 且复杂目标分子的结构愈复杂, 其优势愈明显。如果能够加快促进合成化学和合成生物学的交叉融合, 充分发挥两者的协同优势, 将有助于更高效地创制功能分子, 从而为医药和能源等领域奠定物质基础。

“通过合成创造价值, 用合成的分子影响和改变世界”, 这是丁奎岭对合成化学所追求的科学境界的描绘。他提出上海有机所将以生物医药、材料、能源和环境等领域的重大需求为导向, 以化学键活化、断裂和重组的本质规律认识及分子转化的精准调控为突破口, 以新物质创制和新过程发现为载体, 将基础研究的原始发现转化为国家需求的原创技术, 引领合成科学发展, 满足国家需求的发展目标。

中科大材料合成化学 篇3

摘 要: 本综合化学教学实验采用回流法制备RGO/MnO 复合材料,采用XRD、Raman、TEM等测试方法对复合材料进行结构表征,利用电化学工作站及三电极反应体系研究复合材料的电化学性能。本实验可以使学生掌握一般无机固体材料的常规合成方法,了解纳米材料的基本测试手段,以及利用电化学工作站研究材料电化学性能的基本步骤。本实验内容包含无机化学、分析化学、物理化学等学科的知识,有利于学生对化学知识的进一步掌握及提升科研素养。

关键词: 综合化学实验 石墨烯 MnO 合成 电化学性能

目前,很多高校都开设了综合化学实验这门课程。综合化学实验是化学专业本科生实验教学中较重要的一个环节,是对学生所学化学知识的全面考察,培养学生全面综合的实验技能。一方面,通过综合化学实验教学,使学生学习各种常见仪器的操作方法,在加深理论认识的同时提升学生的实践能力,有利于学生将理论与实际相联系,提高学生分析问题与解决问题的能力。另一方面,综合化学实验教学内容往往反映最新的科研成果,将科研成果引入综合化学实验教学中,激发学生的科研兴趣,培养学生的创新能力,为学生的后续继续深造奠定良好的基础。

石墨烯是2004年由英国曼彻斯特大学的两位科学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫利用胶带从石墨表面剥离获得[1]。石墨烯是单层碳原子构成的蜂窝网状二维结构,其厚度仅为0.335nm,为世界上最薄最硬的材料。由于其独特的片层结构,该材料具有许多新奇的物理和化学特性,例如极高的电子传输能力、优异的比表面积、高的化学稳定性和机械强度。石墨烯一经发现便成为材料领域一颗冉冉升起的新星。研究发现,将石墨烯与其他功能纳米材料复合可以有效提高纳米材料的性能,甚至产生一些新的意想不到的特性,同时石墨烯单层结构也得以保留,目前石墨烯在高性能纳米电子器件、复合材及能量存储等领域获得广泛的应用。

MnO 含量丰富、环境友好,同时具有良好的电化学性能,被广泛应用于超级电容器等新能源领域。然而,MnO 导电性能差,不利于电子的传输。本综合实验将性能优异的石墨烯材料与MnO 复合,以提高MnO 的电化学性能。主要以价格低廉的石墨为原料,采用简单的回流法制备得到还原氧化石墨烯(RGO)负载的MnO 纳米复合材料。通过X-射线衍射(XRD)、拉曼光谱(Raman)、透射电子显微镜(TEM)等测试方法研究复合材料的结构,并利用电化学工作站研究复合材料作为超级电容器电极材料的电化学性能,为新能源材料的开发应用提供理论与实验依据。

1.实验部分

1.1实验试剂与仪器

天热鳞片石墨(青岛古宇石墨有限公司);乙酰丙酮锰(上海晶纯生化科技股份有限公司);浓硫酸,高锰酸钾,硝酸钠,双氧水,三乙二醇及无水乙醇(国药集团化学试剂有限公司);超声波清洗器(昆山市超声仪器有限公司);D8Advance X-射线粉末衍射仪(德国布鲁克公司);DXR Raman光谱仪(美国ThermoFisher公司);JEM-2100(HR)透射电子显微镜(日本电子株式会社);CHI 760D电化学工作站(上海辰华仪器有限公司)。

1.2复合材料的合成

首先采用Hummers合成氧化石墨[2]。在干燥的500mL三口烧瓶中加入80mL浓硫酸,用冰浴冷却至0℃,不断搅拌中慢慢加入2g天然鳞片石墨、4g NaNO和10g KMnO ,试剂添加过程中控制溶液反应温度在10~15°C,持续搅拌反应四小时。然后将三口烧瓶置于35°C左右的恒温水浴中,继续搅拌反应四个小时。向三口烧瓶中缓慢加入200mL去离子水,并继续搅拌半小时,加入少许双氧水至溶液为亮黄色且不再产生气泡即完成反应,将产物透析、干燥即得到氧化石墨,备用。

将50mg氧化石墨(可用剪刀剪成小的碎片)加入100mL三乙二醇中,利用超声波清洗器超声分散,形成黄色胶体溶液后,加入0.6g乙酰丙酮锰,并搅拌均匀。将混合溶液转移至250mL的三颈烧瓶,加热至250°C,并在此温度回流反应一小时,自然降至室温后将产物离心分离,并分别用去离子水和无水乙醇洗涤数次,将产物真空干燥后即得到RGO/MnO 纳米复合材料。

1.3复合材料的表征

采用XRD、Raman技术测试复合材料的晶体结构,采用TEM测试样品的微观结构,采用CHI 760D电化学工作站测试复合材料的电化学性能。其中电极的制备过程如下:将80wt%的RGOMnO 、10wt%的乙炔黑、10wt%的PVDF分散于NMP溶剂中,持续剧烈搅拌至均匀,此时溶液变为泥浆状。将混合物涂抹在一定质量的泡沫镍上,烘干,并压片,并再次称重。采用三电极体系,利用循环伏安技术测试样品的电化学性能,其中泡沫镍负载的RGO/MnO 纳米复合材料为工作电极,铂片为对电极,饱和甘汞电极为参比电极,电解质为1M的NaSO水溶液。电容的计算公式如下:C=(∫IdV)/(νmV),其中I为电流,V为电压,ν为扫描速率,m是电极中活性物质(RGO/MnO )的质量。

2.结果与讨论

通过XRD、Raman表征证明合成的材料为RGO/MnO 纳米复合材料,通过TEM表征说明MnO 纳米粒子均匀附着于RGO的表面,同时可直观地观察到复合材料的微观结构,并测定其大小。通过电化学工作站中循环伏安技术可以测定复合材料的循环伏安曲线,并利用origin软件制图,计算得到复合材料的电容值,以进一步说明复合材料优异的电化学性能。

通过本实验,学生可以掌握无机固体材料常规的合成方法,进一步巩固化学实验中的基本操作,如称量、配制溶液、溶液移取等。同时,学生对XRD、Raman和TEM仪器的原理和操作有进一步的认识。除此以外,通过电化学性能的测试,使学生对电化学的基本原理有全新的认识,而不仅仅停留在书本上。学生除了需要掌握复合材料在合成与表征过程中的基本操作外,还应具有准确分析处理数据的能力,例如利用origin软件绘图并计算复合材料的电容值,本实验是对学生综合素质的全面考查。本实验可以提高学生分析问题、解决问题的能力,使学生对科研产生浓厚的兴趣,培养学生的创新能力,为学生下一阶段的毕业设计、攻读研究生学位及后期工作打下良好的基础。

参考文献:

[1]Novoselov KS,Geim AK,Morozov SV,Jiang D,Zhang Y,Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films[J].Science,2004,306,666-669.

河北科大骨干培训汇报材料 篇4

尊敬的各位领导,老师们大家好:

2013年11月20号至12月8号,我有幸在河北科技大学参加了国培计划的小学英语骨干教师培训。河北科技大学把培训分为两大部分。一部分为提高我们的英语语言运用能力,目的是为了提高小学英语教师的英语水平。另一部分是英语教学理论方面的讲座。通过这两大方面培训,我受益匪浅,不仅巩固了英语的各项技能,也进一步开阔了眼界。下面我就培训的相关内容,结合自己的认识和体会给大家作以汇报: 第一部分是提高英语语言运用能力的培训。

在这一部分的培训中,河北科大开设了英语听力,口语,阅读和写作四门课程。和别的院校培训有所区别的是,我们是小班化教学。(英语介绍小班教学的过程。)如果大家不说停,我还继续。小班化教学,不用我多说,你懂得。

英语技能方面的培训,不是一朝一夕的事,它需要长期的去练习。不是培训这几天就一劳永逸,更多的是给了我一种学习英语的动力,下决心坚持每天学英语。

第二部分是英语教学理论方面的讲座。

中科大材料合成化学 篇5

中国科学院大连化学物理研究所(以下简称大连化物所)创建于1949年3月,是一个基础研究与应用研究并重、应用研究和技术转化相结合,以任务带学科为主要特色的综合性研究所。六十多年来,大连化物所通过不断积累和调整,逐步形成了自己的科研特色。,大连化物所成为中国科学院知识创新工程首批试点单位之一。大连化物所的发展战略为“发挥学科综合优势,加强技术集成创新,以可持续发展的能源研究为主导,坚持资源环境优化、生物技术和先进材料创新协调发展,在国民经济和国家安全中发挥不可替代的作用,创建世界一流研究所。”

大连化物所围绕国家能源发展战略于10月启动了洁净能源国家实验室(DNL)的筹建工作,DNL是我国能源领域筹建的第一个国家实验室,共规划筹建化石能源与应用催化、低碳催化与工程、节能与环境、燃料电池、储能、氢能与先进材料、生物能源、太阳能、海洋能、能源基础和战略、能源研究技术平台等11个研究部。大连化物所还拥有催化基础国家重点实验室和分子反应动力学国家重点实验室两个国家重点实验室、以及甲醇制烯烃国家工程实验室、国家催化工程技术研究中心、膜技术国家工程研究中心、燃料电池及氢源技术国家工程中心、国家能源低碳催化与工程研发中心等多个国家级科技创新平台。大连化物所围绕国防安全、分析化学、精细化工和生物技术广泛开展基础性、战略性、前瞻性研究工作,设立化学激光研究室、航天催化与新材料研究室、仪器分析化学研究室、精细化工研究室和生物技术研究部等五个研究室。另外,大连化物所还与国外著名大学、公司和研究机构联合设立了中法催化联合实验室、中法可持续能源联合实验室、中德催化纳米技术伙伴小组、中韩燃料电池联合实验室和DICP-BP能源创新实验室等十几个国际合作研究机构。

自建所以来,大连化物所造就了若干享誉国内外的科学家及一大批高素质研究和技术人才,先后有17位科学家当选为中国科学院和中国工程院院士,3位当选为发展中国家科学院院士,1位当选为欧洲人文和自然科学院院士,国家杰出青年基金获得者20人,引进百人计划44名。

20,大连化物所预计招收硕士研究生119人(学术型103人,专业型16人)。另可招收“少数民族高层次骨干人才计划”专项考生,计划单列。研究所依山临海,环境优美,为研究生的学习和生活创造了一流条件。研究生在学期间实行奖助学金制,根据攻读学位和科研课题的不同,博士生、硕士生可获得国内一流的奖助学金。此外,研究所拥有大量的先进仪器设备、丰富的图书情报资料、充足的科研经费,为研究生的基础理论学习和高技术课题提供了优越的条件。

我所为在所研究生和每年入学新生设置了多项冠名奖学金、国家奖学金、新生奖学金和实习基金(总计约250万人民币/年)。欢迎广大有志青年学子加盟大连化学物理研究所,让我们和你一同为你的前途和大连化学物理研究所的明天携手共进。

招生领域:化学、化工、物理、材料、环境、医学、生物等专业背景的考生均可报考。

招生专业:理学学术型(分析化学、有机化学、物理化学、分子物理与原子物理、光学)

工学学术型(材料物理与化学、化学工程、生物化工、工业催化、环境工程)

工学专业型(化学工程、环境工程、生物工程)

一、培养目标

大连化物所招收攻读硕士学位研究生(包含学术型硕士研究生和专业学位硕士研究生,以下简称硕士生),是为了培养热爱祖国,拥护中国共产党的领导,拥护社会主义制度,遵纪守法,品德良好,具有服务国家服务人民的社会责任感,掌握本学科坚实的基础理论和系统的专业知识,具有创新精神和从事科学研究、教学、管理等工作能力的高层次学术型专门人才以及具有较强解决实际问题的能力、能够承担专业技术或管理工作、具有良好职业素养的高层次应用型专门人才。

学术型硕士研究生旨在培养德智体全面发展,爱国守法,在本学科内掌握坚实的基础理论和系统的专门知识,具有从事科学研究、教学、管理或独立担负专门技术工作能力、富有创新精神的`高级专门人才。

全日制专业学位硕士研究生面向社会需求,面向科技前沿,适应工程技术发展和创新需要,培养德智体全面发展,爱国守法,掌握相关专业领域坚实的基础理论和宽广的专业知识,具有较强的解决实际问题的能力,能够承担专业技术或管理工作,具有良好职业素养的高层次应用型专门人才。

全日制专业学位硕士研究生与学术型硕士学位研究生,在我国高层次人才培养中具有同等重要的地位和作用,属同一培养层次的不同类型。这种学位类型不同于以往的非全日制专业学位硕士,它不要求实际工作经历(个别招生类别和领域除外),需要通过全国硕士研究生统一入学考试选拔录取,在导师指导下进行全日制脱产学习且具有学籍,毕业时达到培养要求者颁发硕士研究生毕业证和硕士专业学位证,双向选择联系就业并正常派遣。与学术型硕士不同的是,全日制专业学位硕士研究生主要面向社会应用需求进行招生和培养,在培养过程中更加侧重于专业技术技能和应用实践能力的培养。专业学位硕士研究生不能进行硕博连读,但可按普通招考方式正常报名参加博士研究生入学考试。

二、报考条件

学术型硕士研究生和全日制专业学位硕士研究生采取“分列招生计划、分类报名考试、分别确定录取标准”的招生考试模式。

(一)报名参加硕士研究生全国统一考试(含学术型硕士和全日制专业学位硕士)须符合下列条件:

1.中华人民共和国公民。

2.拥护中国共产党的领导,具有正确的政治方向,热爱祖国,愿意为社会主义现代化建设服务,遵纪守法,品行端正。

3.考生的学历必须符合下列条件之一:

(1)国家承认学历的应届本科毕业生;

(2)已取得国家承认的大学本科毕业证书的人员(包括通过高等自学考试或国家承认学历的成人高考或网络教育获得本科毕业证书的人员,该类人员须在报名现场确认截止日期即11月14日前取得国家承认的大学本科毕业证书方可报考);

(3)已获硕士、博士学位的人员;

(4)达到与大学本科毕业生同等学力的人员。

其中同等学力人员是指:

①获得国家承认的高职高专毕业学历后,满2年(从高职高专毕业到年9月1日),且达到报考单位根据培养目标提出的具体业务要求的人员;

②国家承认学历的本科结业生;

③成人高校(含普通高校举办的成人高等学历教育)应届本科毕业生。

4.身体健康状况符合规定的体检标准。

5.同等学力人员报考,还应具备下列条件:

(1)已取得报考专业大学本科8门以上主干课程的合格成绩(由教务部门出具成绩证明或出具本科自学考试成绩通知单);

(2)已在公开出版的核心学术期刊发表过本专业或相近专业的学术论文,或获得过与报考专业相关的省级以上科研成果奖(为主要完成人),或主持过省级以上科研课题。

(二)报考少数民族骨干计划的考生,报考条件见《中国科学院大学2015年“少数民族高层次骨干人才计划”硕士研究生招生简章》。

(三)已经在读的研究生报考,须在报名前征得在读单位学籍管理部门书面同意后方可报考。

(四)大连化物所各专业均接收具有推荐免试资格的高等学校优秀应届本科毕业生免试为硕士生(学术型)。能在高校取得推荐免试资格的考生,可尽早与我所研招办联系推免生接收事宜。推免生应通过中国科学院大学研究生招生网“网上报名”→“推免申请系统”提出网上申请(网址:admission.ucas.ac.cn/),并按照我所研招办的要求提交推荐免试材料和进行相关考核。被确定接收的推荐免试考生应按时参加全国统一的研究生网上报名和现场确认(详见下条)。

被接收的推免生须在国家规定的报名时间内到报考点办理报名确认手续,亦不得再参加统考。到月25日仍未落实接收招生单位的推免生不再保留推免资格。

三、报名

考生报名前应仔细核对本人是否符合报考条件。在复试阶段将进行报考资格审查,凡不符合报考条件的考生将不予复试和录取,相关后果由考生本人承担。

有机合成化学课件 篇6

有机合成实质是利用有机物的性质,进行必要的官能团反应,生成目标产物。在前面的学习中,学生掌握了

烃、卤代烃、醇、酚、醛、羧酸、酯等有机物的结构特点、物理性质、化学性质以及用途等方面的知识。学生的逻辑思维能力以及信息迁移能力有了显著提高,通过本节课的学习,学生将会认识到有机合成与人们生活的密切关系。通过有机物逆合成分析法的推理,进-步培养学生逻辑思维能力以及信息的迁移能力,同时巩固学生对各类有机物的相互转化关系以及重要官能团的引入等基础知识的认识。

本节课的课堂开放点主要有三个:其一是通过小组讨论和归纳,明确一些重要官能团(羟基、卤素原子、碳碳双键)的引入方法;其二通过已给出的信息结合逆推法知识,分组设计合成苯甲酸苯甲酯的路线;其三是结合实际情况来优选合成路线。

本节课从神七航天员太空漫步引入,不仅引发学生兴趣,激发学生的民族自豪感和爱国热情,而且可以说明有机合成和生活的密切联系,引导学生用化学视角关注生活,学以致用。这节课通过三种与生活联系紧密物质出发,设计成三个由浅入深的情境,分三步引导学生让学生由浅入深的进行合成训练,在动手训练中自己体会、掌握逆合成分析法的思维方法在分组讨论、归纳总结、师生互动、层层递进的情况下不断提升,突出学生的主体性,让学生学过的有机化学形成知识网络,能够具备一定的合成指定有机物。

2.教学内容分析

有机合成是高考难点题型之一,实质是利用有机物的性质,进行必要的官能团反应。要求学生

熟练掌握好各类有机物的组成、结构、性质、相互衍生关系以及重要官能团的引入和消去等基础知识。在前三节的学习中,学生掌握了醇、酚、醛、羧酸、酯等含氧衍生物的结构特点、物理性质、化学性质以及用途等方面的知识。学生的逻辑思维能力以及信息迁移能力有了显著提高 , 通过本节课的学习, 学生将会认识到合成的有机物与人们生活的密切关系 .对学生渗透热爱化学、热爱科学的思想教育;通过有机物逆合成分析法的推理,进-步培养学生逻辑思维能力以及信息的迁移能力。

3.学生情况分析

学生已经初步掌握了烃、卤代烃、醇、酚、醛、羧酸、酯等有机物的结构、物理性质、化学性质,为有机合成奠定了理论基础。本节教学内容对学生来说难度较大,要在帮助学生复习再现归纳烃以及烃的衍生物相互转化关系的基础上,建立烃和烃的衍生物转化关系图,引导学生初步学会有机合成的方法:即目标产物分子骨架的`构建和官能团的转化。

4.教学目标设计

(1)基本目标

①知识与技能::对有机化合物官能团之间的转化形成较为全面的认识,了解有机合成的基本过程和基本原则,理解逆向合成法在有机合成用的应用

②过程与方法:通过有梯度的与生活实际相关的有机合成的训练,培养学生的逆合成分析法的逻辑思维能力

③情感态度与价值观:认识有机合成对人类生产生活的重要影响,赞赏有机化学家们为人类社会所做出的重要贡献,培养学习化学的兴趣。

(2)发展性目标

①知识与技能:知道有机合成路线设计的一般程序和方法,能对给出的有机合成路线进行简单的分析和评价

②过程与方法:通过小组讨论,归纳整理知识,培养学生对物质性质和官能团转化方法的归纳能力

③情感、态度与价值观:知道绿色合成思想是优选合成路线的重要原则,由此树立可持续发展的观念。

(3)教学重点的分析与确定

有机合成是高考难点题型之一,实质是利用有机物的性质,进行必要的官能团反应。因此本课重点定为①官能团相互转化的概括和总结②逆合成分析法在有机合成过程中的应用。

(4)教学难点的分析与确定

中科大材料合成化学 篇7

关键词:锂离子电池,LiFePO4,复合材料,电化学性能

0 引言

LiCoO2, LiNiO2及LiMn2O4系正极材料, 具有化学性能不够稳定、成本高、毒性、安全危害性等缺点。磷酸铁锂 (LiFePO4) 是一种潜在的能广泛运用的正极材料[1,2]。LiFePO4储能正极材料, 因为它们具有高能量密度、低原料成本、环境友好性, 在完全充电状态下具有高的热稳定性, 比常规材料更加安全耐用。LiFePO4是最简单的、最广泛和最有用的研究潜力。LiFePO4具有较高的电压平台 (3.4 V Vs. Li+/Li) , 理论容量高达170 m A·h/g, 材料使用安全且性能稳定[3]。

采用喷雾干燥法合成球形LiFePO4/C复合材料;采用共沉淀、水热法通过反应条件的控制来合成得到不同颗粒粒径的球形形貌LiFePO4/C复合材料;Zhang等采用酵母细胞既用作结构模板作为产物的碳源, 实现LiFePO4/C纳米复合微球的可控合成。

采用柳絮纤维合成LiFePO4/C复合材料, 是一个改善环境和提高材料性能的思路。因此, 柳絮作为碳源, 利用蒸发自组装的方法有效地合成LiFePO4复合材料。

1 实验

1.1 材料合成

以柳絮为碳源经过蒸发自组装合成Li Fe PO4/C复合材料的制备:将0.01 mol CH3COOLi、0.265 g蔗糖溶于去离子水中然后将0.01 mol H3PO4加入混合均匀;然后将0.01 mol Fe (CH3COO) 2·4H2O溶于去离子水中, 加入少量抗坏血酸, 防止Fe2+氧化;将两者混合均匀得到澄清溶液;将处理后的柳絮加入溶液中超声混合均匀得到混合液;最后, 将混合液静置在通风橱, 并防止灰尘等杂物落入, 直到混合液水分挥发完毕, 得到Li Fe PO4/C复合材料的前驱体。将前驱体转移到刚玉小瓷舟中, 放置在管式炉中, 在N2气氛下, 在350 ℃预烧5 h, 700℃焙烧15 h, 最终得到产物Li Fe PO4/C复合材料。

1.2 材料表征

采用西门子公司D5000X衍射仪 (Cu Kα1, 35 k V、30 m A) 对试样进行物相及结构分析。扫描范围:15°~70°, 步长:0.02°, 步进时间:0.2 s;采用日本JEOL公司JSM- 6700F的扫描电子显微镜观察试样形貌。

1.3 电化学性能测试

将电极活性物质、乙炔黑和PTFE (聚四氟乙烯) 按质量比75∶20∶5混合均匀, 滚压成厚度为0.1 mm的薄片, 取Φ12 mm圆片为电极膜, 金属锂片为对电极和参比电极, Celgard2400为隔膜, 1 mol·L- Li PF6/EC+DMC为电解液, 在充Ar手套箱内组装成三电极模拟电池。采用Arbin BT- 2000电化学测试仪进行恒电流充放电测试。充放电电压范围为2.5 V~4.1 V, 电流密度分别为15 m A/g和300 m A/g。

2 结果与讨论

以不同含量柳絮下合成的Li Fe PO4/C复合材料的XRD (X- 射线) 图形 (见图1) , 由XRD图谱可看出合成的Li Fe PO4的衍射峰与40- 1499标准峰可一一对应, 由此可看出, 由该方法成功合成了纯相Li Fe PO4, 并没有发现C所对应的衍射峰, 说明柳絮作为碳源, 在碳化过程中没有改变Li Fe PO4晶体结构, 碳化后形成了导电性良好的无定形碳。图1中, θ为衍射角, °。

图2为在Li Fe PO4/C复合材料的SEM (扫描电子显微镜) , 由图2 a) 可看出在添加柳絮量1%时, 得到大小不一的颗粒状, 且有明显团聚发生, 同时在颗粒中分布着细碎纳米线。 由此可见当添加的柳絮过少时, Li Fe PO4自由蒸发结晶, 柳絮纤维不能提供足够模板。由图2 b) 可看出当增加柳絮含量为3%时, 观察的纳米线含量有所增加。在柳絮含量为5%时, 从图2 c) 中明显看到长2 μm~3 μm、直径50 nm左右的纳米线结构, 均匀分布, 纳米线表面光滑。

图3为Li Fe PO4/C复合材料的电化学性能曲线。由图3a) 、图3b) 可看出柳絮含量在1%、3%、5%、10%的Li Fe PO4复合材料在0.1C倍率 (C取170 m A/g) 下首次放电比容量分别为118.3 m A·h/g、133.9 m A·h/g、137.7m A·h/g、110.6 m A·h/g, 柳絮含量在3%、5%时, 放电比容量明显高于其它含量下, 在图中还可看出, 在100圈的循环下, 分别测试了倍率为0.1C、0.2C、0.5C、1C、0.2C的性能, 在柳絮纤维含量为5%时合成的Li Fe PO4复合材料的倍率性能最优异, 放电容量达到130m A·h/g。在1C倍率下放电比容量可看出在循环100周后容量保持率在95%, 由此表明合成的Li Fe PO4良好的循环性能。图3b) 可看出无论在何种放电倍率下, 合成的Li Fe PO4复合材料具有平稳的放电电压平台, 放电压为3.4 V (Vs.Li+/Li) 。

3 结语

以柳絮为碳源通过蒸发自组装合成了的Li Fe PO4/C复合材料, 柳絮添加量对复合材料形貌影响较大, 当柳絮添加量为5%时, 得到材料的形貌最整齐, 柳絮上均匀覆盖着Li Fe PO4纳米线, 其0.1C倍率下放电比容量最高, 为141 m A·h/g, 倍率为1C时, 放电容量达到130m A·h/g以上, 循环600周后, 容量保持率在95%以上。

参考文献

[1]韩芳.我国可再生能源发展现状和前景展望[J].可再生能源, 2010, 28 (4) :137-140.

[2]胡信国.中国铅蓄电池的市场现状与展望[J].电池工业, 2006, 11 (3) :190-193.

中科大材料合成化学 篇8

化学和电化学方法合成苯/胺封端苯胺四聚体

利用改进了的MacDiarmid氧化偶联方法合成了苯/胺封端的苯胺四聚体.通过对循环伏安曲线的`分析,给出二聚体经由电化学氧化-化学偶联成为四聚体的机理.利用基质辅助激光解吸质谱和红外光谱对产物进行了表征.

作 者:孙再成 邝力 景遐斌 王献红 李季 王佛松  作者单位:孙再成,景遐斌,王献红,李季,王佛松(中国科学院长春应用化学研究所,高分子物理与化学国家重点实验室,中国科学院-中国石化集团公司高分子化学联合开放实验室,长春,130022)

邝力(中国海南出入境检验检疫局,海口,570311)

刊 名:高等学校化学学报  ISTIC SCI PKU英文刊名:CHEMICAL JOURNAL OF CHINESE UNIVERSITIES 年,卷(期):2002 23(3) 分类号:O63 关键词:苯/胺封端四聚体   化学氧化偶联   电化学循伏安法  

高分子材料合成 篇9

第7章 合成高分子材料

学习目标与要求

1. 了解合成高分子聚合物的基本组成结构特点和分类。

2. 了解聚合物的分子结构与其性能之间的关系。

3. 熟悉聚合物的基本性能特点和常用聚合物的品种。

4. 熟悉土木工程中常用的建筑塑料、建筑涂料和胶粘剂等产品的基本组成、性能及应用。

学习重点

1.聚合物的基本组成结构特点和分类。

2.聚合物的分子结构与其性能之间的关系。

3.土木工程中常用的合成高分子材料制品的性能和应用。

学习难点

1.如何理解合成高分子材料的结构与性能的关系。这里既有聚合物的分子结构与其性能之间的关系,还有具体产品(塑料、涂料、胶粘剂等)的组成与性能的关系。

2.土木工程中如何正确选择使用合成高分子材料制品。

合成高分子材料是指其基本组成物质为人工合成高分子化合物的各种材料。合成高分子材料主要包括合成树脂、合成橡胶和合成纤维三大类。在土木工程中,合成树脂主要用于制备建筑塑料、建筑涂料和胶粘剂等,是用量最大的合成高分子材料。合成橡胶主要用于防水密封材料、桥梁支座和沥青改性材料等,用量仅次于合成树脂。合成纤维主要用于土工织物、纤维增强水泥、纤维增强塑料和膜结构用膜材料等,用量也在不断增加。

7.1高分子化合物概述

7.1.1基本知识

1. 基本概念

高分子化合物又称高聚物或聚合物,其分子量很大,一般为104 ~ 106。其分子往往由许多相同的、简单的结构单元,通过共价键重复连接而成。例如,聚氯乙烯分子是由许多氯乙烯结构单元重复连接而成:

简写为:

式中:

是重复结构单元,称为“链节”。结构单元的重复数目n称为“聚合度”。聚合度可由几百至几千,聚合物的分子量为重复结构单元的分子量与聚合度的乘积。

2. 聚合物的分类

聚合物的分类方法很多,按聚合物的来源,分为天然聚合物和合成聚合物;按分子结构,分为线型聚合物和体型聚合物;按聚合物受热的行为,分为热塑性聚合物和热固性聚合物等。

热塑性聚合物具有受热时软化、遇冷时凝固且无明显化学变化的性质。通常热塑性聚合物可反复进行加热软化、熔融和冷却硬化。所以热塑性聚合物具有可再生重复使用的特性。

热固性聚合物仅在第一次加热(或加入固化剂前)时能发生软比、熔融,并在此条件下产生化学交联而固化,以后再加热时再不会软化或熔融,也不会被溶解,若温度过高则会导致分子结构破坏。目前尚不能以通常的方式对热固性聚合物再生利用。

聚合物还常按用途分为塑料、橡胶、纤维、涂料、胶粘剂等几大类。这种分类方法最为常用,但不很严格。事实上,同一种聚合物可以有多种用途。例如.聚氨酯可制成具有橡胶的性能,也可发泡制成硬度不同的泡沫塑料,还可拉丝制成高强度高弹性的纤维、制作涂料和胶粘剂。这种能够适应多用途需要的特点,是高分子材料得以广泛应用的重要原因。

3. 聚合物的命名

聚合物的命名有系统命名法和习惯命名法。系统命名法命名比较复杂,实际很少使用。 在习惯命名法中,天然聚合物用专有名称,加纤维素、淀粉、蛋白质等;合成聚合物,则在单体名称前加上“聚”字,例如聚氯乙烯、聚苯乙烯等;也可在原料名称后加“树脂”、“橡胶”、“纤维”等来命名,这种命名能反映聚合物的结构和用途,是常用的命名法。

4. 聚合反应

由低分子单体合成聚合物的反应叫做聚合反应。聚合反应按单体和聚合物在组成和结构上发生的变化,分为加聚反应和缩聚反应两大类。

以单体通过加成的方式,聚合形成聚合物的反应称为加聚反应。加聚反应是链式反应。其特点是单体分子具有能够聚合的双键、三键、环状结构等;其中,含双健结构的单体最为广泛,如乙烯、氯乙烯、苯乙烯、丁二烯等。加聚反应是按参加反应的单体种类数目,可分为均聚反应和共聚反应。均聚反应是只有一种单体进行的聚合反应,其产物称为均聚物,如聚乙烯、聚氯乙烯等。共聚反应是由两种或两种以上的单体进行的聚合反应,其产物称为共聚物。

缩聚反应是含有两个以上官能团的单体,通过官能团间的反应生成聚合物的反应。缩聚反应与加聚反应不同,其聚合物分子链增长过程是逐步反应,同时伴有低分子副产物如水、氨、甲醇等的生成。缩聚反应按照生成产物的结构可分为线型缩聚反应与体型缩聚反应两类。当缩聚反应只在一种单体间进行时,称为均缩聚反应。如果缩聚反应在两种单体之间进行,则称作混缩聚反应。如果在均缩聚反应中加入第二单体或在混缩聚反应中加入第三单体,则称为共缩聚反应。

加聚反应生成的共聚物和缩聚反应生成的共缩聚物统称为共聚物。共聚物的性能与不同种类单体的相对数量和排列方式有密切关系。共聚物根据链节排列方式的不同可分为无规共聚物、交替共聚物、嵌段共聚物和接枝共聚物四种。

7.1.2聚合物的结构与性质

1. 聚合物的分子结构

聚合物按其分子结构可分为线型聚合物和体型聚合物。

(1)线型聚合物

线型聚合物的大分子链排列成线状主链(如图7―1a)。有时带有支链(如图7―1b),且线状大分子间以分子间力结合在一起。具有线型结构的聚合物包括全部加聚树脂和部分缩聚树脂,一般来说,具有线型结构的树脂,强度较低,弹性模量较小,变形较大,耐热、耐腐蚀性较差,且可溶可熔。支链型聚合物因分子排列较松,分子间作用力较弱,因而密度、熔点及强度等低于线型聚合物。线形聚合物树脂均为热塑性树脂。

(2)体型聚合物

线型大分子间通过化学键交联作用而形成的三维网状结构,又称网状或体型结构(如图7―1c)。部分缩合树脂具有体型结构(交联或固化前也为线型或支链型分子)。由于化学键的结合力强,且交联形成一个“巨大分子”,因此,―般来说缩合树脂的强度高,弹性模量较大,变形较小,较硬脆,且塑性小,耐热性、耐腐蚀性较好,不溶不熔。体型聚合物树脂均为热固性树脂。

图7―1 聚合物大分子链的结构示意图

(a)线型;(b)支链型;(c)体型

2. 聚合物的聚集态结构

固态聚合物是由大分子链以分子间作用力聚集在一起的。聚集态结构就是指分子链间的排列、堆砌方式和规律。可分为晶态结构、非晶态结构、取向态结构和织态结构等聚集状态。 晶态结构的聚合物与低分子量晶体有很大的不同。由于线型高分子难免有弯曲,故聚合物的结晶为部分结晶,即在结晶聚合物中存在“晶区”和“非晶区”。且大分子链可以同时跨越几个晶区和非晶区。晶区所占的百分比称为结晶度。一般来说,结晶度越高,则聚合物的密度、弹性模量、强度、耐热性、折光系数等越高,而冲击韧性、粘附力、断裂伸长率、溶解度等越低。晶态聚合物一般为不透明或半透明状,非晶态聚合物则一般为透明状。体型聚合物只有非晶态结构。

取向态结构是指聚合物在一维或二维方向的有序排列结构。事实上.线型高分子链充分伸展时,其长度为其宽度的几百、几千其至几万倍;在―定条件下,使线型聚合物的分子链沿着特定方向排列称为取向。取向在工业生产中得到了广泛应用。例如,在合成纤维生产中.采用热牵引工艺,使分子链取向,可提高纤维的强度和弹性模量。聚乙烯纤维未取向时的抗拉强度约为60 ~ 80 MPa,而取向后的强度可达800 MPa。

织态结构是指将两种或两种以上的聚合物或不同分子量的同种聚合物混合而得到的材料结构,属非均相体系结构。其中,由一个分散相和一个连续相组成的两相共混物应用最多。例如,分散相软、连续相硬的橡胶增韧塑料和分散相硬、连续相软的热塑性弹性体等。

3. 聚合物的物理状态和特点

聚合物的物理状态可根据温度―变形曲线划分,线型非晶态聚合物分为玻璃态、高弹态和粘流态三种物理状态(如图7―2)。

图7―2 线型非晶态聚合物的变形与温度的关系

线型非晶态聚合物在低于某一温度时,分子动能很低,大分子链的运动和分子链段的旋转都被冻结,聚合物在外力作用下,产生的变形较小,弹性模量较大。此时,聚合物所处的状态称为玻璃态。聚合物保持玻璃态的温度上限称为玻璃化转变温度(Tg)。当温度升高到Tg上以后,分子动能增加,分子链段能运动,但大分子链的运动仍被冻结,聚合物弹性模量较小,在外力作用下,产生较大的变形。且变形是可恢复的,这种状态称为高弹态。聚合物保持高弹态的上限温度,称为粘流温度(Tf)。当温度升高到Tf上以后,分子动能增加到链段和整个大分子链都可以运动,聚合物成为可以流动的粘稠液体,此时,聚合物在外力作用下,分子间相互滑动,产生粘性流动,外力除去后保持变形,即变形不可逆。玻璃化转变温度和粘流温度是高分子材料的重要性质指标。可以确定高分子材料的使用温度范围、材料的加工温度范围等。

玻璃化转变温度低于室温的称为橡胶,高于室温的称为塑料。玻璃化转变温度是塑料的最高使用温度,但却是橡胶的最低使用温度。粘流温度在室温以下的高聚物可作胶粘剂或涂料使用。

4.聚合物的主要性质

(1)密度:聚合物的密度较小,一般在0.9 ~ 2.2g/cm3之间,平均约为铝的1/2,钢的1/5,混凝土的1/3。

(2)比强度:聚合物有较高的强度,密度小,所以比强度远远超过传统的建筑材料,是极好的轻质高强材料。但聚合物的刚度比较差,容易变形。

(3)导热性:聚合物的导热性较小,约为金属的1/500 ~ 1/600。其泡沫塑料的导热性接近空气,是一种良好的轻质保温隔热材料。

(4)化学稳定性:一般聚合物对侵蚀性化学物质(酸、碱、盐溶液)及蒸汽的作用具有较高的稳定性。但有些聚合物在有机溶剂中会溶解或溶胀,使用时应予以注意。

(5)防水密封性:大多数聚合物具有很强的憎水性,防水、防潮及密封性能突出。

(6)电绝缘性:聚合物通常都具有极高的`电绝缘性和击穿电压,是非常好的电绝缘材料。

(7)减震、消音性:聚合物具有突出的粘弹性,在受外力冲击时,其大分子的粘滞性能吸收大量的振动波和声波,具有良好的减震消声作用。

(8)与其他材料的复合型:聚合物对其他类型的材料通常都具有很强的润湿及粘附性,因

而可制成性能优良的复合材料。

(9)耐热性:作为有机化合物的聚合物,热稳定性能较差。热塑性聚合物的耐热温度一般为50 ~90℃;热固性聚合物的耐热温度一般在100 ~ 200℃。高温下易燃烧和分解,并释放出有害气体。

5. 聚合物的老化

在使用过程中,聚合物会由于光、热、空气(氧和臭氧)等的作用而发生结构或组成的变化,从而出现各种性能劣化现象。如出现变色、变硬、龟裂、发粘、发软、变形、斑点、机械强度降低,称为聚合物的老化。

聚合物的老化是一个复杂的过程,一般可将其分为聚合物分子的交联与降解两种。交联是指聚合物的分子从线型结构变为体型结构的过程。当发生这种老化作用时,表现为聚合物失去弹性、变硬、变脆,并出现龟裂现象。降解是指聚合物的分子链发生断裂,其分子量降低,但其化学组成并不发生变化。当老化过程以降解为主时,聚合物会出现失去刚性、变软、发粘、出现蠕变等现象。

根据老化原因的不同聚合物的老化分为热老化和光老化两类。光老化是指聚合物在阳光(特别是紫外线)的照射下部分分子(或原子)被激活而处于高能的不稳定状态,并与其他分子发生光敏氧化作用,致使聚合物的结构和组成发生变化,性能逐渐恶化的现象。热老化是指聚合物在热的作用下,尤其是在较高温度下暴露于空气中时,聚合物的分子链由于氧化、热分解等作用而发生断裂、交联,其化学组成与分子结构发生变化,从而使其各项性能发生劣变的现象。因此,大多数聚合物材料的耐高温性和大气稳定性都较差。

7.1.3常用的聚合物

1. 合成树脂

合成树脂的种类很多,而且随着有机合成工业的发展和新聚合方法的不断出现,合成树脂的品种还在继续增加。但是,真正获得广泛应用的合成树脂,不过20种左右。在此,仅介绍一些在土木工程材料中经常使用的合成树脂。

(1)热塑性树脂

①聚乙烯(PE)

聚乙烯(PE)是树脂中分子结构最简单的一种,它是由乙烯单体聚合而成。聚乙烯按合成时的压力分为高压聚乙烯和低压聚乙烯。高压聚乙烯的密度较小,故称为低密度聚乙烯(LDPE)。低压聚乙烯聚合条件比较温和,制得的产品结晶度高、密度大,故称高密度聚乙烯(HDPE)。聚乙烯塑料无臭、无毒,原料来源丰富,价格较低,且具有优异的耐低温性(最低使用温度可达 -70 ~ -100℃)、化学稳定性、电绝缘性和加工性能。在建筑中,聚乙烯主要用于生产防水材料(薄膜、卷材等)、给排水管材(冷水)、电绝缘材料、水箱和卫生洁具等。

②聚氯乙烯(PVC)

聚氯乙烯树脂(PVC)是氯乙烯通过自由基聚合制成白色粉末或糊状的树脂。由于PVC树脂链上带有负电性很强的氯原子,使分子链之间产生很大的引力,阻碍了分子链之间的相对滑动。因此,PVC树脂具有良好的耐化学腐蚀性和阻燃性,但材质脆而硬,较少弹性。通过添加增塑剂可以改善PVC的柔韧性。

在建筑中,硬质聚氯乙烯主要用作天沟、落水管、外墙覆面板、天窗及给排水管。软质聚氯乙烯常加工为片材、板材、型材等。如卷材地板、块状地板、壁纸、防水卷材和止水带等。在PVC中混入大量的碳酸钙制成钙塑料可以提高塑料的硬度、降低成本,用于代替钢

材和木材制作塑料门窗、楼梯扶手、地板、天花板和电线套管等。将PVC轻度发泡可以制成塑料地毯和塑料壁纸等。

③聚苯乙烯(PS)

聚苯乙烯(PS)的均聚物是由苯乙烯单体聚合而得,质地坚硬,化学性能和电绝缘性能优良,易于成型出各类色彩鲜艳、表面光洁的制品,应用广泛。但聚苯乙烯耐热性差、质脆,这在一定程度上限制了它的应用,因此,应对其改性。目前大量生产的苯乙烯类聚合物主要有:通用型聚苯乙烯GPPS,高抗冲型聚苯乙烯HIPS,发泡型聚苯乙烯EPS以及苯乙烯的共聚物如ABS塑料(俗称工程塑料)等。

建筑中聚苯乙烯主要用于制作泡沫塑料,有挤塑发泡板和发泡颗粒产品。其隔热保温性能优异。此外,聚苯乙烯也常用于涂料和防水薄膜的生产。ABS树脂主要用于生产塑料装饰板和管材等。

④聚丙烯(PP)

聚丙烯(PP)可分为均聚PP和共聚PP两大类,共聚PP是在聚合过程中加入大约2%~5%的乙烯而制得的。聚丙烯的主要特点是密度低(0.89~0.92 g/cm3),耐化学药品性、耐腐蚀性、耐热性优良且价格低廉。

在建筑中,聚丙烯常用于制作管材、装饰板材、卫生洁具及各种建筑小五金件。 ⑤聚甲基丙烯酸甲酯(PMMA)

聚甲基丙烯酸甲酯(PMMA)是透明、无毒无味的无定形热塑性树脂,俗称有机玻璃。其最大优点是具有优异的光学性能,对可见光的透过率可达92%,对紫外线的透过率达73.5%,均优于普通无机硅酸盐玻璃,并具有较好的耐气候老化性,质轻(约为无机玻璃的1/2),抗冲击强度较高。

在建筑中,聚甲基丙烯酸甲酯主要用作采光天窗、防震玻璃、室内装饰等,以适当方式对其增强后,也可用于制作透明管材及其他建筑制品。

(2)热固性树脂

①酚醛树脂(PF)

酚醛树脂是酚类和醛类化合物经缩聚反应而得的树脂的统称,其中应用较多的是苯酚―甲醛缩聚物(PF)。酚醛树脂的主要特点是有较好的电绝缘性能,密度低,强度较高。具有很高的热强度等,但质脆,抗冲击性能差。

在土木工程中。酚醛树脂主要用于制造各种层压板和玻璃纤维增强塑料,以及防水涂料、木结构用胶等。

②脲醛树脂(UF)

脲醛树脂是由甲醛和尿素缩聚而成的聚合物。它具有耐燃、耐电弧、易着色、表向硬度高、耐溶剂、本身呈透明状等特点。因此,可制成表面光洁、色彩鲜明的玉状制品(俗称“电玉”)。但耐湿性差,受潮气和水的作用易发生变形或开裂,而且耐热性较差。

在土木工程中,脲醛树脂主要用于生产木丝板、胶合板、层压板等。经发泡处理后,可制得一种硬质泡沫塑料,用作填充性绝缘材料。经过改性处理的脲醛树脂还可用于制造涂料、胶粘剂等。

③不饱和聚酯树脂(UP)

不饱和聚酯树脂是指分子链主链上含有不饱和键的聚酯。不饱和聚酯在性能上具有 多变性,由于组成的变化,UP可以是硬质的、有弹性的、柔软的、耐腐蚀的、耐气候老化的或耐燃的,这些性能上的变化形成了UP在应用上的多样化。在土木工程中,广泛地用于制造涂料、玻璃纤维增强塑料(俗称玻璃钢)和作为聚合物混凝土中的胶结料。可用于墙面、地面装饰,制作人造大理石、人造玛瑙,具有装饰性好、耐磨等特点。

④环氧树脂(EP)

环氧树脂是分子结构中含有环氧基的聚合物,种类很多。其中用途最广的是环氧氯丙烷与双酚A缩聚得到的双酚A型环氧树脂。这种环氧树脂是线型结构,具有热塑性。应用时必须加入固化剂,使环氧树脂固化。固化剂品种很多,常用的有胺类、酸酐类、高分子预聚体和咪唑等。固化后的环氧树脂具有强度高、粘结力强、收缩率小、耐水、耐化学腐蚀性和电绝缘性好等特点。

在土木工程中,环氧树脂主要用于结构胶粘剂、玻璃纤维增强塑料、聚合物混凝土以及防腐涂料和耐磨地坪材料等。

⑤有机硅树脂(SI)

有机硅是一大类主链含硅的高分子化合物,属于元素有机高分子;主要有聚有机硅氧烷

(SI),它的主链由硅氧键构成,侧基为有机基团。这种结构使硅化合物具有良好的化学稳定性,耐氧化、臭氧和紫外线照射,使用温度范围宽(-50~+200℃),憎水性高等一系列的独特性能。

在土木工程中,有机硅树脂主要用于层压塑料和防水材料。在各种有机硅树脂中,硅酮的应用较多,广泛地应用于涂料、胶粘剂和嵌缝材料中。

2. 合成橡胶

橡胶是玻璃化转变温度Tg较低,在室温下具有高弹性的聚合物。橡胶的主要持点是在-50~+150℃范围内,具有极为优异的弹性,在外力作用下,变形量可以达到百分之几百,并且在外力取消后,变形可完全恢复。此外,橡胶还具有良好的抗拉强度、耐疲劳强度,良好的不透水性、不透气性、耐酸碱腐蚀性和电绝缘性等。由于橡胶良好的综合性能,在土木工程中,广泛用作防水材料和密封材料等。

橡胶按来源分为天然橡胶和合成橡胶。在土木工程中,主要应用的是合成橡胶。合成橡胶是各种单体经聚合反应人工合成的橡胶,是具有橡胶特性的一类聚合物,常用的合成橡胶有丁基橡胶、氯丁橡胶、乙丙橡胶和丁苯橡胶等。

(1)丁基橡胶(HR)

丁基橡胶是通过异丁烯与异戊二烯聚合制备的结晶性非极性橡胶。丁基橡胶最独特的性能是气密性非常好,水渗透率极低、其耐热性、耐气候老化性能、耐臭氧老化性能也很好,但弹性较低、工艺性能较差、硫化速度慢、粘着性和耐油性等也较差。

丁基橡胶主要用作防水卷材和防水密封材料。

(2)氯丁橡胶(CR)

氯丁橡胶是通过氯丁二烯聚合制备的结晶性橡胶。氯丁橡胶是所有合成橡胶中密度最大的,其相对密度约为1.23~1.25,呈浅黄色或棕褐色。这种橡胶的原料来源广泛,其抗拉强度较高,透气性、耐磨性较好,不易老化,耐油、耐热、难燃、耐臭氧、耐酸碱腐蚀性好,粘结力较强。其缺点是对浓硫酸和浓硝酸的抵抗力较差,电绝缘性也较差。

在建筑上氯丁橡胶被广泛地用于胶粘剂、门窗密封条、胶带等。

(3)乙丙橡胶(EPM)

乙丙橡胶是以乙烯、丙烯为主要单体原料共聚的无定形橡胶。根据是否加入第三单体可分为二元乙丙橡胶和三元乙丙橡胶两大类。三元乙丙橡胶生产和使用较多。乙丙橡胶具有优异的耐老化性能,是现有通用橡胶中耐老化性能最好的,能长期在阳光、潮湿、寒冷的自然环境中使用;耐热性能好,可在120℃的环境中长期使用,最高使用温度达150℃;具有较

好的低温性能,最低极限使用温度可达-50℃或更低;具有较好的耐化学腐蚀、耐热水和水蒸气性能,密度是所有橡胶中最低的。其缺点是硫化速度慢。自粘性与互粘性较差,耐燃性、耐油性和气密性差。主要用于生产防水卷材。

(4)丁苯橡胶(SBR)

丁苯橡胶是丁二烯和苯乙烯的共聚物,通过调节苯乙烯的含量可以得到不同性能的丁苯橡胶。丁苯橡胶(SBR)是产量和消耗量最大的合成橡胶。纯丁苯橡胶的强度低,须增强后才具有实际使用价值;其弹性、耐寒性较差,耐撕裂性和粘着性能均较天然橡胶差。但耐热性、耐老化性、耐磨性均优于天然橡胶。它主要用于铺地材料和沥青改性等。

(5)硅橡胶(SR)

硅橡胶的分子主链是由硅原子和氧原子交替组成(―Si―O―Si―),其键能比碳一碳键能(C―C)要大得多,柔顺性也很好,因而具有优异的耐高、低温性能,在所有的橡胶中工作温度范围最宽(-100~+350℃)。硅橡胶还具有优异的耐老化、电绝缘、耐电晕、耐电弧性能,但力学性能较差。硅橡胶广泛用于建筑密封胶、防潮密封材料。

(6)热塑性弹性体

热塑性弹性体是一类具有类似橡胶力学性能及使用性能、又能按热塑性塑料进行加工和回收的聚合物。它既具有热塑性,便于加工和再生利用;又有很好的弹性,便于使用。因此,称为热塑性弹性体。常用的有苯乙烯类热塑性弹性体、聚氨酯类热塑性弹性体等。

SBS(苯乙烯一丁二烯一苯乙烯嵌段共聚物)为线型分子,是具有高弹性、高抗拉强度、高伸长率和高耐磨性的透明体,属于热塑性弹性体。在SBS中,苯乙烯单体是以一定的长度连接在丁二烯分子的两端,在室温时,弹性体的链段聚集、缠结在一起形成物理交联。在高温时,这些交联点解离,使弹性体具有热塑性。因此,SBS可以像热塑性塑料一样的加工。通过调节丁二烯(软段)和苯乙烯(硬段)的长度和比例,可以改变热塑性弹性体的性能。一般来说,热塑性弹性体的强度和耐磨性都优于通用橡胶,只是耐温性较差。SBS在建筑上主要用于沥青的改性。

3. 合成纤维

纤维可分为天然纤维(如羊毛、蚕丝、棉花、麻等)和化学纤维两大类,化学纤维按其聚合物来源又可分为人造纤维和合成纤维两类。人造纤维是以天然聚合物为原料经过化学处理后再加工制成的,如粘胶纤维、醋酸纤维、硝酸纤维等;合成纤维是由合成的聚合物制得的,有聚酯纤维、聚酰胺纤维、聚丙烯腈纤维、聚丙烯纤维等品种。

(1)聚酯纤维

聚酯纤维是大分子链中的各链节与酯基相连的聚合物纺制而成的合成纤维。其品种很多、目前主要是对苯二甲酸乙二酯纤维(PET),我国―般称为涤纶或的确良。聚酯纤维弹性好、强度大、模量高、吸湿性低、耐热性、耐磨性、耐光老化性能好。主要用于土工织物。

(2)聚酰胺纤维

聚酰胺纤维是分子主链由酰胺键连接起来的一类合成纤维,我国称为锦纶。聚酰胺有许多品种,应用最广泛的是聚酰胺6和聚酰胺66。聚酰胺的耐磨性非常好、强度、耐冲击性、弹性、耐疲劳性也很好,而且密度小;但是,聚酰胺纤维的模量低、耐光性、耐热性、抗静电性、染色性、吸湿性较差。主要用于绳索、化纤地毯等。

(3)聚丙烯腈纤维

聚丙烯腈纤维是采用丙烯腈三元单体共聚物纺成的纤维,又称腈纶。聚丙烯腈纤维的弹性模量高、耐光性、耐辐射性。化学稳定性、耐热性好,但强度较低、耐磨性、抗疲劳性较差。腈纶广泛用于污水处理和碳纤维生产。

(4)聚丙烯纤维

聚丙烯纤维是以丙烯聚合得到的等规聚丙烯为原料纺制而成的合成纤维,又称为丙纶。它是所有化学纤维中密度最小的,其强度高、回弹性、耐磨性、抗微生物、耐化学腐蚀性好。其缺点是吸湿性、染色性、耐光性、耐热性差。它可用于制作地毯、装饰织物、人造草坪和土工布等。

(5)聚乙烯醇纤维

聚乙烯醇纤维的常规产品是聚乙烯醇缩甲醛纤维,又称为维纶。维纶的短纤维外观接近棉,有“合成棉花”之称,但其强度和耐磨性都优于棉,保暖性、耐腐蚀性、耐日光性好。维纶的缺点是染色性、耐水性、弹性较差。聚乙烯醇纤维主要作为塑料、水泥、陶瓷等的增强材料,作为石棉的代用品用于纤维增强水泥;制作维纶帆布、非织造布滤材以及土工布等。

7.2土木工程常用的合成高分子材料

7.2.1建筑塑料

塑料是以合成树脂为主要成分,在一定条件(温度、压力等)下,可塑成一定形状并在常温下保持其形状的高分子材料。与传统的建筑材料相比,塑料具有质轻、比强度高、化学稳定性好、导热系数小、装饰性和加工性能好及耗能较低的持点;但塑料还有刚度小、易老化、易燃、耐热性差的缺点。此外,塑料中残留的单体和加入的增塑剂、固化剂等低分子物质都对人体健康不利。因此,采用塑料制作与饮食有关的设备时,要认真进行安全卫生检验。在土木工程中,塑料可作为结构材料和功能材料。作为结构材料应用的主要是纤维增强塑料。作为功能材料可用于隔热保温材料、装饰装修材料等。

塑料按组成成分分为单―组分塑料和多组分塑料。单一组分塑料基本上为合成树脂,只含少量助剂(如染料、润滑剂等),如聚乙烯、聚丙烯、聚苯乙烯塑料等。多组分塑料除含有合成树脂外,还含有较多的助剂(如填料、增塑剂、稳定剂等),如聚氯乙烯、酚醛塑料等。根据用途,塑料可分为通用塑料和工程塑料。根据其受热后性能的不同,塑料还可分为热固性塑料和热塑性塑料。

1. 塑料的基本组成

塑料是由合成树脂和各种添加剂所组成。合成树脂是塑料的主要成分,其质量占塑料的 40%以上。塑料的性质主要取决于所采用的合成树脂的种类、性质和数量。因此,塑料常以所用合成树脂命名,如聚乙烯(PE)塑科,聚氯乙烯(PVC)塑料。合成树脂的性质已在上一节介绍,在此主要介绍常用的添加剂。

(1)填料

填料又称为填充料、填充剂或体质颜料,其种类很多。按外观形态可分为粉状、纤维状和片状三类。一般来说,粉状填料有助于提高塑料的热稳定性,降低可燃性,而片状和纤维状填料可明显提高塑料的抗拉强度、抗磨强度和大气稳定性等。

填料通常都比合成树脂便宜,它不仅能提高塑料的强度、硬度和耐热性,还能减少收缩变形和降低成本。常用的填料主要有木粉、滑石粉、硅藻土、石灰石粉、铝粉、炭黑及玻璃纤维等。

(2)增塑剂

增塑剂是能使聚合物塑性增加的物质。它可降低树脂的粘流温度(Tf),使树脂具有较大的可塑性,以利于塑料制品的加工。少量的增塑剂还可降低塑料的硬度和脆性,使塑料具有较好的柔韧性。增塑剂主要为酯类及酮类。

(3)稳定剂

稳定剂是指抑制或减缓老化破坏作用的物质。塑料在加工和使用过程中,由于受热、光、氧的作用,可能发生降解、氧化断链及交联等,使塑料老化。为了提高塑料的耐老化性能,延长使用寿命,通常要加入各种稳定剂,如抗氧剂、光屏蔽剂、紫外光吸收剂及热稳定剂等。

(4)固化剂

固化剂又称为硬化剂,主要作用是使某些合成树脂的线型结构交联成体型结构,从而使树脂具有热固性。不同品种的树脂应采用不同品种的固化剂。

(5)着色剂

着色剂是使塑料制品具有特定的色彩和光泽的物质,常用的着色剂是一些有机和无机颜料。颜料不仅对塑料具有着色性,同时也兼有填料和稳定剂的作用。

此外,根据建筑塑料使用及成型加工的需要,有时还加入润滑剂、抗静电剂、发泡剂、阻燃剂及防霉剂等。

2. 土木工程常用的塑料制品

(1)装饰装修制品

塑料的装饰性和可加工性能好,常用来生产装饰装修材料。

①塑料面砖

塑料面砖以PS,PVC,PP等为原料制造,模仿传统陶瓷面砖,厚度小、重量轻,具有美观适用、施工方便的特点,是一种较为理想的超薄型墙面装饰材料。可用于室内墙面、柱面装饰。

②塑料壁纸

塑料壁纸是用纸或玻璃纤维布做基材,以聚氯乙烯为主要成分,加入添加剂和颜料等,经涂塑、压花或印花、发泡等工艺制成的塑料卷材。塑料壁纸的花色品种多,可制成仿丝绸、仿织锦缎、仿木纹等花纹图案。塑料壁纸具有美观、耐用、易清洗、施工方便的待点。发泡塑料壁纸还具有较好的吸声性能,因而广泛地应用于室内墙面、顶棚等的装饰。塑料壁纸的缺点是透气性较差。

③塑料地面卷材

塑料地面卷材是经混炼、热压或压延等工艺制成的卷材。主要为聚氯乙烯(PVC)塑料地面卷材,分为无基层卷材和有基层卷材两种。

无基层卷材质地柔软,有―定弹性,适合于家庭地面装饰。有基层卷材一般由两层或多层复合而成,常见的是三层结构。基层为无纺布、玻璃纤维布,中层为印花的不透明聚氯乙烯塑料,面层为透明的聚氯乙烯塑料。若中层为聚氯乙烯泡沫塑料,则称为发泡塑料地面卷材。塑料地面卷材具有脚感舒适、耐磨、附腐蚀、隔声和保温等特点。

④塑料地板

塑料地板采用聚氯乙烯、重质碳酸钙和添加剂为原料,经混炼、热压或压延等工艺制成。有硬质、半硬质和软质三种;塑料地板制作的图案丰富,颜色多样,并具有耐磨、耐燃、尺寸稳定、价格低等优点,适合于人流不大的办公室、家庭等的地面装饰。

(2)隔热保温材料

①泡沫塑料

泡沫塑料是在聚合物中加入发泡剂,经发泡、固化或冷却等工序而制成的多孔塑料制品。泡沫塑料的孔隙率可高达95%―98%,且孔隙尺寸小,因而具有优良的隔热保温性能。常用的有聚苯乙烯泡沫塑料、聚氯乙烯泡沫塑料、聚氨酯泡沫塑料、脲醛泡沫塑料等。

聚苯乙烯泡沫塑料是应用最广的泡沫塑料,其体积密度为10~20 kg/m3,导热系数为0.031~0.045 W/(m・K),使用温度范围为-100~+70℃。主要用作墙体和屋面、地面、楼板等的隔热保温,也可与纤维增强水泥、纤维增强塑料或铝合金板等制成复合墙板。

建筑上使用的聚氯乙烯泡沫塑料体积密度为60~200 kg/cm3,导热系数为0.035~0.052 W/(m・K),使用温度范围为-60~+60℃。聚氯乙烯泡沫塑料主要用作吸声材料、装饰构件,也可作墙体、屋面等的保温材料,也可作为夹层板的芯材。

聚氨酯泡沫塑料,以硬质型应用较多。其体积密度为20~200 kg/cm3,使用温度范围为-160~+150℃。与其他泡沫塑料相比,其耐热性好,强度较高。此外,这种泡沫塑料还可采用现场发泡的方法形成整体的泡沫绝热层,绝热效果好。

脲醛塑料是最轻的泡沫塑料之一,建筑中应用的脲醛泡沫塑料的体积密度为10~20 kg/m3,导热系数为0.030~0.035 W/(m・K),使用温度范围为 -200~+100℃,但强度低,吸湿性大。应用时需注意防潮。脲醛塑料价格低廉,主要用作空心墙和夹层墙板的芯材,也可在现场发泡成为整体泡沫塑料。

②蜂窝塑料板

蜂窝塑料板是在蜂窝状的芯材上粘合面板的多孔板材,其孔隙较大(5~20 mm),孔隙率很高。蜂窝状的芯材是由浸渍聚合物(酚醛树脂等)的片状材料(牛皮纸、玻璃布、木纤维板)经加工粘合成的形状似蜂窝的六角形空心板材。蜂窝塑料板的抗压强度和抗折强度高,导热系数低,一般为0.046~0.056 W/(m・K)。主要用作隔热保温和隔声材料。

③塑料门窗

塑料门窗是改性后的硬质聚氯乙烯(PVC),加入适量的添加剂,经混炼、挤出等工艺制成的异形截面材加工而成。改性后的硬质聚氯乙烯具有较好的可加工性、稳定性、耐热性和抗冲击性。制成的塑料门窗外观平整美观,色泽鲜艳,经久不褪,装饰性好。并具有良好的耐水性、耐腐蚀性、隔热保温性、隔声和气密性,使用寿命可达30年以上。

④纤维增强塑料

纤维增强塑料是一种树脂基复合材料,添加纤维的目的是为了提高塑料的弹性模量和强度。常用纤维材料除玻璃纤维、碳纤维外,还有石棉纤维、天然植物纤维、合成纤维和钢纤维等,目前用得最多的是玻璃纤维和碳纤维。常用的合成树脂有酚醛树脂、不饱和聚酯树脂、环氧树脂等,用量最大的为不饱和聚酯树脂。

纤维增强塑料的性能主要取决于合成树脂和纤维的性能、相对含量以及它们之间的粘结情况。合成树脂及纤维的强度越高,特别是纤维的强度越高,则纤维增强塑料的强度越高。

玻璃纤维增强塑料(GRP),俗称玻璃钢,是由合成树脂胶结玻璃纤维或玻璃纤维布(带、束等)而成的。玻璃纤维增强塑料在性能上的主要优点是轻质高强、耐腐蚀,主要缺点是弹性模量小,变形较大。在土木工程中主要用于结构加固、防腐和管道等。

碳纤维增强塑料是由合成树脂胶结碳纤维而成,具有强度和弹性模量高,耐疲劳性能好,耐腐蚀性好的特点。在土木工程中,碳纤维增强塑料主要用于结构加固,制作碳纤维筋或索,用于有腐蚀的结构。

7.2.2建筑涂料

涂料是涂布在物体表面能形成具有保护和装饰作用的膜层材料。涂料除了具有保护和装饰功能外,还能具有一些特殊作用,如用作色彩标志、润滑、防滑、绝缘、导电、隔热、防潮等。建筑涂料则是指涂于建筑物表面能对建筑物起到保护、装饰作用,或者能改善建筑物使用功能的涂料。

1. 涂料的基本组成

涂料的基本组成包括:成膜物质、颜料、溶剂(分散介质)以及辅料(助剂)。

(1)成膜物质

成膜物质也称基料,是涂料最主要的成分,其性质对涂料的性能起主要作用。成膜物质分为两大类,一类是转化型(或反应型)成膜物质,另一类是非转化型(或挥发型)成膜物质。前者在成膜过程中伴有化学反应,形成网状交联结构。因此,此类成膜物质相当于热固性聚合物,如环氧树脂、醇酸树脂等;后者在成膜过程未发生任何化学反应,仅靠溶剂挥发成膜,成膜物质为热塑性聚合物,如纤维素衍生物、氯丁橡胶、热塑性丙烯酸树脂等。 建筑涂料常用树脂有聚乙烯醇、聚乙烯醇缩甲醛、丙烯酸树脂、环氧树脂、醋酸乙烯一丙烯酸酯共聚物(乙一丙乳液)、聚苯乙烯一丙烯酸酯共聚物(苯一丙乳液)、聚氨酯树脂等。

(2)颜料

颜料主要起遮盖和着色作用,有的颜料还有增强、改善流变性能、降低成本的作用。按所起作用不同,颜料又分为着色颜料和体质颜料(又称填料)两类。

建筑涂料中使用的着色颜料一般为无机矿物颜料。常用的有氧化铁红、氧化铁黄、氧化铁绿、氧化铁棕、氧化铬绿、钛白、锌钡白、群青蓝等。

体质颜料,即填料。主要起到改善涂膜的机械性能。增加涂膜的厚度和遮盖力,降低涂料的成本等作用。常用的填料有重晶石粉、轻质碳酸钙、重质碳酸钙、高岭土及各种彩色小砂粒等。

(3)溶剂

溶剂通常是用以溶解、稀释成膜物质的易挥发性有机液体。涂料涂敷于物体表面后,溶剂基本上应挥发尽,不是一种永久性的组分,但溶剂对成膜物质的溶解力决定了所形成的树脂溶液的均匀性、粘度和贮存稳定性。溶剂的挥发性影响涂膜的干燥速度、涂膜结构和涂膜外观。常用的溶剂有:甲苯、二甲苯、丁醇、丁酮、醋酸乙酯等。溶剂的挥发会对环境造成污染,选择溶剂时,还应考虑溶剂的安全性和对人体的毒性。

涂料按溶剂及其对成膜物质作用的不同分为溶剂型涂料、水溶性涂料和水乳型涂料。其中,水溶性涂料和水乳型涂料称为水性涂料。

(4)辅料

辅料(又称助剂或添加剂)是为了进一少改善或增加涂料的某些性能而加入的少量物质。通常使用的有增白剂、防污剂、分散剂、乳化剂、稳定剂、润湿剂、增稠剂、消泡剂、流平剂、固化剂、催干剂等。

2. 常用建筑涂料

建筑涂料的品种繁多,性能各异,按用途有外墙涂料、内墙涂料及地面涂料。

(1)外墙涂料

①苯乙烯一丙烯酸酯乳液涂料

苯乙烯―丙烯酸酯乳液涂料是以苯―丙乳液为基料的水乳型涂料,简称苯一丙乳液涂料。苯―丙乳液涂料具有优良的耐水性、耐碱性、耐湿擦洗性,外观细腻、色彩艳丽、质感好,与水泥混凝土等大多数建筑材料的粘附力强,并具有高耐光性和耐候性。

②丙烯酸酯涂料

丙烯酸酯涂料是以热塑性丙烯酸酯树脂为基料的外墙涂料。分为溶剂型和水乳型。丙烯酸酯涂料的耐水性、耐高低温性和耐候性良好,不易变色、粉化或脱落,有多种颜色。可以刷涂、喷涂或滚涂。丙烯酸酯涂料的装饰性好,寿命可达以上,是目前国内外应用最多的外墙涂料。丙烯酸酯涂料主要用于外墙复合涂层的罩面涂料。溶剂型涂料在施工中需注意防火、防爆。

③聚氨酯涂料

聚氨酯涂料是以聚氨酯树脂或聚氨酯与其他树脂复合物为主要成膜物质,加入填料、助剂组成的优质溶剂涂料。该涂料的弹性和抗疲劳性好,并具有极好的耐水、耐碱、耐酸性能。

其涂层表面光洁度高,呈陶瓷质感,耐候性、耐玷污性能好,使用寿命可达以上。聚氨酯涂料价格较贵,主要用于办公楼、商店等公用建筑。

④砂壁状涂料

砂壁状涂料是以合成树脂乳液为成膜物质,加入彩色骨料以及其他助剂配制而成的粗面厚质涂料,又称彩砂涂料。彩色骨料可用粒径小于2mm的高温烧结彩色砂粒、彩色陶粒或天然彩色石屑。彩砂涂料采用喷涂法施工,涂层具有丰富的色彩和良好石材质感,保色性、耐热性、耐水性及耐化学腐蚀性能良好,使用寿命可达10年以上。砂壁状涂料主要用于办公楼、商店等公用建筑的外墙立面。

(2)内墙涂料

①聚醋酸乙烯涂料

聚醋酸乙烯涂料是以聚醋酸乙烯乳液为基料的乳液型内墙涂料。该涂料无毒、不燃、涂膜细腻、平滑、色彩鲜艳、装饰效果良好、价格适中、施工方便。但是,耐水性及耐候性较差。

②醋酸乙烯一丙烯酸酯涂料

醋酸乙烯一丙烯酸酯涂树是以乙一丙共聚乳液为基料的水乳型内墙涂料。该涂料的耐水性、耐候性和耐碱性优于聚醋酸乙烯乳液涂料,并且有光泽,是一种中高档的内墙装饰涂料。

③多彩涂料

多彩涂料是以合成树脂及颜料等为分散相,以含有乳化剂和稳定剂的水为分散介质的水乳型涂料,按其介质特性分为水中油型和油中水型。以水中油型的贮存稳定性最好。通常所用的多彩涂料均为水中油型。

多彩涂料具有良好的耐水性、耐油性、耐化学药品性、耐刷洗性,并具有较好的透气性。多彩涂料对基层的适应性强、可在各种建筑材料上涂刷使用。

(3)地面涂料

①聚氨酯地面涂料

聚氨酯地面涂料是以聚氨酯为基料的双组分常温固化型橡胶类涂料。其整体性好,色彩多样,装饰性好,并具有良好的耐油性、耐水性、耐酸碱性和耐磨性,有一定的弹性,脚感舒适。该涂料主要适用于水泥砂浆或水泥混凝土地面。

②环氧树脂厚质地面涂科

环氧树脂厚质地面涂料是以环氧树脂为基料的双组分常温固化涂料。环氧树脂厚质地面涂料与水泥混凝土等基层材料的粘结性能优良,涂膜坚韧、耐磨,具有良好的耐化学腐蚀、耐油、耐水等性能,以及优良的耐老化、耐候性和装饰性。

7.2.3胶粘剂

1. 胶粘剂的基本概念

胶粘剂又称粘合剂,是通过粘附作用使被粘物结合在一起的材料。

胶粘剂一般由基料和多种辅助成分组成。基料是胶粘剂的主要成分,起粘接作用,要求有良好的粘附性和润湿性。合成树脂、合成橡胶、天然高分子以及无机化合物等都可做基料。辅助成分主要包括固化剂、溶剂、增塑剂、填料、偶联剂、引发剂、促进剂、防老化剂、稳定剂等。

固化剂用以使粘合剂交联固化,提高粘合剂的粘合强度、化学稳定性、耐热性等,是以热固性树脂为主要成分的粘合剂所必不可少的成分;溶剂溶解、稀释主料以调节粘度便于施工;填料具有降低固化时的收缩率、提高尺寸稳定性、耐热性和力学强度、降低成本等作用;

增塑剂用于提高韧性。

按受力情况胶粘剂分为结构胶粘剂和非结构胶粘剂。结构胶粘剂用于能承受荷载或受力结构件的粘结。非结构胶粘剂用于不受力或受力不大的各种场合。

胶粘剂能够将被粘结材料牢固地粘结在一起,是因为胶粘剂与材料间存在有粘附力以及胶粘剂本身具有内聚力。粘附力和内聚力的大小,直接影响胶粘剂的粘结强度。当粘附力大于内聚力时,粘结强度主要取决于内聚力;当内聚力高于粘附力时,粘结强度主要取决于粘附力。一般认为粘附力主要来源于以下几个方面:

(1)机械粘结力 胶粘剂渗入材料表面的凹陷处和孔隙内,在固化后如同镶嵌在材料内部,靠机械锚固力将材料粘结在一起。对非极性多孔材料,机械粘结力常起主要作用。

(2)物理吸附力 胶粘剂和被粘材料靠分子间的物理吸附力产生粘结。

(3)化学键力 胶粘剂与材料间能发生化学反应,靠化学键力将材料粘结为一个整体。 不同的胶粘剂和被粘材料,粘附力的主要来源不同,当机械粘附力、物理吸附力和化学键力共同作用时,可获得很高的粘结强度。

就实际应用而言,一般认为影响粘结强度的因素主要有:胶粘剂性质,被粘材料的性质,被粘材料的表面粗糙度,被粘材料的表面处理方法。胶粘剂对被粘材料表面的浸润程度,被粘材料的表面含水状况,粘结层厚度,粘结工艺等。

2.土木工程常用的胶粘剂

(1)结构胶粘剂

①环氧树脂胶粘剂

环氧树脂胶粘剂是当前应用最广泛的胶粘剂,因环氧树脂胶粘剂中含有环氧基、羟基、氨基和其他极性基团,对大部分材料有良好的粘结能力,有万能胶之称。其抗拉强度和抗剪切强度高,固化收缩率小,耐油和耐多种溶剂,耐潮湿.抗蠕变性好,是较好的结构胶粘剂。环氧树脂胶粘剂根据固化剂类型的不同可室温固化或高温固化,固化时间有明显的温度依赖性。环氧树脂胶粘剂在土木工程中的应用很多,主要用于裂缝修补、结构加固和表面防护等。

②不饱和聚酯树脂胶粘剂

不饱和聚酯树脂胶粘剂的特点是粘结强度高,抗老化性及耐热性较好。可在室温和常压下固化,固化速度快,但固化时的收缩大,耐碱性较差,适于粘结陶瓷、玻璃、木材、混凝土和金属结构构件。

(2)非结构胶粘剂

①聚醋酸乙烯胶粘剂

聚醋酸乙烯胶粘别是由醋酸乙烯单体聚合而成,俗称白乳胶。其特性是使用方便、价格便宜、润湿能力强,有较好的粘附力,适用于多种粘结工艺。但其耐热性、对溶剂作用的稳定性及耐水性较差,只能作为室温下使用的非结构胶。

②聚氨酯胶粘剂

聚氨酯胶粘剂是分子链中含有异氰酸酯基(―NCO)及氨基甲酸酯基(―NH―COO―),具有很强的极性和活泼性的一类粘合剂。其品种很多,有单组分和双组分两类。聚氨酯胶粘剂有良好的粘结强度,可用于金属、玻璃、陶瓷、橡胶、塑料、织物、木材、纸张等各种材料的粘合;有良好的耐超低温性能,而且粘结强度随着温度的降低而提高,是超低温环境下理想的粘结材料和密封材料;具有良好的耐磨、耐油、耐溶剂、耐老化等性能;可通过调节分子链中软段和硬段比例结构,制成满足各种行业、各种性能要求的高性能粘合剂。但是,在高温和高湿条件下,易水解,会降低粘结强度。

③氯丁橡胶胶粘剂

氯丁橡胶胶粘剂是以氯丁橡胶为主要组成。加入氧化锌、氧化镁、填料、抗老化剂和

抗氧化剂等制成,是目前应用最广的一种橡胶型胶粘剂。氯丁橡胶胶粘剂对水、油、弱酸、弱碱、醇和脂肪烃有良好的抵抗力,可在-50~+80℃的温度下工作,但是,徐变较大,且容易老化。

7.2.4土工合成材料

土工合成材料是以聚合物(如塑料、化纤、合成橡胶等)为原料制成的用于岩土工程的聚合物材料。按照需要,土工合成材料可置于土体内部、表层或各层土体之间,起加强或保护土体的作用。土工合成材料主要有土工织物类材料和超轻型填土材料。土工织物类合成材料的用途见表7―1。

土工纤维、土工布、化纤滤网、塑料网(格栅)、塑料膜等聚合物材料制成的布状或网状物,统称为土工布或土工织物。其中,网格较大者,用硬纤维片或条编制而成,称为土工垫或土工网;而网格更大者,通过塑料挤出成型的各种规格的格栅或用塑料板(带)焊接成的各种格室,称为土工格栅。在格室内充填砂、石或其他材料,用于沙漠、泥泞沼泽地区筑路、护坡等工程。

土工织物是一种多功能材料,主要功能有滤层作用、排水作用、隔离作用、加筋作用、防渗与防潮作用等。 表7―1 土工织物合成材料的用途

分 类

土工织物 用 途 排水、反滤、护坡等

加固垫层、坡、防护植草、排水通

道、滤层等

防冲刷、防流失、用于沙漠和沼泽

地筑路、护坡

防冲刷、防流失、用于沙漠和沼泽

地筑路、护坡

灌入混凝土或砂浆,用于护坡、地

基处理

装入大块石,用于截流、筑堤、防

流失

用于地下建筑的防水,堤围的加筋

材料

用于堤坝、水库、地下建筑游泳池

等的防渗漏

用作排水通道

用于软基处理和排水加固

用于防止管涌、加筋、排水、增强

与土面间的摩擦力

用于路基、隧道、堤坝、结构的墙

后排水等

用于铁路、公路、等的软路基的填

土材料 材料类型 用合成纤维(如锦纶、腈纶等)制成 用塑料条、带编织或压制而成的网状物 用塑料挤压而成,呈网状、蜂窝状结构 用塑料板焊接而成 土工网 透水性的土工材料 土工格栅 土工格室 土工模袋 用合成纤维制成 土工袋 用合成纤维制成绳网、绳带等 不透水性的土工材料 塑料膜 聚氯乙烯、聚丙烯等制成的膜 用纺织布或无纺布防水处理后制成 用聚氨酯制作的开孔型泡沫塑料 透水性土工织物与聚丙烯等塑料挤压而成 透水的土工织物与聚丙烯等塑料挤压而成 以无纺土工织物作芯材制成的塑料排水管 聚苯乙烯泡沫塑料 土工膜 多孔泡沫塑料板 塑料排水管 复合材料 复合土工膜 复合排水材料 EPS填土材料

本章小结

1. 聚合物是由千万个原子彼此以共价键结合的大分子化合物,有加聚物和缩聚物两大类。一般加聚物为线型高分子,均为热塑性聚合物;而缩聚物部分是线型高分子,是热塑性聚合物,而大部分为体型(网状)高分子,属热固性聚合物。

2. 热塑性聚合物具有受热时软化、遇冷时凝固的性质。通常可反复进行加热软化、熔融和冷却硬化,具有可再生重复使用的特性。而热固性聚合物仅在第一次加热(或加入固化剂前)时能发生软比、熔融,并在此条件下产生化学交联而固化,以后再加热时再不会软化或熔融,也不会被溶解。前者相对更加柔韧而后者更加硬脆。在强度、变形、耐热、耐腐蚀、抗变形等方面,后者要优于前者。但前者可以方便地进行热塑性加工,通常价格低廉。

3. 合成高分子材料具有较小的密度、更高的比强度、更好的隔热保温性和耐腐蚀性,同时还具有良好的防水密封性、电绝缘性和减震消音性,与其他材料的复合性能也十分突出。但耐热性能较差,防火、耐老化是这类材料在使用过程中应该重点考虑的问题。

4. 一般可将聚合物的老化分为聚合物分子的交联与降解两种。交联是指聚合物的分子从线型结构变为体型结构的过程;降解是指聚合物的分子链发生断裂,其分子量降低的过程。老化原因主要是热老化和光老化。

5. 建筑塑料的基本组成为合成树脂、填充料、增塑剂、固化剂、稳定剂和其他添加剂。其中合成树脂是决定塑料类型、性能和用途的根本因素。其他填充料及外加剂是为了改善塑料性能而加入的。

6. 常用的热塑性塑料有聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯、聚碳酸酯、聚酰胺、ABS塑料和有机玻璃等;常用的热固性塑料有酚醛树脂、不饱和聚酯树脂、脲醛树脂、三聚氰胺甲醛树脂、聚氨酯、环氧树脂和有机硅树脂等。

7. 涂料的基本组成包括:成膜物质、颜料、溶剂(分散介质)以及辅料(助剂)。成膜物质是涂料的关键成分。成膜物质分为两大类,一类是转化型(或反应型)成膜物质,另一类是非转化型(或挥发型)成膜物质。建筑涂料常用树脂有聚乙烯醇、聚乙烯醇缩甲醛、丙烯酸树脂、环氧树脂、醋酸乙烯一丙烯酸酯共聚物(乙一丙乳液)、聚苯乙烯一丙烯酸酯共聚物(苯一丙乳液)、聚氨酯树脂等。

8. 胶粘剂一般由基料和多种辅助成分组成。基料是胶粘剂的主要成分,起粘接作用,要求有良好的粘附性和润湿性。合成树脂、合成橡胶、天然高分子以及无机化合物等都可做基料。辅助成分主要包括固化剂、溶剂、增塑剂、填料、偶联剂及其他外加剂。粘附机理主要是机械粘结力、物理吸附力和化学键力。

本章练习

1.聚合物有哪些特征,这些特征与聚合物的性质有何联系?

2. 热塑性树脂与热固性树脂的主要不同点有哪些?

3 线型聚合物有哪几种物理状态?试述聚合物在不同物理状态下的特点。

4.试述聚合物的老化原因和防止措施?

5.建筑塑料的基本组成有哪些?它们各起何作用?

6.胶粘剂的粘结力来源有哪些?建筑上常用的胶粘剂有那些?

7.建筑涂料的组成有哪些?它们各起何作用?建筑涂料有哪些种类?

上一篇:礼貌显魅力说课稿下一篇:第四党支部通讯稿