风力发电机组的维护

2025-03-30 版权声明 我要投稿

风力发电机组的维护(精选7篇)

风力发电机组的维护 篇1

风力发电机组的运行维护技术

摘要:风力发电机是集电气、机械、空气动力学等各学科于一体的综合产品,各部分紧密联系,息息相关。风力机维护的好坏直接影响到发电量的多少和经济效益的 高低;风力机本身性能的好坏,也要通过维护检修来保持,维护工作及时有效可以发现故障隐患,减少故障的发生,提高风机效率。

随着科技的进步,风电事业的不断发展。风能公司下属的达坂城风力发电场的规模也日益扩大,单机容量从30kW逐渐升至600kW,风机也由原来的引进 进口设备,发展到了如今自己生产、设计的国产化风机。伴随着风机种类和数量的增加,新机组的不断投运,旧机组的不断老化,风机的日常运行维护也是越来越重 要。现在就风机的运行维护作一下探讨。

一.运行

风力发电机组的控制系统是采用工业微处理器进行控制,一般都由多个CPU并列运行,其自身的抗干扰能力强,并且通过通信线路与计算机相连,可进行远程控制,这大大降低了运行的工作量。所以风机的运行工作就是进行远程故障排除和运行数据统计分析及故障原因分析。

1.远程故障排除

风机的大部分故障都可以进行远程复位控制和自动复位控制。风机的运行和电网质量好坏是息息相关的,为了进行双向保护,风机设置了多重保护故障,如电网 电压高、低,电网频率高、低等,这些故障是可自动复位的。由于风能的不可控制性,所以过风速的极限值也可自动复位。还有温度的限定值也可自动复位,如发电 机温度高,齿轮箱温度高、低,环境温度低等。风机的过负荷故障也是可自动复位的。

除了自动复位的故障以外,其它可远程复位控制故障引起的原因有以下几种:

(1)风机控制器误报故障;

(2)各检测传感器误动作;

(3)控制器认为风机运行不可靠。

2.运行数据统计分析

对风电场设备在运行中发生的情况进行详细的统计分析是风电场管理的一项重要内容。通过运行数据的统计分析,可对运行维护工作进行考核量化,也可对风电场的设计,风资源的评估,设备选型提供有效的理论依据。

每个月的发电量统计报表,是运行工作的重要内容之一,其真实可靠性直接和经济效益挂钩。其主要内容有:风机的月发电量,场用电量,风机的设备正常工作时间,故障时间,标准利用小时,电网停电,故障时间等。

广州绿欣风力发电机提供更多绿色环保服务请登录查询

风机的功率曲线数据统计与分析,可对风机在提高出力和提高风能利用率上提供实践依据。例如,在对国产化风机的功率曲线分析后,我们对后三台风机的安装 角进行了调节,降低了高风速区的出力,提高了低风速区的利用率,减少了过发故障和发电机温度过高故障,提高了设备的可利用率。通过对风况数据的统计和分 析,我们掌握了各型风机随季节变化的出力规律,并以此可制定合理的定期维护工作时间表,以减少风资源的浪费。

3.故障原因分析

我们通过对风机各种故障深入的分析,可以减少排除故障的时间或防止多发性故障的发生次数,减少停机时间,提高设备完好率和可利用率。如对150kW风 机偏航电机过负荷这一故障的分析,我们得知有以下多种原因导致该故障的发生,首先机械上有电机输出轴及键块磨损导致过负荷,偏航滑靴间隙的变化引起过负 荷,偏航大齿盘断齿发生偏航电机过负荷,在电气上引起过负荷的原因有软偏模块损坏,软偏触发板损坏,偏航接触器损坏,偏航电磁刹车工作不正常等。又如,在 对Jacobs系列风机控制电压消失故障分析中,我们采用排除实验法,将安全链当中有可能引起该故障的测量信号元件用信号继电器和短接线进行电路改造,最 终将故障原因定位在过速压力开关的整定上,将该故障的发生次数减少,提高了设备使用率,减少了闸垫的更换次数,降低了运行成本。

二.维护

风力发电机组的维护 篇2

1) 电力设备规模扩大, 但管理始终落后。当前, 风力发电厂的电力设备数量始终处于增加的状态, 然而, 在管理方式上仍然采用的是传统管理模式, 因此, 导致管理工作的片面性特征明显, 难以对不同层面工作进行管理[1]。另外, 在收集信息方法方面也相对落后, 传统方法的效率不高, 很容易导致基础信息误差的现象发生。在信息收集渠道方面相对单一, 所以, 误差是不可避免的, 使得相同数据出现不同状况的现象频繁出现。

2) 因为传统发电厂电力设备管理的方法处于落后的状态, 加之设备的信息量庞大, 所以, 使得定额标准难以统一, 最终无法在设备中获取完整的基础信息内容, 使得工作人员在统计数据的时候操作不规范, 这样一来, 就很容易出现数据误差, 进而存在安全隐患。

3) 数据统计方法不合理。在对风力发电厂电力设备进行数据统计的过程中, 其使用的方法并不完善, 而且, 绝大多数都是人工操作, 所以, 数据统计工作和汇总工作的质量不高, 工作效率低。因为人工处理数据, 很难划分出数据的层次, 而且考虑并不全面, 不具备科学依据, 使得数据的统计合理性不足[2]。

2 强化风力发电厂电气设备安全运行管理的具体措施

2.1 建立健全电气设备运行管理制度

在风力发电厂中需要积极地建立健全与安全生产相关的规章和制度, 进而为其高效运行提供有力保障。因此, 风力发电厂需要积极地开展制度建设的工作, 对各操作规程予以详细地规定, 保证工作人员能够有据可查。而在规章制度的约束之下, 所有的工作人员都能够按照操作步骤来开展工作, 确保所有电气设备金属外壳接地, 具备完整保护装置等等。而对于较高的电气设施, 则应该安装避雷装置, 一旦出现电力故障, 应该停电再对其进行修理, 尽可能地缩小停电的范围。

2.2 保质保量开展班组安全管理工作

在贯彻并落实发电厂安全生产规章制度的过程中, 班组的作用十分重要, 而且, 也是工作人员数量最多的部门。由此可见, 班组安全教育工作的重要性, 并且在实际安全生产的过程中占据关键性位置[3]。在日常的实践工作当中, 班组的安全问题也比较常见, 如班组管理工作人员的安全意识薄弱, 或者是安全教育开展质量不高而导致其难以形成正确安全认识, 还有就是工作人员的文化水平存在较大差异等等。因此, 对于上述现象, 班组需要严格规范并管理其自身工作, 依据班组内部工作人员工作性质的不同来制定出相应的安全教育内容, 进而及时地消除工作中的安全隐患, 不断鼓励工作人员学习安全生产的规定与正确的操作方法。另外, 还应该保证安全教育形式的多样化, 根据工作人员的多样化需求来开展不同形式的安全教育。在此基础上, 选择安全教育材料也是十分重要的工作, 一定要选择具有较高教育意义并且典型的材料内容, 使得班组内部人员不断增强安全意识, 保证安全生产的质量。

3 风力发电厂电气设备的维护

3.1 电气设备验电

电气设备的日常维护主要是对电气设备进行验电, 这属于基本检修类的技术, 但是其作用却十分重要。通常, 很多人认为验电需要在电气设备装设完成前开展, 或者认为必须要保证设备确定未运转通电的时候完成这一工作。但是, 在开展这种操作的时候需要注意, 应该先对设备中出现两侧相同部位予以细致检验, 但是, 坚决不能够同时开展。另外, 为了保证工作人员自身的安全, 需要做好必要的保护措施。应该佩戴绝缘手套, 并且在设备断电的情况下使用符合标准要求的验电设备对其开展验电工作[4]。然而, 一个科学的风电厂, 还需要具备完整的定期巡视制度, 确保运行工作人员能够定期对电厂运行的安全性和稳定性进行监控, 并且将责任落实到个人, 制定合理的现场巡视检查体系, 重点强调时间要求。除此之外, 电厂的外出工作一定要保证两人以上共同进行, 这也是对安全生产的一种考量。

3.2 接地线安装

在安装电气设备的过程中, 接地线的主要目的就是可以避免设备维修工作人员在断电操作中出现安全事故。因此, 最关键的就是把接地线安置于设备有可能来电或者是可能外泄的位置。另外, 在开展接地线安装与拆卸操作的过程中, 需要重视接地端链接与操作顺序, 应该在安装过程中首先装设接地端, 而在拆装的时候则需要对导体端进行操作, 一定要根据以上顺序进行, 否则就会导致严重的后果[5]。与此同时, 安装时不应该走错间隔, 这样就能够避免误碰隔离情况的发生。但是, 值得注意的是, 需要在关键场所悬挂标识牌, 否则会出现严重的安全问题。详细地讲, 就是要在停电设备表面标志出安全距离, 并且设立临时遮拦屏障, 并明确其与带电设备距离的最小安全数值。

4 结束语

综上所述, 在我国风力发电事业发展的背景下, 同样需要对电气设备安全运行管理和维护的工作予以一定的重视。因为只有确保风力发电厂的电气设备运行安全和稳定才能够更好地推动其可持续发展。另外, 还应该强化风力发电厂电气设备的安全运行管理和维护工作, 进而降低安全事故发生的几率, 使得电气设备实际使用寿命得以延长, 并且节省电厂资金投入的成本, 使得风力发电厂的经济效益不断提高。

摘要:在世界经济快速发展的背景下, 目前能源需求的紧张现象越来越明显, 所以, 在世界范围内对新型能源探索和研究日益增多, 旨在替代传统能源, 缓解当前能源紧张的情况。其中, 我国是风力能源的大国, 目前, 对于风力能源的研究与转化工作已经在积极开展, 风力发电事业的发展迅猛, 所以, 将风力能源作为新型能源, 已逐渐成为缓解能源紧张的关键途径之一。

关键词:风力发电厂,电气设备,安全运行,管理,维护

参考文献

[1]咸正兰.风力发电厂电气设备安全运行的管理和维护[J].工程技术, 2016 (3) :153.

[2]贾少荣, 焦占一.风力发电厂电气设备安全运行管理与维护[J].环球市场信息导报, 2015 (30) :26-27.

[3]张坤, 郭启禄.风力发电厂电气设备安全运行的管理和维护[J].科技经济市场, 2015 (1) :128.

[4]彭清.风力发电厂电气设备安全运行的管理和维护[J].商品与质量, 2015 (39) :267.

风力发电机的可维护性设计研究 篇3

关键词:风力发电机;风力发电系统;可维护性设计

1 引言

风能属于太阳能的一种,因此它是取之不尽、用之不竭的;在能量转换过程中,不产生任何有害气体和废料,属于清洁能源;与传统火电相比,发电也不存在原材料运输问题。风力发电机是将风能转换为机械功的动力机械,已受到世界各国的广泛重视,经过近些年的发展,安装规模有了大幅度提高。但从现场反馈情况看,仍有部分风机存在故障率高,利用率低的现象,影响用户的经济效益。其产生原因往往是由于现场维护不到位造成的。而设计结构不合理;检测手段不科学;维护流程不完善,是导致维护不到位的根本原因。因此,本文给风机的研发引入了可维护性设计思想,使产品在设计阶段就解决将来现场的维护问题,确保消除维护障碍,提高风机利用率,从而降低运营成本。

2 可维护性设计的涵义

APICS(美国运作管理协会)将可维护性定义为:一类提供修理和高效能力的设备及其安装的特征。根据国标《GB/T 19960.1-2005 风力发电机组 第1部分:通用技术条件》4.6 可维护性与可维修性要求:“在机组要维护的部位应留有调整和维护空间,以便于维护。机组及零部件在质量合格的前提下应具有维修、调整和修复性能。塔架高度超过60m的机组应为维护人员配备安全的提升装置。”

因此,风力发电机在设计时应充分保证产品和系统使用的可维护性。其设计要考虑产品与系统功能与性能维护的方便性、可靠性、可测控性、精度、安全性和经济性,而且应和系统的其他设计要素并行考虑与实施。其根本目的是响应顾客的需求,并实现生产接收管理与信息控制。它体现在产品与系统的功能要求和用户的满意度上。

3 风机可维护性的理论设计及实施步骤

风力发电机的可维护性根据上述定义及目的,编制了如下设计与实施步骤(见图1):

图1风机可维护性设计实施步骤

1 概念设计:定义概念、确定产品或系统维护的要素组成,产品先期的可行性研究。包括:维护先期条件确立、维护周期等级分类、风机维护组成部分。

2 具体/详细设计:完成可维护性的预测,完成与可维护性相关的文件编写和审定,并规定产品或系统寿命期中的相关的可维护性功能与要求,进行维护安全规则编制、维护工具选取、维护所需耗材、编制《风力发电机组维护手册》。

3 生产制造及安装:在生产制造及安装过程中完成可维护性规定的功能的辨识、排序、试验的组织与实施,保证了风机的制造及安装各阶段的可维护性。

4 系统使用与寿命的支持:风机在客户使用过程中进行的可维护性监测、实验与评价,可维护性数据采集、分析和修正活动。根据不同零部件的维护监测结果与维护周期,进行耗材与部件的更换与补充。

5 系统退役与处理:包括风机系统退役部件的可拆卸性、可重复利用性(回收)及消除污染方面的工作。风机使用的,能够对水造成污染的润滑剂或冷却剂必须以正确的方式使用和处置。防止污染物进入环境中,从而满足了客户的环境评估要求。

4 风机可维护性设计实例

4.1 设计完备的监测手段保证设备运行跟踪与维护

风机通过安装PLC控制器、CMS状态监控器及远程在线监测软件的方式,配合各部位传感器及通讯网络,形成了完善的监测系统,实时测量风机的各种运行状态,充分保证了维护的可测、可控。监测项目如图2:

图2风电机组监测系统

风机引入了模块化安全系统,该系统是风力发电机组的一个中央控制单元,在有关安全限值超出限定值时,可独立通过操作管理系统触发制动系统。此外,根据驱动情况,可开启变流器从电网中隔离的程序,切断供应电压,触动低压设备主开关和中压开关设备电源开关并阻断偏航系统。模块化安全系统在机舱入口处、低压单元、齿轮箱、塔底等关键部位分别设置了急停按钮及检修开关,维护时可充分保障人身安全。

4.2 设计高效、快捷地运送人员及物料通道

风力发电机组引入风塔电梯技术,将安全、速度、舒适充分融入其中,是风力发电机组的安装和后期维护的高效保障。该电梯可以提供高达250kg的有效载荷,能轻松将人员或重物进行高速提升至塔顶附近。内部设置安全保护开关,保障电梯运行安全。

舱内设置额定载重为500kg的吊装设备。因此,在后期维护时,人员可以利用該吊车将故障部件从机舱尾部直接吊至地面,从而大幅减少劳动强度,节约时间。利用机舱内小吊车可更换的主要部件有:偏航电机及驱动、机舱内各冷却泵、润滑泵、低压单元部件、变桨控制柜部件等。

4.3 模块化结构设计保证维护简便、快捷

设计时尽量采用标准件,结构上采用了模块化设计等,提高了产品的标准化、通用性、互换性程度。使得该风机的维护过程容易实现。维护人员不需要过多繁重的专用工具,降低维护的技能要求。

4.4 可靠的设计延长了设备使用寿命

风机电气布线方面,通过设计合理的布线路径,保证动力电缆、控制电缆走线明确,方便检修;动力电缆采用交错布线,控制电缆采用屏蔽电缆,有效地减少了电磁干扰;电缆折弯半径严格按照相关标准执行,保证弯曲处的导体及绝缘的抗疲劳强度;电缆使用温度范围大,可以达到-40℃~70℃,适应严酷的外部环境;电缆在与主机架、轮毂等金属部分有可能产生相对摩擦运动的部位均覆盖了硬质波纹管等材料进行保护,通过以上措施保证了布线的可靠性,延长了电缆的维护更换周期。

4.5 采用防差错设计保障维护质量、提高效率

具有完善的防差错措施和识别标识。在该风机系统中,有不少的标识、铭牌,帮助维护人员识别部件,提高维护效率,同时提醒维护人员避开潜在的危险。例如,电缆及连接器,所有预制装置均需标记电缆号和起始位置。对同一类型或类似类型的连接器编制代码,以确保不会产生错误插接。在低压单元密集的插件板上,相邻的接插件对应插口针型均不相同,保证了连接器接插的“唯一性”,可有效防止电缆插错。

4.6 预留安全、便利的维护空间

风机的主轴,在主轴锥形面上开了三个人孔(见图3),形成了一个通道,可以方便进出。这种设计既节省了材料,又降低了重量,更重要的是为将来风机的维护工作提供了极为便利的条件,客户在维护时,可以从人孔直接进入轮毂,从而避免了以往维护人员在机舱外进入的危险。

图3风机主轴部位示意图

① 人孔② 轮毂

合理安排各组成部分的位置,减少连接件、固定件,使其检测、换件等维护操作简单方便,尽可能做到维护任一部分时,不拆卸或少拆卸,少移动其他部分,以降低工作量。轮毂中变桨电机,减速机的空间布置,是对散热方面的考虑,也是对维护操作可达性的考量。此处设计时,按照维护时人员所处的位置、姿势与使用工具的状况,提供适当的操作空间,使维护人员有个比较合理的姿势,避免易导致疲劳或受伤的姿势进行操作。在传动机构、轮毂或风轮叶片上进行维护工作时,要严格保证人员及设备的安全,因此,在设计时分别配备了风轮止动装置、叶片止动装置,防止转动,大大曾加了可维护的安全性。

塔筒/基础等部位在运行维护时要检查焊接部位、螺栓连接状态、表面涂层等,因此设计时应在塔筒关键节点设立平台、扶手、照明灯等设施,保证维护的可达性。

针对机舱顶部风速风向仪的维护,由于现场人员需爬至机舱外,风机在高空振动较大。因此应将机舱罩顶部表面设计成防滑结构,防止维护人员摔倒。

4.7 对风机的元件、耗材进行量化评价设计保证维护精度

风机的可维护性包括对元件、耗材的品质检验,应当具备量化的评估手段。风机在设计时应充分考虑维护人员上述要求,对于发电机冷却、变流器冷却及齿轮箱冷却系统的水/防冻剂合剂浓度、PH值;冷却液含量成分比例,均做了量化定义,使得维护人员可以根据维护规定的要求及时进行更换补充,保证了冷却液的成分精确度。

设计时对风机主要部分连接螺栓扭矩值进行了详细规定,客户在维护时即可依据对应的扭矩值使用扭矩扳手进行紧固,保证了连接的强度可靠性。

5 结论

通过上述多种措施,实现了风机的可维护性设计理念,使传统设计思想得到了完善和补充。在设计时不仅要考虑产品的功能性实现,而且对于后期现场人员进行维护的可达性、方便性也进行系统的研究。改进检测手段,以降低系统误报率,减少停机频次;空间布局设计合理,人员维修方便;部件通用性强,维护时可以携带更少的工具、材料,减少工作量;装配结构可靠简单,易损件便于观察,提高更换部件的效率。在设计理念中融入可维护性设计思想,减轻和减少维护的需求,从而降低维护成本,给客户带来良好的经济效益。风力发电机的可维护性设计对于提高产品竞争力具有十分重要的意义。

参考文献

[1]姚兴佳.王士荣.董丽萍.风力发电机的选型、使用和维护[J].可再生能源 2006.5(129):99-102.

[2]全国风力机械标准化技术委员会.GB/T 19960.1-2005 风力发电机组 第1部分:通用技术条件[S].北京:中国标准出版社,2005.

风力发电机组的设计理念 篇4

1.系统效率问题

风力发电机的风轮转子的风能利用效率对风力发电机组的系统效率起着决定性作用。由风力发电机系统效率公式η系=η转·η控·η逆·η电·η蓄可知,系统效率除与风轮转子的气动效率有关外,还与发电机效率、控制器效率、逆变器效率、蓄电池的充电效益有关。要大幅度提高后者的效率值,不但技术难度大,而且经济上不可取。水平式风力发电机最大风能利用系数理论值为0.593。市场上现有的微小型风力发电机CP值为0.25~0.35,与最大值0.593还有很大差距,仍有很大的潜力可挖。利用最新的二维机翼在大功角时风洞试验的研究成果,借鉴大、中型风力发电机现有技术成果。根据风力机既具有外流机翼特性,又具有内流叶轮的工作特点。采用先进的设计手段、设计方法和优化技术以及采用新材料、新技术、新工艺等综合手段来提高风轮转子风能利用系数,使之达到中型风力发电机的CP值为0.42的水平。从而降低单位每百瓦发电量的材料消耗量,同时减少了重量和体积,为新材料、新技术、新工艺的应用打下了良好的基础。

2.安装,维护问题

一般使用离网型独立运行的微小型风力发电机组的用户往往地处交通不便,无常规能源输送的边远地区、深山、草原牧区、边防哨所、微波站以及沿海海岛、航标灯站等等。受材料采购困难,配件供应不畅和维护技术等因素的限制。我们的设计目标:使风力发电机成为一种安装方便、免维护、保护功能完善的傻瓜型产品。

3.成本问题

据统计,到目前为止,我国尚有7656万无电人口、16个无电县、828个无电乡和29783无电乡村,它们地处交通不便,无常规能源供应的边远地区、深山、沿海岛屿。那里经济、文化较为落后,收入较低,但当地的风能、太阳能资源往往较为丰富。如果能提供一种物美价廉、可靠性高的风力发电机产品,对解决他们的日常生活用电,丰富他们的文化生活无疑是一大福音。另外,沿海近海的滩涂养殖场、内陆湖泊渔民、沿海地区居民等,虽然该地区经济较为发达,且有常规能源供应,如果能提供一种性价比高、投资回收期短、外观美的风力发电机产品,则能为风力发电机的推广普及创造良好条件。这样,就能减轻日趋紧张的城市电网的供电压力。用风能替代一部分使用石化燃料发电的电能,既符合我国能源的可持续发展战略,又减少了对地球不可再生资源的开采和对大气环境的污染。我们的设计目标:使风力发电机成为人人用得起,个个用得好的优秀产品。

4.振动和噪音问题

微小型风力机往往安装在住宅的附近、楼顶、花园、停车场、高速公路灯上,要求振动小、噪音低。如果风力发电机噪音大,会严重干扰居民的日常正常生活;如果风力发电机振动大,易造成紧固件脱松和材料的疲劳损坏,对的人身、财产安全构成极大的危害。我们的设计目标:使风力发电机在正常运行时达到近乎无振动、无噪音状态,使风力发电真正成为绿色环保的清洁能源。

5.寿命、可靠性问题

风力发电机组由风轮转子、三相永磁交流发电机、控制器、逆变器、蓄电池组等部件组成。风轮转子的功能:接受风能,并将风能转变为机械能;三相永磁交流发电机的功能:将机械能转变为电能;控制器的功能:将三相交流电整流、稳压为电压恒定的直流电;逆变器的功能:将直流电逆变为三相200V50HZ的正弦交流电;蓄电池的功能:储存电能以供用户在所需时使用。设计制造风力发电机涉及的学科较广,有材料力学、空气动力学、电机学、微电子学、电化学等学科,兼之使用者所处的地区,经济欠发达,文化相对落后,交通运输不便,无常规能源供应,缺乏必要维修能力。我们的设计目标:使风力发电机具有结构简单、寿命长、可靠性高的特点。

综合以上五点所述,新设计的风力发电机组应具有风能利用系数高、体积小、重量轻、外观美、噪音低、振动低、安装方便、免维护、寿命长、可靠性高、性能价格比高、保护功能齐全的特点。做到人人用得起,个个用得好,为用户和社会创造良好的经济利益和社会利益。在“敢于开拓,敢于创新;创一流企业,争天下第一”的云攀精神激励下,凭借着“保护人类唯一的赖以生存的地球”信念的支持下,云攀人以顾客为关注的焦点;以市场为导向;以保护地球,匹夫有责为己任;时刻牢记“光明使者”的重任,通过对现有市场上的微小型风力发电机产品的技术状态、使用状况和顾客呼声、愿望、抱怨、投诉进行充分的市场调查,并对收集的资料进行科学的汇总、分类、统计分析,找出其优点和存在缺陷。针对传统小型风力发电机组存在的问题,我们第一步设想:利用大、中型风力机桨叶失速控制技术移植到微小型风力机中,同时利用发电机的饱和特性来替代微小型风力机的偏侧调速机构,以达到限制转速、限制功率的目的。从而将原有的三个转动部件(对风装置,发电装置,偏侧调速限功装置)减少为二个。第二步:采用组合叶素理论和动量理论,利用二维机翼在大功角下的风洞试验研究结果,修正大攻角失速后的空气动力学数据,考虑了轴向和切向诱导速度沿轴向的变化,计及了叶尖损失、风切变、尾流等影响风力机效率的因素来设计失速叶片的气动外形和结构,在制造过程中选用高强度工程塑料,采用精密注射工艺成型。在确保叶片强度、刚度、疲劳寿命前提下解决成本与性能问题。同时利用“锥角效应”解决叶片振动、噪音问题。第三步,将电动机的碳刷、滑环机构移植到微小型风力机中,解决电缆缠绕问题。第四步,制造一个集整流、稳压、报警、指示、蓄电池保护功能于一身的控制器,解决蓄电池欠压、过充问题,从而延长蓄电池的寿命。第五步,制造一个智能型正弦波逆变器,并具有过载、短路自动保护功能,解决常规逆变器的带感性负载时易产生运转噪音、效率低、寿命短和可靠性差的问题。第六步,借鉴电器接插件结构形式设计电连接器解决发电机与控制器连接的隐患问题;利用密封胶解决电机密封问题;利用多种防松方法,如防松胶、转向与螺纹旋向相反自紧的原理、非金属嵌件锁紧螺母等多种形式解决紧固件松动问题。为实现我们制订的目标,云攀人经过不懈努力、屡败屡战、精益求精,皇天不负有心人,终于变美梦成真。集微电子技术、永磁电机技术、计算机技术、电力电子技术、空气动力学技术于一身的具有高

科技含量、最新一代的风力发电机组横空出世。

控制器特点

1.采用铝合金挤压成型的外壳,外形美观,兼起散热器自散热作用,减少了利用轴流风扇进行强迫冷却而引起附加电能消耗。2.利用可控硅半控桥式整流,移相稳压控制技术(或二极管桥式整流,PWN直流斩波控制技术)制成的整流、稳压电路,其稳压精度高、效率高、电源质量好、可靠性高。3.具有风轮转子发电指示;三相永磁交流发电机的充电指示;蓄电池欠压、过充状态指示功能以及蓄电池的欠压、过充自动保护功能。4.配备光伏电池组输入端子。方便用户将风力发电系统扩充为风—光互补型风电系统。5.引入切入风速控制系统。其工作原理为风轮转子起动并连续旋转后,由于风轮转子维持风速低于起动风速,在发电机电压未达到蓄电池充电电压时,使风轮转子空转。一旦达到充电电压时,即转换为正常充电工作状态。这样使风轮转子能更有效吸地收风能。6.根据三相交流发电机绕组自身特点配以先进吸收电路设计的制动装置。一方面确保风力发电机安装时人员的人身安全,另一方面在台风来临时保护机组免受损坏。

风轮转子的特点

1、选用玻璃纤维增强型工程塑料,经精密注射工艺成型的风轮叶片,表面喷涂耐侯性能极佳的专用面漆,在确保叶片满足强度、刚度要求的前提下,减轻了叶片重量。在确保叶片满足复杂气动外形尺寸精度的前提下,提高了生产效率,降低了生产成本.

2、根据风力发电机叶轮转子既具有外流机翼类似的特性,又具有开式旋转机械的特点,采用组合叶素理论和动量理论,考虑了轴向和切向诱导速度沿轴向的变化,计及了叶尖损失、尾流损失、风切变、尾流与塔架位势干扰等影响风力机效率的因素,利用二维机翼在大功角下风洞试验成果来修正大攻角失速后气动数据以及空气动力学的最新研究成果来设计风轮转子叶片的气动外形和结构,并根据叶片最佳外形尺寸要求进行优化设计,兼顾起动性能和工作性能两者之间的关系,既使风轮转子具有重量轻、转动惯量小、对风速的变化响应速度快的特点;同时又使风轮转子具有转换效率高、Cp-l曲线形状好即曲线平顶范围较宽。从而降低了起动风速,增加了年发电量。

3、利用“锥角效率”优化设计风轮参数,使风轮转子在正常运转时近乎无振动、无噪音。4、利用失速叶片的失速特性来限速、限功,简化了结构,减少了零部件的数量。永磁交流发电机的特点

1、采用专利技术的径向式永磁磁路转子结构,使转子单位每百瓦稀土永磁材料消耗量低、效率高、比功率大、重量轻、体积小,由于风轮转子直接套在发电机的转轴上,使风轮转子对风速变化的响应速度快。其转子工作转速最高可达10000转/分。

2、采用CAD技术、有限元分析技术对电机定子进行优化设计,重点是如何降低发电机的阻转矩,如定子铁心采用斜槽结构、定子绕组采用分数槽绕组、槽楔采用磁性槽楔、合理选择定、转子的槽数和极数配合。

3、根据风轮转子的功率——风速曲线、转速——风速曲线来设计发电机功率——转速曲线。使两者具有良好的匹配特性即在一定风速、一定风轮转子转速的前提下风轮转子的机械功率应略大于发电机的输入功率。过大,会出现大马拉小车现象,白白浪费风能并造成机组年发

电量的下降;过小,会造成风轮转子转速突然下降并产生冲击现象,使风轮转子在偏离最佳叶尖速比状态下运行,同样降低了机组的年发电量。

4、发电机的电流——转速曲线形状好,即能兼顾低、中、高速时发电机输出特性。

5、采用IP54全密封防护等级,前、后端盖止口与机座止口、支承座止口接合处,采用密封胶密封。前端盖与叶片连接法兰接合外,采用新型防水结构,避免风沙、雨水、雪水入侵。

6、采用宽系列橡胶双密封非接触式进口轴承,使发电机在-30C°~+50C°工作环境下可靠使用。

7、连接件、紧固件全部采用不锈钢材料,并采用厌氧胶进行防松处理。

突破传统界限,创造一个新时代

综合利用电机技术、电力电子技术、微机技术、空气动力学技术等综合技术创造出一个近乎完美的小型风力发电机组。

特点:

1.体积小、重量轻、外形美观;

2.起动风速低、系统效率高、设备利用率高;

3.正常运行接近无振动、无噪音,真正的绿色环保、清洁能源;

4.无电缆 缠绕的烦恼;

5.结构简单、安装维护方便;

6.寿命长,可靠性高;

7.智能型正弦波逆变器,具有过载、短路自动保护功能;欠压、过充保护功能;

风力发电机组总体设计 篇5

一、气动布局方案

包括对各类构形、型式和气动布局方案的比较和选择、模型吹风,性能及其他气动特性的初步计算,确定整机和各部件(系统)主要参数,各部件相对位置等。最后,绘制整机三面图,并提交有关的分析计算报告。

二、整机总体布置方案

包括整机各部件、各系统、附件和设备等布置。此时要求考虑布置得合理、协调、紧凑,保证正常工作和便于维护等要求,并考虑有效合理的重心位置。最后绘制整机总体布置图,并编写有关报告和说明书。

三、整机总体结构方案

包括对整机结构承力件的布置,传力路线的分析,主要承力构件的承力型式分析,设计分离面和对接型式的选择,和各种结构材料的选择等。整机总体结构方案可结合总体布置一起进行,并在整机总体布置图上加以反映,也可绘制一些附加的图纸。需要有相应的报告和技术说明。

四、各部件和系统的方案

应包括对各部件和系统的要求、组成、原理分析、结构型式、参数及附件的选择等工作。最后,应绘制有关部件的理论图和有关系统的原理图,并编写有关的报告和技术说明。

五、整机重量计算、重量分配和重心定位

包括整机总重量的确定、各部分重量的确定、重心和惯量计算等工作。最后应提交有关重量和重心等计算报告,并绘制重心定位图。

六、配套附件

整机配套附件和备件等设备的选择和确定,新材料和新工艺的选择,对新研制的部件要确定技术要求和协作关系。最后提交协作及采购清单等有关文件。总体设计阶段将解决全局性的重大问题,必须精心和慎重地进行,要尽可能充分利用已有的经验,以求总体设计阶段中的重大决策建立在可靠的理论分析和试验基础上,避免以后出现不应有重大反复。阶段的结果是应给出风力发电机组整机三面图,整机总体布置图,重心定位图,整机重量和重心计算报告,性能计算报告,初步的外负载计算报告,整机结构承力初步分析报告,各部件和系统的初步技术要求,部件理论图,系统原理图,新工艺、新材料等协作要求和采购清单等,以及其他有关经济性和使用性能等应有明确文件。

2.总体参数

在风轮气动设计前必须先确定下列总体参数。

一、风轮叶片数B

一般风轮叶片数取决于风轮的尖速比λ。目前用于风力发电一般属于高速风力发电机组,即λ=4-7 左右,叶片数一般取 2—3。用于风力提水的风力机一般属于低速风力机,叶片数较多。叶片数多的风力机在低尖速比运行时有较低的风能利用系数,即有较大的转矩,而且起动风速亦低,因此适用于提水。而叶片数少的风力发电机组的高尖速比运行时有较高的风能利用系数,且起动风速较高。另外,叶片数目确定应与实度一起考虑,既要考虑风能

利用系数,也要考虑起动性能,总之要达到最多的发电量为目标。由于三叶片的风力发电机的运行和输出功率较平稳,目前风力发电机采用三叶片的较多。

二、风轮直径D

风轮直径可用下行公式进行估算

P1CpV13D2120.49Cp12V13D2 2

4式中 P—风力发电机组设计(额定)风况输出电功率(kW):

ρ—空气密度,一般取标准大气状态;(kg/m3)

V1—设计风速(风轮中心高度)(m / s):

D—风轮直径(m):

η1—发电机效率:

η2—传动效率:

Cp— 风能利用系数。在计算时,一般应取额定风速下的Cp值。

三、设计风速V

1风轮设计风速(又称额定风速)是一个非常重要的参数,直接影响到风力发电机组的尺寸和成本。设计风速取决于安装风力发电机组地区的风能资源。风能资源既要考虑到平均风速的大小,又要考虑风速的频度。

知道了平均风速和频度,就可以确定风速V1的大小,如可以按全年获得最大能量为原则来确定设计风速。也有人提出以单位投资获得最大能量为原则来选取设计风速。

四、尖速比λ

风轮的尖速比是风轮的叶尖速度和设计风速之比。尖速比是风力发电机组的一个重要设计参数,通常在风力发电机组总体设计时提出。首先,尖速比与风轮效率是密切相关的,只要风力发电机没有超速,运转处于较高尖速比状态下的风力发电机,风轮就具有较高的效率。对于特定的风轮,其尖速比不是随意而定的,它是根据风力发电机组的类型、叶尖的形状和电机传动系统的参数来确定的。不同的尖速比意味所选用或设计的风轮实度具有不同的数值。设计要求的尖速比,是指在此尖速比上,所有的空气动力学参数接近于它们的最佳值,以及风轮效率达到最大值。

在同样直径下,高速风力发电机组比低速风力发电机组成本要低,由阵风引起的动负载影响亦要小一些。另外,高速风力发电机组运行时的轴向推力比静止时大。高速风力发电机组的起动转矩小,起动风速大,因此要求选择最佳的弦长和扭角分布。如果采用变桨距的风轮叶片,那么在风轮起动时,变距角要调节到较大值,随着风轮转速的增加逐渐减小。当确定了风力发电机组尖速比范围之后,要根据风轮设计风速和发电机转速来选择齿轮箱传动比,最后再用公式λ=Rω/V 进行尖速比的计算,确定其设计参数。

五、实度σ。

风轮的实度是指风轮的叶片面积之和与风轮扫掠面积之比。实度是和尖速比密切相关的另一个重要设计参数。对风力提水机,因为需要转矩大,因此风轮实度取得大;对风力发电机,因为要求转速高,因此风轮实度取得小。自起动风力发电机组的实度是由预定的起动风速来决定的,起动风速小,要求实度大。通常风力发电机组实度大致在5%~20%这一范围。

实度的大小的确定要考虑以下两个重要因素:(1)风轮的力矩特性,特别是起动力矩;

(2)风轮的转动惯用量及电机传动系统特性决定。

六、翼型及其升阻比

翼型的选取对风力发电机组的效率十分重要。翼型的升力 / 阻力比(L / D)值愈高则风力发电机组的效率愈高。同时要考虑翼型的失速特性,避免由于失速而产生的瞬间抖动现象。

七、其他

(一)风轮中心离地高度。是指风轮中心离安装处地面高度。

(二)风轮锥角。风轮锥角是叶片相对于和旋转轴垂直平面的倾斜度。锥角的作用是:在风轮运行状态下离心力起卸荷作用,以减少气动力引起的叶片弯曲应力和防止叶片梢部与塔架碰撞。

风力发电机组的维护 篇6

关键词:风能,风力发电机组,风电系统

0 引言

众所周知,可再生能源有水能、风能、太阳能、生物质能、潮汐能、地热能六大形式。其中,风能源于太阳辐射使地球表面受热不均、导致大气层中压力分布不均而使空气沿水平方向运动所获得的动能。据估计,地球上可开发利用的风能约为2×107MW,是水能的10倍,只要利用1%的风能即可满足全球能源的需求[1]。在石油、天然气等不可再生能源日益短缺及大量化石能源燃烧导致大气污染、“酸雨”和“温室效应”加剧的现实面前,风力发电作为当今世界清洁可再生能源开发利用中技术最成熟、发展最迅速、商业化前景最广阔的发电方式之一已受到广泛重视。文中阐述了风力发电机组及恒速恒频、变速恒频风力发电系统的基本结构和工作原理,综述了国内外风力发电技术的发展现状和发展趋势。

1 风力发电机组的基本结构和工作原理

典型的风力发电机组主要由风轮(包括叶片、轮毂)、(增速)齿轮箱、发电机、对风装置(偏航系统)、塔架等构成(图1)。其工作原理为:风以一定的速度和攻角流过桨叶,使风轮获得旋转力矩而转动,风轮通过主轴联接齿轮箱,经齿轮箱增速后带动发电机发电。

由于风力发电机组频繁起停,风轮转动惯量又很大(大型风力发电机组的单个叶片重达数吨),故风轮的转速设计值较低,通常为20~30r/min(机组容量越大,转速越低)[2];另一方面,为了限制发电机的体积和重量,其极对数较少,故在风轮与发电机间通常设置增速齿轮箱,将风轮输入的较低转速增速到1000~1500r/min[1]以满足发电机所需。

风力机按风轮主轴的方向分为水平轴、垂直轴两大类;对水平轴风力机,需要风轮保持迎风状态,根据风轮是在塔架前还是在塔架后迎风旋转分为上风向和下风向两类。现代风力发电机组大多数采用上风向(风轮在塔架前面迎着风向旋转)、水平轴式(风轮的旋转平面与风向垂直、旋转轴与地面平行)、3叶片,且在大型机组中采用变桨距风轮,即桨叶与轮毂不象传统的定桨距失速型那样采用刚性联接,而是通过可转动的推力轴承或回转支撑联接,以使叶片攻角可随风速变化进行调整从而对风轮进行调速(限速)。

偏航系统是上风向水平轴式风力机风轮始终保持迎风状态及提供安全运行所需锁紧力矩的特有伺服系统,其通过驱动机舱围绕塔架的垂直轴转动以使风轮主轴保持与稳定的风向一致;另外,当因偏航动作导致机舱内引出电缆扭绞时,偏航系统应能自动解除扭绞。

风力发电机组中的发电机一般为异步发电机(包括笼型、绕线型)或同步发电机(包括永磁、电励磁),采用何种形式的发电机主要取决于风力发电系统的形式。

根据风力机的基础理论,风力机从自然风中捕获风能所获得的机械功率为[2]

undefined

式中:Pm ——机械功率,W;

v1 ——距离风机一定距离的上游风速,m/s;

ρ ——空气密度,kg/m3;

S ——风轮的扫风面积,m2;

Cp ——风能利用系数。德国的空气动力学家贝兹(Albert Betz)1926年提出的“贝兹极限”[2,4,5]表明:风力机的实际风能利用系数Cp<0.593。

风能利用系数Cp是体现风轮气动特性优劣的主要参数,其是叶尖速比λ和桨叶桨距角β的非线性函数,而叶尖速比λ为风轮叶片叶尖的线速度与风速v1之比,即

undefined

式中:n ——风轮的转速,r/min;

ω ——风轮的角速度,rad/s;

R ——风轮的半径,m;

v1 ——上游风速,m/s。

图2和图3分别为基于某定桨距风力机四参数模型、某变桨距风力机七参数模型的Cp-λ曲线[6]。

图2表明,当桨距角保持不变时,风能利用系数Cp只在对应最佳叶尖速比λopt点处获得最大值Cpmax。

显然,在不同的风速下,若通过调节风轮的转速使其叶尖速比λ=λopt,则可维持风力机在最大风能利用率下运行,这正是变速风力发电机组转速控制的基本目标。

图3表明,同一叶尖速比下,不同的桨距角对应不同的风能利用系数,因此,通过改变桨距角可控制风力发电机组的功率。事实上,与功率输出完全依靠桨叶气动性能的定桨距风电机组相比,桨距角可控制的变桨距风电机组具有如下优势[2]:在额定功率点以上输出功率平稳;在额定点风能利用系数较高;可保证在高风速段输出额定功率;优良的起动、制动性能。

2 风力发电系统的基本结构和工作原理

风力发电系统从形式上有离网型、并网型。离网型的单机容量小(约为0.1~5kW,一般不超过10kW),主要采用直流发电系统并配合蓄电池储能装置独立运行;并网型的单机容量大(可达MW级),且由多台风电机组构成风力发电机群(风电场)集中向电网输送电能。另外,中型风力发电机组(几十kW到几百kW)可并网运行,也可与其它能源发电方式相结合(如风电-水电互补、风电-柴油机组发电联合)形成微电网。并网型风力发电的频率应保持恒等于电网频率,按其发电机运行方式可分为恒速恒频风力发电系统和变速恒频风力发电系统两大类。

2.1 恒速恒频风力发电系统

恒速恒频风力发电系统中主要采用三相同步发电机(运行于由电机极对数和频率所决定的同步转速n0)、鼠笼式异步发电机(SCIG)。且在定桨距并网型风电机组中,一般采用SCIG,通过定桨距失速控制的风轮使其在略高于同步转速n0的转速(一般在(1~1.05)n0之间)稳定发电运行。图4为采用SCIG的恒速恒频风力发电系统结构示意图,由于SCIG在向电网输出有功功率的同时,需从电网吸收滞后的无功功率以建立转速为n0的旋转磁场,这加重了电网无功功率的负担、导致电网功率因数下降,为此在SCIG机组与电网之间设置合适容量的并联电容器组以补偿无功。在整个运行风速范围内(3m/s

恒速恒频风力发电系统具有电机结构简单、成本低、可靠性高等优点,其主要缺点为:运行范围窄;不能充分利用风能(其风能利用系数不可能保持在最大值);风速跃升时会导致主轴、齿轮箱和发电机等部件承受很大的机械应力。

2.2 变速恒频风力发电系统

为了克服恒速恒频风力发电系统的缺点,20世纪90年代中期,基于变桨距技术的各种变速恒频风力发电系统开始进入市场,其主要特点为:低于额定风速时,调节发电机转矩使转速跟随风速变化,使风轮的叶尖速比保持在最佳值,维持风电机组在最大风能利用率下运行;高于额定风速时,调节桨距以限制风力机吸收的功率不超过最大值;恒频电能的获得是通过发电机与电力电子变换装置相结合实现的。目前,变速恒频风电机组主要采用绕线转子双馈异步发电机,低速同步发电机直驱型风力发电系统亦受到广泛重视。

a) 基于绕线转子双馈异步发电机的变速恒频风力发电系统

绕线转子双馈异步发电机(DFIG)的转子侧通过集电环和电刷加入交流励磁,既可输入电能也可输出电能。图5为基于绕线转子双馈异步发电机的变速恒频风力发电系统结构示意图,其中,DFIG的转子绕组通过可逆变换器与电网相连,通过控制转子励磁电流的频率实现宽范围变速恒频发电运行,其工作原理为:转子通入三相低频励磁电流形成低速旋转磁场,该磁场的旋转速度n2与转子机械转速nr相叠加,等于定子的同步转速n0,即

nr±n2=n0 (3)

从而在DFIG定子绕组中感应出相应于同步转速n0的工频电压。当发电机转速nr随风速变化而变化时(一般的变化范围为n0的30%,可双向调节),调节转子励磁电流的频率即可调节n2,以补偿nr的变化,保持输出电能频率恒定。

图5所示变速恒频方案由于是在转子电路中实现的,而流过转子电路的功率是由DFIG转速运行范围所决定的转差功率,一般只为额定功率的1/4~1/3,故显著降低了变换器的容量、成本。此外,调节转子励磁电流的有功、无功分量,可独立调节发电机的有功、无功功率,以调节电网的功率因数、补偿电网的无功需求。事实上,由于DFIG转子采用了可调节频率、幅值、相位的交流励磁,发电机和电力系统构成了“柔性连接”[7]。徳国DeWind公司生产的D6型机组(其额定功率为1250kW,起动、额定、切出风速分别为2.5m/s,13m/s,28m/s)是采用这种变速恒频方案的典型产品[2]。

b) 基于低速同步发电机的直驱型风力发电系统

直驱型风力发电系统中,风轮与永磁式(或电励磁式)同步发电机直接连接,省去了常用的升速齿轮箱。图6为永磁直驱型变速恒频风力发电系统结构示意图,风能通过风机和永磁同步发电机(PMSG)转换为PMSG定子绕组中频率、幅值变化的交流电,输入到全功率变换器中(其通常采用可控PWM整流或不控整流后接DC/AC变换),先经整流为直流,然后经三相逆变器变换为三相工频交流电输出。该系统通过定子侧的全功率变换器对系统的有功、无功功率进行控制,并控制发电机的电磁转矩以调节风轮转速,实现最大功率跟踪。与基于DFIG的风力发电系统相比,该系统可在较宽的转速范围内并网,但其全功率变换器的容量较大。与带齿轮箱的风力发电系统相比,该系统提高了效率与可靠性、降低了运行噪声,但发电机转速低,为获得一定的功率,发电机应具备较大的电磁转矩,故其体积大、成本高。

3 风力发电技术的发展现状及发展趋势[1,2,5,6,7,9,10,11,12,13]

丹麦的Poul la Cour教授是风力发电研究的先驱者,1891年他在丹麦的Askov 成立了风力发电研究所并安装了试验用的4叶片风力发电机。到1910年,丹麦已建成100座5~25kW的风力发电站。但从19世纪末到20世纪初期实现的风力发电均为小容量直流发电。

1931年,在前苏联的Balaclave建成世界上第一座中型风力发电机,其容量为100kW。1957年,丹麦成功制造了风轮直径24m,额定功率200kW的Gedser(盖瑟)风力发电机组,其为三叶片、上风向、采用定桨距风轮失速调节限制机组的功率、带有电动机械偏航、采用异步发电机。1983年,美国波音公司研制的MOD-5b型风力发电机组(额定功率3.2MW、风轮直径98m)投入运行。到1990年末,世界上已有多个生产兆瓦级风力发电机组的制造商。

起源于丹麦的定桨距失速控制方式因结构简单、性能可靠,曾在相当长的时间内占据主导地位,但随着风力发电机组趋向大型化和兆瓦级机组的商业化,全桨叶变距控制成为发展趋势。

进入21世纪,陆地风力发电机组的主力机型单机容量为2MW,风轮直径为60~80m,近海风力发电机组的主力机型单机容量多为3MW以上;大型变速恒频风力发电技术已成为主要发展方向。其中,双馈型变速恒频风力机组是目前国际风力发电市场的主流机型,直驱型风力发电机组以其固有的优势正日益受到关注(ENERCON公司2006年生产的直驱型风力发电机组在德国市场销售量第一)。事实上,从定桨距恒速恒频机组发展到变桨距变速恒频机组,可谓基本实现了风力发电机组从能够向电网提供电力到理想地向电网提供电力的最终目标。

2001年以来,全球每年风电装机容量增长速度为20%~30%,风力发电已成为世界上增长速度最快的清洁能源。到2008年底,全球风电装机容量已达1.20亿kW,前3位的国家分别是美国、德国、西班牙。

我国的风电发展主要集中在2003年以后。近年来,显示出前所未有的发展势头。到2008年底,风电机组总装机容量达1215.3万kW,位列全球第4。随着我国风电装备制造业的快速发展,我国的华锐风电、金风科技两家企业进入2008年全球大型风电机组制造商前10名[11]。目前,国内风电制造技术发展呈现的主要特点为:兆瓦级风电机组已成为主流机型;变桨距、变速恒频技术得到广泛采用;双馈异步发电技术仍占主流;直驱型风电机组发展迅速。

综观世界风力发电近几年迅猛发展的轨迹,呈现出如下发展趋势及发展动态:

风力发电机组的维护 篇7

关键词:风力发电;液压站;故障原因

液压站是风力发电机组的核心部分,风力发电的过程中,需要稳定的液压系统,增加了液压站的运行负担。风力发电机组液压站的故障原因比较多,对实际运行造成很大的干扰,导致风力发电机组处于低效率的运行状态,不能达到风力发电的规范性。风力发电的过程中,需要明确液压站的故障原因,才能提出可行的解决措施,提高液压站的工作效率。

1.风力发电机组液压站的故障原因

液压站在风力发电机组中,发挥重要的作用,由于液压站潜在的故障原因,干扰液压站的运行性能,需保障液压站的稳定性,才能确保风力发电机组的效率。结合液压站的运行情况,分析故障的原因,如下:

1.1 压力信号传输不稳定

液压站在风力发电机组的运行中,存有一类影响较大的故障,直接降低液压站的运行效率。此类故障的表现是压力信号传输不稳定,当液压站的运行系统出现超负载运行、传感器失灵、指令信号不规则的情况时,表示液压站的压力信号已经达不到传输稳定的状态,此时液压站对风力发电机组运行造成一定的负担,不具备稳定运行的条件,出现一系列的液压站故障。

1.2 液压站漏油

液压油是辅助液压站运行的一类介质,属于液压系统不可缺少的材料。液压油对液压站的影响比较大,直接干预机组液压站在风力发电中的效率。目前,液压站漏油的情况比较严重,一般油位低于正常的标准线、油温高、液压油压力不足时,液压站会表现出漏油的情况[1]。管夹松动、吸油管路漏气、过滤器堵塞等都是引发液压站漏油的原因,而且一旦液压油质量与规定不符,也会影响液压油的运行,成为制约液压站运行的一项条件,进而降低液压站在风力发电厂中的运行效率。

1.3 噪声故障的原因

液压站噪声同样属于比较常见的故障,噪声故障产生的原因大多属于部件异常。例如:液压泵内部零件卡组或损坏,即会产生明显的噪声故障,无法保障液压站的正常运行,除此以外,液压泵辅径油封损坏以及进油口密封圈损坏等,都会引发液压站的噪声故障。液压站噪声故障的引发原因比较多,如液压管路、电液阀等部件,导致液压站面临严重的运行压力。

2.风力发电机组液压站故障的解决对策

液压站对风力发电机组运行的影响比较大,风力发电厂需提高对液压站的重视度,结合液压站运行中的故障原因,提出解决对策,保障液压站的性能。分析有效的对策,如下:

2.1 定期清洁液压站

液压站出现压力信号传输不稳定的情况,可以通过维护液压站动作和定期清洁液压站两种方法解决。第一,维护液压站动作过快和动作不规则的设备,结合液压站在风力发电机组中出现信号传输不稳定的原因,提出几点解决措施,如:①监测液压站的运行,及时发现潜在的超负载情况,利用平衡或布置其他约束的方法解决负载问题;②液压站部件失灵造成的信号问题,需找准问题部件,采取维修或更换的方式解决;③液压站指令信号的问题需重新測定储能器性能,优化液压站的运行[2]。第二,定期清洁液压站,综合评价液压站的操作、性能,制定相关的清洁计划,同时值班人员要严格记录液压站的运行情况,做好交接工作,一旦发现液压站潜在故障,立即提交信息并进行检修、清扫,尤其是液压站的电气设备,由于电气设备的运行环境特殊,很容易受到污染的影响,所以风力发电厂安排电气人员全面保养电气设备,完善液压站的运行。

2.2 防止液压站漏油

液压油对液压站运行的干扰较大,风力发电厂应强化液压油性能的控制,防止液压站漏油,由此优化机组液压站的运行。针对液压站液压油的控制,提出两点措施,如:①规范液压油的管理标准,根据液压站的具体需求,优化液压油的分配,全面监测液压油的状态,及时发现液压站的漏油问题,采取安全调节的方式,确保液压油的准确度;②提升液压油过滤设备的质量,保障管路、过滤设备等部件的性能,防止影响液压油的应用,由此保障液压油的标准,避免风力发电机组液压站运行中出现漏油情况。

2.3 规避噪音故障的风险

根据液压站在风力发电机组中的运行状态,同时结合液压站出现噪音故障的原因,针对液压站的噪音部位,提出对应的解决措施。如:①液压泵噪音故障,采取修复、更换、清洗的方式,保障液压泵的性能稳定,防护液压泵噪音故障的风险;②溢流阀噪音故障,利用清洗、修复的方式排除,如不能解决溢流阀的故障,还可更换弹簧、去除毛刺,在保障正常运行的情况下,缩短管路长度;③电液阀噪音故障,执行全面检修,选用合适的控制油路,改善电液阀的运行环境;④液压管路噪音故障,第一在液压泵的出口连接部分,加装消声器,第二维护元件的安装位置,防止出现偏移或变形。

3.风力发电机组液压站的优化方式

风力发电机组的主要部件是液压站,而液压站的运行状态,能够决定风力发电机组的运行效率。结合风力发电机组液压站的基本运行,规划优化方式,维护液压站的性能。

风力发电机组液压站中,比较典型的优化方式为:①改进过滤器装置,改为高压型,大幅度提升过滤精度,而且液压系统能够检测过滤器的运行状态,如果需要更换会主动提示,降低了过滤器管理的难度,更有利于液压站的故障排除;②优化液压站的配置,例如液压管优化,提前清理液压管,防止液压管在液压站运行时出现缺陷,优化的过程中还应实行质量检验,降低液压管出现故障的机率,对液压站起到维护的作用,排除诸多液压站的影响,强调液压站优化改进的优势。液压站的优化,能够保障风力发电机组运行的效益,同时强化液压站的管理力度。

4.结束语

风力发电机组液压站的故障原因比较明显,结合液压站的故障表现,提出故障解决的措施,解决液压站的故障问题,排除故障问题对风力发电机组的影响。风力发电机组液压站不仅需要故障维护措施,更是需要科学的优化方式,完善风力发电的整个过程,一方面保障液压站的稳定性,另一方面提升液压站的运行效益。

参考文献:

[1]杨静懿.风力发电机的整机故障诊断[D].东华大学,2014,(21):12-14

上一篇:四年级数学除法练习下一篇:90后的经典爱情故事