圆柱与圆锥的整理和复习教案(精选10篇)
复习内容:圆柱与圆锥的整理和复习复习目的: 1.使学生系统掌握圆柱与圆锥的基础知识,能熟练地运用圆柱的侧面积和表面积解决实际问题.2使学生通过复习进一步掌握圆柱与圆锥的关系,和体积的计算方法.教学重点: 圆柱的侧面积表面积,体积的应用 教学难点: 圆柱与圆锥的关系.一.创设情境,合作探究 1.圆柱与圆锥各有哪些特征?
2.怎样求圆柱的侧面积.表面积.体积?计算公式各是什么? 3.怎样求圆锥的体积?计算公式是什么? 4.圆柱与圆锥的之间有什么关系? 练一练(一)填空
1.一个圆锥体积是36立方分米,与它等底等高的圆柱体积是()立方分米.2.一个圆柱体积是12立方分米,与它等底等高的圆锥体积是()立方分米.3一个圆柱削成一个最大的圆锥,体积减少18立方分米,原来圆柱体积是()立方分米.4一个圆柱与圆锥等体积等高,已知圆柱的底面积是3平方分
米,那么圆锥底面积是()平方分米.5一个圆锥形容器高30厘米,装满水,把它倒入一个底面积与它相等的圆柱形容器中,水高()厘米.(二)选择
1.把一个圆柱在平坦的桌面上滚动,那么滚动的路线是().A 圆弧 B直线 C曲线
2.甲乙两人分别利用一张长20厘米,宽15厘米的纸用两种不同的方法围成一个圆柱体(接头处不重叠),那么围成的圆柱()。
A高一定相等 B侧面积一定相等 C侧面积和高都相等 D侧面积和高都不 相等(三)判断:
1.圆柱体积是圆锥体积的3倍,则它们一定等底等高.()
2圆柱底面半径扩大5倍,高不变,它的侧面积就扩大10倍。()3一个圆锥的底面半径扩大3倍,高不变,体积就扩大6倍。()4圆锥底面积不变,它的高度越高,圆锥体积就越大()5一个圆锥的顶点到底面圆上的线段是圆锥的高。()二实践应用
回答下面的问题,只列式不计算。
一个圆柱形无盖水桶,底面半径10分米,高20分米。①给这个水桶加个盖,是求哪个部分? ②给这个水桶加个箍,是求哪个部分? ③给这个水桶的外面涂上油漆,是求哪部分? ④这个水桶能装多少水,是求哪个部分?
2、在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)生活中的数学
1、一饮料生产商生产一种饮料,采用圆柱形易拉罐包装,从易拉罐的外面量,底面直径是6厘米,高是12厘米,易拉罐侧面印有“净含量340毫升”字样。请大家讨论:生产商是否欺骗了消费者?
2.一根圆柱形木材长20分米,把它截成4个相等的圆柱体.表面积增加了18平方分米.原来圆柱体积是多少立方分米?
3、把一个底面半径为2厘米,高为6厘米的圆柱形铝块,熔铸成一个底面积为28.26平方厘米的圆锥体,这个圆锥高是多少厘米?
实验小学 唐永胜
复习内容:第12册圆柱和圆锥表面积和体积的有关知识。复习目的:(1)、通过复习使学生对本学期所学的圆柱和圆锥的认识、表面积和体积等知识有一个系统的掌握。(2)、通过复习掌握圆柱和圆锥的特征及体积计算上的联系与区别。(3)、通过复习培养学生的综合概括能力和解决数学问题的能力。(4)、培养和训练学生的空间想象能力和发散思维。复习重点:圆柱和圆锥表面积和体积的计算 复习难点:圆柱和圆锥体积计算上的联系与区别
教具准备:多媒体课件(方案二:小黑板、圆柱体实物小刀)学具准备:小组学习卡
复习方法:自主探究 与 合作交流
复习过程:
一、情景引入、回顾交流
1、师生问好。
2、师生交流谈话,引入正题。
师:我发现同学们都在地仔细看大屏幕,我想知道你从屏幕中看到什么?(知道老师名字、单位;画面是采伐工人工作情形;还有在思考问题的淘气)
我们这节课就与淘气一起从一根木头开始我们的数学学习。(课件:呈现一根圆木)
3、回顾与圆柱有关的知识。
师:同学们咱们仔细回忆一下与圆柱有关的知识,谁能站起来说一说?
生:圆柱的两个底面是圆形,侧面是曲面,展开后是个长方形。
板书 :
圆 柱 的 圆 锥 的
特 征
......特 征
......二、观察讨论,提出问题
1、屏幕呈现圆柱体木头底面直径20厘米,高30厘米。师:现在你又得到什么新的信息呢?告诉了我们什么条件? 生:它高30厘米,底面直径20厘米。
2、计算圆柱的体积与表面积。
师:现在老师想问你们两个问题,考考大家,你知道我会问哪两个问题吗?(你能计算这个圆柱体的体积和表面积?)师板书:体 积
表面积
(1)、学生计算圆柱体的体积和表面积。要求只列式不计算。规定时间完成,(师数数)
(2)、反馈交流学生练习。
(指名上黑板或生诉师板书)
体
积:3.14 X(20/2)2 X 30
表面积:3.14 X(20/2)2 X2+3.14X20X30
3、进一步探究圆柱和圆锥的相关问题。
师:咱们仔细观察这个木桩儿,结合圆柱和圆锥的知识,以及我们的生活实际,展开你们想象的小翅膀,看看你们还能提出什么样的问题来。看看谁提的问题最有创意。(1)、同桌讨论交流。(2)、全班交流后,问题归类。
刷——
生:我们给这跟木头刷油漆。
师:刷油漆有几种刷法?
生1:刷侧面象刷柱子一样刷,要刷多少面积,我想就是刷侧面求侧面积。
师:你真会联系生活,好哪位同学来说说怎么列式算侧面积。板书:3.14X20X30
还能怎么刷?
全刷?全刷就是什么------
生:就是表面积。
生2:把圆柱立在地上刷露在外面的面。
那咱们帮帮这位同学,马上列式不计算。
板书:3.14 X(20/2)2 +3.14X20X30
师:除了刷油漆还有什么更有创意的问题呢?
切——
生1:把圆柱劈(切)开算表面积增加了多少?
师:怎么切?
生:纵切,沿直径切开,求表面积增加了多少?
师:你们听明白了吗?这个问题有点难哦,谁来解答?
生:就是增加了两个长是直径宽是高的长方形。
板书:20X30X2
师课件演示加以验证。(方案2:让学生动手切圆柱形萝卜)
师:除了这样切还能怎样切?
生:横切,沿一个底面的水平面切开,求表面积增加了多少?
师:你们听明白了吗?谁来解答?
生:就是增加了两个底面积。
板书:3.14 X(20/2)2 X 2
师课件演示加以验证。(方案2:让学生动手切圆柱形萝卜)
师:刷也刷了切也切了,你们还有什么问题没有解决?
削——
生:把这跟圆柱形的木头削成最大的圆锥形的,那么这个圆锥形的木头体积是多少?
师:削成最大的圆锥该怎么削呢?老师把削的过程用课件表现了出来大家想看看吗?(课件呈现圆柱削成等底等高的圆锥的过程)
生:削成的圆锥和圆柱底相等、高也相等,象削铅笔一样削。
等底又等高,你能算这圆锥的体积没有呢?
板书:3.14 X(20/2)2 X 30 X 1/3
有没有同学能口算这道综合算式?(计算技巧的训练)
三、拓展应用
1、拓展应用一。
刚才我们和淘气围绕一跟圆木探讨了好多的问题,现在淘气有几个问题不明白,他需要请教各位。请看——(1)、出示课件的判断题。(方案二:出示小黑板)
师:小组长手上有一张答题卡,每小组统一意见后答在答题卡上。(2)、以学习小组为单位比赛,在规定时间内通过集体的智慧,看看哪个组能全答对。(3)、小组代表上黑板公布结果板书出来,或读出结果老师记录。
2、拓展应用二。
师: 似乎有些组不服气哦,不要紧淘气还有问题。(1)、出示课件的挑战自我。(方案二:出示小黑板)
师:同样小组长手上答题卡的第二题,通过集体的智慧小组讨论交流看能不能找到解决问题的方法。(2)、小组合作交流,自主探究。(3)、小组反馈探究结果。
(如有困难,用课件提示引导解决或留到课后探究。)
四、全课总结。
1、这节课你有什么收获?
2、最后老师送给大家一个成语就是“殊途同归”,这是解决刚才的问题的金钥匙,希望同学们在成长的路上永远带这它,它会为你开启一扇扇智慧之门!
板书设计
复习课
圆柱的 圆锥的特 征:......特 征:......体 积:
挖
3.14 X(20/2)2 X 30
体积: 削3.14 X(20/2)2 X1/3
3.14 X(20/2)2 X2/3
3.14 X(20/2)2 X2+3.14X20X30
刷
3.14X20X30
3.14 X(20/2)2 +3.14X20X30 表面积:
纵: 20X30X2 切
横3.14 X(20/2)2 X 2
《圆柱、圆锥复习课》教后反思
实验小学 唐永胜
整理与复习课,一定要放手让学生自主的去收集、整理、交流己学过的知识,通过条目、表格、框图等形式帮助学生沟通知识间的联系,把学过的知识整合成一个有机的整体,形成合理的知识系统。又充分发挥学生学习的自主性,体现把课堂还给学生,同时还可培养学生自主学习的意识,提高学生自行设计的能力与自主获取知识的能力。
本次数学组公开课,我上的是《圆柱、圆锥复习课》。本次复习课,我首先引导学生将本单元的知识点进行了梳理。即:让学生思考并总结本单元我们都学了哪些知识?随着学生的回答用课件整理出知识点,形成知识网络呈现在学生面前。这些知识点包括:
(一)圆柱圆锥的特征,在特征利特别强调了圆柱和圆锥的高及特征。
(二)圆柱的体积及表面积的基本公式和补充公式,圆锥的体积的基本公式和补充公式。
(三)圆柱与圆锥的关系。
(四)生活中的圆柱和圆锥及求什么、怎样求,并用课件形成基本公式。
复习完这些知识点,我以一根木头为切入点,引导学生进行了相应的练习,在此基础上引导学生自主提出具有创造性的学习问题,进一步强化了本节知识。随后进行的拓展,使孩子们针对本单元的知识进行了巧妙地设计和整理。我觉得这节复习课还是比较成功的,取得了一定的效果。以下三点做得比较成功:
一是注重情景创设,调动学生的学习兴趣。开课时的这个情景是我在备课时,学习别人的长处学到的,但它有不符合我们的地方,我就做了相应的修改,就形成了适合我班现状的情境设计;这个情景深刻而有趣,巧妙地把学生引入了学习的氛围里。
二是关注生本教学,实现学生的学习主体。在课的主体推进部分,我尝试让学生自主思考,提出有价值的探究问题,并独立解答,在轻松有趣的学习氛围中达成了对本节知识的再认识。
三是精巧设计练习,达成学习的轻负高效。整理与复习课的练习设计是非常重要,本节课的练习设计,我注重尊重了教科书上的练习,又选择与其内容相近而形式多样的习题,让学生“视野开阔”;其次,既重视有针对性的单项练习,也注意综合性的练习;最后在练习的内容和要求上具有一定的开放性和挑战性,以
激起学生学习的欲望,在新理念下,要为每一个学生提供发展的空间,对不同的学生提出不同的要求,让有些学生得到最基本的发展(学困生),有些学生得到更多的发展(优等生)。
本节课还存着诸多不足:
一、对于圆柱圆锥的计算数很大,很难算对,本节课堂上没有教给学生如何计算较大的数,没有教给一些技巧和方法。
二、对于本节课的许多练习题都是由教师预设的,没有充分关注学生的个性发展,特别是缺乏学生出题能力的锻炼。
教学目的:使学生系统掌握关于圆柱和圆锥的基础知识,进一步了解圆柱和圆锥的关系,熟练运用所学公式计算解答实际问题;
教学准备:幻灯片、电脑制图
教学过程 :
一.出示课题,引人复习内容;
1.同学们,今天这节课,我们要进行“圆柱体和圆锥体体积的复习”;
板书课题
2.圆柱体的体积怎么求?
板书:V圆柱=Sh 3.圆锥体的体积怎么求?
板书:V圆锥=1/3 Sh
4.公式中的 s、h分别表示什么?1/3表示什么?
小结:求圆柱体和圆锥体的体积,首先要正确应用公式。
板书:1.正确应用公式
当题目中没有直接告诉我们底面积,只给出底面的半径、直径或周长时,求它们的体积必须先求出什么?
二.基础练习
根据已知条件求圆柱体和圆锥体的底面积(幻灯出示)计算这些形体的体积:
(1)S底=1.5平方米 h=5 米 求V圆柱
(2)S底=1.5平方米 h=5 米 求V圆锥
(3)r=10分米 h=2 米 求V圆柱
(4)C=6.28米 h=6 米 求V圆锥(1)、(2)两题条件相同,所求不同;
板书:2.圆锥体积一定要乘 1/3(3)、(4)两题都要先求出底面积;
板书:3.单位名称要统一
三.实际应用练习:
我们还可应用到生活中去解决一些实际问题:(幻灯出示)
1.一根圆柱形钢材长2米,底面周长为6.28厘米,如果1立方厘米钢重8克,100根这样的钢材重多少千克?
默读后问同学:做这道题前有没有准备工作要做?(单位要统一)
2.一个圆锥形麦堆,底面直径4米,高1.5米,按每立方米麦重700千克算,这堆麦重多少千克?
默读后问同学:要注意麦堆是什么形状?
请两位同学板演,其余在本子上自练;
3.小结:在解这两题时都用到了什么计算?
四.提高练习:
(幻灯出示)在一只底面半径为30厘米的圆柱形水桶里,放入一段底面半径为10厘米的圆锥形钢材,水面升高了5厘米,这段钢材高为多少?
(电脑出示图案)观察水面变化情况,求什么?
1.钢材是什么形状?求圆锥体的高用什么方法?h=3V/S,3V表示什么?
2.S可以通过哪个条件求?(r=10厘米)
3.体积是什么呢?(电脑屏幕逐步演示)
(1)当钢材放入时水面上升,取出时水面下降,和什么有关?
(2)放入时水面为什么会上升?
(3)圆锥体占据了水桶里哪一部分水的体积?
(4)上升的水的体积等于什么?(5)求圆锥形钢材的体积就是求什么?
(6)求这部分水的体积可通过哪些条件求?(r=30厘米,h=5厘米)
(7)板演,同学自练;
五.圆柱体、圆锥体之间的关系是很密切的,下面我们来研究一下:(电脑出示画面、公式)
1.当圆柱体与圆锥体等底等高时,圆柱的体积是圆锥体积的3倍;(逆向)
2.当圆柱体与圆锥体体积相等,底面积相等时,圆锥的高是圆柱的3倍;
3.当圆柱体与圆锥体体积相等,高也相等时,圆柱的底面积是圆锥底面积的1/3,圆锥底面积是圆柱底面积的3倍。
六、总结:
由实物抽象出几何形体:圆柱和圆锥体,引导学生对照模型和图形,在头脑中形成圆柱和圆锥的表象,帮助学生形成空间观念。
2、动手实践,探索对圆柱的特征。
认识圆柱时,引导学生通过观察、比较、交流等活动,进一步探索圆柱的特征。在此基础上,结合圆柱的直观图,介绍圆柱的底面、侧面和高的含义。
3、运用迁移的方法学习圆锥的特征。
圆锥的认识和圆柱的认识在研究内容上有其相似之处。圆柱是从面(面的个数、面的特征)、高(什么是高、高的条数)等几个方面进行研究的。
4、加强对比、沟通联系。
教学目标:1、复习圆柱和圆锥的有关知识,掌握其特点,能借助图形说出公式推导过程,式形结合,构建体积计算公式系统,形成牢固的知识网络。
2、熟练地运用公式进行计算,让学生感受数学与生活的联系。
3、能综合运用所学知识,灵活地解决一些实际问题,培养学生运用知识解决实际问题的能力。
教学重点:系统掌握体积公式的转化与推导过程,形成牢固的知识网络。
教学难点:灵活地运用相关知识解决实际问题。
设计理念: 本节课让学生在梳理和交流中有所收获,并形成一定的知识网络。通过自我整理、自我提高,有效地培养学生根据不同的问题情景解决问题的能力,并正确进行自我评价和反思。
教学步骤 教师活动 学生活动
一、整理知识、形成网络。 1、谈话导入,今天我们一起来复习圆柱和圆锥的有关知识,请各位同学把自己整理好的知识向大家展示一下。
2、圆柱和圆锥有什么特征?请同学们完整地表述一下。
3、强化公式的推导过程。
圆柱体体积公式是什么?请说一说它的转化和推导过程。
圆锥体体积公式是什么?说一说它的转化和推导过程?
4、根据学生的复习整理,让学生把下表填写完整。
图形 特征 计算公式
圆柱 1、上下粗细一样
2、底面是两个相等的圆
3、侧面是一个曲面,沿高展开是一个长方形或正方形 S底=πr
S侧=ch
=πdh
=2πrh
S底=2s底+s侧
V柱=sh
=πr h
圆锥 1、有一个顶点
2、底面是一个圆
3、侧面是一个曲面,沿母线展开是一个扇形 S底=πr
V锥=1/3sh
=1/3πr h
5、根据学生填写的表格教师质疑:根据圆柱和圆锥的特征能解决什么问题?运用圆柱和圆锥的体积公式能解决哪些问题?
根据学生的讨论得出:
(1) 根据圆柱和圆锥的特征判断圆柱和圆锥。
(2) 针对有关条件计算圆柱和圆锥的体积,并进行有关的逆运算。
(3) 能运用所学的知识解决现实生活中的许多有关体积和容积的实际问题。 学生先互相交流一下自己整理的结果。
学生填写表格,并互相提问表格中的有关内容
学生分组讨论。
二、运用知识、解决问题。 1、相关概念分得清。
(1)把圆柱的侧面沿高展开后通常得到一个( ),这个长方形的长就是圆柱的( ),这个长方形的宽就是圆柱的( ),这个长方形的面积就是圆柱的( ),所以圆柱的侧面积等于( )。当圆柱的( )和( )相等时,圆柱的侧面展开后是一个正方形。 (2)一个圆柱底面半径是1厘米,高是 2厘米。它的侧面积是 ( )平方厘米。
(3)等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是( )立方米,圆锥的体积是( )立方米。
(4)一个圆柱形水箱,从里面量底面周长是18.84米,高3米,它最多能装( )立方米水。
(5)一个圆锥形机器零件,体积是125.6立方厘米,底面半径是2厘米,这个圆柱的高是( )厘米。
2、有关计算算得准。
(1)、一个圆柱形铁皮盒,底面半径2分米,
高5分米。
①如果沿着这个铁皮盒的侧面贴一圈商标纸,需要多少平方分米的纸?
②某工厂做这样的铁皮盒100个,需要多少铁皮?
③如果用这个铁皮盒盛食品,最多能盛多少升?
(2)、一个圆锥形沙堆,底面直径8米,高3米,这个沙堆占地多少平方米?如果每立方米沙重15千克,这堆沙一共重多少千克?
3、解决问题用得妙。
(1)、一个长9分米的圆柱形木材,底面半径是4分米。如果将它加工成一个最大的圆锥,这个圆锥的体积是多少立方分米?削去部分的体积是多少?
(2)、一个压路机的滚筒的横截面直径是1米,它的长是2米。如果滚筒每分钟转动8周,5分钟能压路多少平方米?
(3)、一个圆柱形钢块,底面半径和高都是6分米,把它熔铸成一个等高的圆锥,这个圆锥的底面积是多少平方分米?
学生说一说求容积为什么要从里面量。
学生讨论一下每一个问题各是求什么
三、综合运用、提高能力。
1、八仙过海,各显神通:
(1)在一个直径是20厘米的圆柱形容器里,放入一个底面半径3厘米的圆锥形铁块,全部浸没在水中,这时水面上升0.3厘米。圆锥形铁块的高是多少厘米?
(2)一根圆柱形木料,底面直径20厘米,长40厘米,现需要沿直径把它对半锯开,锯开后每根木料的表面积和体积是多少?”
2、总结复习,畅谈收获。
3、作业:34页3、4
1.通过练习让学生熟练运用转化和假设的策略来解决问题。
2.在不断练习和反思中,感受运用策略对于解决特定问题的价值。
3.通过这些策略的运用,了解解题方法的多样性,感受数学知识的魅力
教学过程:
一、谈话导入
在前面两节课的学习中我们主要运用了哪些策略来解决问题的?(转化和假设的策略)你们学会了吗?今天老师想考一考大家对这两个策略的运用情况,你们能接受挑战吗?(板书课题:解决问题的策略练习课)
二、练习应用
1.练习五第6题。
出示题目:要求先画图表示题意,再解答。
结合画的图进行分析:要求中、下层各放了多少本书?可以通过上层放书的数量100本,及所对应的份数5,先求一份的量是多少,再求中、下层各放了多少本书。也可以引导学生从其他方面去思考,如把比转化成分数来解答。
2.练习五第7题。
结合图引导思考:根据货车的速度是客车的2∕3,可以想到相遇时货车行驶的路程也是客车行驶路程的2∕3,接着让学生在图上画一画,并解答。
3.练习五第8题。
学生读题,出示右图
先在图中表示出第二、三堆的白子和黑子。
学生动手画,教师巡视、辅导。(学生可能在第二、三堆中把白子和黑子平均分,可让学生尽量避免这种特殊情况。)
结合图帮助学生理解:第二、三堆中的白子合起来正好是完整的一堆棋子,也就是60枚,再加上第一堆中白子的数量,这样就解决了这一问题。
4.练习五第9题。
出示题目和表格。
先假设两种球分别投中的个数,再通过试验调整找出答案。
学生独立完成。
5.练习五思考题。
让学有余力的学生自己思考,独立解答。
6.课外了解。(第32页你知道吗)
让学生了解我国古代的数学,渗透国情教育,并思考解决。
三、课堂小结
通过今天这节课的练习,你有了哪些新的收获?
使学生进一步巩固策略在特定问题中的应用。
圆柱与圆锥说课搞
一、教材分析:
本课内容是九年制义务教育课程标准实验教材(苏教版)六年级下册第18-20页《圆柱和圆锥的认识》。学生已经在一年级的时候初次认识了圆柱,已经会辨别;圆锥这一立体图形没有见识过,从未接触;在六年级上学期又认识了长方体和正方体这两种立体图形,积累了一些观察﹑探索立体图形特点的学习经验,这些都为本课的进一步学习奠定了基础。
二、学生情况分析:
由于已经是六年级的学生了,他们的主观性和能动性已经有较大的提高,能够有意识地去主动探索未知世界。同时,他们的思维能力、分析问题的意识和能力也有明显的提高;动手操作能力、语言表达能力有所发展。所以在教学时适宜让学生自主探究,合作交流,动手实践,让学生在具体情境中亲自体验感知圆柱和圆锥的特征。
三、设计意图:
(一)预习设计:
由于本课属于观察物体领域的内容,须借助于直观的实物或模型帮助体验,感悟圆柱和圆锥的各部分名称和它们的特点,因此我在设计时
辽宁中公教育:http://ln.offcn.com
安排了两个环节:1.课前准备(即收集生活中的实物和学具的制作)2.自学教材内容,自主探究圆柱和圆锥的特征。
(二)新授设计:
在课一开始,让学生先回顾以前学过的一些立体图形,拿出学生课前收集的一些实物,让学生分别展示,介绍。从而自然引出课题:圆柱和圆锥的认识。接着,让学生小小组内交流预习作业,并提出交流和汇报的要求,让每个学生都积极参与倾听和主动发言的机会,试图改变只有少数几个优秀同学唱独角戏的局面。在大组汇报的时候,尽可能地让学生代表边演示边介绍发现的圆柱和圆锥的名称和相关特征,其他小组提出相关补充或修改意见,教师根据学生的讲述相机课件演示,更加深了印象,凸显本课的教学重点,为后面的比较﹑总结圆柱和圆锥的相同点和不同点作铺垫。然后让学生欣赏生活中的圆柱和圆锥图片,再次感受数学的生活价值。
(三)练习设计:
本环节安排了说一说,判一判,连一连,做一做,猜一猜等活动,试图让学生灵活运用所学的知识解决实际问题。课堂练习单第4题在试教的时候发现学生在解题时有点难度,我觉得这时要适当点拨,指导一下。
四、试教反思:
辽宁中公教育:http://ln.offcn.com
教学目标:
l.认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2.理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养同学们初步的空间观念和发展同学们的思维能力。
教学重点:掌握圆锥的特征。
教学难点:理解和掌握圆锥体积的计算公式。
教学理念:1.学习的方式以动手实践、自主探索与合作交流为主。
2.科学的结论是通过“猜想——验证”探究得来的。
教学设计:
教学步骤:
教师活动过程
学生活动过程
一、复习引新
1. 说出圆柱的体积计算公式。
2. 我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第41页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)
1.学生口答
二、教学新课
1. 认识圆锥特征。
2.推导圆锥体积计算公式
1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?
2.根据教材第41页插图,和学生举的例子通过课件或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。
(2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?
4.学生练习。
口答练习九第1、2题。
5.教学圆锥高的测量方法。(见课本第41页有关内容)
6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。
1. 学生回答
2.观察圆锥,认识圆锥的特征
3.学生口答
4. 学生自学
各位老师好,我代表六年级所有的数学老师对我们的新课程义务教育标准实验教科书人教版六年级下册《圆柱和圆锥》这个单元作一个说课,下面我将从教材,教法学法,教学过程和板书设计四个方面来进行说课。首先我从教材分析入手:本单元是在学生已经了解并掌握长方形,正方形和圆等一些常见的平面图形的特征,以及长方体、正方体的特征,并在学生已经直观认识圆柱的基础上,引导学生进一步探索圆柱和圆锥的特征。本单元的主要内容有:圆柱和圆锥的认识,圆柱的表面积和体积,圆锥的体积。圆柱、圆锥是我们在生产生活中经常遇到的几何形体。内容的安排上不仅有利于发展学生的空间观念,也为进一步应用几何知识解决实际问题打下基础。根据新课标要求,教材特点和学生认知规律,我制定了以下三个教学目标:
1.知识和技能:使学生认识圆柱和圆锥,掌握它们的基本特征。并认识圆柱的底面、侧面和高,认识圆锥的底面和高。引导学生探索并掌握圆柱的侧面积、表面积的计算方法以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际的问题。
2.过程与方法:引 通过观察、设计和制作圆柱、圆锥的模型等活动,使学生了解平面图形与立体图形之间的联系,发展学生的空间观念。
3.情感态度和价值观:使学生理解除了研究几何图形的形状和特征,还要从数量的角度研究几何图形,如图形的面积、体积等,体会数形结合的思想。通过圆柱和圆锥体积公式的探索,使学生体会转化、推理、极限、变中有不变等数学思想。
基于以上分析,我把本单元的教学重点确定在充分感知的基础上,探索圆柱和圆锥的特征,并学会运用计算公式计算圆柱的表面积和体积,圆锥的体积的计算。教学难点是认识和理解圆柱的侧面积以及侧面积的计算方法和认识理解圆锥的高。
现代教育心理学认为,小学生的思维发展是从具体形象向抽象思维过渡的。因此,按照学生的认知规律,按照从“具体感知——形成表象——进行抽象”的过程,在教学中,我准备利用直观教具如多媒体课件,圆柱和圆锥的模型,采用引导探究法、观察演示法、讨论法等方式让学生能够多种感官参与学习,自主构建知识。
在学法指导上,我准备让学生采用:动手操作法,观察发现法,合作交流法、自主探究法的方法进行学习。
为了完成教学目标,突破教学重点难点,根据学生的实际情况,我准备每一个课时从创设情境导入新课,主动参与探索新知,练习巩固开发智能,自我总结深化新知四个方面进行教学
一,创设情境,导入新课
圆柱和圆锥是人们在生产和生活中经常遇到的几何形体。这一部分的内容有利于发展学生的空间观念,为进一步应用几何知识解决实际问题打下基础,因此在本单元的教学之中,我注重加强与学生实际生活的联系,重视运用所学知识实际问题的意识和能力的训练。例如,在认识圆柱和圆锥的教学之前,我让学生收集、整理生活中有关圆柱、圆锥的实例和信息资料,以便在课堂中交流,在导入新课时从生活情境引入,结合学生收集的实物图片从整体上感知圆柱和圆锥,帮助学生抽象出圆柱和圆锥的表象。然后引导学生通过观察、比较、交流等活动,进一步探索圆柱和圆锥的特征。结合圆柱的直观图,介绍圆柱的底面、侧面和高。通过快速旋转长方形硬纸操作活动,引导学生结合空间想象,体会立体图形的形成过程,发展学生的空间观念。通过剪开圆柱形罐头盒的商标纸,让学生充分探究,把圆柱侧面展开后得到的长方形的长和宽与圆柱的相关量对应起来,为后面学习圆柱的表面积计算作准备。
二、主动参与,探索新知
在教学圆柱的表面积的计算方法,把探索圆柱侧面积的计算方法作为重点,强调了圆柱侧面展开图与圆柱的相关量之间的对应关系,通过计算生活情境中圆柱形厨师帽的布料,引导学生根据不同的问题情境灵活选择计算公式,提高解决问题的能力。
在学习圆柱的体积计算公式时,我重视让学生体会转化思想和极限思想,引导学业生经历把圆柱切开、再拼成一个近似长方体的逐步细分的过程,初步感知直术体体积的一般计算方法,从而得出圆柱体积的计算方法,再创设生活化的问题情境,提高学生的应用意识和问题解决策略,全面发展学生的问题解决能力。
在学习圆锥的认识这一节时,我也充分利用生活中的圆锥实物图片,通过让学生观察、比较、测量、交流等活动,探索圆锥的特征。结合圆锥的直观图,介绍圆锥的底面、顶点和高的含义。在教学圆锥体积这一节时,首先创设一个问题情境:如何计算圆锥的体积?引导学生探索,并给出提示:圆锥的体积和圆柱的体积有没有关系,然后引导学生通过猜想和实验,探究圆锥和圆柱体积之间的关系。得出“圆锥的体积等于与它等底等高的圆柱体积的三分之一”。
三、练习巩固,开发智能
四、自我总结,开发新知
在每一节课结束时,问一问这节课你获得了哪些信息?掌握了什么本领?引导学生从知识、能力、感受三个角度进行自我总结。最后老师在此基础上进行总结和提升,让每个学生都能自主的从这三个方面进行总结和梳理,养成归纳、自主提升的好习惯。最后布置自主练习,让学生及时的巩固所学的知识。
五、最后是板书设计:
1.把圆柱切开、再拼起来,能得到一个()。长方体的底面积等于圆柱的(),长方体的高等于圆柱的(),因为长方体的体积=底面积×高,所以圆柱的体积=(),用字母表示是()。2.⑴已知圆柱的底面半径和高,求体积。先用公式()求();再用公式()求()。
⑵已知底面直径和高,求体积。先用公式()求();再用公式()求();最后用公式()求()。⑶已知底面周长和高,求体积。先用公式()求();再用公式()求();最后用公式()求()。3.已知圆柱的体积和底面积,求高,用公式();已知圆柱的体积和高,求底面积,用公式()。
4.当圆柱和圆锥()时,圆锥的体积是圆柱体积的1/3。等底等高的圆柱和圆锥,圆柱体积比圆锥体积大()倍,圆锥体积比圆柱体积小()/()。
5.圆锥的体积计算公式用字母表示是()。已知圆锥的体积和底面积,求高,用公式()。
6.长方体的表面积=(),长方体的体积=();正方体的表面积=(),正方体的体积=()。
7.求一个圆柱形水池的占地面积,是求这个水池的();求一个圆柱形水池能装多少水,是求这个水池的()。
8.把一段圆柱形钢材加工成一个最大圆锥,削去的钢材的体积是24立方厘米,这段圆柱形钢材的体积是()立方厘米,加工成的圆锥的体积是()立方厘米。
9.将一段棱长是20厘米的正方体木材,加工成一个最大的圆柱,削去的木材的体积是()立方厘米。
二、解决问题。1.一个圆柱的底面直径是6厘米,高是 2.一个圆柱的底面周长是25.12分米,10厘米,体积是多少? 高是2分米,体积是多少?
3.一个圆锥的底面半径是5米,高是6
4.一个圆锥的底面周长是18.84分
米,体积是多少?
米,高是12分米,体积是多少?
5.一个圆柱的底面周长是37.68厘米,体 6.一个圆锥形沙堆的体积是47.1 积是565.2立方厘米,高是多少厘米? 立方米,底面直径是6米,?高
是多少米
7.一个圆柱形水池的侧面积是94.2平方米,8.一个圆锥形沙堆,底面直径
底面半径是3米,这个水池能装水多少立 是8米,高 是3米。如果每方米?
立方米沙重1.7吨,这堆沙重
多少吨?(得数保留整数)
9.一个圆柱形油桶,从里面量,底面周长是 10.一个圆锥形麦堆,底面周。62.8厘米,高是30厘米。如果1升柴油重 长是25.12米,高是3米 把这 0.85千克,这个油桶可以装柴油多少千克? 些小麦装入一个底面直径是4
米的圆柱形粮囤 内,正好装满,这个粮囤的高是多少米?
11.一段钢管长60厘米,内直径是8厘米,12.一根圆柱形钢管,长3米,外直径是10厘米。这段钢管的体积是 横截面的外直径是20厘米,管
多少立方厘米? 壁厚2厘米。如果每立方厘米钢
重7.8克,这根钢管重多少千克?
13.一个圆柱形的玻璃杯,底面直径为20厘 14.有一块长方体钢坯,长15.7 米,水深24厘米,当放入一个底面直径是
厘米,宽10厘米,高5厘米,6厘米的圆锥形铁块后,水深24.6厘米。
把它熔铸成一个底面周长是31.4 圆锥形铁块的高是多少厘米?
厘米的圆锥形零件,圆锥形零
件的高是多少厘米?
15.把一根长5分米的圆柱形木料沿着与底面 16.把一根长5分米的圆柱形木料沿底面
平行的方向锯成两段后,表面积增加了200 直径锯成两半后,表面积增加了200 平方分米。这根木料的体积是多少立方分米?
【圆柱与圆锥的整理和复习教案】推荐阅读:
圆柱和圆锥分类练习05-28
六年级奥数圆柱和圆锥06-28
认识圆柱和圆锥教学设计06-15
六年级数学下册《圆锥的体积》教案10-09
圆柱的认识教案06-27
《圆柱的侧面积》教案07-23
圆柱的认识第二教案09-27
小学六年级数学教案《圆柱的表面积》07-23
圆柱的体积(人教新课标六年级教案设计)09-14
圆锥体积的教学反思10-25