正弦定理课后反思

2024-10-09 版权声明 我要投稿

正弦定理课后反思(精选10篇)

正弦定理课后反思 篇1

正弦定理教学反思

《正弦定理》这一节内容,在备课中有两个问题需要精心设计,一个是问题的引入,一个是定理的证明.课本通过一个实际问题引入,但没有深入展开下去;对正弦定理的证明是利用三角形的直角三角形为特例,从特殊到一般导出的,但不够自然.为了处理好这两个问题,我首先确定了一个基本原则,就是充分利用课本素材,从学生的“最近发展区”入手进行设计.具体的思路就是从解决边角关系之间的数量关系入手展开,将问题一般化导出三角形中的边角关系——正弦定理.1.本节课虽然在我的引导下,完成了教学任务,但是一味地为了完成任务而忽略了对学生正确思维的展开和引导.上好一堂课不仅有好的教学设计,还应有灵活应变的能力,只有从思想上真正转变为以学生的发展为根本,才不会为了进度而将学生强拉进自己事先设计好的轨道.正是教学有法,又无定法.然而,在以后的教学中要做到课堂灵活多变是需要很多的经验的积累,所以在以后的课堂上要多注意这一点。

2.问题是思维的起点,是学生主动探索的动力.本节课通过对三角形边角关系的数量之间的联系的解决、展开,引导学生在问题解决中发现结论.符合认识问题的思维规律,对激发学生探究问题兴趣是非常有益的.3.正弦定理的证明方法很多,如利用三角形的面积公式、利用三角形的外接圆、利用向量证明等,本节课将斜三角形的边角关系转化为直角三角形的边角关系导出正弦定理,从学生的“最近发展区”入手去设计问题,思路自然,是学生们易于接受的一种证明方法.但在具体的推导时,要注意尊重学生思维的发展的过程,这是一种理念,也是一种能力.在教学设计和课堂教学中应充分了解学生、研究学生,备课不仅是备知识,更重要的是备学生.作为教师只有真正树立以学生的发展为本的教学理念,才能尊重学生思维过程的发生、发展,才能从学生的生活经验和已有知识背景出发,创设合理的教学情境,才能为学生提供充分的数学活动和交流的机会,使学生从单纯的知识接受者转变为数学学习的主人.

正弦定理的教学反思 篇2

三角形中的几何计算的主要内容是利用正弦定理和余弦定理解斜三角形,是对正、余弦定理的拓展和强化,可看作前两节课的习题课。本节课的重点是运用正弦定理和余弦定理处理三角形中的计算问题,难点是如何在理解题意的基础上将实际问题数学化。在求解问题时,首先要确定与未知量之间相关联的量,把所求的问题转化为由已知条件可直接求解的量上来。为了突出重点,突破难点,结合学生的学习情况,我是从这几方面体现的:我在这节课里所选择的例题就考常出现的三种题型:解三形、判断三角形形状及三角形面积,题目都是很有代表性的,并在学生练习过程中将例题变形让学生能观察到此类题的考点及易错点。这节课我试图根据新课标的精神去设计,去进行教学,试图以“问题”贯穿我的整个教学过程,努力改进自己的教学方法,让学生的接受式学习中融入问题解决的成份,企图把讲授式与活动式教学有机整合,希望在学生巩固基础知识的同时,能够发展学生的创新精神和实践能力,但我觉得自己还有如下几点做得还不够:

①课堂容量中体来说比较适中,但由于学生的整体能力比较差,没有给出一定的时间让同学们进行讨论,把老师自己认为难的,学生不易懂得直接让优等生进行展示,学生缺乏对这几个题目事先认识,没有引起学生的共同参与,效果上有一定的折扣;

②没有充分挖掘学生探索解题思路,对学生的解题思维只给出了点评,而没有引起学生对这一问题的深入研究,例如对于运用正弦定理求三角形的角的时候,出了给学生们常规方法外,还应给出老教材中关于三角形个数的方法,致少应介绍一下;

③没有很好对学生的解题过程和方法进行点评,没起到“画龙点睛”的作用。

④第五个学生的展示的结论有一个角应是105,他给出的是75,而我没有发现,这是我在教学过程中的一个很大失误。

正弦定理和余弦定理2 篇3

第一章

解三角形

§1.1.2正弦定理和余弦定理

班级

姓名

学号

得分

一、选择题

1.在△ABC中,已知b=43,c=23,∠A=120°,则a等于……………….()

A.221 B.6

C.221或6

D.21563

2.在△ABC中,已知三边a、b、c满足(a+b+c)(a+b-c)=3ab,则∠C等于…..()

A.15° B.30°

C.45°

D.60°

3.已知在△ABC中,sinA∶sinB∶sinC=3∶5∶7,那么这个三角形的最大角是…()

A.135° B.90°

C.120°

D.150°

4.在△ABC中,若c4-2(a2+b2)c2+a4+a2b2+b4=0,则∠C等于………………….()

A.90° B.120°

C.60°

D.120°或60°

5.已知A、B、C是△ABC的三个内角,则在下列各结论中,不正确的为………...()

A.sinA=sinB+sinC+2sinBsinCcos(B+C)

B.sin2B=sin2A+sin2C+2sinAsinCcos(A+C)

C.sin2C=sin2A+sin2B-2sinAsinBcosC

D.sin(A+B)=sinA+sinB-2sinBsinCcos(A+B)6*.在△ABC中,AB=5,BC=7,AC=8,则ABBC的值为……………………()

A.79

二、填空题

7.已知△ABC中,A=60°,最大边和最小边是方程x2-9x+8=0的两个正实数根,那么BC边长是________.

13222222 B.69

C.5

D.-5 8.在△ABC中,已知a=7,b=8,cosC=14,则最大角的余弦值是________.

abac=________. 9.在△ABC中,∠C=60°,a、b、c分别为∠A、∠B、∠C的对边,则bc9 10*.在△ABC中,若AB=5,AC=5,且cosC=10,则BC=________.

三、解答题

11.已知a=33,c=2,B=150°,求边b的长及S△.

大毛毛虫★倾情搜集★精品资料 大毛毛虫★倾情搜集★精品资料

A12.在△ABC中,cos2 bc2c910,c=5,求△ABC的内切圆半径.

13.已知△ABC的三边长a、b、c和面积S满足S=a2-(b-c)2,且b+c=8,求S的最大值.

14*.已知a、b、c为△ABC的三边,且a-a-2b-2c=0,a+2b-2c+3=0,求这个三角形的最大内角.

大毛毛虫★倾情搜集★精品资料

2大毛毛虫★倾情搜集★精品资料

§1.1.2正弦定理和余弦定理参考答案

一、选择题

A D C D D D

二、填空题

17.57

8.-7

9.1 10.4或

5三、解答题

11.解:b2=a2+c2-2accosB=(33)2+22-2·23·2·(-2)=49.

∴ b=7,1113

S△=2acsinB=2×33×2×2=2bc93.

12.解:∵ c=5,2cA210,∴ b=4

b1cosA22 又cos222bc2cbca2bc222 ∴ cosA=c 又cosA=

bca

∴ 2bcb2222222c∴ b+c-a=2b∴ a+b=c

∴ △ABC是以角C为直角的三角形.a=cb=3

∴ △ABC的内切圆半径r=2(b+a-c)=1.

112222

13.解:∵ S=a-(b-c)又S=2bcsinA∴ 2bcsinA=a-(b-c)

bca222

∴ 2bc114(4-sinA)∴ cosA=4(4-sinA)∴ sinA=4(1-cosA)

2tanAcosA28sin2A22AA ∴ 2sin22∴ tan214∴ sinA=

1tanA24812171()4

21大毛毛虫★倾情搜集★精品资料 大毛毛虫★倾情搜集★精品资料

SS41712bCsinA(bc)424176417bc64∴ c=b=4时,S最大为17

14.解:∵ a2-a-2b-2c=0,a+2b-2c+3=0

由上述两式相加,相减可得

c=4(a2+3),b=4(a-3)(a+1)1

∴ c-b=2(a+3)

∵ a+3>0,∴ c>b

c-a=4(a2+3)-a=4(a2-4a+3)=4(a-3)(a-1)1

∵ b=4(a-3)(a+1)>0,∴ a>3 1

∴ 4(a-3)(a-1)>0

∴ c>a

∴ c边最大,C为最大角

abc222

∴ cosC=a22ab2

2116(a3)(a1)2a14116(a3)2212(a3)(a1)

∴ △ABC的最大角C为120°

正弦定理课后反思 篇4

§5.5 正弦定理、余弦定理的应用

基础自测

1.在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,C点的俯角为70°,则∠BAC=.答案 130°

2.从A处望B处的仰角为,从B处望A处的俯角为,则、的大小关系为.答案 =

3.在△ABC中,若(a+b+c)(a+b-c)=3ab,且sinC=2sinAcosB,则△ABC是 三角形.答案 等边

4.已知A、B两地的距离为10 km,B、C两地的距离为20 km,现测得∠ABC=120°,则A、C两地的距离为 km.答案 107

5.线段AB外有一点C,∠ABC=60°,AB=200 km,汽车以80 km/h的速度由A向B行驶,同时摩托车以 50 km/h的速度由B向C行驶,则运动开始 h后,两车的距离最小.答案 70 43例题精讲

例1 要测量对岸A、B两点之间的距离,选取相距3 km的C、D两点,并测得∠ACB=75°,∠BCD= 45°,∠ADC=30°,∠ADB=45°,求A、B之间的距离.解 如图所示,在△ACD中,∠ACD=120°,∠CAD=∠ADC=30°,∴AC=CD=3 km.在△BCD中,∠BCD=45°,∠BDC=75°,∠CBD=60°.∴BC=2AB=(3)+(3sin7562=.△ABC中,由余弦定理,得

sin602262262)-2×3××cos75°=3+2+3-3=5,22∴AB=5(km).∴A、B之间的距离为5 km.159 例2.沿一条小路前进,从A到B,方位角(从正北方向顺时针转到AB方向所成的角)是50°,距离是3 km,从B到C方位角是110°,距离是3 km,从C到D,方位角是140°,距离是(9+33)km.试画出示意图,并计算出从A到D的方位角和距离(结果保留根号).解 示意图如图所示,连接AC,在△ABC中,∠ABC=50°+(180°-110°)=120°,又AB=BC=3,∴∠BAC=∠BCA=30°.由余弦定理可得

1AC=AB2BC22ABBCcos120= 99233()

2=27=33(km),在△ACD中,∠ACD=360°-140°-(70°+30°)=120°, CD=33+9.1由余弦定理得AD=AC2CD22ACCDcos120= 27(339)2233(339)()

2=9(26)(km)2CDsinACD=AD(339)由正弦定理得sin∠CAD=

32=2.292962∴∠CAD=45°,于是AD的方位角为50°+30°+45°=125°, 所以,从A到D的方位角是125°,距离为

9(26)km.2例3 如图所示,已知半圆的直径AB=2,点C在AB 的延长线上,BC=1,点P为半圆上的一个动点,以 DC为边作等边△PCD,且点D与圆心O分别在PC 的两侧,求四边形OPDC面积的最大值.解 设∠POB=,四边形面积为y,则在△POC中,由余弦定理得

160 PC=OP+OC-2OP·OCcos=5-4cos.∴y=S△OPC+S△PCD=∴当-1353×1×2sin+(5-4cos)=2sin(-)+.3244222553=,即=时,ymax=2+.326453.4所以四边形OPDC面积的最大值为2+巩固练习

1.某观测站C在A城的南偏西20°的方向.由A城出发的一条公路,走向是南偏东40°,在C处测得公路上B处有一人距C为31千米正沿公路向A城走去,走了20千米后到达D处,此时CD间的距离为21千米,问这人还要走多少千米才能到达A城? 解 设∠ACD=,∠CDB=.在△BCD中,由余弦定理得 cos=

143BD2CD2CB2202212312==-,则sin=,72BDCD220217而sin=sin(-60°)=sincos60°-cossin60° =1153433×+×=, 27142721AD21sin=,∴AD==sin60sinsin6021在△ACD中,由正弦定理得

5314=15(千米).32答 这个人再走15千米就可到达A城.2.如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得 ∠BCD=,∠BDC=,CD=s,并在点C测得塔顶A的仰角为,求塔高AB.解 在△BCD中,∠CBD=--,由正弦定理得所以BC=CDsinBDCssin=

sinCBDsin()BCCD=,sinBDCsinCBD在Rt△ABC中,AB=BCtan∠ACB=

stansin.sin()3.为了竖一块广告牌,要制造三角形支架.三角形支架如图

161 所示,要求∠ACB=60°,BC的长度大于1米,且AC比 AB长0.5米.为了使广告牌稳固,要求AC的长度越短越 好,求AC最短为多少米?且当AC最短时,BC长度为多 少米?

解 设BC=a(a>1),AB=c,AC=b,b-c=

12221122

2.c=a+b-2abcos60°,将c=b-代入得(b-)=a+b-ab, 222化简得b(a-1)=a-21.由a>1,知a-1>0.b=4a231(a1)22a234=(a-1)+4= 4(a1)a1a1+23+2, 当且仅当a-1=33时,取“=”号,即a=1+时,b有最小值2+3.4(a1)2答 AC最短为(2+3)米,此时,BC长为(1+

3)米.2回顾总结 知识 方法 思想

课后作业

一、填空题

1.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成 75°视角,则B、C的距离是 海里.答案 56

2.为测量某塔AB的高度,在一幢与塔AB相距20 m的楼顶处测得塔顶A的仰角为30°,测得塔基B的俯角为45°,那么塔AB的高度是 m.答案 20(1+3)33.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km, 162 灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为 km.答案 3a

4.一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为 海里/小时.答案 176 25.如图所示,在河岸AC测量河的宽度BC,图中所标的数据a,b,c,,是可供测量的数据.下面给出的四组数据中,对测量河宽较适宜 的是(填序号).①c和②c和b③c和④b和 答案 ④

6.如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S相 距20海里,随后货轮按北偏西30°的方向航行30分钟后,又测得灯塔在 货轮的东北方向,则货轮的速度为 海里/小时.答案 20(6-2)7.在△ABC中,若∠C=60°,则答案 1 8.(2008·苏州模拟)在△ABC中,边a,b,c所对角分别为A,B,C,且答案

nisaAab+=.bcca=

cosBcosC

=,则∠A=.cb

2二、解答题

9.在△ABC中,a,b,c分别为角A、B、C的对边,设f(x)=ax-(a-b)x-4c.(1)f(1)=0且B-C=

2,求角C的大小;(2)若f(2)=0,求角C的取值范围.3222

2解(1)∵f(1)=0,∴a-(a-b)-4c=0,∴b=4c,∴b=2c,∴sinB=2sinC,163 又B-C=.∴sin(C+)=2sinC,∴sinC·cos+cosC·sin=2sinC,3333∴353sinC-cosC=0,∴sin(C-)=0,又∵-<C-<,∴C=.6666622222

2(2)若f(2)=0,则4a-2(a-b)-4c=0,∴a+b=2c,∴cosC=又2c=a+b≥2ab,∴ab≤c,∴cosC≥2222

a2b2c2c2=,2ab2ab1,又∵C∈(0,),∴0<C≤.323.410.(2008·泰安模拟)在△ABC中,a,b,c分别为角A,B,C的对边.已知a=1,b=2,cosC=(1)求边c的值;(2)求sin(C-A)的值.解(1)c=a+b-2abcosC=1+2-2×1×2×22222

3=2,∴c=2.4(2)∵cosC=3ac17,∴sinC=.在△ABC中,=,即=

sinAsinCsinA44274.∴sinA==

5214,∵a<b,∴A为锐角,cosA=.∴sin(C-A)=sinCcosA-cosCsinA

8852371414×-×=.48481611.如图所示,扇形AOB,圆心角AOB等于60°,半径为2,在弧

AB上有一动点P,过P引平行于OB的直线和OA交于点C,设∠AOP=,求△POC面积的最大值及此时的值.解 ∵CP∥OB,∴∠CPO=∠POB=60°-,∠OCP=120°.在△POC中,由正弦定理得又OPCP2CP4=,∴=,∴CP=sin.sinPCOsinsin120sin32OC4=,∴OC=sin(60°-).因此△POC的面积为

sin(60)sin1203S()==11443CP·OCsin120°=·sin(60°-)× sin·2223343sinsin(60°-)=43sin(1232

cos-sin)=2sin·cos-sin

223=sin2+

332333cos2-=sin(2+)-.∴=时,S()取得最大值为.6633333164 12.在海岸A处,发现北偏东45°方向,距离A(3-1)n mile的B处 有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的

缉私船奉命以103 n mile/h的速度追截走私船.此时,走私船正以 10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方 向能最快追上走私船?

解 如图所示,注意到最快追上走私船且两船所用时间相等,若在D处相遇,则可先在△ABC中求出BC,再在△BCD中求∠BCD.设缉私船用t h在D处追上走私船,则有CD=103t,BD=10t.在△ABC中,222∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC=AB+AC-2AB·AC·cos∠BAC

正弦定理必修5 篇5

授课类型:新授课

一、教学目标

知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

二、教学重点

正弦定理的探索和证明及其基本应用。

三、教学难点

已知两边和其中一边的对角解三角形时判断解的个数。

四、教学过程

Ⅰ.课题导入

如图1.1-1,固定ABC的边CB及B,使边AC绕着顶点C转动。思考:C的大小与它的对边AB的长度之间有怎样的数量关系? 显然,边AB的长度随着其对角C的大小的增大而增大。能否

用一个等式把这种关系精确地表示出来?Ⅱ.讲授新课

[探索研究](图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在RtABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,abcsinA,sinB,又sinC1,A ccc

abc则csinsinsinabc从而在直角三角形ABC中,CaB sinsinsin有

(图1.1-2)

思考:那么对于任意的三角形,以上关系式是否仍然成立?

(由学生讨论、分析)

可分为锐角三角形和钝角三角形两种情况:

如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=asinBbsinA,则

同理可得

从而asinAbsinB,csinCbsinB,a

sinAbsinBcsinCAcB

(图1.1-3)

思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):过点A作jAC,C

由向量的加法可得ABACCB

则jABj(AC

CB)∴jABjACjCBj

jABcos900A0jCBcos900C

∴csinAasinC,即

同理,过点C作jBC,可得

从而ac bc a

sinAb

sinBc

sinC

类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)

从上面的研探过程,可得以下定理

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即

a

sinAb

sinBc

sinC

[理解定理]

(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使aksinA,bksinB,cksinC;

(2)a

sinAb

sinBc

sinC等价于a

sinAb

sinB,c

sinCb

sinB,a

sinAc

sinC

从而知正弦定理的基本作用为:

①已知三角形的任意两角及其一边可以求其他边,如absinA; sinB

②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sinAsinB。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

[例题分析]

例1.在ABC中,已知A32.00,B81.80,a42.9cm,解三角形。

解:根据三角形内角和定理,ab

C1800(AB)

1800(32.0081.80)

66.20;

根据正弦定理,asinB42.9sin81.80

b80.1(cm); sin32.0根据正弦定理,asinC42.9sin66.20

c74.1(cm).sin32.0评述:对于解三角形中的复杂运算可使用计算器。

例2.在ABC中,已知a20cm,b28cm,A400,解三角形(角度精确到10,边长精确到1cm)。

解:根据正弦定理,bsinA28sin400

sinB0.8999.因为00<B<1800,所以B640,或B1160.⑴ 当B640时,C1800(AB)1800(400640)760,asinC20sin760

c30(cm).sin40

⑵ 当B1160时,C1800(AB)1800(4001160)240,asinC20sin240

c13(cm).sin40评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。Ⅲ.课堂练习

第5页练习第1(1)、2(1)题。

[补充练习]已知ABC中,sinA:sinB:sinC1:2:3,求a:b:c

(答案:1:2:3)

Ⅳ.课时小结(由学生归纳总结)

(1)定理的表示形式:a

sinAsinBsinC

或aksinA,bksinB,cksinC(k0)

(2)正弦定理的应用范围:

①已知两角和任一边,求其它两边及一角;

②已知两边和其中一边对角,求另一边的对角。

Ⅴ.课后作业

第10页[习题1.1]A组第1(1)、2(1)题。

正弦定理的证明 篇6

用余弦定理:a^2+b^2-2abCOSc=c^2

COSc=(a^2+b^2-c^2)/2ab

SINc^2=1-COSc^2

SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2

=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2

同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2

得证

正弦定理:三角形ABC中 BC/sinA=AC/sinB=AB/sinC

证明如下:在三角形的外接圆里证明会比较方便

例如,用BC边和经过B的直径BD,构成的直角三角形DBC可以得到:

2RsinD=BC (R为三角形外接圆半径)

角A=角D

得到:2RsinA=BC

同理:2RsinB=AC,2RsinC=AB

这样就得到正弦定理了

2

一种是用三角证asinB=bsinA

用面积证

用几何法,画三角形的外接圆

听说能用向量证,咋么证呢?

三角形ABC为锐角三角形时,过A作单位向量j垂直于向量AB,则j 与向量AB夹角为90,j与向量BC夹角为(90-B),j与向量CA夹角为(90+A),设AB=c,BC=a,AC=b,

因为AB+BC+CA=0

即j*AB+J*BC+J*CA=0

|j||AB|cos90+|j||BC|cos(90-B)+|j||CA|cos(90+A)=0

所以asinB=bsinA

3

用余弦定理:a^2+b^2-2abCOSc=c^2

COSc=(a^2+b^2-c^2)/2ab

SINc^2=1-COSc^2

SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2

=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2

同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2

得证用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=(a^2+b^2-c^2)/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2 =[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证

4

正弦定理导学案 篇7

【使用说明】

1、预习教材P2-P4页,在规定时间完成预习学案

【预习目标】1.明确在直角三角形中边与角的正弦之间的关系,2.弄清楚正弦定理的表达形式,能对表达式做简单的变形.3.通过自主学习、合作讨论探究,体验学习的快乐

.【重点难点】正弦定理的推导过程和定理的应用.一、知识链接

1.在RtABC中sinA=sinB=sinC=

2.正弦定理:

二、教材导读

1、从直角三角形中边与角的正弦之间的关系可以得到

锐角三角形的证明在钝角三角形中进行证明。

2、思考正弦定理的其他证明方法,可以借助向量来证明吗?

3、从正弦定理的结构形式上看正弦定理可以解决哪些解三角形的问题?(教材第3页)

4、尝试完成例1和例2。注意:①例1和例2的条件有什么不同;②为什么例2会有两种情况呢?是否已知两边及其一边的对角就有两种情况呢?可能还有哪些情况?(参考教材P8和P9).asinAbsinBcsinCasinAbsinBcsinC,仿照教材第2页

三、预习自测

《点金训练》P2自我评价和知识整合例1;

1.在ABC中,(1)sinA=

012 ,则A=_______(2)cosA=012,则A=_______ 2.在ABC中,若C=90,a=6,B=30,则c-b等于()

A.1B.-1C.23D.23

3.在ABC中,sinA1

2,sinB

0032,则ABC对应三边的比值为a︰b︰c=4.在ABC中,已知A45,C30,c10,求边a=。

四、探究、合作、展示 在三角形的外接圆中正弦定理

可以得到哪些边角关系?

正弦、余弦定理综合应用 篇8

正、余弦定理的综合应用

一、知识要点

(一)1.正弦定理:

a

sinA

()2.变形公式:(1)a2RsinA,bc

(2)sinAa

2R,sinB,sinC

(3)a:b:c。

3.三角形面积公式:SABC。

(二)1.余弦定理:a2b2c2

。

2.余弦定理的变形:cosA,cosBcosC。

二、基本类型

类型一:解三角形

1、已知△ABC中,a=2,b=3,B=60°,那么角A等于()A.135°B.90°C.45°D.30°

2、△ABC的三内角A、B、C的对边边长分别为a、b、c.若a=52,A=2B,则cosB=()A.55553B.45D.63、在△ABC中,a,b,c分别是角A,B,C的对边,若A=π3,b=1,△ABC的面积为32

则a的值为()A.1B.2C.3234、、三角形的三边分别为a,b,c,且满足(abc)(abc)

3ab,则c边所对的角等于()

A

45B60C30D150

5、在△ABC中,角A、B、C的对边分别为a、b、c,若(a2+c2-b2)·tanB3ac,则角B的值为()

A.π6B.ππ5ππ2π366D.3或36、在△ABC中,三个角A,B,C的对边边长分别为a=3,b=4,c=6,则bccosA+cacosB+abcosC的值为________.

类型

二、判定三角形的形状

7、在△ABC中,角A、B、C的对边分别为a、b、c,若acosBbcosA,则三角形为

8、在△ABC中,角A、B、C的对边分别为a、b、c,若bcosB

acosA,则三角形为

9、若△ABC的三个内角满足sinA:sinB:sinC5:11:13,则△ABC()

(A)一定是锐角三角形.(B)一定是直角三角形.(C)一定是钝角三角形.(D)可能是锐角三角形,也可能是钝角三角形.10、已知在ABC中,sin

Asin2Bsin2CsinBsinC,则ABC是()

A钝角三角形B锐角三角形C直角三角形D正三角形

11、在△ABC中,a、b、c分别是角A、B、C的对边的长,且sin(B+ππ2

4-sin(B-4=2

.(1)求角B的大小;(2)若a、b、c成等比数列,试判断△ABC的形状.

三、体验高考题

12、(2010浙江理数)在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C14

(1)求sinC的值;(2)当a=2,2sinA=sinC时,求b及c的长.

13、(2010辽宁文数)在ABC中,a、b、c分别为内角A、B、C的对边,且2asinA(2bc)sinB(2cb)sinC(1)求A的大小;(2)若sinBsinC1,试判断ABC的形状.14、(2010安徽文数)ABC的面积是30,内角A,B,C所对边长分别为a,b,c,cosA1213

。(1)求AB

AC

正弦余弦定理典型题例 篇9

7月13-23作业早知道整体介绍必修五 作业题 备注 7月13日 专题一 必修五整体把握 1.结合您的教学经验,请您给出等差数列的起始课的教学设计,并突出您的创新点; 2.请结合您的教学经验,设计一个数列应用的案例(可以是一个例题,可以是一节课,也可以是一个教学片段等); 3.为什么集中讨论不等关系?要不要补充绝对值不等式、不等式的证明、均值不等式等; 4.不等式教学能不能提前? 5.解三角形的教学的重点是什么? 6.解三角形的活动课怎么上? 7.用向量证明正余弦定理的教学; 8.解三角形中计算器的使用。学习要求: 每人不少于十篇作业,其中五篇为模块规定作业题.其余为这两个模块的教学设计,教学体会或者是章节模块测试题.评论总数不少于100条。7月14日 专题二 解三角形 1.请举出5个例题,说明余弦定理、正弦定理的作用和意义; 2.请给出5个例题,体会向量在解三角形中的作用; 7月15日 专题三 等差等比数列及应用 1.结合您的教学经验,请您给出等差数列的起始课的教学设计?突出您的创新点。2.请结合您的教学经验,设计一个数列应用的案例(可以是一道例题,可以是一节课,也可以是一个教学片断等)3.请找出10~15道数列的习题,说明学生掌握这些题目就能很好的把握数列的内容; 7月16日 专题四 不等式及应用 1. 请您给出一元二次不等式的一个教学设计,在这个教学设计中,能把三个“一元二次”融为一体,进行一次全面的学习和提升,并指出您的创新点; 2. 请结合您教学中的一个具体的案例,展示您是如何说明“最优解在可行域的顶点上”的,并指出您的创新点; 3. 请您给出一个线性规划的实际问题,与解决线性规划问题的一般程序框图结合起来,设计一个教学案例,并指出您的创新点; 4. 请您依托基本不等式,全面的梳理一下基本不等关系及其性质; 5. 请您列举5个例题,说明您是如何把握基本不等式教学的难度的; 7月17日 专题五 必修五高端备课 1.谈谈您上活动课的经验与感受; 2.谈谈您对通性通法的认识; 3.请设计一个解决“测量问题”的“活动课”的案例,并指出您的创新点; 选修2-1 7月19日 专题六 选修2-1整体把握 . 为什么“从简易逻辑到常用逻辑用语”; 2. 为什么要把传统的内容分为两部分? 3. 如何把握文理科的差异? 4. 结合您对向量的理解,谈谈“向量”在数学中的作用; 7月20日 专题七 常用逻辑用语 1. 请结合学过的重要的数学内容,举出5个充分条件(判定定理)、5个必要条件(性质定理)的案例; 2. 请您谈谈充分条件、必要条件在数学学习中的作用和意义; 3. 请结合学过的重要的数学内容,举出5个重要的数学概念或结论,并给出它们的充分必要条件,体会充分必要条件在数学学习中的作用和意义; 4. 请举出10个运用全称量词和存在量词的数学案例; 5. 请您用常用逻辑用语梳理一下学过的某些内容,例如:函数、几何、运算等; 7月21日 专题八 立体几何和椭圆 1. 请您设计一节复习课,利用向量对于立体几何进行一次完整的复习,并指出您的创新点。2. 如何依托向量提升学生的数形结合的能力; 3. 如何把向量和算法结合起来解决几何问题—距离问题、角度问题; 7月22日 专题九 圆锥曲线与方程 1.请设计一个椭圆的引入课,突出几何到代数的过程? 2.请您用类比的思想设计一个双曲线的引入课,指出您的创新点; 3.请您设计一个关于抛物线的应用课,指出您的创新点; 4.请举出10~15个有关圆锥曲线的习题,说明学生掌握了这些题目就基本掌握了本章内容; 5.请您列出高考中计算量大的圆锥曲线的试题,谈谈您的看法和建议; 7月23日 专题十 选修2-1高端备课 1. 请举出10个运用全称量词和存在量词的数学案例; 2. 请您用常用逻辑用语梳理一下学过的某些内容,例如:函数、几何、运算等; 3. 请举出10~15个有关圆锥曲线的习题,说明学生掌握了这些题目就基本掌握了本章内容; 4. 请您列出高考中计算量大的圆锥曲线的试题,谈谈您的看法和建议;

5. 如何依托向量提升学生的数形结合的能力;如何把向量和算法结合起来解决几何问题—距离问题、角度问题;

正弦定理优秀教案设计 篇10

生:利用诱导公式。

师:式子变形为: 正弦定理教学设计 ,再

师:很好,那我们就用向量来证明正弦定理,同学们请试一试!

学生讨论合作,就可以解决这个问题

教师:由于时间有限,对正弦定理的证明到此为止,有兴趣的同学下去再探索。

设计意图:经历证明猜想的过程,进一步引导启发学生利用已有的数学知识论证猜想,力图让学生体验数学的学习过程。

(三)利用定理,解决引例

师生活动:

教师:现在大家再用正弦定理解决引例中提出的问题。

学生:马上得出

上一篇:青岛市学校及周边安全管理办法下一篇:2024年平顶山农村信用社招聘金融模拟题