plc电梯控制毕业论文(精选8篇)
电气信息工程系
毕业论文
题 目 PLC电梯控制系统 班 级 电气自动化技术1班 姓 名 学 号 指导老师
前 言
随着现代社会的迅速发展,微电子技术和计算机技术也随之迅速发展.当前数字电器系统的设计正朝着速度快、容量大、体积小、重量轻的方向发展。其中,有着代表性的是日趋进步和完善的PLC设计技术。PLC(即可编程控制器)在工业控制领域内得到十分广泛的应用。PLC是一种基于数字计算机技术、专为在工业环境下应用而设计的电子控制装置,它采用可编程序的存储器,用来存储用户指令,通过数字或模拟的输入/输出,完成一系列逻辑、顺序、定时、记数、运算等确定的功能,来控制各种类型的机电一体化设备和生产过程。
PLC的设计和开发,已经有多种类型和款式。传统的PLC各有特点,它们适合在现场做手工测量,要完成远程测量并要对测量数据做进一步分析出来,传统PLC是无法完成的。然而基于PC通信的PLC,既可以完成测量数据的传递,又可借助PC,做测量数据的处理。所以这种类型的PLC无论在功能和世界应用上,都具有传统PLC无法比拟的特点,这使得它的开发和应用具有良好的前景。
第一章 电梯的简介
一、电梯的起源与发展
1、电梯的起源
现代社会中,电梯已经成为不可短少的运输设备。电梯是随着高层建筑的兴建而发展起来的一种垂直运输工具。多层厂房和多层仓库需要有货梯;高层住宅需要有住宅梯;百货大楼和宾馆需要有客梯,自动扶梯等。在现代社会,电梯已像汽车、轮船一样,成为人类不可缺少的交通运输工具。
电梯在汉语词典中的解释为:建筑物中用电作动力的升降机,代替步行上下的楼梯。
说到电梯的起源要从公元2600年埃及人在建造金字塔时使用了最原始的提升系统说起,但这一类起重机的能源均为人力。到了1203年,法国的二修道院安装了一台起重机,有所不同的是该机器是利用驴作为动力,载荷由绕在一个大滚筒上的绳子进行起吊。此种方法一直沿用到近代直到瓦特发明了蒸汽机,约在1800年,煤矿主才能利用起重机把矿井中的煤输送上来。
数百年来人们制造过各种类型的升降机,它们都具有一个共同的缺陷:只要起吊绳突然断裂,升降机便急速地坠落到底层。1854年奥迪斯设计了一种制动器:在升降机的平台顶部安装一个货车用的弹簧及一个制动杆与升降梯井道两侧的导轨相连接,起吊绳与货车弹簧连接,这样仅是起重平台的重量就足以拉开弹簧,避免与制动杆接触。如果绳子断裂,货车弹簧会将拉力减弱,两端立刻与制动杆咬合,即可将平台牢固地原地固定,免了继续下坠。这样,第一台“安全”升降梯就产生了,然而真正能够称为电梯的产品应该是在20世纪初才出现。
2、电梯技术的发展
(1)电梯的速度要求越来越快,告诉,超高速电梯的数量越来越多。(2)电梯的拖动技术有了圈套的发展,直流电梯由于能耗大、维修量大等缺点。逐步被交流电梯所替代,液压电梯由于运行平稳,机房位置灵活等特点,使得在低楼层场合得到越来越广泛的应用。交流拖动电梯更是得到迅速发展。
(3)电梯的逻辑控制已从过去简单的继电器-接触器控制发展为可编程序控制(PLC)和计算机控制,控制方式也从手柄控制、信号控制发展为集选控制、并联控制、群控等,电梯可靠性得到很大的提高。
(4)电梯的管理功能不断加强,电梯广泛采用计算机控制技术,不断满足用户的使用功能要求。如停车操作、消防员专用等。
第二章 PLC的简介
一、PLC的定义
可编程控制器是一种数字运算操作的电子系统,专业在工业环境应用而设计的。它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,技术与算术操作等方面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。可编程控制器及其有关外部设备,都按易于与工业控制系统联成一个整体,易于扩充其功能的原则设计。
总之,可编程控制器是一台计算机,它是专为工业环境应用而而设计制造的计算机。它具有丰富的输入/输出接口,并且具有较强的驱动能力。但可编程控制器产品并不针对某一具体工业应用,在实际应用时,其硬件需根据实际需要进行选用配置,其软件需根据控制要求进行设计编制。
二、PLC的基本结构和组成
1、PLC的结构图如下所示:
交流/直流现场设备扩展单元电源基本I/OI/O扩展接CPU存储器外围接口数据总线外设编程器通信网络
图2 PLC的结构图
(1)中央处理单元(CPU)是PLC的控制中枢,在系统监控程序的控制下工作,承担着将外部输入信号的状态写入输入映像寄存器区域,然后将接过送到输
出映像寄存器区域。
(2)存储器由只读存储器ROM和随机存储器RAM两大部分组成,存放系统软件的存储器称为系统程序的存储器ROM,存放应用软件或中间运行数据的存储器称为用户程序存储器RAM。
(3)基本I/O接口电路
A.PLC内部输入电路作用是将PLC外部电路提供的、符合PLC输入电路要求的电压信号,通过光耦电路送到PLC内部电路。
B.PLC输出电路用来将CPU运算的结果换成一定形式的功率输出,驱动被控负载。
(4)接口电路:PLC接口电路分为I/O扩展接口电路和外设通信接口电路两大类。
A.I/O扩展接口电路用于连接I/O扩展单元,可以用来扩充开关量I/O点数和增加模拟量的I/O端子。I/O扩展接口电路采用并行接口和串行接口两种电路形式。
B.外设通信接口电路用于连接手持编程器或其他图形编程器、文本显示器,并能组成PLC的控制网络。
(5)电源:PLC内部配有一个专用开关式稳压电源,将交流/直流供电电源转化为PLC内部电路需要的工作电源(5V直流)。
2.PLC控制系统的组成
PLC控制系统像一般的计算机控制系统一样,也是由硬件和软件两个部分组成的,硬件是指PLC本身及其外围设备,软件是指管理PLC的系统软件,PLC的应用程序,编程语言和编程支持工具软件。
图3 PLC控制系统的组成
PLC控制系统的软件主要是系统软件,应用软件,编程语言及编程支持工具软件几个部分组成。
PLC系统软件是PLC工作所必须的软件。在系统软件的支持西,PLC对用户程序进行逐条的解释,并加以执行,直到用户程序结束,然后返回到程序的起始又开始新的一轮扫描。PLC的这种工作方式就称之为循环扫描。
图4 PLC内部工作示意图
0的输入端子的通断状态或输入数据读入,并将其写入各对应的输入状态寄存器中,即刷新输入。随机关闭输入端口,进入程序执行阶段。
PLC在程序执行阶段:按用户程序指令存放的先后顺序扫描执行每条指令,经相应的运算和处理后,其结果再写入输出状态寄存器中,输出状态寄存器中所有的内容随着程序的执行而改变。
输出刷新阶段:当所有指令执行完毕,输出状态寄存器的通断状态在输出刷新阶段送至输出锁存器中,并通过一定的方式输出,驱动相应输出设备工作。
四、PLC的特点
PLC是一种用于工业自动化控制的专用计算机,实质上属于计算机控制方式。PLC与普通计算机一样,以通用或专用CPU作为处理器,实现通道的运算和数据的存储,另外还有位处理器,进行点(位)的运算与控制。
PLC控制一般具有可靠性高,易操作、维修、编程简单、灵活性强等特点。
五、PLC系统的发展趋势
PLC当初是针对工业顺序控制发展而研制的。经过30几年的迅速发展,PLC已不仅能进行开关量控制,而且还能进行模拟量控制,位置控制。特别是PLC的通信网络技术的发展,使得PLC如虎添翼,由单机控制向多机控制,由集中控制向多层次分布式控制系统发展。现在PLC的足迹已遍布了国民经济的各个领域,形成了满足各种需要的PLC应用系统。
电梯结构不断紧凑化,体积不断轻型化、小巧化随着新技术、新结构、新材料、新工艺的发展,电梯的机械系统结构简单化、体积小型化、材料轻型化、工艺先进化、外观漂亮化。同时,无机房电梯在新世纪将会有较大速度发展。
今后PLC控制系统将朝着两个方向发展:一是向小型化,微型化系统方向发展。作为控制系统的关键设备,PLC将朝着体积更小,速度更快,功能更强,价格更低的方向发展。二是向大型化,网络化,多功能的方向发展。
2131415
第四章 PLC控制系统的设计方案
一、PLC控制系统基本方案
随着城市建设的不断发展,高层建筑不断增多,电梯在国民经济和生活中有着广泛的应用。电梯作为高层建筑中垂直运行的交通工具已与人们的日常生活密不可分。实际上电梯是根据外部呼叫信号以及自身控制规律等运行的,而呼叫是随机的,电梯实际上是一个人机交互式的控制系统,单纯用顺序控制或逻辑控制是不能满足控制要求的,因此,电梯控制系统采用随机逻辑方式控制。目前电梯的控制普遍采用了两种方式,一是采用微机作为信号控制单元,完成电梯信号的采集、运行状态和功能的设定,实现电梯的自动调度和集选运行功能,拖动控制则由变频器来完成;第二种控制方式用可编程控制器(PLC)取代微机实现信号集选控制。从控制方式和性能上来说,这两种方法并没有太大的区别。国内厂家大多选择第二种方式,其原因在于生产规模较小,自己设计和制造微机控制装置成本较高;而PLC可靠性高,程序设计方便灵活,抗干扰能力强、运行稳定可靠等特点,所以现在的电梯控制系统广泛采用可编程控制器来实现。
本文将用四层楼作为背景进行设计。
1.轿厢楼层位置检测方法
主要方法有以下几种:
(1)用于簧管磁感应器或其他位置开关:这种方法直观、简单,但由于每层需使用一个磁感应器,当楼层较高时,会占用PLC太多的输入点。
(2)利用稳态磁保开关:这种方法需对磁保开关的不同状态进行编码,在各种编码方式中适合电梯控制的只有格雷变形码,但是它是无权代码,进行运算时需采用PLC指令译码,比较麻烦,软件译码也使程序变的庞大。
(3)利用旋转编码器:目前,PLC一般都有高速脉冲输入端或专用计数单元,计数准确,使用方便,因此在电梯PLC控制系统中,可用编码器测取电梯运行过程中的准确位置,编码器可直接与PLC高速脉冲输入端相连,电源可利用PLC内置的24V直流电源,硬件连接可谓简单方便。
由以上分析可见,用旋转编码器检测轿厢的位置优于其他方法,故本设计采用此方法
2.PLC的选型
根据以上选择的轿厢楼层位置检测方法,要求可编程控制器必须且有高数计数器。又因为电梯时双向运行的,所以PLC还需具有可逆计数器。综合考虑后,本设计选择西门子公司生产的S7—200系列机。
S7—200系列机具有以下优点: 1.体积极小
2.先进美观的外部结构 3.提供多种子系列供用户选用 4.灵活多变的系统配置 5.功能强、使用方便
二、PLC电梯控制系统设计方向
1.电梯控制系统的基本结构组成
电梯PLC的控制系统和其他类型的电梯控制系统一样主要由信号控制系统和拖运控制系统两部分组成。图7为电梯PLC控制系统的基本结构图,主要硬件包括PLC主机及扩展、机械系统、轿箱操纵盘、厅外呼梯盘、指层器、门机、调速装置与主拖动系统等。系统控制核心为PLC主机,操纵盘、呼梯盘、井道及安全信号通过PLC输入接口送入PLC,存储在存储器及召唤指示灯等发出显示信号,向拖动和门机控制系统发出控制信号。
电梯控制系统可分为电力拖动系统和电气控制系统两个主要部分。电力拖动系统主要包括电梯垂直方向主动拖动电路和轿厢开关电路。二者均采用易于控制的直流电动机作为拖动动力源。主拖动电路采用PWM调试方式,达到了无级调速的目的。而开关门电路上电机仅需一种速度进行运动。电气控制系统则由众多呼叫按钮、传感器、控制用继电器、指示灯、LED七段数码管和控制部分的核心器件等组成。PLC集信号采集、信号输出及逻辑控制于一体,与电梯电力拖动系统一起实现了电梯控制的所有功能。十层电梯控制系统由呼叫到响应形成一次工作循环,电梯工作过程又可细致分为自检、正常工作、强制工作等三种工作状态。电梯在三种工作状态之间来回切换,构成了完整的电梯工作过程。
如下图:
图7 电梯PLC控制系统的基本结构
2.电梯控制系统原理框图
电梯控制系统原理框图如下图所示,主要由轿厢内指令电路、门厅呼叫电路、主拖动电机电路、开关门电路、档层显示电路、按钮记忆灯电路、楼层检测与平层检测传感器及PLC电路等组成的。
图8 电梯控制系统原理框图
到PLC的控制信号有:运行方式选择、运行控制、轿内指令、层站召唤、安全保护信息、旋转编码器光电脉冲、开关门及限位信号、门区和平层信号等。
图10 电梯信号控制系统
6.拖动控制系统
电梯主要由直流和交流两种拖动方式,PLC控制的拖动系统主电路及调速装置与继电器控制系统相比无需做很多改动。拖动系统的工作状态及部分反馈信号可直接送入PLC,由PLC向拖动系统发出速度切换、起动、运行、平层等控制信号。
7.电梯上行
(1)电梯停在1F,2F呼叫时,则上行,碰到2F的行程开关后停止。(2)电梯停在1F或2F时,3F呼叫,则上行,碰到3F的行程开关后停止。(3)当电梯停在1F或2F、3F时,4F呼叫,则上行到4F碰到行程开关后停止。
(4)电梯停在1F,2F、3F同时呼叫时,则电梯上行到2F后停5s,继续上行到3F后停止。
(5)电梯停在1F,2F、3F同时呼叫时,电梯上行到2F停5s,继续上行到3F停止。
(6)电梯停在1F,3F、4F同时呼叫时,电梯上行到3F停止5s,继续上行
122232425
系统会根据外呼和内选信号及门锁信号综合判断电梯的运行方向。5.执行上行程序
此段程序包括控制电梯上行,检测是否应该减速或者停止电梯正转并且执行。6.执行下行程序
此段程序包括控制电梯下行,检测是否应该减速或者停止电梯正转并且执行。
四、I/O点的分配
根据需要控制的开关、设备大约有15个输入点,11个输出点。如图15:
图15 I/O点的分配
五、硬件系统调试
在硬件调试时,我们主要调试的内容有: 1.在接线端子上。
2.在PLC扩展单元上。3.在电源接线上。
注:特别是在电源接线时,一定要注意哪些端子接24V,哪些接地。
六、软件系统调试
在软件调试时,主要是结合硬件设备观察程序的过程是否与我们设计的原理一致。如果出现不正常运行和不运行时我们得回到程序编制,依次检查与修改。
七、程序梯形图
0
图16 PLC控制程序梯形图
注:
M0.1 电梯在一层时停止指令 M0.2 电梯在二层时停止指令 M0.3 电梯在三层时停止指令 M0.4 电梯在四层时停止指令 M1.1 电梯在一层时向上运行指令 M1.2 电梯在二层时向上运行指令 M1.3 电梯在三层时向上运行指令
E2亮,电梯停止。
11.按SB6,SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯仍上升,按SQ3,E2灭,E3亮,电梯仍上升,再按SQ4,E3,E4亮,电梯停止2s后下降,按SQ2,E3灭,E2亮,电梯停止。
12.按SB7(SB2),SB10(SB4),电梯上升,按SQ2,E1灭,E2灭,电梯停止2s后上升,按SQ3,E2灭,E3亮,电梯仍上升,再按SQ4,E3灭,E4亮,电梯停止。
13.按SB6,SB8,SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯停止2s后上升,再按SQ3,E1灭,E2亮,电梯仍上升,在按SQ4,E3灭,E4亮,电梯停止2s后下降,按SQ3,E4灭,E3亮,电梯仍下降,按SQ2,E2灭,E2亮,电梯停止。
14.按SB6,SB8,SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯停止2s后上升,按SQ3,E2灭,E3亮,电梯仍上升,再按SQ4,E3灭,E4亮,电梯停止2s后下降,按SQ3,E4灭,E3亮,电梯仍下降,按SQ2,E3灭,E2亮,电梯停止。
15.按SB6,SB8,SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯停止2s后上升,按SQ3,E2灭,E3亮,电梯仍上升,再按SQ4,E3灭,E4亮,电梯停止2s后下降,按SQ3,E4灭,电梯提高至2s后下降,按SQ3,E4灭,E3亮,电梯停止。
16.按SB6,SB9(SB3),SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯仍上升,按SQ3,E2灭,E3亮,电梯停止2s后上升,再按SQ4,E3灭,E4亮,电梯停止2s后下降,按SQ3,E4灭,E3亮,电梯仍下降,按SQ2,E3灭,E2亮,电梯停止。
17.按SB7(SB2),SB9(SB3),SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯停止2s后上升,按SQ3,E2灭,E3亮,电梯停止2s后上升,再按SQ4,E3灭,E4亮,电梯停止。
18.按SB6,SB7(SB2),SB8,SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯停止2s后上升,按SQ3,E2灭,E3亮,电梯仍上升,再按SQ4,E3灭,E4亮,电梯停止2s后下降,再按SQ3,E4灭,E3亮,电梯上升,再按SQ4,E3灭,E4亮,电梯停止2s后下降,再按SQ3,E4灭,E3亮,电梯停止2s后下降,再按SQ2,E3灭,E2亮,电梯停止。
19.按SB6,SB7(SB2),SB9(SB3),SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯停止2s后上升,按SQ3,E2灭,E3亮,电梯停止2s后上升,再按SQ4,E3灭,E4亮,电梯停止2s后下降,按SQ3,E4灭,E3亮,电梯仍下
降,再按SQ2,E3灭,E2亮,电梯停止。
20.按SB6,SB7(SB2),SB8,SB9(SB3),SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯停止2s后上升,按SQ3,E2灭,E3亮,E4亮,电梯停止2s后下降,按SQ3,E4灭,E3亮,电梯停止2s后下降,再按SQ2,E3灭,E2亮,电梯停止。
21.按SB8,SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯仍上升,按SQ3,E2灭,E3亮,电梯仍上升,按SQ3,E2灭,E3亮,电梯停止2s后上升,按SQ3,E2灭,E3亮,电梯停止。
22.按SB8,SB9(SB3),SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯仍上升,按SQ3,E2灭,E3亮,电梯停止2s后上升,按SQ3,E2灭,E3亮,电梯停止。
23.按SB8,SB9(SB3),SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯仍上升,按SQ3,E2灭,E3亮,电梯停止2s后上升,再按SQ4,E3灭,E4亮,电梯停止2s后下降,按SQ3,E4灭,E3亮,电梯停止。
电梯停留在二层:
1.按SB8或SB9(SB3)或SB8或SB9(SB3),电梯上升,反方向呼叫无效,按SQ3,E2灭,E3亮,电梯停止。
2.按SB10(SB4),电梯上升,反方向呼叫无效,按SQ3,E2灭,E3亮,电梯停止。
3.按SB5(SB1), 电梯上升,反方向呼叫无效,按SQ3,E2灭,E3亮,电梯停止。
4.按SB8,SB10(SB4),电梯上升,反方向呼叫无效,按SQ3,E2灭,E3灭,E4亮,电梯停止。
5.按SB9(SB3),SB10(SB4),电梯上升,反方向呼叫无效,按SQ3,E2灭,E3亮,电梯停止2s后上升,再按SQ4,E3灭,E4亮,电梯停止。
6.按SB8,SB9(SB3),SB10(SB4),电梯上升,反方向呼叫无效,按SQ3,E2灭,E3亮,电梯停止2s后上升,再按SQ4,E3灭,E4亮,电梯停止2s后下降,按SQ3,E4灭,E3亮,电梯停止。
电梯停留在三层:
1.按SB10(SB4),电梯上升,反方向呼叫无效,按SQ4,E3灭,E4亮,电梯停止。
2.按SB6或SB7(SB2)或SB6,SB7(SB2),电梯下降反方向呼叫无效,按SQ2,E3亮,电梯停止。
3.按SB5(SB1), 电梯下降,反方向呼叫无效,按SQ2,E3灭,E2亮,电梯仍下降,按SQ1,E2灭,E1亮,电梯停止。
4.按SB7,SB5(SB1), 电梯下降,反方向呼叫无效,按SQ2,E3灭,E2亮,电梯仍下降,按SQ1,E2灭,E1亮,电梯停止2s后上升,按SQ2,E1灭,E2亮,电梯停止。
5.按SB7,SB6(SB2),SB5(SB1),电梯下降,反方向呼叫无效,按SQ2,E3灭,E2亮,电梯停止2s后下降,按SQ1,E2灭,E1亮,电梯停止。
6.按SB7,SB6(SB2),SB5(SB1),电梯下降,反方向呼叫无效,按SQ2,E3灭,E2亮,电梯停止2s后下降,再按SQ1,E2灭,E1亮,电梯停止2s后上升,按SQ2,E1灭,E2亮,电梯停止。
关键词:PLC,电梯,电气控制
1 电梯的工作原理
在现实生活中, 电梯控制的方法有许多种, 本文主要介绍集选控制电梯。集选电梯可分为上集选电梯与下集选电梯。下集选电梯就是在其他层设置的有向上和向下召唤按钮, 集选电梯的轿厢控制箱都设置有和停站数一样的相应指令按钮, 如果有乘客摁向下指令按钮的时候, 指令就会被登记, 然后经过PLC控制, 向下运行到目标层, 到达目标层后再向上运行到指令层。上集选的电梯与之相反。电梯每运行到一层都会自动做出减速、平层、开门、关门等一系列的操作。
2 电梯的电气控制系统
电梯是机电一体化的产品, 主要是由机械和电气结合而成, 电梯电气系统主要由拖动系统与控制系统组成。电梯电气控制技术经历了继电器控制和可编程控制器控制这两个阶段。
2.1 继电器控制系统
电梯电气控制在继电器控制阶段时, 电气元件用的大部分都是常用的元件, 这些元件更换方式比较简单, 也比较经济实惠。电梯控制原理也比较简单易懂, 线路也较为直观, 比较容易掌握。但是, 这种控制系统的触点较多, 线路比较复杂, 电磁机构与触点动作比较慢, 机械动作的噪音比较大, 并且可靠性比较差, 继电器是通过触点断合来进行逻辑判断与运算的, 进而控制电梯运行。触点比较容易受电弧的损害, 其寿命较短, 所以, 继电器控制的电梯的出故障的频率比较高, 维修的工作量比较大, 机器设备的体积也比较大, 控制功能较少, 灵活性与可靠性都比较差等等。因此, 继电器控制系统已经逐渐被通用性比较强、可靠性比较高的可编程序控制器 (PLC) 所代替。
2.2 可编程控制器的控制系统
可编程控制器 (Programmable Logic Controller, PLC) 是现如今一种比较新型的控制器。PLC主要集成了计算机技术和微电子技术, 能够替代继电器控制系统。其主要的特点就是多种设备能够自动控制, 有着逻辑控制、运动控制、过程控制、联网通信、数据处理等许多功能。近年来, 我们对其越来越重视, 并且受到了大力推广, 还被视为现代工业自动化的三大支柱之一。
3 PLC主要组成部分
3.1 主机
PLC的主机主要包括中央处理器 (也就是CPU) 、用户程序、系统程序储存器和数据存储器这四部分。PLC的核心是CPU, 它的主要功能就是运行用户程序, 监控输入输出接口的状态, 并做出逻辑判断和数据处理。PLC内部存储器主要有两种:第一种是系统程序的存储器, 其主要功能是存放系统管理、程序, 监控程序等等, 系统程序一般是由厂家固定的, 用户不可以随便更改。第二种是用户程序与数据存储器, 主要存放用户编制的应用程序和各种暂存数据以及中间结果。
3.2 输入输出的接口
PLC与输入输出设备相互连接的部件是I/O接口。输入的接口主要是接受输入设备的控制信号, 而输出的接口主要是把主机处理过的信号通过功放驱动电路传入输出设备。I/O接口通常会选用光电耦合电路, 主要是为了减少电磁的干扰, 进而提高系统的可靠性和稳定性。I/O接口是PLC的一项非常重要的指标。
3.3 编程
PLC的编程主要是用户利用外部设备, 对PLC进行输入、检查修改和调试程序或者对PLC的工作情况进行监督。一般来说, 主要是通过专用的PC/PPI电缆把PLC和电脑连接起来, 并且利用专用的软件进行电脑编程控制。外部设备的接口能够把打印机和变频器等这些外部设备和主机连接起来, 来完成相应的操作。
4 PLC的主要特点
4.1 编程简单易懂, 容易学习
PLC虽说是运用了先进的计算机网络技术, 但是, PLC的大部分的基本指令与逻辑代数的“与”“或”“非”运算非常相近, 也就是说电气控制中触点串联和并联等等。其程序的编写一般都是选用梯形图, 继电接触控制的原理图与梯形图非常相近, 梯形图的编程语言比较形象直观。
4.2 抗干扰性强, 稳定可靠性高
PLC结构在设计上采取了很多的抗干扰措施, 在其输入输出模块中都设置有光电耦合电路, 在非常恶劣的环境下也能够正常的工作。
4.3 构成应用系统灵活简便
在PLC中, CPU、存贮器与输入输出模块是一体的, 我们可以根据控制的要求来选择相应的电路形式的输入输出模块。在用于电梯控制的时候, 我们可以把PLC看成内部由各种的继电器和其触点、计数器、定时器等共同构成的控制装置。PLC的输入可以直接和直流24V、交流110V相连接, PLC的输出可以直接驱动直流24V、交流220V的负载, 不需要电平转换和光电隔离, 所以, 可以很方便地构成各种类型的控制系统。PLC前期的安装与后期的维护都比较方便, PLC本身就具有自诊断与故障报警的功能, 在输入输出模块出现故障时, 我们可以非常便捷地更换单个的插入模块。
5 结语
本文简单地介绍了电梯的电气控制系统。我们在充分了解电梯工作原理的基础上, 讨论了电梯电气控制系统的组成, 同时还讲述了电梯的PLC控制方式以及PLC的组成成分与其特点。PLC电梯控制系统能够减少电梯安装周期与费用, 同时也提高了电梯的控制精度和可靠性。在大楼管理系统与智能化管理小区系统中的电梯管理中, 能够充分发挥其作用, 提高人们的生活质量。
参考文献
[1]陈家盛.电梯结构原理及安装维修[M].北京:机械工业出版社, 2012:132-139.
[2]刘剑, 朱德文, 梁质林.电梯电气设计[M].北京:中国电力出版社, 2006:79-86.
[3]阮毅.电力拖动自动控制系统[M].北京:机械工业出版社, 2010:117-124.
关键词:电梯;PLC;编程;抗干扰
中图分类号:TU857文献标识码:A文章编号:1007-9599 (2010)16-0000-01
The Simple Analysis of PLC in Elevator Control
Feng Aimin
(Liaoning First Construction Design Co.ltd,Shenyang110001,China)
Abstract:Through simple analysis of PLC in elevator control,the thesis explains the requiremts of elevator to PLC and analyzes the advantages of PLC system compared with relay sistem.It discusses the basic elements in the design of the PLC system and put emphasis on the mode choice of the system and the basic method of anti-disturbance.
Keywords:Elevator;PLC;Programming;Anti-disturbance
随着科学技术的发展,电梯成为高层建筑中垂直升降的重要交通工具。国内的电梯产品和正在运行的电梯大多采用继电器组成的控制系统,缺点是触点多,故障率高,可靠性差和体积庞大等,采用PLC控制是解决上述问题的重要途径。PLC已拥有门类齐全的各种功能模块和强大的网络通讯能力。其控制范围由单机自动化、简单生产过程直至大型集散系统,可以覆盖现代工业的各个应用领域,满足绝大部分受控对象的不同控制要求。
一、PLC用于电梯控制的简单分析
(一)电梯对控制信号的响应要求
电梯一般是由电动机来拖动,运行过程包括起动、正(反)转、加减速、稳速、制动、停止等。具体的控制主要是对电动机及开门机的起动、换速、停止、运行方向、楼层显示、层站召唤、轿厢内指令、安全保护指令信号进行管理。
1.电梯无司机人工驾驶,完全自动响应层站召唤和轿厢内指令。
2.电梯起动后,轿厢在一楼,若一楼有呼梯信号,则开门。
3.当电梯“悬停”时,若有呼梯信号且信号对应的楼层高于当前楼层时,则电梯上升,反之则下降。
4.电梯运行时只响应顺向呼梯信号,对反向呼梯信号只作记忆。
5.电梯在运行过程中应具有自动换速、楼层显示、状态指示、极限位置保护等功能。
(二)PLC能满足电梯要求的控制功能
在现代电梯上,乘员对电梯只要完成很小的操作,其他动作由自动控制系统进行。要完成这一系列复杂的功能,一台五层五站交流双速电梯,控制继电器达50个,而每增加一层就要增加5个,楼层越高继电器数目就越多。PLC的逻辑运算功能完全可以代替继电器,满足电梯的控制要求。使用继电器30个以上的线路,采用PLC代替继电器可获得很好的性能价格比,电梯的楼层越高,使用PLC控制的优越性就越显著。
(三)运行的安全性
PLC既无内部配线,不必顾虑馈线松脱、接触不良、线路漏电或短路,又无接触点,既不会接触不良,亦不会由于接触产生火花干扰电路,可靠性极高。其无故障运行时间达一万小时以上,其寿命为半永久性,因而可大大提高电梯控制系统的安全性和可靠性。
(四)维护简单,检修方便
PLC控制系统具有自诊断功能,其输入输出均有信号灯指示,维修人员甚至不必动用电表就可以发现故障。若为内部故障,找到故障的模块,拆卸几个螺钉即可更换。
(五)电气柜体积小,制造安装工效高
PLC电梯的电气柜要比同样功能继电器电气柜小得多,可小l/3到1/8,层越高其差值越大。而PLC备料品种简单,安装方便容易,只要几个螺丝即可装好,更不必内部配线,制造安装PLC电梯电气柜比同样数目楼层继电器电梯电气柜提高工效几倍到十几倍。
(六)器件标准化,编程工程化
器件标准化按产品目录选用,可以免除电梯厂要建立自己工控微机产品的投资。编程工程化,简单易学,极易为熟悉继电器线路的电梯厂工程技术人员所掌握。使电梯企业可以在不增加投资,不更换人员的情况下进行产品改型换代,生产可编程控制器控制的电梯。
(七)功能性强
用PLC可设计更多的功能,如呼叫切除、重要层密码停靠、盲层设置等。还具备停电记忆功能,保护断电前的状态。
(八)通用性强
仅需简单修改程序,PLC系统就可与任一种拖动系统相连接的灵活性,同时还具有故障诊断、状态指示、运行监控等功能。
二、PLC系统设计
(一)电梯方面要考虑的因素
1.电梯的用途。是客梯、货梯、还是病梯等。
2.电梯的层站数。层数与站数是否一致,有无盲层。
3.电梯的拖动方式。应熟悉拖动系统接口信号的意义、电平和要求的时序。
4.电梯的控制方式和功能。包括信号控制、集选、并联、有/无司机、消防以及超载、满载、直驶等。
5.信号采集和输出方式。层站信号是使用磁感应器、双稳态开关、光电开关等进行层站记数,或是由旋转编码器全程或层站间记数;称重信号的方式是由分离开关产生,还是由压力传感器产生;楼层信号的输出方式是七段码还是BCD码或其它编码输出等。这些决定了PLC的I/O点数,PLC的选型,程序容量。
(二)PLC的选型方法
选型时应详尽了解和掌握产品性能,一般选择自己熟悉的产品,各公司的PLC产品呈系列化,具体型号应根据电梯控制系统的具体情况,综合考虑以下几个方面:
1.I/O点数及方式:输入分为开关量或模拟量,输出为继电器、可控硅、晶体管等形式。
2.存储容量和存储器类型:存储器容量有1K、2K、4K、8K等。EPROM要用专门的写人器完成程序的存入,且现场不能更改,适合定型后的大规模生产;E2PROM和FlashR0M无须专用写入器写入,程序也可现场修改,FlashR0M需要电池维持,E2PROM也适用于定型后的大规模生产。
3.结构:有单元式、模块式、积木式等。单元式I/O结构固定,而模块式I/O点可灵活配置。
4.工作电压:交流10O-240V,直流24V等。
(三)PLC在电梯控制中的编程技术
PLC具有很强的逻辑处理能力,由于电梯在运行过程中各种输入信号是随机出现的,同时信号需要自锁保持、互锁保护、优先级排队、数据比较等,因此信号之间就存在复杂的逻辑关系。编程工作主要是针对各种信号进行逻辑判断和处理。
(四)抗干扰措施
PLC在设计上都采用了相当强的抗干扰措施,对外线路结构设计、制造工艺等也有严格要求。PLC与接触器等要有一定距离,且要可靠接地;交流接触器线圈加阻容吸收回路,直流继电器加反并联二极管,控制柜上强弱电交叉通过,分别布线;重要信號要用屏蔽线连接。采取这些措施加上高性能的PLC,整机产品能够适应强电磁干扰、高温、粉尘、电压波动等恶劣环境。
机电工程系
搬运机械手PLC控制系统设计毕业设计
摘 要
随着工业自动化的普及和发展,控制器的需求量逐年增大,搬运机械手的应用也逐渐普及,主要在汽车,电子,机械加工、食品、医药等领域的生产流水线或货物装卸调运, 可以更好地节约能源和提高运输设备或产品的效率,以降低其他搬运方式的限制和不足,满足现代经济发展的要求。
本机械手的机械结构主要包括由两个电磁阀控制的液压钢来实现机械手的上升下降运动及夹紧工件的动作,两个转速不同的电动机分别通过两线圈控制电动机的正反转,从而实现小车的快进、慢进、快退、慢退的运动运动;其动作转换靠设置在各个不同部位的行程开关(SQ1---SQ9)产生的通断信号传输到PLC控制器,通过PLC内部程序输出不同的信号,从而驱动外部线圈来控制电动机或电磁阀产生不同的动作,可实现机械手的精确定位;其动作过程包括:下降、夹紧、上升、慢进、快进、慢进、延时、下降、放松、上升、慢退、快退、慢退;其操作方式包括:回原位、手动、单步、单周期、连续;来满足生产中的各种操作要求。
关键词:搬运机械手,可编程控制器(PLC),液压,电磁阀
目 录
前 言………………………………………………………………………………….1
第一章 机械手的概况
1.1 搬运机械手的应用简况…………………………………………………2
1.2 机械手的应用意义………………………………………………………3
1.3 机械手的发展概况………………………………………………………3
第三章 搬运机械手PLC控制系统设计
3.1 搬运机械手结构及“ title=”下一页">> >> >>| 其动作………………………………………………
3.2 搬运机械手系统硬件设计………………………………………………
3.3 搬运机械手控制程序设计……………………………………………… 操作面板及动作说明…………………………………………………… I/O分配………………………………………………………………… 梯形图的设计……………………………………………………………
1)梯形图的总体设计……………………………………………………
2)各部分梯形图的设计…………………………………………………
3)绘制搬运机械手PLC控制梯形图…………………………………… 结 论………………………………………………………………………………
谢 辞………………………………………………………………………………
参考文献………………………………………………………………………………….附:语句表
梯形图 I/O接线图
前言
机械手:mechanical hand,也被称为自动手,auto hand 能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。
机械手主要由手部、运动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。为了抓取空间中任意位置和方位的物体,需有6个自由度。自由度是机 械手设计的关 键参数。自由 度越多,机械手的灵活性越大,通用性越广,其结构也越复杂。一般专用机械手有2~3个自由度。
机械手的种类,按驱动方式可分为液压式、气动式、电动式、机械式机械手;按适用范围可分为专用机械手和通用机械手两种;按运动轨迹控制方式可分为点位控制和连续轨迹控制机械手等。
机械手通常用作机床或其他机器的附加装置,如在自动机床或自动生产线上装卸和传递工件,在加工中心中更换刀具等,一般没有独立的控制装置。有些操作装置需要由人直接操纵,如用于原子能部门操持危险物品的主从式操作手也常称为机械手。机械手在锻造工业中的应用能进一步发展锻造设备的生产能力,改善热、累等劳动条件。
机械手首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机械手。
第一章 机械手概况
1.1搬运机械手的应用简况
在现代工业中,生产过程的机械化、自动化已成为突出的主题。在机械工业中,加工、装配等生产是不连续的。专用机床是大批量生产自动化的有效办法,程控机床、数控机床、加工中心等自动化机械是有效解决多品种小批量生产自动化的重要办法。
但除切削加工本身外,还有大量的装卸、搬运、装配等作业,有待于进一步实现机械化。据资料介绍,美国生产的全部工业零件中,有75%是小批量生产;金属加工生产批量中有四分之三在50件以下,零件真正在机床上加工的时间仅占零件生 5 产时间的5%。从这里可看出,装卸、搬运等工序机械化的迫切性,工业机械手就是为实现这些工序的自动化而产生的。机械手可在空间抓放物体,动作灵活多样,适用于可变换生产品种的中、小批量自动化生产,广泛应用于柔性自动线。
国内外机械工业、铁路部门中机搬运械手主要应用于以下几方面:
1.热加工方面的应用
热加工是高温、危险的笨重体力|<< << < 1 2 3 4 5 6 7 8 9 10 > >> >>| 劳动,很久以来就要求实现自动化。为了提高工作效率,和确保工人的人身安全,尤其对于大件、少量、低速和人力所不能胜任的作业就更需要采用机械手操作。
2.冷加工方面的应用
冷加工方面机械手主要用于柴油机配件以及轴类、盘类和箱体类等零件单机加工时的上下料和刀具安装等。进而在程序控制、数字控制等机床上应用,成为设备的一个组成部分。最近更在加工生产线、自动线上应用,成为机床、设备上下工序联接的重要于段。
3.拆修装方面
拆修装是铁路工业系统繁重体力劳动较多的部门之一,促进了机械手的发展。目前国内铁路工厂、机务段等部门,已采用机械手拆装三通阀、钩舌、分解制动缸、装卸轴箱、组装轮对、清除石棉等,减轻了劳动强度,提高了拆修装的效率。近年还研制了一种客车车内喷漆通用机械手,可用以对客车内部进行连续喷漆,以改善劳动条件,提高喷漆的质量和效率。
近些年,随着计算机技术、电子技术以及传感技术等在机械手中越来越多的应用,工业机械手已经成为工业生产中提高劳动生产率的重要因素。
1.2机械手的应用意义
在机械工业中,机械手的应用意义可以概括如下:
1.可以提高生产过程的自动化程度
应用机械手,有利于提高材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化程度,从而可以提高劳动生产率,降低生产成本,加快实现工业生产机械化和自动化的步伐。
2.可以改善劳动条件、避免人身事故在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其它毒性污染以及工作空间狭窄等场合中,用人手直接操作是有危险或根本不可能的。而应用机械手即可部分或全部代替人安全地完成作业,大大地改善了工人的劳动条件。在一些动作简单但又重复作业的操作中,以机械手代替人手进行工作,可以避免由于操作疲劳或疏忽而造成的人身事故。
3.可以减少人力,便于有节奏地生产
应用机械手代替人手进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续地工作,这是减少人力的另一个侧面。因此,在自动化机床和综合加工自动生产线上,目前几乎都设有机械手,以减少人力和更准确地控制生产的节拍,便于有节奏地进行生产。
综上所述,有效地应用机械手是发展机械工业的必然趋势。1.3.3机械手的发展概况与发展趋势
1.3机械手的发展概况
专用机械手经过几十年的发展,如今已进入以通用机械手为标志的时代。由于通用机械手的应用和发展,进而促进了智能机器人的研制。智能机器人涉及的知识内容,不仅包括一般的机械、液压、气动等基础知识,而且还应用一些电子技术、电视技术、通讯技术、计算技术、无线电控制、仿生学和假肢工艺等,因此它是一项综合性较强的新技术。目前国内外对发展这一新技术都很重视,几十年来,这项技术的研究和发展一直比较活跃,设计在不断地修改,品种在不断地增加,应用领域也在不断地扩大。
早在40年代,随着原子能工业的发展,已出现了模拟关节式的第一代机械手。
50~60年代即制成了传送和装卸工件的通用机械手和数控示教再现型机械手。这种机械手也称第二代机械手。如尤尼曼特(Unimate)机械手即属于这种类型。
60~70年代,又相继把通用机械手用于汽车车身的点焊和冲压生产自动线上,亦即是第二代机械手这一新技术进入了应用阶段。
80-90年代,装配机械手处于鼎盛时期,尤其是日本。
90年代机械手在特殊用途上有较大的发展,除了在工业上广泛应用外,农、林、矿业、航天、海洋、文娱、体育、医疗、服务业、军事领域上有较大的应用。
90年代以后,随着计算机技术、微电子技术、网络技术等的快速发展,机械手技术也得到飞速的多元化发展。
总之,目前机械手的主要经历分为三代:
第一代机械手主要是靠人工进行控制,控制方式为开环式,没有|<< << < 1 2 3 4 5 6 7 8 9 10 > >> >>| 识别能力;改进的方向主要是将低成本和提高精度;第二代机械手设有电子计算机控制系统,具有视觉、触觉能力,甚至听、想的能力。研究安装各种传感器,把接收到的信息反馈,使机械手具有感觉机能;第三代机械手能独立完成工作过程中的任务。它与电子计算机和电视设备保持联系,并逐步发展成为柔性系统FMS(Flexible Manufacturing System)和柔性制造单元FMC(Flexible Manufacturing Cell)中重要一环。
1.4机械手的发展趋势
目前国内工业机械于主要用于机床加工、铸锻、热处理等方面,数量、品种、性能方面都不能满足工业生产发展的需要。
因此,国内主要是逐步扩大机械手应用范围,重点发展铸锻、热处理方面的机械手,以减轻劳动强度,改善作业条件。在应用专用机械手的同时,相应地发展通用机械手,有条件的还要研制示教式机械手、计算机控制机械手和组合式机械手等。
将机械手各运动构件,如伸缩、摆动、升降、横移、俯仰等机构,以及适于不同类型的夹紧机构,设计成典型的通用机构,以便根据不同的作业要求,选用不用的典型部件,即可组成各种不同用途的机械手。既便于设计制造,又便于改换工作,9 扩大了应用的范围。同时要提高精度,减少冲击,定位精确,以更好地发挥机械手的作用。此外还应大力研究伺服型、记忆再现型,以及具有触觉、视觉等性能地机械手,并考虑于计算机联用,逐步成为整个机械制造系统中的一个基本单元。
在国外机械制造业中,工业机械手应用较多,发展较快。目前主要用于机床、模锻压力机的上下料,以及点焊、喷漆等作业中,它可按照事先制定的作业程序完成规定的操作,但是还不具备任何传感反馈能力,不能应付外界的变化。如发生某些偏离时,就将引起零部件甚至机械手本身的损坏。为此,国外机械手的发展趋势是大力研制具有某些智能的机械手,使其拥有一定的传感能力,能反馈外界条件的变化,做出相应的变更。如位置发生稍些偏差时,即能更正,并自行检测,重点是研究视觉功能和触觉功能。
视觉功能即在机械手上安装有电视照相机和光学测距仪(即距离传感器)以及卫星计算机。工作时,电视照相机将物体形象变成视频信号,然后传送给计算机,以便分析物体的种类、大小、颜色和方位,并发出指令控制机械手进行工作。
触觉功能即在机械手上安装有触觉反馈控制装置。工作时机械手先伸出手指寻找工件,通过装在手指内的压力敏感元件产生触感作用,然后伸向前方,抓住工件。
手的抓力大小可通过装在手指内侧的压力敏感元件来控制,达到自动调整握力的大小。总之,随着传感技术的发展,机械手的装配作业的能力将进一步提高。到1995年,全世界约有50%的汽车由机械手装配。
现今机械手的发展更主要的是将机械手和柔性制造系统以及柔性制造单元相结合,从而根本改变目前机械制造系统的人工操作状态。1.5 PLC概况及在机械手中的应用
1.可编程序控制器的应用和发展概况
可编程序控制器(programmable controller),现在一般简称为PLC(programmable logic controller),它是以微处理器为基础,综合了计算机技术、半导体集成技术、自动控制技术、数字技术、通 信网络技发展起来的一种通用的工业自动控制装置。以其显著的优点在冶金、化工、交通、电力等领域获得了广泛的应用,成为了现代工业控制三大支柱之一。
在可编程序控制器问世以前,工业控制领域中是继电器控制占主导地位。传统的继电器控制具有结构简单、易于掌握、价格便宜等优点,在工业生产中应用甚广。但是控制装置体积大、动作速度较慢、耗电较多、功能少,特别是由于它靠硬件连线构成系统,接线繁杂,当生产工艺或控制对象改变时,原有的接线刻控制盘(柜)就必须随之改变或更换,通用性和灵活性较差。
2.PLC的应用概况
PLC的应用|<< << < 1 2 3 4 5 6 7 8 9 10 > >> >>| 领域非常广,并在迅速扩大,对于而今的PLC几乎可以说凡是需要控制系统存在的地方就需要PLC,尤其近几年来PLC的性价比不断提高已被广泛应用在冶金、机械、石油、化工、轻功、电力等各行业。
按PLC的控制类型,其应用大致可分为以下几个方面。
1).用于逻辑控制
这是PLC最基本,也是最广泛的应用方面。用PLC取代继电器控制和顺序控制器控制。例如机床的电气控制、包装机械的控制、自动电梯控制等。
2).用于模拟量控制
PLC通过模拟量I/O模块,可实现模拟量和数字量之间转换,并对模拟量控制。
3).用于机械加工中的数字控制
现代PLC具有很强的数据处理功能,它可以与机械加工中的数字控制(NC)及计算机控制(CNC)紧密结合,实现数字控制。
4).用于工业机器人控制
5).用于多层分布式控制系统
高功能的PLC具有较强的通信联通能力,可实现PLC与PLC之间、PLC与远程I/O之间、PLC与上位机之间的通信。从而形成多层分布式控制系统或工厂自动化网络。
3.PLC的特点
1).可靠性高、抗干扰能力强
PLC能在恶劣的环境如电磁干扰、电源电压波动、机械振动、温度变化等中可靠地工作,PLC的平均无故障间隔时间高,日本三菱公司的F1系列PLC平均无故障时间间隔长达30万h,这是一般微机所不能比拟的。
2).控制系统构成简单、通用性强
由于PLC是采用软件编程来实现控制功能,对同一控制对象,当控制要求改变需改变控制系统的功能时,不必改变PLC的硬件设备,只需相应改变软件程序。
3).编程简单、使用、维护方便
4).组合方便、功能强、应用范围广
PLC既可用于开关量的控制又可用于模拟量的控制;既可用单片机控制,又可用于组成多级控制系统;既可控制简单系统,又可控制复杂系统。因此,PLC应用范围很广。
5).体积小、重量轻、功耗低
PLC采用了半导体集成电路,外形尺寸很小,重量轻,同时功耗也很低,空载功耗约1.2KW。
5.PLC在机械手中的应用
机械手通常应用于动作复杂的场合来代替人的反复的操作,从而节省人的劳动,普通继电器由于其体积和接口等各方面限制,经常被应用于动作简单的电气及流水线控制,而PLC以其可靠性高、抗干扰能力强;控制系统构成简单、通用性强;编程简单、使用、维护方便;组合方便、功能强、应用范围广;体积小、重量轻、功耗低等有点被广泛应用于类似机械手的控制动作复杂的场合,本设计正是以PLC控制为基础从而实现机械手的各种动。
第二章 搬运机械手总体设计方案
2.1搬运机械手结构及其动作
本机械手用于生产线上工件的自动搬运,根据对机械手的工艺过程及控制要求分析,机械手的动作过程如图3—1所示:
图2—1机械手的动作周期
2.2机械手的控制过程
如图3—2所示由A、B两个液压缸完成工件的夹紧和提升的动作,A缸通过一个单电两位四通电磁换向阀控制工件的夹紧、放松,B缸通过一双电两位四通电磁阀控制机械手的升降;由小车实现机械手的移动。该小车由两台电动机驱动,一台是高速,一台是慢速。当小车前进时以慢—快—慢的形式进行,返回时按慢—快—慢的形式后退。当工件从传送带传输到机械手下方时,工件碰压行程开关SQ1,B缸活塞杆伸出,带动机械手下降,下降至终点碰压行程开关SQ3与机械手夹钳相连的A缸活塞杆收进,机械手将工件夹紧;当工件夹紧到位时,行程开关SQ5动作,B缸的活塞杆收进,把工件提升;当工件提升到最高位置时碰压行程开关SQ4,启动小车慢速右行;当小车碰压行程开关SQ7时转为快速行走;接近终点时小车碰压 14 行程开关SQ8,转为慢速行走;行至右端行程开关SQ9,小车停止前进;停留5秒后,B缸活塞杆再次外伸,机械手下降至终点,A缸活塞杆外伸带动夹钳松开,将工件放下;然后机械手上升,小车以慢—快—慢的形式沿原路返回,恢复到图示所示的原点位|<< << < 1 2 3 4 5 6 7 8 9 10 > >> >>| 置。
2.3机械手的控制要求
为了便于生产加工、维修、调整设置的工作方式选择开关。分为手动和自动操作,其中自动操作中包括了:单步、单周期、连续;手动操作包括手动和回原位的操作。
手动操作:供维修用,即用按钮对机械手的每一步动作单独控制。例如,当选择手动操作时,按下上升/下降按钮,机械手在满足条件情况下即执行相应的动作,其它动作以此类推。
回原位:当由于断电或其它原因导致机械手运行中途停止时,再次通电将操作方式选择置于回原位位置,按下复位按钮,机械手即可按最短路径的原则返回到原点位置。
单步运行:供试用,即没按一次启动按钮机械手向前执行一个动作后停止。
单周期运行:供首次检验用,当机械手在原点时按下启动按钮,机械手自动执行一个周期后停止在原点位置
连续运行:正常使用,当机械手在原点并按下启动按钮时,机械手周而复始的执行各工步动作。
该机械手在自动工作状态时,应先将其工作方式选择开关放在“返回原位”,并按下返回原位按钮,对状态器进行置位,然后再将工作方式选择开关放置自动工作方式下。若自动工作状态解除,则硬件工作方式选择开关放置于“手从操作”位置。
第三章 搬运机械手硬件系统设计
硬件系统设计包括机械部分和电气控制部分的设计。
3.1机械手的结构
设计其结构如图3—2所示
图3—2:机械手的结构示意图
图中设置9个行程开关SQ1—SQ9用于检测工件、小车、机械手的位置及机械手夹钳的夹紧、放松状态,并对系统实施控制。其中SQ1为工件是否到位的检测开关;SQ2为小车原位检测开关;SQ3、SQ4分别为机械手下降上升是否到位检测开 16 关;SQ5、SQ6分别为机械手夹紧放松检测开关;SQ7、SQ8分别为小车速度转换开关;SQ9为小车运动停止开关。
3.2电气控制的设计
包括主电路和控制电路的设计。主电路由两台电动机,即慢速电机和快速电机,分别拖动小车慢行和快行,其控制如下:慢速电动机M1由接触器KM1、KM2分别控制其正传和反转;快速电动机M2由接触器KM3和KM4分别控制其正传和反转。机械手的夹紧放松动作是由一单电两位四通电磁阀控制的一个液压缸完成的,在通电情况下,机械手松开,得电时松开,可以防止在设备运行过程中突然断电导致的机械手松开,工件脱落的情况发生。
3.3操作面板及动作说明
根据控制和生产工艺的要求,控制操作包括手动和自动,手动又包括手动步进、回原位操作,自动控制包括单步、单周期、连续的操作。故操作方式选择开关设置有五个档位。手动工作方式下,手动动作包括上升、下降、放松、快进、慢进、快退、慢退和复位,故设置六个动作看官按钮。各个动作进行的同时均设有动作指示灯。另外设有启动停止按钮。
其操作面板如图3—3所示:
图3—3机械手操作面板示意图
3.4 I/O分配
I/O设备即所需的I/O点数如下表所示:
信
I/O设备
号
操作方式选择旋钮开关 手动时运动选择按钮
输 入
启动停止按钮 行程开关 9 5 8
输 出
动作指示 原点指示 1
交流接触器控制线圈 电磁阀 3
I/O点数 信号
I/O设备
I/O点数
根据I/O点的分配要求及考虑10%到15%的I/O裕量,本设计PLC采用F1—60MR 36/24型,样图见图3-4所示:
图3—4 F1-40MR样图
控制电路设计主要是PLC输入、输出接线的设计,其I/O分配如图3—5所示。
电气接线图见附图
图3—5 PLC I/O接线控制图
第四章 搬运机械手的软件系统设计
机械手动控制属顺序控制,故其手动程序采用普通的PLC控制指令控制,自动程序采用步进梯形指令控制
4.1梯形图的总体设计
按照机械手控制和工艺流程的要求,在选择“手动方式”时应执行手动程序;在选择“回原位”时应执行回原|<< << < 1 2 3 4 5 6 7 8 9 10 > >> >>| 位程序;在选择自动程序时应执行自动程序。其中自动程序要在启动按钮按下时才执行。故梯形图的总体构成如图3—6所示。
图3—6搬运机械手PLC控制梯形图总体构成
4.2各部分梯形图的设计
1.通用部分梯形图设计
通用部分梯形图分为三部分:
1).状态器的初始化。初始化状态器S600在手动方式下被置位、复位。当方式选择开关置于“返回原位”(X514接通)时,按下复位按钮(X507)时被置位,在“手动操作”(X510)接通时,S600复位。处于中间工步的状态器用手动做复位操作,即在方式选择开关位于“手动操作”或“返回原位”时,中间状态器同步复位。故初始化梯形图如图3—7所示,(如果状态器要在供电时从断电前条件开始继续工作,则不需要M71)。
图3—7 状态器初始化梯形图
2).状态器转换启动。若机械手工作在自动工作方式下,当初始状态器S600被置位后按下启动按钮,辅助继电器M575工作,状态器的状态可以一步一步的向下传递,即可进行转换。在执行“连续程序” 时,转换启动继电器M575一直保持到 22 停机按钮按下为止。另一面采用M100检查机器是否处于原位。当M575和M100都接通时,从初始状态器开始进行转换,故其梯形图如图3—8所示。
图3—8状态器转换启动梯形图
3).状态器转换禁止梯形图。激活特殊辅助继电器M574并用步进梯形指令控制状态器转换时,状态器的转换就被自动禁止。
在“单周期”工作期间,按下停止按钮时,M574应被激励并自保持,操作停止在现行工步。当按下停止按钮时,从现行工步重新开始工作,M574应复位,即重新允许新转换。
在“步进”工作方式时,M574应始终工作,此时,禁止任何状态转换。但没按下一次启动按钮时,M574断开一次,允许状态器转换一次。
在“手动”工作方式时禁止进行状态转换。在手动方式解除之后,按下启动按钮,则状态转换禁止解除,M574复位。
PLC在启动时,用初始化脉冲M71和M574自保持,以此禁止状态转换,直到按下启动按钮。故状态器转换禁止梯形图如图3—8所示。
图3—8 状态器转换禁止梯形图
通过对3—7和3—8的分析可得出:在执行“手动操作”和“返回原位”程序时,M575一直不能被接通,而M574长期被接通,(按下启动按钮时除外);执行“步进”程序时没按一次启动按钮,M574断开一次,M575接通一次,状态器转换一次;在执行“单周期操作”程序时,按下启动按钮,M574断开,M575接通,状态器的转换可一步一步向下转换,直至按下停止按钮时,M574自锁,状态器的转换被禁止,操作停止在现行工序(再次按下启动按钮时从现行工序开始工作);在执行“连续程序”时,M575一直接通到按下停止按钮,此时M574一直不能接通。
2.手动操作梯形图
手动操作方式由于不需要任何复杂的顺序控制,可以用常规继电器顺序方式来设计梯形图。“手动操作时”按下放松按钮时,机械手卡抓松开,当松开放松按钮时,机械手卡爪在液压缸作用下自动加紧并保持;按下上升按钮,上升输出Y435保持 24 接通;按下下降按钮,Y436保持接通;在上限位按下慢进按钮,慢进输出Y430接通,至行程开关SQ7闭合,小车停止;快进、快退、慢退情况同慢进。
手动操作梯形图设置有互锁,只有在小车处于左限位(即X403闭合)或右限位(即X412闭合)时机械手的上升下降动作才能进行,只有当机械手处于下限位(即X404接通)机械手的加紧放松动作才可以手动控制;为了安全,同一个电动机的正反转线圈不能同时接通,设计中设计了自锁开关,防止线圈同时接通造成的短路。故手动操作时梯形图如图3—9所示。
图3—9 手动操作梯形图
3.返回原位梯形图 在“返回原位”状态下,“夹紧”与“下降”动作应被停止,上限位未动作时,应进行“上升”;上限位动作时,“右行”动作应停止,并左行至左限|<< << < 1 2 3 4 5 6 7 8 9 10 > >> >>| 位位置。故返回原位梯形图如图3—10所示:
图3—10 返回原位梯形图
4.“自动”状态梯形图 图3—11表示了机械手自动工作时执行各工步的情况,表示了各工步的实现和转换的条件。在第一次下降工步中,下降电磁阀Y436接通。自下限位置时,X404接通,转换为“夹持”过程;夹持电磁阀Y434复位,至加紧限位X406接通,转换为上升动作;当上限为开关SQ4闭合,X405接通,小车开始慢进动作。快进、慢进、延时、下降、加紧、上升、慢退、快退、慢退动作依次类推,如上所述一步一步按顺序驱动各个负载动作,称为顺序控制或过程步进型控制。26
图3—11搬运机械手自动工作流程图
用状态器代替自动工作流程图的各工步,可得到3—12所示的功能表图:
图3—12 搬运机械手自动工作功能表图
根据图3—12所示的自动工作功能表图,可设计出自动操作时的梯形图如图3—13所示。
图3—13搬运机械手自动工作梯形图
5、绘制搬运机械手PLC控制梯形图
将从初始化开始的一系列梯形图,按照总体结构图(图3—6)的形式组合在一起,得到机械手PLC控制的梯形图(见附图),其语句表见附录。
附图:
搬运机械手结构图
搬运机械手控制梯形图
搬运机械手动作流程图
搬运机械手控制接线图
结 论
本设计主要应用于机加工生产,货物调运等场合。
搬运机械手采用PLC控制,体积小,重量轻,控制方式灵活,可靠性高,操作简单,维修容易。使用该机械手代替人工搬运工件,既安全,又准确,提高了劳动生产率,保证了工件的质量,降低了工人的劳动强度,具有较好的经济效益和社会效益。
可编程控制器PLC以其丰富的I/O接口模块、高可靠性,可以在机械手的控制系统的设计中起到了十分重要的作用。
本文就设计过程中的几项关键的问题提出了自己的一些看法,可以有效地提高系统的抗干扰能力,对PLC读、写,事件响应等通信时间可进行精确的控制,取得了良好的效果.随着机械手应用的普及,机械手向着专用化,机械结构向模块化、可重构化的方向发展,机械手的动作更加灵活多样,其控制方式也在向着多元化的方向发展,在PLC控制的过程中,还有许多的问题需要解决,PLC在机械手开发中的开发应用还有很大的空间。
谢 辞
此次设计是在张兰仙老师的悉心指导下完成的。导师为论文课题的研究提出了许多指导性的意见,为论文的撰写、修改提供了许多具体的指导和帮助。张兰仙老师的严谨治学、不断探索的科研作风,敏锐深邃的学术洞察力,孜孜不倦的敬业精神,给我留下了深刻的印象,使我受益良多。生活中张兰仙老师就是我的朋友,她的态度让我对生活有了新的认识。在本文结束之际,特向我敬爱的导师致以最崇高的敬礼和深深的感谢!
通过此次设计,一方面让我认识到自己的不足,发现了学习中的错误之处;另一方面又积累丰富的知识,吸取别人好的方法和经验,增强对复杂问题的解决能力,摸索出一套解决综合问题的方法,为自己以后的工作和学习打下坚实的基础。再一方面也加强了我和老师的交流,认识到知识的渊博度。
经过这次的努力,使我顺利的完成了毕业设计。这份毕业设计既是对过去三年所学知识的总结,又是自己知识的积累,也大大加深了对单片机技术的了解。
毕业设计中既动脑、,又动手,是一个理论与实际结合的过程。仅仅有理论是不够的,更重要的是实际的,是我们所设计的实物,具有设计合理,经济实用的优点。这就需要我们设计者考虑问题是要仔细、周密,不能有丝毫的大意。对设计方案的优越化,也需要我们综合各方面的因素考虑,尤其是实际。再次像教育指导我的老师及同学表示诚挚的感谢!
鉴于本人所学知识有限,经验不足,又是初次研究这种复杂的设计,在此过程中难免存在一些错误和不足之处,恳请各|<< << < 1 2 3 4 5 6 7 8 9 10 > >> >>| 位老师给予批评和指正。
参考文献
[1] 王炳实.机床电气控制.第三版.北京:机械工业出版社,2004年:146-162 [2] 王本轶.机床设备控制基础.北京:机械工业出版社,2005年:283-288 [3] 丁树模.液压传动.北京:机械工业出版社,2007年
[4] 林平勇.高崇.电工电子技术.第二版:北京:高等教育出版社,2004年
[5] 熊幸明.曹才开.一种工业机械手的PLC控制.微计算机信息,2006年,第22卷第11期:120-122 [6] 孔秀艳.一种四轴搬运机械手的PLC控制.大众科技,2008年,第7期:112-113 [7] 刘轩.王丽伟.机械手的PLC控制.机床电器.2006年,34-49
[8] 张应金.PLC在机械手搬运控制系统中的应用.自动化博览,2008年02月刊:71-73 [9] 曾繁铃.一种PLC控制的工业机械手.常熟理工学院报,2008年4月第22卷第四期:101-104 [10] 罗庚合.蔡霞.搬运机械手的PLC控制.西安航空技术高等专科学校,2002年,第20卷第一期:7-9 [11] 言纪兰.懂峰.基于PLC控制的搬运机械手的应用.机械工程与自动化,2008年4月第2期:156-158 [12] 杨峰.SMR搬运机械手的PLC控制系统设计.机车车辆工艺,1998年第6期:36-40 [13] 詹贵印.周红梅.三自由度液压机械手的PLC控制研究.装备制造行业应用,2007年7月:109-112 [14] 姜培刚.盖玉先.机电一体化系统设计.北京:机械工业出版社,2008年
[15] 王坤.何小柏.机械设计.北京:高等教育出版社,1996年
附录:语句表 步序 1 2 3 4 5 6 7 指 LD AND S LD R LD OUT
令 X514 X507 S600 X510 S600 X510 F671 34 8 K 9 OUT 10 K 11 OUT 12 K 13 LD 14 AND 15 OR 16 ANI 17 LD 18 OR 19 OR 20 ANB 21 OUT 22 LD 23 AND 24 ANI 25 OUT 26 OUT 27 LD 28 PLS 29 LD 30 AND 31 OR 32 OR 33 OR 34 OR 35 OR 36 ANI 37 OUT 38 LDI 39 CJP 40 LD 41 ANI 42 LD 43 OR 44 ANB 45 ANI 46 OUT 47 OUT 48 LD 49 ANI 50 LD 51 OR
601 F672 610 F670 103 X501 M575 X400 X501 X501 X512 X513 M575 X405 X403 Y434 M100 Y540 X400 M101 X401 X502 X511 X512 X514 M71 M574 M101 M574 X510 700 L500 X405 X430 X412 Y435 Y436 Y530 X500 X405 X430 X412
52 ANB 53 ANI 54 OUT 55 OUT 56 LD 57 ANI 58 AND 59 OUT 60 OUT 61 LDI 62 ANI 63 AND 64 OUT 65 LD 66 ANI 67 ANI 68 AND 69 ANI 70 OUT 71 OUT 72 LD 73 ANI 74 ANI 75 AND 76 ANI 77 OUT 78 OUT 79 LD 80 ANI 81 AND 82 ANI 83 OUT 84 OUT 85 LD 86 ANI 87 AND 88 ANI 89 OUT 90 OUT 91 EJP 92 LD 93 CJP 94 LD 95 S
Y436 Y535 Y531 X502 X407 X404 Y434 Y533 X402 X406 X404 Y532 X504 X410 X412 X405 Y431 Y430 Y534 X506 X411 X403 X405 Y430 Y431 Y535 X530 X411 X405 Y433 Y432 Y530 X505 X410 X405 Y432 Y433 Y537 700 X517 701 X507 M200
96 LD 97 OUT 98 R 99 OUT 100 AND 101 R 102 R 103 OUT 104 AND 105 R 106 EJP 107 LD 108 OR 109 OUT 110 MC 111 STL 112 LD 113 AND 114 S 115 STL 116 OUT 117 AND 118 S 119 STL 120 OUT 121 AND 122 S 123 STL 124 OUT 125 AND 126 S 127 STL 128 OUT 129 AND 130 S 131 STL 132 OUT 133 AND 134 S 135 STL 136 OUT 137 AND 138 S 139 STL
M200 Y434 Y436 Y435 X405 Y430 Y432 Y433 X403 M200 701 X400 M102 M102 M102 S600 M575 M100 S601 S601 Y436 X404 S602 S601 Y434 X406 S603 S603 Y435 X405 S604 S604 Y430 X410 S605 S605 Y432 X411 S606 S606 Y430 X412 S607 S607
140 OUT T450 141 K 5 142 AND T450 143 S S610 144 STL S610 145 OUT Y436 146 AND X404 147 S S611 148 STL S611 149 OUT Y437 150 AND X407 151 S S612 152 STL S612 153 OUT Y435 154 AND X405 155 S S613 156 STL S613 157 OUT Y431 158 AND X411 159 S S614 160 STL S614 161 OUT Y433 162 AND X410 163 S S615 164 STL S615 165 OUT Y431 166 AND X403 167 S S600 168 RET 169 MCR M102 170 END
|<< << < 1 2 3 4 5 6 7 8 9 10 > >> >>| 附图:
搬运机械手结构图
搬运机械手控制梯形图
搬运机械手动作流程图
搬运机械手控制接线图
一. 绪论
1.交通灯的由来:
交通灯是指由红、黄、绿三种颜色灯组成用来指挥交通的信号灯,最早出现在19世纪初在英国中部的约克城的一个典故中,当时交通灯只有两种颜色红绿,随着各种交通工具的发展和交通指挥的需要,第一盏名副其实的三色灯(红、黄、绿三种标志)于1918年诞生。它是三色圆形四面投影器,被安装在纽约市五号街的一座高塔上,由于它的诞生,使城市交通大为改善。2.交通灯的发展史:
19世纪初,在英国中部的约克城,红、绿装分别代表女性的不同身份。其中,着红装的女人表示我已结婚,而着绿装的女人则是未婚者。后来,英国伦敦议会大前经常发生马车轧人的事故,于是人们受到红绿装启发,1868年12月10日,信号灯家族的第一个成员就在伦敦议会大厦的广场上诞生了,由当时英国机械师德?哈设计、制造的灯柱高7米,身上挂着一盏红、绿两色的提灯--煤气交通信号灯,这是城市街道的第一盏信号灯。在灯的脚下,一名手持长杆的警察随心所欲地牵动皮带转换提灯的颜色。后来在信号灯的中心装上煤气灯罩,它的前面有两块红、绿玻璃交替遮挡。不幸的是只面世23天的煤气灯突然爆炸自灭,使一位正在值勤的警察也因此断送了性命。
从此,城市的交通信号灯被取缔了。直到1914年,在美国的克利夫兰市才率先恢复了红绿灯,不过,这时已是“电气信号灯”。稍后又在纽约和芝加哥等城市,相继重新出现了交通信号灯。
随着各种交通工具的发展和交通指挥的需要,第一盏名副其实的三色灯(红、黄、绿三种标志)于1918年诞生。它是三色圆形四面投影器,被安装在纽约市五号街的一座高塔上,由于它的诞生,使城市交通大为改善。
黄色信号灯的发明者是我国的胡汝鼎,他怀着“科学救国”的抱负到美国深造,在大发明家爱迪生为董事长的美国通用电器公司任职员。一天,他站在繁华的十字路口等待绿灯信号,当他看到红灯而正要过去时,一辆转弯的汽车呼地一声擦身而过,吓了他一身冷汗。回到宿舍,他反复琢磨,终于想到在红、绿灯中间再加上一个黄色信号灯,提醒人们注意危险。他的建议立即得到有关方面的肯定。于是红、黄、绿三色信号灯即以一个完整的指挥 1
信号家族,遍及全世界陆、海、空交通领域了。
二. 主体
1.发展智能交通灯系统的意义:
汽车已经逐渐成为了人们日常生活中最主要的交通工具。但是,城市基础设施建设特别是城市交通道路的发展速度却满足不了汽车数量增长的需求,这就使城市交通拥堵现象越来越严重,车辆通行速度成为了城市发展的瓶颈。在加强城市基础建设的同时,改善十字路口的交通信号灯运行模式,提高十字路口的通行效率,对缓解城市交通堵塞有着重要的现实意义。而目前城市的交通灯控制,是根据一定时间段的各车道车流量的调查而分配出的相对合理的同定红绿灯转化周期。但在特定的时间段,会出现某一方向车辆早已通行完,而另一方向车辆排队等绿灯的情况,这严重降低了实际的十字路口交通效率。
针对现实中越来越严重的城市交通拥堵现象,可设计出一种城市十字路口交通信号灯控制的新方法。可根据车流量来智能控制红绿灯的读秒时间,解决了各车道车流量不均衡所造成的十字路口交通资源浪费问题,设计的智能交通控制系统利用对相向车道采用不同步的红绿灯信号控制方法,能够减少交通资源浪费,大幅提高十字路口的车辆通行效率。2.国内外智能交通灯系统的发展现状:
交通信号控制系统是现代城市交通控制和疏导的主要手段。而作为城市交通基本组成部分的平面交叉路口,其通行能力是解决城市交通问题的关键,而交通信号灯又是交叉路口必不可少的交通控制手段。随着计算机技术和自动控制技术的发展,以及交通流理论的不断发展完善,交通运输组织与优化理论、技术的不断提高,国内外逐步形成了一批高水平有实效的城市道路交通控制系统。
(1)澳大利亚SCAT系统:
SCATS采取分层递阶式控制结构。其控制中心备有一台监控计算机和一台管理计算机,通过串行数据通讯线路相连。地区级的计算机自动把各种数据送到管理计算机。监控计算机连续地监视所有路El的信号运行、检测器的工作状况。地区主控制器用于分析路El控制器送来的车流数据,确定控制策略,并对本区域各路口进行实时控制。SCATS系统充分体现了计算机网络技术的突出优点,结构易于更改,控制方案较易变换。SCATS系统明显的不足:第一,系统为一种方案选择系统,限制了配时参数的优化程度;第二,系统过分依赖于计算机硬件,移植能力差:第三,选择控制方案时,无实时信息反馈。
(2)英国SCOOT系统:
SCOOT是由英国道路研究所在TRANSYT系统的基础上采用自适应控制方法于1980年提出的动态交通控制系统。SCOOT的模型与优化原理与TRANSYT相仿,不同的是SCOOT为方案生成的控制系统,是通过安装在交叉口每条进口车道最上游的车辆检测器所采集的车辆信息,进行联机处理,从而形成控制方案,并能连续实时调整周期、绿信比和相位差来适应不同的交通流。SCOOT系统的不足是:相位不能自动增减,任何路E1只能有固定的相序;独立的控制子区的划分不能自动完成,只能人工完成;安装调试困难,对用户的技术要求过高。
(3)国内智能交通控制系统:
国内应用和研究城市交通控制系统的工作起步较晚,20世纪80年代以来,国家一方面进行以改善城市市中心交通为核心的UTSM(urban traffic sys—tem manage)技术研究;另一方面采取引进与开发相结合的方针,建立了一些城市道路交通控制系统。以北京、上海为代表的大城市,交通控制系统主要是简易单点信号机、SCOOT系统、TRANSYT系统和SCATS系统其中几个结合使用;而如湘潭、岳阳等国内中小城市,交通控制系统主要还是使用国产的简易单点信号机和集中协调式信号机。
3.采用基于PLC的智能交通灯控制系统的好处:
(1)特点:
① 能适应各种恶劣的运行环境,抗干扰能力强,可靠性强,远高于其他各种机型; ② 通用性高,使用方便; ③ 程序设计简单,易学,易懂;
④ 采用先进的模块化结构,系统组合灵活方便; ⑤ 系统设计周期短;
⑥ 安装简便,调试方便,维护工作量小;
⑦ 对生产工艺改变的适应性强,可经行柔性生产; ⑧ 体积小,功耗小,性价比高。(2)PLC的应用:
① 开关量的逻辑控制:这是PLC最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控制及自动化流水线。
② 模拟量控制:在工业生产过程当中,有许多连续变化的量,如温度、压力、流量、液位和速度等都是模拟量。为了是可编程控制器处理模拟量,必须实现模拟量和数字量质之间的A/D转换及D/A转换。PLC厂家都生产配套的A/D和D/A转化模块,使可编程控制器用于模拟量控制。
③ 运动控制:PLC可以用于圆周运动或直线运动的控制。从控制机构配置来说,早起直接用于开关量I/O模块连接位置传感器和执行机构,现在一般使用专用的运动控制模块。如可驱动的步进电机或者伺服电机的单轴或多轴位置控制模块。
④ 过程控制:过程控制是指对温度、压力、流量等模拟量的闭环控制。作为工业控制计算机,PLC能编程控制各种各样的控制算法程序,完成闭环控制。PID调节是一般闭环控制系统中用得较多的调节方法。大中型PLC都有PID模块,目前许多小型PLC也具有此功能模块。PID处理一般是运行专用的PID子程序。
⑤ 通信及联网:PLC通信含PLC间的通信及PLC与其他智能设备间的通行。随着计算机控制的发展,工厂自动化网络发展很快,各PLC厂商都十分重视PLC的通行功能,纷纷推出各自的网络系统。新近生产的PLC都具有通信接口,通信非常方便。
⑥ 数据处理:现代PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排表、查表、位操作等功能,可以完成数据的采集、分析及处理。这些数据可以与存储在存储器中的参考值比较,完成一定的控制操作,也可以利用通信功能传送到别的智能装置,或将它们打印制表。数据处理一般用于大型的控制系统。
三. 总结
采用基于PLC的智能交通灯控制系统,可以根据车流量合理的调节交通信号灯的读秒时间,这样不仅可以有效的防治交通拥堵而且可以合理的利用交通资源,进而大大缓解交通压力。在基于PLC的智能交通灯控制系
统的设计过程中可能牵涉到信号的采集与传输,在考虑到施工的成本以及安装困难度的前提下,本设计主要想采用光电计数器。因为光电计数器叫一般的传感器而言,它不仅成本低而且安装方便。
四. 参考文献
[1] 彭树生.PLC单片机原理及应用.机械工业出版社.2002.1.1 [2] 王晓军.可编程控制器原理及应用.化学工业出版社.2010.9.4 [3] 杜荔编.微机原理及其接口.清华大学出版社.2011.3.1 [4] 曹克澄.单片机原理及应用.第二版.机械工业出版社.2009.1.1 [5] 龚捷.接口技术.化学工业出版社.2009.1.1 [6] 韩九强.传感器与检测技术.清华大学出版社.2010.9.1 [7] 于泉.城市交通信号控制基础.冶金工业出版社.2011.1.1 [8] 周蔚吾.道路交通信号灯控制设置技术手册.知识产权出版社.2009.1.1 [9] 高钦和.可编程控制器应用技术与设计.人民邮电出版社.2004.7.1 [10] 路林吉.PLC应用开发技术与工程实践.人民邮电出版社.2009.4.8 [11] 陈立定.电气控制与可编程控制器.华南理工大学了版社2006.2 [12] 何衍庆.可编程控制器原理及应用技巧.第二版.化学工业出版社.2003.1.1 [13] 廖常初.可编程控制器的编程方法与应用.重庆大学出版社.2001.2.1 [14] 廖常初.PLC梯形图程序的设计方法与技巧.电工技术出版社.2004.9 [15] 廖常初.PLC梯形图的书许控制设计法与顺序功能图.电子技术杂志.2001.第11期
1、选题意义和背景。
可编程序逻辑控制器(Programmable Logic Controller, PLC)具有可靠性高、抗干扰能力强、功能丰富等强大技术优势,已经成为目前自动化领域的主流控制系统。然而,从目前的应用情况来看,PLC还大都只是承担最基本的控制功能,如顺序控制、数据采集和PID反馈控制。各个PLC厂家也在其产品中设计了PID模块。虽然PID算法控制有很高的稳定性,但对于一些复杂控制系统,PID控制很难满足控制要求,这也使PLC的发展面临着一种挑战。随着越来越多的PLC产品与IEC1131-3标准兼容,PLC控制系统越来越开放,将先进控制算法嵌入PLC常规控制系统成为可能。本课题从工业控制实际应用角度出发,对PLC的控制功能进行深入的研究和探讨,以提高和扩展PLC控制器的应用水平和应用范围。本课题:PLC先进控制策略的研究与应用,其目的是通过研究使一些先进控制算法在PLC及组态系统上得以实现,并开发相应的应用程序,经过验证后最终应用到工业过程控制中去。
在PLC组态系统中实现先进控制算法,包括预测控制算法和模糊逻辑控制算法,形成具有人工智能的控制模块及网络系统,能大大提高系统的控制水平,改善控制质量。从经济角度来看,目前PLC生产商的一些产品具备先进控制模块,如模糊模块。但它们的价格十分昂贵,且封闭性较强,不适合我国中小型企业的工业改造。因此开发较为通用的先进算法实现技术,对于我国中小型企业的工业改造具有很大的意义,既可降低生产成本,又可提高经济效益。
模糊控制与预测控制是智能控制中技术较为成熟的分支,因此,研制和开发出适合工业环境的实时先进控制开发工具,实现模糊控制、预测控制嵌入PLC,与常规控制集成运行,让先进控制从教授、专家手中走出来,实现先进控制的工程化、实用化、转化为社会生产力,对缩短控制系统开发周期,加快先进控制技术的广泛应用,提高我国的工业自动化水平有着重大的意义。
2、论文综述/研究基础。
在过程工业界,从40年代开始,采用PID控制规律的单输入单输出简单反馈控制回路己成为过程控制的核心系统。目前,PID控制仍广泛应用,即便是在大量采用DCS控制的最现代的工业生产过程中,这类回路仍占总回路80%-90%.这是因为PID控制算法是对人的简单而有效操作的总结和模仿,足以维护一般过程的平稳操作与运行,而且这类算法简单且应用历史悠久,工业界比较熟悉且容易接受。
然而,单回路PID控制并不能适用于所有的过程和不同的要求[4}0 50年代开始,逐渐发展了串级、比值、前馈、均匀和Smith预估控制等复杂控制系统,即当时的先进控制系统,在很大程度上满足了单变量控制系统的一些特殊的控制要求。在工业生产过程中,仍有10%-20%的控制问题采用上述控制策略无法奏效,所涉及的被控过程往往具有强藕合性、不确定性、非线性、信息不完全性和大纯滞后等特性,并存在着苛刻的`约束条件,更重要的是它们大多数是生产过程的核心部分,直接关系到产品的质量、生产率和成本等有关指标。随着过程工业日益走向大型化、连续化,对工业生产过程控制的品质提出了更高的要求,控制与经济效益的矛盾日趋尖锐,迫切需要一类合适的先进控制策略。自50年代末发展起来的以状态空间方法为主体的现代控制理论,为过程控制带来了状态反馈、输出反馈、解疆控制、自适应控制等一系列多变量控制系统设计方法}s}.上述多变量控制策略有其自身的不足之处,工业过程的复杂性使得建立其正确的数学模型比较困难。同时,计算机技术的持续发展使得计算机控制在工业生产过程中得到了广泛的应用,强大的计算能力可以用来求解过去认为是无法求解的问题,这一切都孕育着过程控制领域的新突破。
整个80年代,出现了许多约束模型预测控制的工程化软件包。通过在模型识别、优化算法、控制结构分析、参数整定和有关稳定性和鲁棒性研究等一系列工作,基于模型控制的理论体系己基本形成,并成为目前过程控制应用最成功,也最有前途的先进控制策略。近年来,人工智能技术有了长足的长进并在许多科学与工程领域中取得了较广泛的应用。就过程控制而言,专家系统、神经网络、模糊系统是最有潜力的三种工具。专家系统可望在过程故障诊断、监督控制、检测仪表和控制回路有效性检验中获得成功应用。神经网络则可以为复杂的非线性过程的建模提供有效的方法,进而可用于过程软测量和控制系统的设计上。模糊系统不仅是行之有效的模糊控制理论基础,而且有望成为表达确定性和不确定性两类混合并提炼这些经验使之成为知识进而改进以后的控制,也将是先进控制的重要内容。
由于先进控制受控制算法的复杂性和计算机硬件两方面因素的影响,早期的先进控制算法通常是在PC机和UNIX机上实施的。随着DCS功能的不断增强,更多的先进控制策略可以与基本控制回路一起在DCS控制站上实现。国外发达国家几乎所有企业都采用了DCS系统或其它智能化设备来实现对生产过程的控制,并在此基础上通过实施先进控制与优化较大的提升了系统的性能。可以说,高性能控制系统,尤其是DCS系统的普及为先进控制的应用提供了强有力的硬件和软件平台。国外从70年代末就开始了先进控制技术商品化软件的开发及应用,并在DCS的基础上实现先进控制和优化。如爱默生公司的DeltaV和Honeywell公司的TDC3000,其先进控制软件RMPGT和RPID等在现场的实际应用都集中在自己的DCS系统上。传统的PLC由于不支持浮点运算以及先进控制所必须的精确的时间,因此,除了模糊逻辑控制外,其他的先进控制并没有在PLG平台上实现。然而,在过程工业中大多系统使用先进灵活的PLC控制系统,因此Barnes提出了一种基于PC-PLC通讯的混合方式,通过控制网络实现计算机与PLG的通讯,从而实现先进控制。
3、参考文献。
[1]基希林,曲非非。PLC的发展[J].微计算机信息,, 18(9):1-2
[2]陈夕松,张景胜。过程控制发展综述与教学研讨[J].南京工程学报,2002,2(1):49-52
[3]Ohaman Martin, Johansson,Stefan, Arzen, Karl-Erik. Implementation aspects of the PLC standard IEC 1131-3 [J].Control Engineering Practice, ,6(8):547-555
[4]范宗海,黄步余,唐卫泽。先进过程控制在聚丙烯装置上的应用[J].石油化工自动化,, (6):7-12
[5]王跃宣。先进控制策略与软件实现及应用研究[M].浙江大学博士论文,,(1):8-20
[6]褚健。现代控制理论基础[M].杭州:浙江大学出版社,1995: 9-15
[7]沈平,赵宏,孙优贤。过程控制理论基础[M].杭州:浙江大学出版社,1991:31-38
[8]张志辉一套常减压先进控制的应用与开发「M].陕西:西安交通大学硕士论文,2003:20-25
[9]薛美胜,吴刚,孙德敏,王永。工业过程的先进控制[J].化工自动化及仪表,2002,29(2):1一9
[10] Kolokotsa D.,Stavrakakis,G S二Genetic algoritluns optimized fuzzy controller for the indoor environmental management in buildings implemented using PLC and local operating networks[J].Engineering Applications of Artificial Intelligence,2002,15(5):417-428
[11]黄丽雯。新型PLC的特点及应用[J].新特器件应用,1999 , (6) : 27-29
[12]杨昌馄。可编程序控制器发展趋势概述[J],基础自动化,1998 , (2) :1-5
[13]蔡伟,巨永锋。PLC分布式控制系统[J].西安公路交通大学学报,,16(3):20-25
[14]胡惠延。用PLC实现的一种集散型控制系统[J].煤矿自动化,, (4) : 22-24
[15]陈勇,赵勇飞,徐莉。工控机与PLC分布式测控系统的设计[J].西安公路交通大学学报,1999 , (6) : 41-43
[16]任俊杰,钱琳琳,刘泽祥。基于SIMATIC S7 PLC的现场总线控制系统[J],电工技术杂志,,(9):40-42
[17〕田红芳,李颖宏。PLC与上位机的串行通讯[J].微计算机信息,,17(3):36-37
[18]姚锡凡,彭永红,陈统坚,李伟光。基于模糊芯片的加工过程智能控制[J].组合机床与自动化加工技术,2000, (2):26-29
[19]汪小澄,方强。基于PLC的模糊控制研究[J].武汉大学学报,2002, 35(3): 79-81
[20]肖汉光。模糊控制在悬挂链同步控制中的应用[M].广州:华南理工大学硕士论文,2002: 20-31
[21]成晓明,柳爱美,田淑杭,PLC的炉温多级模糊控制的优化与实现[J].自动化仪器与仪表,2000,(1) : 20-22
[22]李敬兆,张崇巍。基于PLC直接查表方式实现的模糊控制器研究[J].电子技术杂志,2001,(9): 18-21
[23]张玺,刘勇,张小兵。二次开发Wincc模糊控制算法[J].计算机应用,2002,(1):69-71
[24]孙东卫,周立峰。预测模糊控制在渠道系统中的应用[J].现代电子技术,2002,(4): 82-85
[25]石红瑞,孙洪涛,马智宏。二次开发RSView32嵌入广义预测控制算法[J] .测控技术,2004 23(9) : 52-54
[26」西门子公司。西门子57-300系统参考手册[M].北京:西门子自动化与驱动集团,2002: 10-200
[27」西门子公司。STEP? V5.1编程手册[M].北京:西门子自动化与驱动集团,2002:40-60
[28]王磊,王为民。模糊控制理论及应用[M].北京:国防工业出版社,: 17-29
[291章为国,杨向忠。模糊控制理论与应用[M].陕西:西北工业大学出版社,1999:15一19
[30]蔡自兴。智能控制一基础与应用[M].北京:国防工业出版社,1998: 35-37
[31]孙增折。智能控制理论与技术[M].北京:清华大学出版社,1997; 55-62
[32]齐蓉,林辉,李玉忍,谢利理,通用模糊控制器在PLC上的实现[[J].工业仪表与自动化装置,2003, (4):23-25
[33]闻新,周露,李东江,贝超。MATLAB模糊逻辑工具箱的分析与应用〔M].北京:科学出版社,2001: 44-45
[34]许建平,刘添兵。PLC控制软件的模块化设计[J].九江职业技术学校学报,2003,(3):13一14
[35]张运波。PLC梯形图设计中的关键技术[J].长春工程学院学报,2000,1(1):30-32
[36] Richalet J, Rault A. Model Predictive Heuristic Cortrol:Application to Industrial Process[J] .Automatica, 1978,14(1):413-428
[37] Rouhani R,Mehra R K. Model algorithmic control (MAC):Basic Theoretical Properties[J].Automatica,1982,18(4):401-414
[38] Culter C R,Ramaker B L .Dynamic Matrix :ontrol-A Computer Control Algorithm[M].San Francisco: American Automatic Control Council,1980:221-230
[39] Clarhe D W, Mohtadi C.Constrained receding hori:on predictive control[J].IEEProc-D, 1991,13 8(4) : 347-3 54
[40] Garica C E,Morari M. Internal Model Control-A Unifying Review and Some New Results[J] .Process Des&Dew, 1982,(21):308一32;5
[41]Richalet J .Predictive functional control-Appliation to fast and accurate robots[J].Proc Of 10“ IFAC World Congress, Munich, FRG, 1987, (1): 25I-258
[42]许超,陈治钢,邵慧鹤。预测控制技术及应用发展综述[J].自动化及仪表,2002,29(3):1一10
[43]舒迪前。预测控制系统及其应用[M].北京:机械工业出版社,1996: 225-228
[44]李绍勇,陈希平,王刚,范宗良,树龙,蔡颖。换热机组供水温度的广义预钡(控制[J].甘肃科学学报,2004, 16(3):95-97
随着近年来高层建筑的增多, 作为垂直工具的电梯近年来也越来越重要, 继电器系统作为电梯生产产业中最多使用的一种控制方式, 随着近年来该系统中存在的弊病不断出现, 显现出了许多在使用和维护方面的问题, 为维修造成了许多困难与耗资, 同时安全性能也逐渐显示出了问题, 高层建筑中的人们迫切需要一种新的控制系统取代旧有的控制系统。
1 PLC控制系统的优势
PLC在近年来逐渐被使用于电梯设计上, 这种控制方式具有方便编程、后期维护简单以及安全稳定等多种优势, 对于电梯的安全性有很大的提升, 同时电梯的使用舒适程度、灵活性等待方面也有了显著提升, 并且也缩短了电梯开发的周期时间, 减低其损耗。PLC系统作为电梯控制系统的发展的潮流趋势, 将被越来越多地使用于电梯行业生产中。
2 四层电梯的PLC控制设计
2.1 PLC控制设计的原则
(1) 基本原则。PLC控制设计要遵循可编制控制系统设计中的总体原则, 即不超过客观条件的允许范围, 对可控制对象进行控制, 并且在控制的基础上, 有效体现出其编程中的简单操作、维护简易并且节省能耗的特点, 更加提高了系统的舒适性与安全性。
(2) 安全原则。在使用PLC控制系统对电梯进行控制时, 要在保证PLC系统可以在使用过程中能够长期安全地使用, 所以在使用系统的设计、元件的选择上要结合实际进行全面的考虑, 在设计成形之后也要进行各种突发状况的试验, 在确保不会出现突破安全保证的情况保障下才可以投入生产使用。
(3) 后期维护便利。投入使用一种新型的控制系统可以很大程度上提高了使用的便利性、商品性能, 但是同时也存在有后期的使用维护、在技术培训和前期投入方面的资金使用, 为了体现出新技术的便利性, 所以在使用PLC控制系统时, 在满足了控制使用的前提下, 一定要尽量扩大该工程可以带来的效益, 在设计方面也不仅仅要考虑前期的使用效益, 更应该考虑到PLC控制技术作为一个新的技术, 仍旧在不断发展过程中, 对于后期的发展和完善的需要也要有考虑, 应该在设计中留有后期进行改进和发展的空间。
2.2 设计步骤
使用PLC系统进行设计时, 必须先对被控制对象的特点进行总结分析, 对其进行全面的掌握和了解, 在此基础上归纳出其工作原理图, 包括工作循环图与状态流程图, 根据控制对象的工作环境, 例如工作环境较好的控制对象可以在安全性与可靠性上做下调, 所以某些工艺复杂, 继电器控制系统使用起来比较复杂或者无法实现控制的生产, 可以选择使用PLC控制系统, 电梯作为城市中使用广泛的运输系统, 其安全性要求高, 在四层电梯设计中, 需要尤其注意安全性的调控。同时也要明确, PLC的控制任务要求不能使模糊不清的, 必须要有明确的控制目标, 各个机械运动以及电器执行元件之间的顺序关系也要明确清楚。
2.3 涉及的功能
(1) 呼唤功能。在每一层电梯的门厅上需要安装标示向上与向下的按钮, 当乘客按下任意按钮时, 与相对应的信号灯会显示出上行或者下行的讯息。
(2) 自动化功能。电梯上行或者下行过程中, 当某层出现同向呼唤信号时候, 将在这一层停止, 若是下行过程中, 则取消该层下行的信号, 信号灯熄, 同时在下行的过程中, 任何楼层的上行呼唤信号都不受理, 并且相对应显示灯显示出上行或者下行讯息, 而若是上行过程中, 任是同理。
(3) 关门按钮设置。在电梯内需要设置开关门按钮, 在电梯内, 当顾客按下关门按钮, 门将自动关闭, 到达指定楼层之后才会打开, 当经过了没有呼唤信号的楼层时, 继续向上, 当有呼唤信号的楼层时电梯停止并且开门。
(4) 同向信号选择。若在向下过程中, 同时或者出现上行与下行的呼唤信号, 应该优先考虑下行信号的呼唤, 若在下层未出现任何的呼唤信号, 而上层出现了呼唤信号, 应该对上行呼唤信号进行处理, 上行过程中的处理同理。
(5) 开关门设置。当电梯停止时, 若长时间未打开门, 可以选择使用开关门按钮对门进行主动控制, 当开关门时间已经到达而未出现人为按钮控制, 那么电梯门将自动关闭, 当电梯停留在某一层时, 在门厅按下呼唤按钮也可以打开电梯门。
2.4 总体方案与设计思想
(1) 总体方案。电梯PLC控制系统与其它电梯生产中使用的控制系统有相同的构造, 都是分为了信号控制系统与拖动控制系统两个大不封, PLC系统包括了PC主机, CPU存储器、输入接口与输出接口, 其中输入出口包括了安全装置与井道装置, 而输出接口包括了指层器、调整器与拖动控制。其控制系统的核心是PLC主机及其各类控制和保护信号通过PLC系统的接口送入到PLC控制系统中, 由存储器发出指示信号, 然后对拖动系统与门控发出控制信号。
(2) 设计思想。在四层电梯的设计中, 主要是对于信号控制系统与上文提及的功能的控制。
信号控制系统包括内容较多, 是最主要与乘客之间的安全保障有关的控制, 主要靠PLC软件对其进行实行。当内指示信号、外指示信号以及光电脉冲以及开关门的信号、门区或者平层信号通过输入接口输入PLC中, 通过对运行方式进行选择、运行控制信号和安全保护信号的反应, 从而控制拖动控制系统, 从而完成对于呼唤信号的指示、楼层的显示、运行方向的指示、呼梯铃以及开关门的控制。
3 结语
随着人们生活水平的提高, 对于生活中此类必不可少的运用将越来越重视, PLC控制系统在四层电梯中显示出来优良的控制性、便利性以及后期使用维护的便利, 将得到更多的电梯生产厂商的重视, 这也要求技术人员加大对于PLC控制系统的重视与研发。PLC控制系统作为控制系统中比较完善的一种, 是未来控制系统的趋势所在, 将越来越被各个行业所认可使用。
摘要:近年来, 随着城市扩张, 城市化进程的加快, 城市中的高层建筑越来越对。电梯给人们提供了更为方便便利的生活, 发挥着越来越重要的作用。电梯作为高层建筑中的运输设备, 在城市人口生活中占据了越来越重要的地位。但是近年来继电器控制显示出了越来越多的弊病, 例如发生故障率高、维护技术含量高、编程工序复杂等, 随着近年来越来越多的新兴技术的产生, 这种系统支撑下的电梯已经满足不了人们的需求, 即将被取代。
关键词:电梯,PLC控制,继电器控制
参考文献
[1]路林吉, 王坚, 江龙康.可编程控制器原理及应用[M].北京:清华大学出版社, 2002 (45) :33-43.
[2]齐从谦, 王士兰.PLC技术及应用[M].北京:机械工业出版社, 2000 (23) :45-50.
【摘 要】针对电梯控制系统复杂、安全舒适度高等特点,采用了西门子PLC对电梯进行控制、变频器对电梯进行平滑调速的方法,通过软件和硬件的设计,有效的提高电梯的控制水平,极大地改善了电梯运行的舒适感;同时结合组态软件,创建监控平台,为电梯控制系统构建检测和故障监控系统,为电梯的安全运行提供了可靠保证。
【关键词】PLC;电梯;变频;组态王
0.绪论
电梯控制系统复杂,是一种大型的机电结合体和重要的垂直交通运输设备。电梯如采用传统的继电器控制系统,故障率高、可靠性差、控制方式不灵活以及消耗功率大,目前已逐步被淘汰;而微机控制系统虽智能控制方面有较强的功能,但也存在抗扰性差,系统设计复杂,一般维修人员难以掌握其维修技术等缺陷; PLC控制系统由于运行可靠性高,使用维修方便,抗干扰性强,设计和调试周期较短等优点,备受人们重视等优点,已成为目前在电梯控制系统中使用最多的控制方式;同时控制系统采用变频器技术和组态监控,有效提高了电梯运行的舒适性和可靠性[1]。
1.电梯控制系统结构
电梯控制系统总体结构如图1所示,由上位机组态王软件、PLC、数字及模拟量信号输入输出模块等构成。PLC采集现场数据和控制设备运行,组态软件通过通信与PLC交换数据,达到获得现场数据和控制电梯功能。组态软件对获得的数据存储并加以整理和分析,以形象的动画效果、报警、历史趋势、实时曲线等显示出来。所有控制工作都由PLC完成,计算机只负责提供人机交互界面,进行指令接收和发送、自动化进程控制、数据显示存储、参数设定、报表打印和数据处理等。在系统运行过程中,上位机一直和PLC实时通信,从而保证组态界面上显示的数据和实际数据相一致,操作人员在上位机上发出的操作命令和控制的参数也都可以实时的送到PLC上执行。
图1 电梯控制系统结构
2.电梯控制系统设计
2.1 PLC软硬件设计
PLC的选型主要根据控制对象所需的I/O点数和被控量的性质:如开关量或模拟量,以及是否要求联网通信等。针对四层电梯选用西门子S7-200CPU226即可满足控制要求,性价比高[2]。具体的I/O分配如表1所示。
表1 I/0分配表
根据I/0分配表可得到PLC硬件接线图,硬件接线图不再具体给出,电梯控制系统可实现以下功能[3]:
(1)按动召唤按钮,电梯牵引机启动到达召唤层停止、响铃、电梯门和轿厢门同时打开。
(2)人进入轿厢,超重保护没有报警。
(3)电梯门开的同时计时器开始计时5秒钟,5秒钟到电梯门和轿厢门自动关闭。
(4)按动选层键,电梯牵引机启动到达选择层停止、响铃、电梯门和轿厢门同时打开。
(5)电梯门打开的同时计时器开始计时5秒钟,5秒钟到电梯门和轿厢门自动关闭。
(6)当电梯行驶过程中收到正向召唤信号,则到达召唤楼层时停止,接收到反向召唤信号,电梯继续执行当前信号,在顺向信号执行完毕后执行反向信号,执行过程中自动相应最近的信号。
(7)电梯门和轿厢门设有压力传感器,当受到一定推力时,门自动返回计时5秒后重新关闭。
根据功能要求,可得到PLC控制梯形图,电梯程序控制流程如图2所示。
图2电梯程序控制流程图
2.2变频调速设计
电梯的调速要求除了一般工业控制的静态、动态性能外,他的舒适度指标往往是选择的一项重要内容。本设计中拖动调速系统的关键在于保证电梯按理想的给定速度曲线运行以改善电梯运行的舒适度。因此采用西门子MM440变频器作为调速使用[4]。
西门子MM440变频器参数设置原则:
(1)为减小启动冲击及增加调速的舒适感,其斜坡上升时间和斜坡下降时间应当长一些。
(2)为了提高运行效率,快车频率应选为工频,而爬行频率要尽可能低些,以减小停车冲击。
(3)零速一般设置为Oft,带速抱闸将影响舒适感。
电梯的工作特点是频繁启制动,为了提高工作效率、改善舒适感,要求电梯能平滑减速至速度为零时,准确平层,即“无速停车包闸”,不要出现爬行现象或低速抱闸,即直接停止,要做到这一点是要准确发出减速信号,在接近层楼面时按距离精确的自动矫正速度给定曲线。本设计采用旋转编码器检测轿厢位置,只要电梯运行,计数器就可以精确地确定走过的距离,达到与减速点相应的预制数时即可发出减速命令。
2.3组态监控设计
组态软件是指一些数据采集与过程控制的专用软件,它们是在自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速构建工业自动控制系统监控功能的、通用层次的软件工具。本次设计采用北京亚控公司的组态王软件,首先定义I/O设备,其次构造数据库,最后构建上位机监控画面,完成与下位机PLC实时数据的通信,实时动态显示电梯的运行状态[5]。电梯实时监控画面如图3所示。
图3电梯实时监控画面
3.结束语
采用西门子S7-200PLC作为控制器,西门子MM440变频器作为调速设备,组态王作为监控软件,大大减少了系统中继电器的使用数量,提高系统可靠性,降低故障率,减少了控制柜的体积。实践证明,此设计取得了良好效果,系统性能稳定,电梯运行更加平稳,使用维护简单,系统的可靠性高,组态软件的监控也有利于检验和测试电梯PLC控制系统对电梯的运行状态的控制效果,实用性强。
【参考文献】
[1]田艳丽.基于PLC的电梯控制系统的设计与实现[J].科技致富向导,2012,8(5):155.
[2]刘维福,叶安丽.电梯运行状态实时远程监控系统研究[J].伺服控制,2006,(4):86-87.
[3]耿立明, 杨 威.基于PLC 控制的实验电梯监控系统研究[J].工业控制计算机,2012,6(25):76-78.
[4]邓岗,宋克岭,王大志.PLC及其组态软件在电梯模型中的设计与应用[J].工业控制计算机,2010,5(23):95-96.
【plc电梯控制毕业论文】推荐阅读:
电梯安装质量控制07-16
plc控制系统毕业设计09-28
机械电气控制装置PLC技术分析论文07-01
基于PLC控制的机械手设计(毕业论文)01-15
plc控制系统06-02
基于plc的机械手控制10-28
plc控制系统说明书12-11
电镀生产线的plc控制12-26
某污水处理厂集控室PLC控制系统07-13
内部控制研究论文自动控制原理论文06-04