人教新课标六年级下册数学教案 扇形统计图教学设计(精选10篇)
教学目标
1.了解扇形统计图的特点,掌握制扇区形统计图的一般步骤,并能正确制作扇形统计图。
2.培养同学们的观察、分析、概括能力。
3.渗透“实践第一”观点。
教学过程
一、以旧引新
回答:
圆周角的度数是什么?条形统计图的特点有哪些?折线统计图的特点有哪些?
板画
两一个半径为30厘米的图形。
二、新授
1.导言:前几节课我们一同学习了长形统计图的折线统计图,掌握了这两种统计图的特点和画法,这节课我们来学习一种新的统计图。(板书:扇区形统计图)
出示准备题,思考。
扇形统计图是用什么图形来表示的?结合准备题想一想这个整圆表示的是什么?(全班学生的人数)
通过这个扇形统计田径反映了这个班的学生在活动课中参加了几种小组活动?它们分别占全班人数的百分之几?用什么图形来表示?
观察图中这个班级的学生参加小组人数最多的是哪个组?最少的是哪个组?
你能够说出扇区形统计图有什么特点吗?(师生共同总结出扇区形统计图的特点,并出示事先写好的小黑板,并找一名学生读)
请你用量角器量一量书上图中每个扇形对应的圆心角各是多少度?量完以后算一算每个圆心角的度数占整个圆周角的百分之几?你又看到了什么?(这个百分数与统计图中的百分数相同)阶段小结:要想知道每扇形的面积有多大,占整个圆面积的百分之几,只要知道这个扇形的圆心角的度数占整个圆周角的百分之几就可以了,因此在制作扇形统计图时首先要知道部分数量占总数量的百分之几,然后再根据这些百分数算出每个扇形的圆心角度数,就可以画出各个扇形了。
2.讲解例5
出示例5并思考。
找学生读题,想一想制作扇形统计图,第一步先算什么?怎样列式?(边讲解边板书:84+24+12=120(公顷),粮食作物:84/120=0.7=70%;棉花:24/120=0.2=20%;油料作物:12/120=0.1=10%.每步追问,并核对三个百分数相加是否是100%)
第二步再算什么?(板书并核对三个度数相加是否是360°)
第三步怎样做?(板画图中根据圆心角度数顺次画出三个不同的扇形)
最后一步怎样做?(标明相应的名称和百分数,把各个扇形用不同的线纹或颜色区别开来,并提醒学生写上统计图的名称和制作日期)
师生共同总结一下制作扇形统计图的步骤
3.阶段练习
完成教材70页中的“做一做”。(都是巡视,个别指导,找学生板画)
4.小结
这节课我们学习了什么知识?扇形统计图有什么特点?它的制作步骤是什么?
三、巩固练习
1.完成教材70页练习十四中的第一题。
2.完成教材70页练习十四中的第二题(直接画在书中,并追问图形中不小格相对应的圆心角的度数是多少?你是臬算的?)。
复习目标
系统地掌握统计的基础知识和基本技能,并能解决有关的简单问题。
复习过程:
一回顾与交流
1. 收集数据,统计表。
师:我们班要和希望小学的六(1)班建立手拉手班级,你想向手拉手的同学介绍哪些情况呢?
学生可能回答:
① 姓名、性别。
② 身高、体重。
③ 兴趣爱好。
(1) 调查表。
为了清楚地记录你的情况,同学们设计了一种个人情况调查表。
姓名 性别
身高/cm 体重/kg
最喜欢的学科 最喜欢的运动项目
最喜欢的图书 长大后最希望做的工作
最喜欢的电视节目 特长
① 填一填. xkb1.com
② 用语言描述清楚还是表格记录清楚?
(2) 统计表.
为了帮助整理和分析全班的数据,同学们又设计了一种统计表.
如: XX班学生最喜欢的学科统计表
学科 语文 数学 英语 音乐 美术 体育 其他
人数
① 根据上一张表中“最喜欢的学科”统计各学科人数.
② 将数据填在统计表中.
③ 你认为用统计表记录数据有什么好处?你对统计表还知道哪些知识,与同学进行交流。
2. 统计图。
(1) 你学过几种统计图?分别叫做什么统计图?各有什么特征?
① 条形统计图。
特征:清楚表示出各科数量的多少。
② 折线统计图。
特征:清楚表示数量的变化情况。
③ 扇形统计图。
特征:清楚表示各种数量的占有率。
(2) 教学例1。
① 认真观察例题中的图表。
② 指出各统计图的名称。
③ 从图中你能得到哪些信息?
如:从扇形统计图看出,男、女生占全班人数的百分率;
从条形统计图看出,男、女生分别喜欢运动项目的人数;
从折线统计图看出,同学对自己的综合表现满意人数的情况变化趋势。
④ 还可以通过什么手段收集数据?
如:问卷调查;
查阅资料;
实验活动等。
⑤做一项调查统计工作的主要步骤是什么?
3.平均数、中位数和众数。新课标第一网
(1) 什么是平均数?什么是中位数?什么是众数?
(2) 出示例题。
身高/m 1.40 1.43 1.46 1.49 1.52 1.55 1.58
人数 1 3 5 10 12 6 3
体重/kg 30 33 36 39 42 45 48
人数 2 4 5 12 10 4 3
① 在上面两组数据中,平均数、中位数和众数各是多少?
a. 找出中位数和众数。
b. 计算平均数。
② 不用计算,你能发现上面两组数据的平均数,中位数和众数之间的大小关系吗?
学生在小组中交流,说一说各自的思维过程和结果。
③ 你认为用什么数表示上面两组数据的一般水平比较合适?
让学生说出自己的看法,并说明理由。
二巩固练习
完成练习二十二第1~4题。
课题NO.3-4
班级姓名小组小组评价
学习目标:
1、学会用方程解答“已知一个数的几分之几是多少,求这个数”的应用题。会分析除法应用题中的数量关系,学习用线段图表示题中数量关系的方法。
2、通过独立思考、小组合作、展示质疑,在学习过程中,感悟分数除法应用题之间的内在联系,培养推理能力。
3、极度热情,全力以赴,精彩展示,做最好的自己。
重点:会用方程解答“已知一个数的几分之几是多少,求这个数”的实际问题。
难点:根据分数乘法的意义,找到等量关系,正确列出方程。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够学会用方程解答“已知一个数的几分之几是多少,求这个数”的应用题。会分析除法应用题中的数量关系,学习用线段图表示题中数量关系的方法。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。
一、自主学习:xkb1.com
1、自学课本P37-P39页
思考:1)、列方程解应用题的关键。
2)、用算术法解除法应用题的关键。
2、填空。
1)、米是米的();米相当于()米。
2)、自行车的速度是汽车的,把()看作单位“1”。
3)、一个数的是,这个数是()。
4)、一根卅绳长54米,剪去,还剩()米,把()看作单位“1”。
3、解方程。
二、合作探究:
例1、根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,小明体内有28千克的水分,小明的体重是爸爸的。
1)、小明的体重是多少千克?
2)、小明爸爸的体重是多少千克?
要求:(1)、用两种方法解答。
(2)、画出线段图表示题中的数量关系。新课标第一网
小结:(1)、列方程解应用题的关键:
(2)、用算术法解分数除法应用题的关键:
例2、小伟买了一枝钢笔,一枝圆珠笔和一枝铅笔,一枝圆珠笔的价钱是一枝钢笔,一枝铅笔的价钱是一枝圆珠笔的,买一枝铅笔花了2元钱,买一枝钢笔花多少元钱?
要求:1)、用两种方法解答。
2)、画线段图表示题中的数量关系。
小结:1)、分数连除应用题的解题关键:
2)、分数连除应用题的解题方法:
方程解法:
算术解法:
三、学以致用:
1、画线段图表示下面各数量关系。
1)、鸡的只数是鸭的。
2)、女生人数占全班的。
2、列式计算新课标第一网
1)、一个数的是64,求这个数。
2)、12的与什么数的2倍相等?
3)、加上一个数的,和是1,求这个数。
四、解决问题:
1、小红看一本书,已看了76页,是未看页数的,这本书小红还有多少页未看?
2)、修一条公路,施工方工作3天,每天修千米,已知3天修了这条路的,这条路一共有多长?
2、使学生能利用正反比例的意义正确解答应用题。
培养学生的判断分析推理能力。
教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题
教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。
教学过程:
(一)复习
1.说说正、反比例的意义。
2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从A地到B地,行驶的速度和时间。
(3)每块砖的面积一定,砖的块数和总面积。
(4)海水的出盐率一定,晒出的盐和海水重量。
3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。
(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。
(2)一辆汽车从A地到B地,每小时行60千米,5小时到达。如果要4小时到达,每小时行驶75千米
(二)新课
例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
(1)用以前方法解答。
(2)研究用比例的方法解答
题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?
能不能利用这个关系式列比例解答?
解比例,同学自已完成,及时纠正。检验。
改变例1中的条件和问题
甲乙两地之间的公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?
教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?
1、以前的发法解答。
2、怎样用比例知识解答?
3 讨论结果填书上。
4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。
整理和复习
教学要求:
1、使学生进一步理解比例的意义和基本性质,能区分比和比例。
2、使学生能正确理解正、反比例的意义,能正确进行判断。
3、 培养学生的思维能力。
教学过程:
知识整理
1回顾本单元的学习内容,形成支识网络。
2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。
复习概念
什么叫比?比例?比和比例有什么区别?
什么叫解比例?怎样解比例,根据什么?
什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
什么叫比例尺?关系式是什么?
基础练习
1填空
六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是( )。
小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是( )。
甲乙两数的比是5:3。乙数是60,甲数是( )。
2、解比例
5/x=10/3 40/24=5/x
3 、完成26页2、3题
综合练习
1、A×1/6=B×1/5 A:B=( ):( )
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3用5、2、15、6四个数组成两个比例( ):( )、( ):( )
实践与应用
1、如果A=C/B那当( )一定时,( )和( )成正比例。当( )一定时,( )和( )成反比例。
教学目标:
1.了解作者对虚度光阴感到无奈和惋惜,并由此想开去,懂得人生短暂,我们应该珍惜时间的道理。
2.体会文章表达方面的特点。
3.有感情朗读课文,选背课文。
教学重点:
体会文章表达方面的特点。
教学过程:
一、复习导入
1.师:上节课,我们初步学习了朱自请先生的著名散文《匆匆》。回忆一下,课文告诉了我们什么道理?
(时间来去匆匆、一去不回,所以我们要珍惜时间,从现在开始努力。)
2.师:对于时间的来去匆匆,作者的感受是什么呢?你能选一段,读出作者的感受吗?(八千多个日子在作者身旁就无声无息的匆匆消逝了,甚至连游丝样的痕迹都没有留下。作者为此而感到无比的惋惜和自责。)
二、品读好句,体会文章语言表达方面的特点
1.师:朱自清先生这篇散文发表至今已有82年了,受到了许多读者的喜爱。人们不仅喜欢它劝人珍惜时间、含义深刻,而且喜欢他那质朴而有文采的语言。
文章中有你喜欢的句子吗,有值得你在写作时学习、借鉴的句子吗?在文章中划一划,多读几遍,和同学交流一下作者用了怎样的写法,这样写有什么好处。
2.生品读,小组交流学习心得。
3.集体交流,重点指导学生学习以下几句的写法:
(1)燕子去了,有再来的时候;杨柳枯了,有再青的时候;桃花谢了,有再开的时候。但是,聪明的,你告诉我,我们的日子为什么一去不复返呢?
(此处用了排比和对比的手法,表达了作者对时光逝去无法挽留的无奈和对已逝日子的留恋。)
怎样才能读好?指名读。
(2)在默默里算着,八千多个日子已经从我手中溜去;像针尖上一滴水滴在大海里,我的日子滴在时间的流里,没有声音,也没有影子。
这一句用了什么修辞方法?“针尖上的一滴水”指的是什么?为什么这么说?
(3)于是——洗手的时候,日子从水盆里过去;吃饭的时候,日子从饭碗里过去;默默时,便从凝然的双眼前过去。
好课件吧
(这里用了排比的修辞手法,写出了时间是怎样从日常生活中溜走的。)
你能学着作者这样,也写几句,描写被虚度日子是怎样溜走的吗?仿写:_______的时候,日子_______过去(溜走、逃走);_______的时候,日子_______过去;_______的时候,日子_______过去。
时间在我们的不经意间就溜走了,我们都浪费了许多时间,真是太可惜了。谁能把这部分读好?
(4)过去的日子如轻烟,被微风吹散了,如薄雾,被初阳蒸融了;我何曾留着些什么痕迹呢?我何曾留着像游丝样的痕迹呢?
(这里用比喻的方法写出了日子过去了没留下什么痕迹,用反问句表达了自己虚度了日子、没有作为而自责的心情。)
指名读这两句。
联系到上文“像针尖上的一滴水”,说说还可以把时间比作什么?
4.师:文章中这么多的好句,都非常值得我们学习。你愿意选几句或者选一段背一背吗?
三、小结
1.你学习了本文,有什么收获呢?
2.师小结:《匆匆》一文紧扣“匆匆”二字,生动地刻画了时间流逝的踪迹,表达了作者对虚度光阴感到无奈和惋惜的心情,警醒人们要珍惜时间,争取有所作为。文章语言质朴、清新,同时也运用了不少修辞方法,使得文章显得很有文采。另外,作者以问句开篇,又以问句结尾,首尾呼应、突出中心的写法也是值得我们借鉴的。希望同学们课后再认真读一读,品味品味。
四、课外拓展,鉴赏美文
1.师:朱自清先生还有不少文章的语言也是很质朴,很形象的,让人感到非常清新、明快。我们再来欣赏他另一篇文章的一个段落,好不好?
2.师出示《春》的片段,生自由读这一部分,欣赏他那优美的语言,说说自己喜欢哪些句子。
五、作业:
1.继续背诵喜欢的好句或段落。
2.搜集劝人珍惜时间的名言,自己也写一句名言。
3.阅读朱自清的其他文章,如《背影》《荷塘月色》。
附件一:
仿写之教学实录片断
学习到“于是——洗手的时候,日子从水盆里过去;吃饭的时候,日子从饭碗里过去;默默时,便从凝然的双眼前过去。”时„„
师出示幻灯片(仿写:___________的时候,日子__________过去(溜走、逃走);___________的时候,日子___________过去;__________的时候,日子__________过去。)师:“你能学着作者这样,也写几句,描写被虚度日子是怎样溜走的吗?”生在小纸条上仿写。
师在教室中巡视,发现有几位学生写道“学习的时候,日子从我们眼前过去了”“写字的时候,日子从我们的笔尖溜走了”。
于是,教师对全班学生纠正道:“同学们,作者写日子从身边过去了。这时候,时间是被利用了,还是被虚度了?”
生:“时间被虚度了。”
师:“对,时间被虚度了。我们所写的也应该是被虚度的日子是怎样溜走的。”生明白了,继续仿写。
师继续巡视,发现好的句子就当场读,并给与表扬。
“这位同学写的好:‘说话的时候,日子从嘴唇边滑过’”
“这句也不错‘发呆的时候,日子从眼前逃走了’”
学生的思维受到了启发,纷纷写了起来。
„„
师:“哪些同学说说被虚度的日子是怎样溜走的?”
生:“上课讲话的时候,日子悄悄地溜走了;玩耍的时候,日子无声地过去了;看电视的时候,日子不知不觉地逃走了。”
师:“好,还有吗?”
生:“玩游戏机时,日子从按键上过去了;看电视的时候,日子从电视屏幕前过去了;逛街时,日子从脚下逃去了。”
生:“无所事事的时候,日子从不知不觉中过去了;发愣时,日子从眼皮底下过去;东张西望时,日子从身旁过去。”
„„
一、创设情景,导入新课
师带领学生玩“抢椅子”的游戏,规则这4位学生必须都坐下。引导学生观察游戏结果--不管怎么坐,总有一个座位上至少坐了2位同学。
师:为什么?(学生回答)
师:可不可能一个椅子上坐3位同学?(可能)可不可能每个椅子上只坐1位同学?(不可能)也就是说,不管怎么坐,总有一个椅子上至少要坐2位同学。
师:那么像这样的现象中隐藏着设么数学奥秘呢?大家想不想弄明白?好,就让我们一起走进数学广角来研究这个原理。希望大家都能积极的动手动脑,参与到学习活动中来,齐心协力把这个数学奥秘弄懂!
二、探究新知
(一)教学例1
1、出示题目:把4枝铅笔放进3个文具盒里。
师:刚才我们做游戏,不管怎么坐,总有一把椅子上至少坐了2位同学。那么,把4枝铅笔放进3个文具盒里,有多少种放法呢?会出现什么情况呢?大家可不可以大胆的猜测一下?
(学情预设:不管怎么放,总有一个文具盒里至少放进了2枝铅笔。)
2、理解“至少”
师:“至少”是什么意思?如何理解呢?
(最少2枝,也可能比2枝多)
师:到底我们猜测的对不对呢?怎么样证明这种现象呢?下面,就需要自己动手利用学具去摆一摆,动脑去想一想,看看能不能证明我们这个猜想。
3、自主探究
(1)两人一组利用手中的学具1摆一摆,想一想,可以怎么样去摆放?老师帮大家准备了一个记录单,你们可以把摆放的不同方法记录下来,以便你们分析结果是不是符合我们之前的猜测。
(2)全班交流,学生汇报。
第一种方法:
(4,0,0)(3,1,0)(2,2,0)(2,1,1)学生解释自己的想法,验证猜测。
教师课件演示,验证结论。(像大家刚才这样把每一种放法都列举出来,然后去一一验证,这种方法叫列举法)
第二种方法:
师:还有别的思考方法,来验证我们之前的猜测吗?
假设法:(学生汇报)
师课件演示,说明:先假设每个文具盒里各放入1枝铅笔,余下1枝铅笔不管放进哪个文具盒里,一定会出现“总有一个文具盒里至少有2枝铅笔”的现象。
4、优化方法
那么把5枝铅笔放进4个文具盒里,会怎样呢?
那么把6枝铅笔放进5个文具盒里,会怎样呢?
那么把7枝铅笔放进6个文具盒里,会怎样呢?
那么把100枝铅笔放进99个文具盒里,会怎样呢?
(学生解释说明,师课件演示)
师:你们为什么都用第二种方法,而不用列举法呢?
5、发现规律
师:通过刚才我们分析的这些现象,你发现了什么?
(当笔的枝数比铅笔盒数多1时,不管怎么放,总有一个文具盒里至少放2枝铅笔。)
师:同学们能有这么了不起的发现,真不错!说明大家认真动脑思考了。那么老师这有一道和我们刚才这些题稍稍不同的题,看看你们能不能用这种思维来解决一下?
6、出示做一做:7只鸽子飞回5个鸽舍,至少有( )只鸽子要飞进同一个鸽舍里?
(1)学生独立思考,可以自己想办法解决。
(2)全班汇报,解释说明。
(3)教师用课件演示(虽然鸽子的只数比鸽舍的数量多2,但是也是至少有2只鸽子要飞进同一个鸽舍里。)
师:同学们真是太了不起了,善于运用分析、推理的方法来证明问题,得出结论。同学们的思维在不知不觉中也提升了许多。大家敢不敢再来挑战一道更难的题目?
(二)教学例2
1、出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书?
2、学生利用学具探究
3、学生汇报,教师课件演示
如果把我们的这种思维方法用式子表示出来,该怎样列式?
5÷2=2…..1 (3)
4、拓展:把7本书放进2个抽屉里呢?
把9本书放进2个抽屉里呢?用式子怎么表示?
7÷2=3….1 (4)
9÷2=4…1 (5)
师:同学们观察这些板书,你发现了什么规律吗?
(商+余数) (商+1)
5、做一做:8只鸽子飞回3个鸽舍,至少有( )只鸽子要飞进同一个鸽舍里。为什么?
学生独立思考,汇报交流。板书式子:8÷3=2…2 (2+1=3)
教师课件演示:至少有3只鸽子要飞进同一个鸽舍里,所以应该是商加1.
(三)结论
师:同学们,真的非常厉害,刚才我们一起探究的这种现象,就成为“抽屉原理”
课件出示。
三、拓展应用
知识与技能目标:进一步掌握抽屉原理,掌握抽屉原理的反向求法。
过程与方法目标:通过各种活动培养学生自己动手动脑去思考的习惯。
情感、态度与价值观目标:体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
教学重难点
1.使学生理解抽取问题中的一些基本原理。
2.找到抽屉原理问题中被分的物品。
教学过程
一、创设情境、引入新课:
师:一天晚上,有一个小女孩正要从抽屉里拿袜子。抽屉里有黑白两种颜色的袜子各10双。突然停电了。小女孩至少摸出多少只袜子,才能保证拿出相同颜色的袜子?
学生思考、发言。
师:学习了这节课我们就能解决类似的问题了。
二、活动探究、深入了解:
(一)出示例3:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,至少要摸出几个球?
1、学生提出猜想。
2、用预先准备的学具,小组合作交流。4、小组反馈,师相机板书:
3、得出结论:把颜色看作抽屉。
有两种颜色,只要摸出的球比他们的颜色至少多1,就能保证有两个球同色。
(二)研究规律
师:如果盒子里有蓝、红、黄球各6个,从盒子里摸出两个同色的球,至少要摸出几个球?
分小组讨论后汇报。
再出示做一做第2题,汇报后得出:问题结论只与球的颜色种数也就是抽屉数有关。
小结:确定什么是抽屉什么是物体是解决抽屉问题的关键。
三、巩固训练,促进内化
1、做一做
2、解决课前有趣的问题
3、有红色、白色、黑色的筷子各10根混放在一起,让你闭上眼睛去摸,
(1)你至少要摸出几根才敢保证有两根筷子是同色的?
(2)至少拿几根,才能保证有两双同色的筷子?为什么?
四、全课总结,畅谈收获
1、通过今天的学习你有什么收获?
2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?
第三课时节约用水
教学目标
知识与技能目标:通过活动进一步巩固巩固比例知识、简单的统计知识,培养学生综合应用所学过的知识的能力
过程与方法目标:通过活动培养学生搜集和处理信息的能力,使学生感到数学和现实生活的联系。
情感、态度与价值观目标:增强学生“节约用水,从我做起”的责任意识,养成良好的品德。
教学重难点
所学知识的综合应用
教学过程
一、情景引入,提出问题
1、(屏幕显示:地球上最后一滴水将是人类的眼泪!)请学生说说对这则广告的理解。引出课题。
2、提出问题:为什么要节约用水呢?
二、问题讨论,明白道理
1、交流课前搜集的信息,畅谈有关水的认识。
2、课件展示相关资料,了解地球上水资源状况。
3、交流感想,强化体验。
三、参与活动,亲身体验
师:水龙头坏了或没有关紧,水一滴一滴往外流(多媒体出示相关图片),遇到这种情况,你会怎么做?
师:课前我请同学们做了一个漏水试验,我们一起来看看试验结果吧!
1、小组交流、展示成果。(一分钟大约滴水50毫升)
2、计算统计,交流感想。
师:根据上面的滴水速度,完成下面的统计表。
一个漏水水龙头漏水情况统计表
时间 1分钟 1小时 24小时 1年
水量(升)
一个水龙头一年浪费多少水?(1立方米约重1吨)
3、评价家庭用水状况,提出节水建议。
4、(课件出示)小明刷牙时不间断放水30秒,用水约6升。小刚用口杯接水刷牙,需要3口杯水,每杯用水约0.2升。
A、小明一次刷牙的用水量相当于小刚多少次刷牙的用水量?
B、采用节水刷牙的方式,如果一个三口之家按每人每日刷牙两次算,那么每月(30天计算)可节水多少升?
C、节约的这些水,如果以一户三人,每户月均用水量为8吨计算,够你家用几天?
(独立分析计算、汇报计算结果,交流想法)
四、解决问题,提出方案
分组讨论一下节约用水的措施。
1、学生分组讨论,多媒体演示生活中的节水片段。
图上距离和实际距离的比,叫做这幅图的比例尺。
5、正比例和反比例的区别与联系
相同点 不同点
特征 关系式
正比例关系 两种相关联的量,一种量变化,另一种量也随着变化 两种量中相对应的两个数的比值一定 у
х
反比例关系 两种量中相对应的两个数的积一定
ху=k(一定)
应用题
(一) 一般复合应用题
1、一般复合应用题的解法
(1)分析法:从问题入手,逐步分析题里的已知条件。
(2)综合法:从应用题的已知条件,逐步推向未知,直到求出解。
(3)分析综合法:将分析法、综合法结合起来交替使用的方法。当已知条件中有明显计算过程时就用综合法顺推,遇到困难时再转向原题所提的问题用分析法帮忙,逆推几步,顺推和逆推联系上了,问题便解决了。
2、 一般复合应用题的解题步骤:
(1)审清题意,并找出已知条件和所求问题;
(2)分析题目里的数量间的关系,从而确定先算什么,再算什么,最后算什么;
(3)列式,算出结果;
(4)进行检验,写出答案。
(二)典型应用题(有一定解答规律的应用题)
1、求平均数问题
(1) 求平均数问题的特点:把各“部分量”合并为“总量”,然后按“总份数”平均,求其中一份是多少。
(2) 求平均数问题的解题规律:关键是先求出“总量”和“总份数”,然后用总量/总份数=平均数,特殊情况可用“移多补少法”解答
2、归一应用题
(1) 归一应用的特点:从已知条件中求出“单一量”,再以“单一量”为标准去计算所求的量。归一问题通常分为正归一和反归一。
(2) 归一问题的解题规律:首先求出一个单位数量,然后以这个“单位量”为标准,根据题目的要求,用乘法算出若干个“单位量”是多少,这是正归一的解题规律。或用除法算出总量包含多少个“单位量”,这是反归一的解题规律。归一问题还可以用倍比问题的解题方法求解
3、相遇问题
(1)特点:A两个运动物体;B运动方向相向;C运动时间同时。
(2)解题规律:速度和×相遇时间=路程
路程÷速度和=相遇时间
路程÷相遇时间=速度和
(三)分数、百分数应用题
1、 分数乘法应用题
已知一个数,求它的几分之几(百分之几)是多少,用乘法。即:“一个数×几分之几(百分之几)”。
特征:已知条件:表示单位“1”的量;单位“1”的几分之几(或百分之几)(分率)
所求问题:求单位“1”的几分之几(百分之几)是多少(分量)
用等式表示三量的关系:单位“1”的量×分率=分量
对应关系
2、分数除法应用题
(1)已知一个数的几分之几(百分之几)是多少,求这个数,用除法。即“多少÷几分之几”
已知条件:单位“1”的几分之几(分率);单位“1”的几分之几是多少(分量)
特征
所求问题:单位“1”的量
用等式表示三量的关系:分量÷分率=单位“1”的量
对应关系
(2)求一个数是另一个数的几分之几(百分之几)用除法。
即“一个数÷另一个数”。
已知条件:表示单位“1”的量;单位“1”的几分之几是多少(分量)
特征
所求问题:求分量是单位“1”的几分之几(百分之几)
用等式表示三量的关系:分量÷单位“1”的量=分率
对应关系
3、工程问题的应用题
把工作总量用“1”表示,工作效率用单位时间内做工作总量的“几分之一”表示。根据工作总量与工作效率,就能求出合作完成工作时间
三量之间的关系式:工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
4、列方程解应用题xkb1.com
(1) 列方程解应用题的思考方法:用字母代替应用题中的未知数,根据数量间的相等关系列方程,解方程。
(2) 列方程解应用题的一般步骤
A、弄清题意,找出未知数并用X表示。
B、找出数量间的相等关系,列方程。
C、解方程。
D、检验,答。
5、比和比例应用题
比和比例应用题包括:比例尺、按比例分配、和正反比例应用题。
(1) 比例尺中解题关系式:图上距离∶实际距离=比例尺
(2) 按比例分配应用题:要分配的量×各部分量的分率=各部分量。
(3) 正比例у/χ=X/Y反比例χу=XY
量与计量
1、量、计量和计量单位的意义
事物的多少、长短、大小、轻重、快慢等,这些可以测定的客观事物的特征叫做量。把一个要测定的量同一个作为标准的量相比较叫做计量。用来作为计量标准的量叫做计量单位。
2、常用的计量单位及其进率
(1)长度、面积、地积、体积、容积、重量单位及其进率
长度 1千米=1000米1米=10分米
1分米=10厘米 1厘米=10毫米
面积 1平方千米=1000000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米 地积 1平方千米=100公顷
1公顷=10000平方米
体积 1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米 容积 1升=1000毫升
1立方分米=1升
1立方厘米=1毫升
重量 1吨=1000千克1千克=1000克
(2)常用时间单位及其关系
世纪 年 月 日 时 分 秒
100 12 24 60 60
大月:1、3、5、7、8、10、12 31
小月:4、6、9、11 30
平年2月
闰年2月 28
29
3、同类计量单位之间的化聚
(化法)乘进率
高级单位的数低级单位的数
1.通过复习使学生进一步系统地理解掌握加、减、乘、除四则运算的意义和计算方法。从而培养学生概括能力与计算能力。
2.能综合运用所学的知识和技能解决问题,发展应用意识。
复习过程:
一回顾与交流
1.四则运算的意义。
A我们折了36颗红星,还折了28颗蓝星。
B我们买了40瓶矿泉水,每瓶0.9元。
C我们有24m彩带,用做蝴蝶结,用做中国结。
(1)创设情境,让学生结合情境图提问题。
问:你能提出哪些用计算解决的问题?
学生提出问题,并说明解决方法。如:
①一共折了多少颗星?36+28
②折的红星比蓝星多多少颗?36-28
③买矿泉水用了多少钱?0.9×40
④做蝴蝶结用了多少彩带?做中国结用了多少彩带?
24×24×
⑤做蝴蝶结用的彩带是中国结的几分之几?
(2)结合算式说明每一种运算的含义:
①什么叫做加法?小数加法、分数加法的意义相同吗?
②什么叫做减法?小数减法、分数减法的意义相同吗?
③整数乘法的意义是什么?小数、分数乘法的意义同整数乘法的意义相同吗?
④什么叫做除法?小数除法、分数除法的意义相同吗?
小结:整数、小数、分数的加法意义、减法意义与除法意义都分别相同。只有小数、分数乘法(第二个因数小于1时)是求一个数的几分之几是多少/
3.四则运算的方法。
(1)整数、小数加法、减法的计算方法各是什么?
(2)分数加法、减法的计算方法各是什么?
(3)它们有什么相同点?
整数加减时,数位对齐;
小数加减时,小数点对齐;计数单位相同才能相加减。
分数加减时,分数单位相同。
(4)整数、小数乘法的计算方法是什么?有什么相同之处,有什么不同之处?
小数乘法,先按照整数乘法的计算方法算出积,再看乘数中有几位小数,然后在积中点上小数点。
(5)说一说整数、小数除法的计算方法。
(6)说一说分数乘法和除法的计算方法。
4.在四则运算中,应注意一些特殊情况。
出示以下内容:
a+0=()a×0=()0÷a=()
a-0=()a×1=()a÷a=()
a-a=()a÷1=()1÷a=()
注意:当a作除数时不能为0。
以上交流基础上,让学生进行归纳。
整数、小数分数(百分数)
加法意义
计算方法
特殊情况
减法意义
计算方法
特殊情况
乘法意义
计算方法
特殊情况
除法意义
计算方法
特殊情况
5.四则运算的关系。
四则运算的关系可概括如下:(以提问方式完成下面关系网)
和-一个加数=另一个加数被减数-差=减数
减数+差=被减数
加法减法
求相同加数和的算便运算求相同减数个数的算便运算
乘法除法
积÷一个因数=另一个因数商×除数=被除数
被除数÷商=除数
小结:加法是在计数的基础上发展起来的一种连续性计数,是最基本的运算。减法是加法的逆运算,也是加法的还原。乘法又是加法的发展,是求相同加数的加法简便算法。除法是乘法的逆运算,也是乘法的还原,它是减法是发展是求相同减数的减法的简便运算。
二巩固练习
1.完成课文做一做。
2.完成课文练习十四第1、2题
3.课堂小结。
复习内容:数的运算(二)
复习目标:
1、通过复习使学生熟练地掌握四则运算定律和性质,并能根据题目灵活运用这些知识使计算简便。
2、使学生能正确地掌握整数、小数、分数四则混合运算顺序,并能熟练地进行计算。
复习过程:
一回顾与交流。
1、运算定律。
问:我们学过哪些运算定律?
(1)学生回顾曾经学过的运算定律,并与同学交流。
(2)根据表格,填一填。
名称举例用字母表示
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法分配律
(3)算一算。
①计算:2.5×12.5×4×8
=(2.5×4)×(12.5×8)……应用乘法交换律、结合律
=10×100
=1000
2.混合运算.
(1)说一说整数四则混合运算顺序.
算一算:(710-18×4)÷2
板书(710-18×4)÷2
=(710-72)÷2
=638÷2
=319
(2)分数、小数四则混合运算顺序与整数一样吗?
二巩固练习。
1.做一做
人教新课标六年级下册全套教案、课件、反思
第1课:文言文两则 第2课:匆匆 第3课:桃花心木 第4课:*顶碗少年 第5课:*手指 口语交际・习作一 回顾・拓展一 第6课:北京的.春节 第7课:*藏戏 第8课:*各具特色的民居 第9课:*和田的维吾尔 口语交际・习作二 回顾・拓展二 第10课:十六年前的回忆 第11课:*灯光 第12课:为人民服务 第13课:*一夜的工作 口语交际・习作三 回顾・拓展三 第14课:卖火柴的小女孩 第15课:凡卡 第16课:*鲁滨孙漂流记 第17课:*汤姆・索亚历险记 口语交际・习作四 回顾・拓展四 第18课:跨越百年的美丽 第19课:*千年梦圆在今朝 第20课:真理诞生于一百个问号 第21课:*我最好的老师 口语交际・习作五 回顾・拓展五 难忘小学生活 古诗词复习 综合复习
【人教新课标六年级下册数学教案 扇形统计图教学设计】推荐阅读:
《抽屉原理》教学设计与说明(人教新课标六年级下册)09-14
圆柱的体积(人教新课标六年级教案设计)09-14
《复式折线统计图》教学设计 (人教新课标五年级上册)11-07
《成正比例的量》的教学设计 (人教新课标六年级上册)09-25
(人教新课标)二年级语文下册教案 泉水06-16
(人教新课标)一年级数学下册教案 十几减09-29