《圆和圆的位置关系》数学教学反思

2024-07-27 版权声明 我要投稿

《圆和圆的位置关系》数学教学反思(共10篇)

《圆和圆的位置关系》数学教学反思 篇1

在本节课的授课中,我感觉以下几点比较满意:

1、课件教学中在探索圆和圆的位置关系、探索两圆相切时的对称性、探索两圆相切时圆心距d和两圆半径R和r的数量关系时多次运用flash动画展示,给学生以直观感受,便于学生理解,同时,增加上课的生动性。

2、授课方式采用分组教学,对课程内容提出问题后先要学生在小组内动手交流并整理所获得的信息内容,然后在课堂上展示组内成果,从而调动起学生的学习积极性。

3、对练习题的设计由浅入深、层层递进,突出本节课的重点、突破了难点。

4、授课中贯穿了观察、猜想、验证等过程,使学生经历了知识的探索过程,“过程与方法”的目标落实比较好。

但在本节课中还存在许多不足之处,主要在以下几方面:

1、在学生分组活动中,个别学生不能参与进来,今后教学应该多加关注学困生。

2、教学语言应该注意更加规范。

3、在学生回答问题时,不应该只关注回答结果,也应该关注学生所表现出来的态度,用恰当的语言给予肯定和鼓励,使不同层次的学生获得不同的成功体验,从而增强自信心,激发学生的.学习兴趣。

4、本节课应该再加大练习量,进一步落实“知识与技能”的目标。

本次课初备时,我校全体数学教师在一起研讨,杨玉芬老师对我的授课过程中,学生作品展示提出很好的建议:在没有实物投影的情况下,让学生通过粘贴可以解决这一问题。申卫青教师对我的授课程序进行调节指导。李秀捧老师对学生的探讨问题进行进一步设计……

初备方案发布于网上,又得到教研员王老师、风帆郝老师、列电张老师、我校杨老师、马坊杨老师等多位老师的指导点评,我又在此基础上对方案进一步加工。

授课后,各位教师直述己见,让我认识到自己需要继续努力.

通过这次活动,使我更注意到学生的活动和参与情况,给学生充分的时间,把主动权交给学生,自己只是课程的设计者,在授课时适时引导,使尽可能多的学生真正参与进来,可以采取小组之间竞争评比打分以提高学生的注意力、合作交流、积极发言等各方面的参与情况。当学生回答问题后,无论回答的结果如何,要进行不同程度的关注:对回答结果清晰、正确者给予鼓励;对回答不准确或不正确者,在其他学生纠正的同时也要给予积极参与、回答问题积极方面的鼓励,使不同层次的同学都体会成功的喜悦、参与的必要。

在问题的设计上,一要根据学生的实际情况设计问题,问题难度由浅入深、层层递进,既要有梯度又要给学生留有思考的空间。二要考虑到题量的适度,加大练习量,更好地落实知识与技能目标。

《圆和圆的位置关系》数学教学反思 篇2

【情境导入】

师:我们每个人总会有些情投意合的朋友称为圈内人士, 也会有志趣不相符的“陌生人”, 我们称为……

生齐答:圈外人士。

(因为是借班上课且是上午第四节课, 学生都比较疲惫, 通过这个简单的引入拉近和学生的关系, 也为下面的学习埋下伏笔。)

师:如果把刚才所说的圈和朋友分别用一个几何图形来表示, 应该用什么图形, 又是什么样的位置关系呢?

生:圈用圆来表示, 朋友用点来表示。

师:请一个同学到黑板上画一圆。 (请一生画圆, 并记作⊙O)

师:再请一个同学在圆所在的平面内画几个点, 要求尽量不同。 (再请另一生画点, 没达要求的请人补充)

师:看图知, 这些点不是在圆上?

生齐答:就是在圆内或圆外。

师:这就是我们今天一起需要研究的内容。 (老师边说边板书课题:点和圆的位置关系 (1) )

【探索新知】

师:在刚才所画的一圆所在的平面中, 分别取点A、B、C, 使A在圆内, B在圆上, C在圆外, 请个人量一下OA、OB、OC的长度, 并比较与半径4 cm的大小关系。

(生按要求操作, 并前后左右进行比较找规律:A点在圆内, 则OA<4;B点在圆上, 则OB=4;C点在圆外, 则OC>4)

师:在另一个圆所在的平面上取点, 使OA=3 cm, OB=4 cm, OC=5 cm, 请观察此时三点与圆有怎样的位置关系?前后左右之间交流一下, 看是否有相同的结论?

(生按要求操作并交流得出结论:若OC>4, 则C点在圆外;若OA<4, 则A点在圆内;若OB=4, 则B点在圆上.)

师 (板书) :若假设⊙O的半径为r, 点P到圆心的距离为d, 即OP=d

……

探索也即探究活动, 是在课堂教学中设计具有探索研究问题本质的活动, 以问题情境为载体, 引导学生积极、自主、合作地进行探究与学习。在学习中获得知识、发展思维、学会研究的方法, 从而培养学生的学习能力。通过让学生动手测量, 把直观的位置关系与抽象的数量关系互化, 从而达到解决问题的需要。

【例题精讲精练】

师:例1. (1) 已知⊙O的半径为2, OP=4.2, OA=1.2, OB=2, CO=1, 则这些点跟⊙O有怎样的位置关系?

(2) 已知OP=3, 若点P在⊙O的外部, 那么⊙O的半径r满足什么条件?如果P在圆上或圆内呢?

(师生交流, 生口述 (1) 的答案, 并探讨 (2) )

生1:点P在⊙O的外部, r<OP=3

师:有不同的意见吗?

生2:因为r表示半径, 为正数, 故还应大于0, 即0<r<3

(老师提议鼓掌表扬)

师:例2.已知⊙O的半径为1, 点P到O的距离为d, 若方程x2-2x+d=0有实数根, 试判断点P与⊙O的位置关系?

师析:这是与一元二次方程的解有关的问题, 现根据“根的判别式”列不等式再解决问题。

生:令Δ≥0, 得d≤1;点P在⊙O上或外。 (师提醒各位同学注意“≤”的含义)

师:请各位思考:⊙O的半径为R, 圆心到点A的距离为d, 且R, d分别是方程x2-6x+8=0的两根, 则点A与⊙O的位置关系是 ()

A.点A在⊙O的内部

B.点A在⊙O上

C.点A在⊙O的外部

D.点A不在⊙O上

(学生独立思考求得方程的解为2和4, 但下面谁是R, 谁是d, 困惑了)

师:不能确定的量, 就可以分类思考啊。 (学生豁然开朗)

生:当R=2, d=4时, 有d>R, 则点A在⊙O外;当R=4, d=2时, 有d<R, 则点A在⊙O内, 故选D。 (还有部分学生没理解过来, 让他课后消化)

例3.在直角△ABC中, ∠A=90°, AB=3, AC=4, 以A为圆心, 以BA为半径作⊙A, 问点B、C及BC的中点D与圆A有怎样的位置关系?

[让学生自己读题做题, 请一学生到黑板板演 (只有简单答案) , 老师在巡视的过程中发现有一同学有详细过程, 就请其板演, 但没体现比较过程, 老师点评, 要求书写规范化]

师:在由“数量关系推断位置关系时, 要体现一个比较过程”。

师:刚才研究的是三角形问题, 把它放在四边形情境中如何?

变题:已知矩形ABCD的边AB=3厘米, AD=4厘米, (1) 以点A为圆心, 3厘米为半径作圆A, 则点B、C、D与圆A的位置关系如何? (2) 以点A为圆心, 分别以4厘米、5厘米为半径作圆A呢? (3) 以A为圆心, 使B、C、D三点中至少有一点在圆内, 至少有一点在圆外, 求此圆半径R的取值范围。

(第 (3) 题答案就五花八门了) 有:3≤r≤5或3<r<5或3<r≤4让学生讨论研究后, 师生交流。

师:讨论是否包括3和5呢?

生:若包括的话, 是指B、C在圆上, 而非圆内圆外, 不符合题意。

师:所以最后答案为3<r<5。

三道例题在设计时, 体现了基础性、层次性、发展性与有效性, 对学生巩固、理解、深化与应用所学知识都是有益的、有效的。随着新课程改革的不断深入, 教师要不断地教学研究, 善于学习、吸收好的教学方法和经验, 不断提高课堂教学的有效性和高效化, 而搭建“同课异构”的平台更有利于教师的研究性学习。

摘要:通过一节课的教学实录体现新课标中的情境教学、探究学习的内涵所在。

《圆和圆的位置关系》数学教学反思 篇3

一、知识目标

1.依据直线与圆的方程,能熟练求出它们的交点坐标。

2.能熟练运用几何法或代数法判断直线与圆的位置关系。

二、能力目标

1.通过两种方法判断直线与圆的位置关系,进一步培养学生用解析法解决问题的能力。

2.通过两种方法的比较,培养学生分析问题和灵活应用所学知识解决问题的能力。

三、德育目标

通过小组讨论,培养学生的团队精神、合作意识、交流表达的能力。

【教学方法】

讲练结合小组合作探究。

一、教学对象分析

学生在初中对直线与圆的位置关系已有所了解,但不会根据直线与圆的方程来判断位置关系;学生喜欢交流,但对数学学科缺乏耐心。

二、教法、学法分析

1.针对学生的特点,打破以教师为主的课堂常规。课堂环节设置为:提出问题—小组讨论—成果展示—归纳总结。

本班有36名同学,将其分成六个小组。

2.在自主探究的基础上以小组合作的方式完成任务,学生有机会去思考,并会与他人合作共同解决问题。

【教学重点】

直线与圆的位置关系。

【教学难点】

直线与圆的位置关系的判断及应用。

【教具】

多媒体投影设备课件。

【教学过程】

导入新课:播放课件太阳冉冉升起的情景。(5分钟)

提出问题1:太阳与地平线之间的关系?

问题2:把太阳看作圆、地平线看作直线它们的位置关系又如何?

问题3:点到直线的距离公式是什么?

問题4:如何根据直线方程与圆的方程来判断直线与圆的位置关系?

问题5:直线和圆的位置关系有哪几种?每种关系中直线同圆的交点个数各是多少?

新课讲授:

一、提出问题,学生讨论

问题1:判断直线l:y=x+2和圆O:x2+y2=2的位置关系。(第一和第二小组讨论)

问题2:判断直线l:y=6-3x和圆O:x2+y2-2y-4=0的位置关系。(第三和第四小组讨论)

问题3:判断直线l:y=x+6和圆O:x2+y2-2y-4=0的位置关系。(第五和第六小组讨论)

说明:5分钟后,各小组推选一位同学在投影仪上展示讨论的结果并讲解分析过程。

展示的结果各种各样,师生共同总结归纳如下:

1.在同一坐标系中画出直线与圆的图形来判断位置关系。

2.将直线与圆的方程联立组成方程组,根据交点的个数来判断位置关系,称为代数法。

交点个数:0、1、2。

位置关系:相离、相切、相交。

3.依据圆心到直线的距离d与半径r之间的关系来判断,称为几何法。

当d>r时,直线与圆无交点,直线与圆的位置关系是相离。

当d=r时,直线与圆有1个交点,直线与圆的位置关系是相切。

当d

二、巩固练习

1.已知直线l:x+y+C=0和圆M:(x-1)2+(y+1)2=4,问C为何值时,直线l与圆M分别相交、相切、相离?

教师提示:题中圆心坐标是什么?半径呢?圆心到直线l的距离是多少?直线与圆有什么位置关系?

注意:解绝对值不等式易发生错误,要细心。(学生练习,教师巡视并个别指导)

抽出两个小组分别展示,师生共同评析。(10分钟)

2.已知圆x2+y2-2x+4y=0与直线y=kx+4,问k为何值时,直线与圆相交、相切、相离?(自习时再抽出两个小组分别展示)

三、小结(4分钟)

1.直线与圆的位置关系的代数解法。(解方程组)

2.直线与圆的位置关系的几何解法。(比较d与r的关系)

(师生共同回顾本节所学内容)

四、布置作业(1分钟)

教材第100页习题第1~3题。

教材第100页习题第7,8题。

《圆和圆的位置关系》教案 篇4

3. 探讨在两圆外切或内切时,圆心距d与R和r之间的关系.

Ⅴ.课后作业习题24.3

Ⅵ.活动与探究

已知图中各圆两两相切,⊙O的半径为2R,⊙O1、⊙O2的半径为R,求⊙O3的半径.

分析:根据两圆相外切连心线的长为两半径之和,如果设⊙O 3的半径为r,则O1O3=O2O3=R+r,连接OO3就有OO3O1O2,所以OO2O3构成了直角三角形,利用勾股定理可求得⊙O3的半径r.

解:连接O2O3、OO3,

O2OO3=90,OO3=2R-r,

O2O3=R+r,OO2=R.

(R+r)2=(2R-r)2+R2.

r= R.

板书设计

24.3 圆和圆的位置关系

《点和圆的位置关系》的教学反思 篇5

数学来源于生活,并用于生活。初中数学,虽然知识越来越抽象,但是只要我们用心发现,还是可以找到现实生活中的素材。作为一名数学教师,要让学生体会他们学习的是有意义的数学,这些知识是与生活息息相关的,从而激起学生学习数学的兴趣。

学生在享受数学美的同时也深切地感受到生活离不开圆,体会到学习圆的重要性。虽然小学阶段学生已经对圆的有关知识有所了解,但只是一种感性认识,知道一个图形是圆,还没有抽象出“平面上到定点的距离等于定长的所有点组成的圆形叫做圆”的概念。本节课主要是让学生通过观察,把圆与车轮作类比,结合圆规画圆,得出圆的本质特点“圆周上的点到圆心的距离处处相等”后,就容易归纳出圆的定义。点和圆的位置关系也可以从生活中找到原型。已投射的飞镖和靶的位置关系就是一个很好的例子,它是学生既熟悉又比较感兴趣的事物。例1的应用更让学生体会生活中有数学,数学是解决实际问题的工具。

总而言之,本节课确实让学生感到学习数学也就是关注生活,只不过给生活中的这些现象以新的说法。所以抽象的数学也就显得简单了,学生也就更加喜欢学数学了。

2、改变了学习方式。

有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与交流合作是学生学习数学的重要方式。为此,我在课堂中给学生动手操作的机会,让每位学生用圆规在本子上画圆,同时要求他们动脑,动口,通过画圆过程体会圆的特点,以便于归纳圆的概念。让四位学生分两组合作在黑板上画圆,还让他们谈谈合作成功的经验(一位一定要固定好圆心,另一位一定要拉紧绳子的另一端粉笔头在黑板上绕一周)。所以得出确定圆需要两个要素即圆心和半径。在必要时,也让学生小组合作互相讨论,充分利用集体的智慧,使之能够解决较难的问题。

3、问题设计符合学生的认知规律。

从情境中的车轮到为什么车轮要做成圆形,圆形车轮有什么特点把圆与车轮作类比有什么相似之处……,这些问题的设计非常连贯,学生也很主动地围绕“问题串”思考,自然地得出了圆的概念,解决了本节课的难点。再是例1的具体应用,再次让学生体验数学来源于生活并用于生活。整堂课的设计从简单到复杂,从易到难,符合学生的认知发展规律。

圆和圆的位置关系

1、课件教学中在探索圆和圆的位置关系、探索两圆相切时的对称性、探索两圆相切时圆心距d和两圆半径R和r的数量关系时多次运用flash动画展示,给学生以直观感受,便于学生理解,同时,增加上课的生动性。

2、授课方式采用分组教学,对课程内容提出问题后先要学生在小组内动手交流并整理所获得的信息内容,然后在课堂上展示组内成果,从而调动起学生的学习积极性。

3、对练习题的设计由浅入深、层层递进,突出本节课的重点、突破了难点。

4、授课中贯穿了观察、猜想、验证等过程,使学生经历了知识的探索过程,“过程与方法”的目标落实比较好。

在授课时适时引导,使尽可能多的学生真正参与进来,可以采取小组之间竞争评比打分以提高学生的注意力、合作交流、积极发言等各方面的参与情况。当学生回答问题后,无论回答的结果如何,要进行不同程度的关注:对回答结果清晰、正确者给予鼓励;对回答不准确或不正确者,在其他学生纠正的同时也要给予积极参与、回答问题积极方面的鼓励,使不同层次的同学都体会成功的喜悦、参与的必要。

在问题的设计上,一要根据学生的实际情况设计问题,问题难度由浅入深、层层递进,既要有梯度又要给学生留有思考的空间。二要考虑到题量的适度,加大练习量,更好地落实知识与技能目标。

垂径定理教学反思:

垂径定理的推证是以圆是轴对称图形的性质为依据的,因此,垂径定理既是圆的性质---轴对称性质的重要体现,也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据。本节内容是本章基础,是圆的有关计算和圆的有关证明的一个重要工具。

根据初三学生的认知水平,我选用引导发现法和直观演示法,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“实验---观察---猜想---证明”的活动,最后得出定理。这不仅让学生对所学内容留下了深刻的印象,而且充分地调动学生学习的热情,让学生学会学习,学会研究问题的方法,培养学生的能力。

由于明确了教学目标,因此在授课中,新知识的引入与使用过程显得更为流畅,学生也更加的投入。经过这节课的学习,学生基本掌握了垂径定理的本质:2个条件和2个结论,并能在垂径定理的基础上推出其推论。且能应用它们进行简单的计算和证明,较好的达到了教学目标,完成了教学任务,教学效果良好。

本节课也存在着不足和需改进之处:

1、在得出结论后,没有留出足够的时间给学生对定理进行理解和记忆。致使一些中等以下的学生对定理的内容运用时不熟练。

2、在训练中题目较容易,应适当提高学生对新知识的理解体会。不仅要把基础的东西训练牢固,还要适当提高题目的高度,让不同的学生都有所获,都能体会到成功的快乐,长此以往学生便对数学产生兴趣,提高成绩也就容易了.圆的复习教学反思

这几年我一直在探究复习课的上法。特别是我校开展了数学课堂有效性的探究课题一来,怎样使复习课有趣有效,成为我们数学教师的探究重点。对于复习课,学生总会认为是自己学过的知识,学得没劲,老师上得累,学生学得腻。效果往往不理想,如何上好复习课,提高复习效果?怎样才能让学生主动参与,自主探究呢?

一、有时由于时间紧张,没有给学生系统的将知识串一下,只是就题讲题,只是给学生了几条鱼,而没有给他们渔;所以首先应对本章的知识点进行系统的梳理。复习课要把旧知识进行整理归纳,这一过程,就是将平时相对独立的知识点串成线,连成片,结成网。如果教师对复习问题面面俱到,学生会感到乏味,引不起兴趣,往往不能深入思考,张口就来,老师成了课堂的主角,学生则是被动接受,老师感到累而学生思维受到限制。因此,在课堂上通过问题的解决整理归纳学过的知识,把学习的主动权交给学生,取得效果较好。

二、其次要提炼方法形成知识结构,圆有哪些性质?三大性质定理学生首先要明确,以及各自适用的的题型。点与圆、线与圆、圆与圆的关系分别是什么?有关的题型又是什么?在讲课时通过典型的代表性的题目的讲练结合,学生可以通过解题后的反思提炼方法,形成知识结构,加深了对定理的理解。复习不是知识的简单再现,在复习过程中,教师也应是坚持启发引导学生发现思维误区,总结方法为主,辅之以精讲。充分发扬教学民主,给学生以足够的思维空间,对于解题思路的探讨过程,让学生真正理解,从而提高复习质量和复习效率。

《直线和圆的位置关系》教学设计 篇6

②直线和圆有唯一公共点时,叫做直线和圆相切,直线叫圆的切线,唯一的公共点叫做切点。

③直线和圆没有公共点时,叫做直线和圆相离。

㈡重点、难点的学习与目标完成过程,

⒈利用z+z超级画板的变量动画,改变圆的半径的大小,使直线与圆的位置关系发生改变,并请学生识别,巩固定义。

⒉提问:刚刚的变化,是什么引起直线与圆的位置关系的改变的?除从直线和圆的公共点的个数来判断直线和圆的位置关系外,是否还有其它的判定方法呢?

⒊教师引导学生回忆:怎样判定点和圆的位置关系?学生回答后,提出我们能否在这里套用?

⒋学生小组讨论后,汇总成果。引导学生从点和圆的位置关系去考察,特别是从点到圆心的距离与圆的半径的关系去考察。若该直线ι到圆心O的距离为d,⊙O半径为r,利用z+z的超级画板的变量动画展示,很容易得到所需的结果。

①直线ι和⊙O相交d

②直线ι和⊙O相切d=r

③直线ι和⊙O相离d>r

提问:反过来,上述命题成立吗?

㈢尝试练习

⒈练习一:已知圆的直径为12cm,如果直线和圆心的距离为 ⑴ 5。5cm; ⑵ 6cm; ⑶ 8cm 那么直线和圆有几个公共点?为什么?

⒉练习二:已知⊙O的半径为4cm,直线ι上的点A满足OA=4cm,能否判断直线ι和⊙O相切?为什么?

评析:利用“z+z”超级画板演示图形,并指导学生发现。当OA不是圆心到直线的距离时,直线ι和⊙O相交;当OA是圆心到直线的距离时,直线ι是⊙O的切线。

⒊经过以上练习,谈谈你的学习体会。

强调说明定理中是圆心到直线的距离,这是容易出错的地方,要注意!

㈣例题学习(P104)

在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?

⑴ r=2cm ⑵ r=2。4cm ⑶ r=3cm

⒈学生独立思考后,小组交流。

⒉教师引导学生分析:题中所给的Rt△在已知条件下各元素已为定值,以直角顶点C为圆心的圆,随半径的不断变化,将与斜边AB所在的直线产生各种不同的位置关系,帮助学生分析好,d是点C到AB所在直线的距离,也就是直角三角形斜边上的高CD。如何求CD呢?

⒊学生讨论,并完成解答过程,用幻灯机投影学生成果。

⒋用z+z超级画板的变量动点,验证结果,巩固直线与圆的位置关系的定义。

⒌变式训练:若要使⊙C与AB边只有一个公共点,这时⊙C的半径r有什么要求?

学生讨论,并用z+z超级画板的变量动画引导。

㈣话说收获:

为了培养学生阅读教材的习惯,请学生看教材P。103—104,从中总结出本课学习的主要内容有:

四、作业

P105 练习2

《圆和圆的位置关系》数学教学反思 篇7

关键词:直线,圆,位置关系,合作,主动,能力

一、教学设计思路

《直线与圆的位置关系》是九年级下册《圆》这一章的重点内容,是学生在认识了圆、圆的对称性、圆周角等知识的基础上学习的,它在这一章中也是一个难点,同时为后面学习切线、利用直线与圆的位置关系进行证明、计算等打下基础.根据教学内容和学生的实际情况,创造一种现实而富有吸引力的学习环境,以激发学生学习的兴趣与动机,让学生在轻松、自然、融洽而又具有挑战性的情境中,通过动手、动脑或与他人合作去学习数学.用观察、猜测和归纳的方法获取知识,使数学课堂变为学生主动探索、自主参与的一个舞台,从而培养学生获取新知识及与同学交流合作的能力.

二、教学目标

1.探索和理解直线与圆的三种位置关系:相交、相切、相离.

2.会运用圆心到直线的距离与圆的半径之间的数量关系判断直线与圆的位置关系.

三、教学过程

现以苏教版义务教育课程标准实验教科书九年级上册《5.5直线与圆的位置关系》(第一课时)为例,进行如下设计.

教学片断(一):板书课题

出示这节课的学习目标,指导学生自学:看课本P127到P129,练习前面的内容并思考:(1)直线与圆的位置关系有哪几种?(2)如何判断直线与圆的三种位置关系?(6分钟后请学生完成相关的练习)

点评:《直线与圆的位置关系》第一课时,学生在已有知识的基础上,有能力自学.为使学生学得紧张,最大化地提高课堂效率,可让学生带着思考题自学,逐步培养学生的自学能力.

教学片断(二):完成自学检测一

自学检测一的设计构想:主要检测学生自学指导中的问题一.

检测方式:口答竞赛,有困难的可以让其他学生补充.

教学片断(三):自学检测二

自学检测二的设计构想:围绕本节课的第二个目标:“会运用圆心到直线的距离与圆的半径之间的数量关系判断直线与圆的位置关系”而设计的.

检测方式:口答竞赛,让学生说出答案的同时,说出依据或方法,若说不完整,由其他学生补充,教师适时点拨.

点评:这是一个从自学实践到感知内化的过程,在自学的基础上,学生参与课堂的欲望得以激发.部分学生的回答出错,其他学生帮纠错,及时反馈了学生的自学情况,培养了学生团结合作的精神,使他们真正成为课堂的主角,在课堂这一舞台上充分展示自己.

教学片断(四):小试牛刀

在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,则以C为圆心、r为半径的圆与AB有怎样的位置关系?(1)r=2cm;(2)r=2.4cm;(3)r=3cm.

设计构想:这节课的重点是用圆心到直线的距离与圆的半径之间的数量关系判断直线与圆的位置关系,这道题主要培养学生严谨的解题习惯.

检测方式:三位学生到黑板板演,其余学生在作业本上完成.大家都做完后,开展“大家来找茬”的活动,鼓励学生找出板演过程中的问题,积极到黑板上纠错.

教师点拨:横向分布点评.先评第一步:要判断直线与圆的位置关系,应比较圆心到直线的距离与圆的半径的数量关系.本题已知圆的半径,由此要求圆心到直线的距离,应过点C作AB的垂线.再评第二步:运用相似法或面积法求出圆心到直线的距离.最后评第三步:位置关系判断正确与否.

四、教学反思

1.本节课的教学过程,采用“先学后教,当堂训练”的教学模式,根据学生的实际情况设计教学过程.

为学生提供展示、交流的学习平台,使学生经历知识的形成过程,提高动手、动脑的能力,让学生通过自己的努力获得成功的喜悦,增强自信心.

2.本节课实现了教师角色的转变.

这节课教师成为学生学习的组织者、引导者和研究者.组织学生自学,完成自学检测,引导学生归纳、小结,教师成为学生的导师和伙伴.在课堂上教师除了引导学生活动外,更多的关注学生在学习过程中遇到的疑难,适时点拨,帮助学生归纳数学思想方法,形成自己构建知识体系的方法.学生会在教师的指导下自主学习,并能主动参与到教学活动中,使个性得到了张扬.把时间和空间还给了学生,真正使学生走上了课堂的舞台,使他们意识到自己才是学习的主人,变“要我学”为“我要学”.

3.课堂检测的完成及纠错、小结都由学生完成,其余学生作出判断和补充,以竞赛的方式组织完成自学检测题.

“直线与圆的位置关系”说课案 篇8

一、教材分析

直线与圆的位置关系是对圆的方程应用的延续与拓展,又是后续研究圆与圆的位置关系及直线与圆锥曲线的位置关系等内容的基础。在直线与圆的位置关系的判断方法的建立过程中蕴含着诸多的数学思想方法,这对进一步探索研究后续内容有很大的启发与示范作用。因此本节课具有承上启下的作用。

二、学情分析

初中学生已经直观讨论过直线与圆的位置关系,前阶段又学习了直线与圆的方程及圆的有关性质,虽然对这部分内容比较熟悉,但对如何利用坐标法判断直线和圆的位置关系和数形结合思想的应用还有待探究和提高。

三、目标分析

1.教学目标

知识与技能:掌握根据直线和圆的方程判断它们位置关系的方法;熟练运用直线和圆的位置关系解决有关问题。

过程与方法:通过观察实际中的问题情境,将之化归为判断直线和圆的位置关系问题,逐步形成用代数方法解决几何问题的坐标法思想;领悟数形结合的魅力,提高发现问题,分析问题,解决问题的能力。

情感、态度与价值观:关注知识的生成过程,使学生养成问问题的习惯及勇于发现、主动探索的精神,让学生感受学习的成功与快乐。

2.教学重点、难点

重点:利用方程判断直线和圆的位置关系的方法。

难点:直线和圆的位置关系的灵活运用。

四、教法、学法分析

1.教法分析:运用启发式教学方法,创设问题情境,调动学生求知欲,激发学生的探究心理。

2.学法分析:贯彻以学生为主体的探究式学习。通过自学、观察、尝试演算获取知识,在探究过程中,学生的分析、归纳和推理能力得到提高。

五、教学过程分析

环节一:创设情境,引入新课

我国对钓鱼岛周围30 km的圆形区域实行警戒防御,现发现在钓鱼岛正西70 km处有艘日本船,前往钓鱼岛正北40 km处,若日本船只沿直线行驶,请问同学们我国是否采取军事行动予以驱赶?

【设计意图】通过对引例的改编,利用钓鱼岛创设情境,引入新课,提高学习兴趣,体验数学与生活的密切联系。

环节二:探索研究,构建新知

问题1:你能用初中的平面几何知识解决这个问题吗?

问题2:能否用直线与圆的方程来解决这个问题?

【设计意图】通过问题引领方式,引导学生主动回顾初中所学直线与圆的三种位置关系及判断方法,进而引发新知识增长点,为接下来例1的学习做好铺垫。

问题3:例1:已知直线l:3x+y-6=0和圆x2+y2-2y-4=0,判断直线和圆的位置关系;若相交,求交点坐标。

【设计意图】方法一:代数法,方法二:几何法,让学生体会两种方法的优缺点,培养学生思维的全面性。

环节三:反思过程,提炼方法

方法一:①联立;②消元,判断方程解的个数;③定位置关系。

方法二:①求圆心、半径,计算圆心到直线的距离;②比较距离与半径的大小;③定位置关系。

【设计意图】学生在教师的点拨下,根据例1的探究与板演展示,自己总结归纳解题方法。由特殊到一般,符合学生的认知规律。

环节四:课堂演练,强化方法

1.解决引入中的问题。

2.判断直线3x+4y+2=0与圆x2+y2-2x=0的位置关系。

3.已知直线y=x+2,圆C:x2+y2-2y-4=0,判断直线与圆有无公共点,若有,求其坐标。

【设计意图】让学生独立完成,巩固和检测学生对直线和圆位置关系的掌握情况,巡视解决可能存在的疑难点,并让其思考:(1)这道题还有别法吗?(2)这道题是否可以引申?

环节五:变式演练,深入探究

变式1:求例1中直线与圆所形成的弦长AB。

变式2:由点A(-2,2)引圆C:x2+y2=9切线,求切线方程。

变式3:求圆C:x2+y2+4y-21=0上的点到直线x+y-10=0的最大距离和最小距离。

【设计意图】通过变式演练,提高学生从不同方面掌握直线与圆的位置关系,进一步体会数形结合思想的优越性。

变式4:例2:过点M(-3,3)的直线被圆C:x2+y2+4y-21=0截得弦长为4,求直线方程。

【设计意图】通过例2的学习,培养学生举一反三的能力,进而提高学生分析、解决问题的能力和思维的严密性。

环节六:课堂小结,分享收获

1.直线和圆的位置关系的判断方法?

2.研究直线与圆的位置关系的主要方法?

3.本节课留给你印象最深的是什么?数形结合思想是我们高中数学学习的重要思想,作为课堂的延伸你能否总结一下我们所学的哪些内容还渗透数形结合思想?

【设计意图】新课程强调尊重学生的差异,鼓励学生的个性发展,所以课堂小结我设置总结性内容及开放性问题,期望这些问题使学生体验学习数学的快乐。

环节七:分层作业,自主探究

必做题:课本P132 习题4.2 A组1,2,3。

选做题:已知C:(x-2)2+(y-2)2=5的一条弦AB过点(3,1),且长为4,求直线AB的方程。

自主探究题:判断圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-2=0的位置关系。

【设计意图】让学生巩固所学内容并自我检测与评价,让不同层次的学生都可以获得成功的喜悦,看到自己的潜能,并为下一课时学习圆与圆的位置关系埋下伏笔。

当然,在实际教学中,可能会受到若干因素干扰,这就要求老师沉着冷静,适时适度调整教学设计,以保证教学任务的顺利完成。最后以华罗庚的一首诗结束本次说课。

数缺形时少直观,形少数时难入微。

数形结合百般好,割裂分家万事休。

参考文献:

周建伟.巧用直线与圆的位置关系解题[J].数学教学研究,1999(5).

《圆和圆的位置关系》数学教学反思 篇9

教学目标(一)教学知识点

1.能判定一条直线是否为圆的切线. 2.会过圆上一点画圆的切线. 3.会作三角形的内切圆.(二)能力训练要求

1.通过判定一条直线是否为圆的切线,训练学生的推理判断能力. 2.会过圆上一点画圆的切线,训练学生的作图能力.(三)情感与价值观要求

经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步演绎推理能力,能有条理地、清晰地阐述自己的观点.

经历探究圆与直线的位置关系的过程,掌握图形的基础知识和基本技能,并能解决简单的问题.

教学重点

探索圆的切线的判定方法,并能运用. 作三角形内切圆的方法. 教学难点

探索圆的切线的判定方法. 教学方法 师生共同探索法. 教具准备 投影片三张

第一张:(记作§3.5.2A)第二张:(记作§3.5.2B)第三张:(记作§3.5.2C)教学过程

Ⅰ.创设问题情境,引入新课

[师]上节课我们学习了直线和圆的位置关系,圆的切线的性质,懂得了直线和圆有三种位置关系:相离、相切、相交.判断直线和圆属于哪一种位置关系,可以从公共点的个数和圆心到直线的距离与半径作比较两种方法进行判断,还掌握了圆的切线的性质、圆的切线垂直于过切点的直径.

由上可知,判断直线和圆相切的方法有两种,是否仅此两种呢?本节课我们就继续探索切线的判定条件.

Ⅱ.新课讲解

1.探索切线的判定条件 投影片(§3.5.2A)如下图,AB是⊙O的直径,直线l经过点A,l与AB的夹角∠α,当l绕点A旋转时,(1)随着∠α的变化,点O到l的距离d如何变化?直线l与⊙O的位置关系如何变化?

(2)当∠α等于多少度时,点O到l的距离d等于半径r?此时,直线l与⊙O有怎样的位置关系?为什么?

[师]大家可以先画一个圆,并画出直径AB,拿直尺当直线,让直尺绕着点A移动.观察∠α发生变化时,点O到l的距离d如何变化,然后互相交流意见.

[生](1)如上图,直线l1与AB的夹角为α,点O到l的距离为d1,d1<r,这时直线l1与⊙O的位置关系是相交;当把直线l1沿顺时针方向旋转到l位置时,∠α由锐角变为直角,点O到l的距离为d,d=r,这时直线l与⊙O的位置关系是相切;当把直线l再继续旋转到l2位置时,∠α由直角变为钝角,点O到l的距离为d2,d2<r,这时直线l与⊙O的位置关系是相离.

[师]回答得非常精彩.通过旋转可知,随着∠α由小变大,点O到l的距离d也由小变大,当∠α=90°时,d达到最大.此时d=r;之后当∠α继续增大时,d逐渐变小.第(2)题就解决了.

[生](2)当∠α=90°时,点O到l的距离d等于半径.此时,直线l与⊙O的位置关系是相切,因为从上一节课可知,当圆心O到直线l的距离d=r时,直线与⊙O相切.

[师]从上面的分析中可知,当直线l与直径之间满足什么关系时,直线l就是⊙O的切线?请大家互相交流.

[生]直线l垂直于直径AB,并经过直径的一端A点.

[师]很好.这就得出了判定圆的切线的又一种方法:经过直径的一端,并且垂直于这条直径的直线是圆的切线.

2.做一做

已知⊙O上有一点A,过A作出⊙O的切线.

分析:根据刚讨论过的圆的切线的第三个判定条件可知:经过直径的一端,并且垂直于直径的直线是圆的切线,而现在已知圆心O和圆上一点A,那么过A点的直径就可以作出来,再作直径的垂线即可,请大家自己动手.

[生]如下图.

(1)连接OA.

(2)过点A作OA的垂线l,l即为所求的切线. 3.如何作三角形的内切圆. 投影片(§3.5.2B)如下图,从一块三角形材料中,能否剪下一个圆使其与各边都相切.

分析:假设符号条件的圆已作出,则它的圆心到三角形三边的距离相等.因此,圆心在这个三角形三个角的平分线上,半径为圆心到三边的距离.

解:(1)作∠B、∠C的平分线BE和CF,交点为I(如下图).(2)过I作ID⊥BC,垂足为D.(3)以I为圆心,以ID为半径作⊙I. ⊙I就是所求的圆.

[师]由例题可知,BE和CF只有一个交点I,并且I到△ABC三边的距离相等,为什么?

[生]∵I在∠B的角平分线BE上,∴ID=IM,又∵I在∠C的平分线CF上,∴ID=IN,∴ID=IM=IN.这是根据角平分线的性质定理得出的.

[师]因此和三角形三边都相切的圆可以作出一个,因为三角形三个内角的平分线交于一点,这点为圆心,这点到三角形三边的距离相等,这个距离为半径,圆心和半径都确定的圆只有一个.并且只能作出一个,这个圆叫做三角形的内切圆(inscribed circle of triangle),内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心(incenter).

4.例题讲解 投影片(§3.5C)如下图,AB是⊙O的直径,∠ABT=45°,AT=AB.

求证:AT是⊙O的切线.

分析:AT经过直径的一端,因此只要证AT垂直于AB即可,而由已知条件可知AT=AB,所以∠ABT=∠ATB,又由∠ABT=45°,所以∠ATB=45°.

由三角形内角和可证∠TAB=90°,即AT⊥AB. 请大家自己写步骤.

[生]证明:∵AB=AT,∠ABT=45°. ∴∠ATB=∠ABT=45°.

∴∠TAB=180°-∠ABT-∠ATB=90°. ∴AT⊥AB,即AT是⊙O的切线. Ⅲ.课堂练习随堂练习Ⅳ.课时小结

本节课学习了以下内容: 1.探索切线的判定条件. 2.会经过圆上一点作圆的切线. 3.会作三角形的内切圆.

4.了解三角形的内切圆,三角形的内心概念. Ⅴ.课后作业习题3.8 Ⅵ.活动与探究

已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD.

求证:DC是⊙O的切线.

分析:要证DC是⊙O的切线,需证DC垂直于过切点的直径或半径,因此要作辅助线半径OD,利用平行关系推出∠3=∠4,又因为OD=OB,OC为公共边,因此△CDO≌△CBO,所以∠ODC=∠OBC=90°.

证明:连结OD.

∵OA=OD,∴∠1=∠2,∵AD∥OC,∴∠1=∠3,∠2=∠4. ∴∠3=∠4.

∵OD=OB,OC=OC,∴△ODC≌△OBC. ∴∠ODC=∠OBC. ∵BC是⊙O的切线,∴∠OBC=90°. ∴∠ODC=90°. ∴DC是⊙O的切线. 板书设计

§3.5.2 直线和圆的位置关系(二)

一、1.探索切线的判定条件

2.做一做

3.如何作三角形的内切圆 4.例题讲解

二、课堂练习

三、课时小结

《圆和圆的位置关系》数学教学反思 篇10

乐山七中

王东英

教学目标:

1、使学生掌握两圆的五种位置关系的定义、性质、判断。

2、使学生初步掌握相切两圆和相交两圆的性质。

3、通过两圆位置关系的探究,培养学生用运动变化的观点来发现问题、分析问题、解决问题的能力;让学生体验数学活动充满探索和创造;让学生体验探索的乐趣。

4、通过教学和应用,让学生充分体验分类讨论思想。教学重难点:

五种位置及其对应数量关系的探究和应用 教学过程:

一、复习

我们已经学习了与圆有关的位置关系有哪些?对应的数量关系怎样?(生答,师重点强调直线与圆的位置关系有两种判定,其中一种判定是直线与圆的公共点个数来确定位置关系)那么两个圆的公共点的情况怎样呢?我们一起动手来观察

二、探究两圆的位置关系

1、师用多媒体演示运动中的两个圆(其中一个稍大的圆固定不动,小圆在过大圆圆心的直线上运动),让学生观察两圆的公共点的个数。师:显然在运动过程中,两圆的位置关系不同,这就是我们今天所要探究的内容:圆与圆的位置关系,板书课题。师问:两圆的公共点个数有几种情况?你能给这三种情况命名吗?(类似的,命名为相离、相切、相交)师板书两圆的三种位置关系。

2、再演示,注意观察,都是相离(或相切),两种图形有什么区别?学生回答后师总结相离分为外离和内含,相切分为外切和内切。(这里提醒学生解题时注意分类讨论)板书两圆的5种位置关系

3、由前面的学习我们知道,位置关系都有对应的数量关系,而且都是圆的半径与“距离”的关系,那么两圆的位置关系对应的数量关系是谁与谁的关系呢?在这里,有两个圆,当然“半径”是两圆半径R和r,而圆的位置由圆心来确定的,故“距离”是两圆心的距离,即圆心距d。那现在我们一起来探究两圆半径与圆心距的关系,三种关系中哪一种最特殊呢?那我们就从相切来研究。通过演示,学生很容易观察得出结论:两圆外切d=R+r,两圆内切d=|R-r|。从运动中一目了然得出:两圆相交|R-r|R+r;两圆内含0d<|R-r|。

4、为了方便记忆,可把5种位置关系在数轴上表示出来。(注意两个关键点R+r和R-r)

三、探究性质

1、相切两圆的性质

2、相交两圆的性质

3、由此常见的辅助线

4、两圆的位置关系中的分类讨论:相切分为外切和内切;相离分为外离和内含;已知相交两圆的半径和公共弦长求圆心距分为圆心在公共弦的同侧和异

侧。

5、复习总结已学的与圆有关的分类讨论

四、应用

1、线段OP=8㎝,⊙O半径为5㎝,若⊙P与⊙O相切,则⊙P半径为多少?

2、已知两圆的半径分别为R,r,且R>r,R、r是方程x25x20的两根,设两圆的圆心距为d.11(1)若d,判定两圆的位置关系;

2(2)若d=3,判定两圆的位置关系;

(3)若d=4.5,判定两圆的位置关系;(4)若两圆相切,求d的值。

五、小结全课

六、教材中的练习和习题

上一篇:许你一世高一作文600字下一篇:顺义民间组织