六年级数学圆柱、圆锥和球

2025-01-12 版权声明 我要投稿

六年级数学圆柱、圆锥和球(共10篇)

六年级数学圆柱、圆锥和球 篇1

教学内容:圆柱的认识。教学目标:

1.使学生认识圆柱,掌握圆柱的特征。

2.使学生认识圆柱的底面、侧面和高。教学过程:

1.复习引新。

我们以前学过的正方体、长方体都是由平面围成的立体图形。今天,我们再来研究一种新的立体图形——圆柱。

2.学习新知。

教师可以出示一些圆柱的实物,也可以让学生把自己准备的圆柱实物拿出来一起来研究。

教师可以提出以下的问题:

你还能举出生活中圆柱的例子吗?

[订正:饭店门前的柱子、灯管、药瓶、易拉罐、铅笔等。]

同学们说的这些物体的形状都是圆柱体,简称圆柱(本书所讲的圆柱都是直圆柱)。

教师拿出一个形状是圆柱的物体,请学生观察。

请同学们思考下面的问题:

(1)圆柱的上、下两个面是什么图形?

(2)用手摸一摸圆柱周围的面,你发现了什么?

(3)圆柱两个底面之间的距离叫什么?

[订正:(1)圆柱的上、下两个面叫做底面。它们是完全相同的两个圆。

(2)圆柱有一个曲面,叫做侧面。

(3)圆柱两个底面之间的距离叫做高。]

教学圆柱的认识时,要让学生拿着圆柱形物体观察和摆弄,可以通过看一看,摸一摸等直观方法,同长方体的表面进行比较,使学生认识到两者之间的差别,从而认识圆柱的侧面是曲面。

这时,教师可以让学生拿出剪子,和教师一起来把罐头盒的商标纸像下图所示那样,沿着它的一条高剪开,再打开,看看商标纸是什么形状。

并提问:你发现了什么?

[订正:让学生发现到展开的商标纸是一个长方形。圆柱的侧面是一个曲面,可以展开成一个长方形或是一个正方形平面。]

让学生观察:将这张长方形的纸包在圆柱的侧面上。

并提问:

(1)长方形的长与圆柱底面的周长有什么关系?

(2)长方形的宽与圆柱的高有什么关系?

让学生分析、比较,概括出:长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高。

3.巩固练习。

(1)说一说,你见到过哪些物体是圆柱形的。

[订正:药盒、纸筒、铁棍、水管、烟囱等。]

(2)指出下图中哪个是圆柱体。

[订正:①不是 ②是 ③不是 ④是]

4.综合提高性练习。(供学有余力的学生完成)

按照课本第147页的图样,做一个圆柱体,再量出它的底面直径和高各是多少厘米。

5.质疑。

今天我们学习了什么?圆柱侧面展开是什么图形?

6.布置作业。(略)

课后反思:本节课中的练习有利于培养学生的创新精神和实践能力。

圆柱的表面积

教学内容

教材33页、34页例

1、例

2、例3及做一做,练习七第2-5题。素质教育目标

(一)知识教学点

1.理解圆柱的侧面积和表面积的含义。

2.掌握圆柱侧面积和表面积的计算方法。

3.会正确计算圆柱的侧面积和表面积。

(二)能力训练点

能灵活运用求表面积、侧面积的有关知识解决一些实际问题。教学重点

理解求表面积、侧面积的计算方法,并能正确进行计算。教学难点

能灵活运用表面积、侧面积的有关知识解决实际问题。教具学具准备

1.教师、学生每人用硬纸做一个圆柱体模型。

2.投影片。教学步骤

一、铺垫孕伏

1.口答下列各题(只列式不计算)。

(1)圆的半径是5厘米,周长是多少?面积是多少?

(2)圆的直径是3分米,周长是多少?面积是多少?

2.长方形的面积计算公式是什么?

3.教师出示圆柱体模型,指同学说出它有什么特征?

二、探究新知

1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。

(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。

(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。

2.教学例1

(1)出示例1,指同学读题,找出已知条件和所求问题。

学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。

板书:3.14×0.5×1.8

=1.75×1.8

≈2.83(平方米)

答:它的侧面积约是2.83平方米。

(2)反馈练习:完成做一做41页第1题。

学生独立解答,然后订正。

3.教学圆柱的表面积

(1)教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。

(2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。

4.教学例2

(1)投影片出示例题

2、圆柱的几何图形和表面积的展图。

(2)指同学读题,找出已知条件和所求问题。

(3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。

(4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。

教师巡视指导,注意检查学生的计算结果和计量单位是否正确。

做完后订正,订正时让学生说出有关的计算公式。

(5)反馈练习:完成做一做第2题。

指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。

5.教学例3

(1)出示例3,指名读题,找出已知条件和所求问题。

(2)教师提示:解答这道题应注意什么?

启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。

(3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。

(4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。

(5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。

(6)“四舍五入”法与“进一法”有什么不同。

通过比较,使学生明白:“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去。而进一法也是看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一。

6.阅读课本33页、34页。

三、巩固发展

1.完成练习七第2题。

指两名学生板演,教师巡视指导,然后订正。

2.完成练习七第3题的前两题。

学生在练习本上做,教师巡视指导,然后订正。

3.完成练习七第5题。

(1)每组一个茶叶筒,学生分组进行测量。

(2)教师巡视,指导学生测量的方法。

(3)学生独立解答。(让学生分别计算出有盖的和无盖的茶叶筒的表面积)然后订正。

四、全课小结

教师:这节课我们所研究的例

1、例

2、例3都是有关圆柱表面积的计算问题。(教师板书课题:圆柱的表面积)圆柱的表面积在实际应用时要注意什么呢?

教师引导学生归纳出:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求一个侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。

五、布置作业练习七第3题的第3小题、第4题。

课后反思:本课时的教学通过师生的共同参与,让学生体验了数学的探索性和挑战性。

圆柱的体积

教学内容

教材36、37页例

4、例5及做一做,练习八第1、2题。素质教育目标

(一)知识教学点

1.理解圆柱体体积公式的推导过程,掌握计算公式。

2.会运用公式计算圆柱的体积。

(二)能力训练点

1.能运用圆柱体的体积公式解决一些实际问题。

2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

(三)德育渗透点

通过把圆柱体切割后,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。教学重点

圆柱体体积的计算。教学难点

理解圆柱体体积公式的推导过程。教具学具准备

1.推导圆柱体体积的圆柱体教具一套,学生学具每人一套。

2.投影片、电脑软件。教学步骤

一、铺垫孕伏

1.提问:

(1)什么叫体积?怎样求长方体的体积?

(2)圆的面积公式是什么?

(3)圆的面积公式是怎样推导的?

2.导入:

同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的知识长方形来解决的。那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题。(板书:圆柱的体积)

二、探究新知

1.教学圆柱体的体积公式

(1)教师演示:

同学们看老师手中的这个圆柱,我先把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体。

下面请同学们拿出自己的学具动手拼一拼,看拼起来是什么形体。

(2)学生操作(教师要注意巡视指导)

(3)启发学生观察、思考、讨论:

①圆柱体切开后可以拼成一个什么形体?(近似的长方体)

②通过刚才的实验你发现了什么?(教师要注意启发、引导)

a.拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了。

b.拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化。

c.近似长方体的高就是圆柱的高,没有变化。

(4)教师演示,学生观察。

同学们,刚才我们把圆柱的底面平均分成了16份,切割后再拼起来,拼成了一个近似的长方体,下面请同学们仔细观察:(教师边利用电脑出示图形边提问)

①如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?

②如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?

③如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?

(利用电脑使学生直观地认识到,分的份数越多,拼起来就越近似于长方体)

(5)启发学生说出通过以上的观察,发现了什么?

①平均分的份数越多,拼起来的形体越近似于长方体。

②平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

(学生回答时,教师要注意启发、点拨。如果学生回答有困难,可把演示的三个近似的长方体,放在同一画面,让学生观察比较)

(6)启发学生思考回答:

为什么要把圆柱体拼成近似的长方体?你从中发现了什么?

①圆柱体与近似的长方体,形状不同,体积相同。

②我们学过长方体的体积公式,如果把圆柱体转化成近似的长方体,圆柱体的体积就可以计算了。

(7)推导圆柱的体积公式:

①学生分组讨论:圆柱体的体积怎样计算?

②学生汇报讨论结果,并说明理由。

因为长方体的体积等于底面积乘以高。(板书:长方体的体积=底

面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积

↓),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘以高。(板书:=、×)

③用字母表示圆柱的体积公式。(板书:V=sh)

④启发学生回答:求圆柱的体积必须具备哪两个条件?

(8)反馈练习:

口答,只列式不计算:

①底面积是10,高是2,体积是()

②底面积是3,高是4,体积是()

2.教学例4。

(1)出示例4。

(2)学生独立进行计算。(教师巡视,注意发现学生计算中存在的问题)

(3)订正。(如发现有50×2.1的,让学生板演讲解,使学生自己明白错误的原因,从而加深印象。如果发现计算没有出现错误,也可让学生板演,并正确地表述)

(4)反馈练习:完成38页做一做第1题。

一名学生在小黑板上做,其余学生在练习本上做,然后订正。

3.启发学生思考回答:计算圆柱的体积,还可能有哪些情况?(学生回答时,要让学生说出计算思路)

(1)已知圆柱的底面半径和高,求体积。

(2)已知圆柱的底面直径和高,求体积。

(3)已知圆柱的底面周长和高,求体积。

反馈练习:完成38页做一做第2题,学生口述解题思路,不计算。

4.教学例5

(1)出示例5。

(2)引导学生分析题意:

①这道题已知什么?求什么?

②要求水桶的容积,应先求什么?再求什么?

(3)求水桶的底面积:(学生在练习本上解答,然后订正)

板书:(1)水桶的底面积:

(4)求水桶的容积:(让学生填在书上的空白处,然后订正)

板书:(2)水桶的容积:

3.14×25

=7850(立方厘米)

≈7.9(立方分米)

答:这个水桶的容积大约是7.9立方分米。

5.阅读课本36页、37页。

三、巩固发展

1.完成练习八第1题。

投影出示题目内容,学生口答。

2.完成练习八第2题的第1小题。

学生独立解答,集体订正,并说解题思路。

3.一个圆柱形水池,半径是10米,深1.5米。这个水池占地面积是多少?水池的容积是多少立方米?

学生独立解答,然后订正。

四、全课总结

通过本节课的学习,你有什么收获?(启发学生从两个方面谈:圆柱体体积公式的推导方法和公式的应用)

五、布置作业 练习八第二题的后两个小题。

课后反思:本节课进一步发展了学生的空间观念,而且还进一步提高了学生学习数学的兴趣。

圆 锥

教学内容:认识圆锥 圆锥的体积。教学目标:

1.使学生认识圆锥,掌握它的特征;认识圆锥的底面和高。

2.使学生理解并掌握圆锥体体积的计算公式,并能正确计算圆锥体体积。

3.通过操作、观察,发展学生的空间思维能力,培养学生的观察能力,学会解决一些与计算圆锥形物体的体积有关的实际问题。教学过程:

1.复习旧知识,引出新问题。

(1)出示圆柱体。

这是什么物体?它的体积怎样计算?

(2)投影出示圆锥体。(先将第一组和第二组图重合在一起,然后再抽拉出第一组成为透视图。)

上面这些物体的形状都是圆锥体,简称圆锥。

(3)出示圆锥模型。

请同学们观察圆锥有哪些特点。

圆锥的底面是个圆,圆锥的侧面是个圆曲面。从圆锥的顶点到底面圆心的距离是圆锥的高(用h表示)。

请同学们阅读课本,自学测量圆锥高的方法。再按照书上介绍的步骤将圆锥模型的侧面展开,就能得到一个扇形(如下图)。

2.指导探索圆锥体积计算公式。

刚才同学们认识了圆锥体,圆锥体的体积是多少?下面我们就共同研究一下圆锥体体积的计算方法。

引导学生把圆锥体同与它等底等高圆柱体联系起来,教给操作方法。

让学生拿出已经准备好的圆柱体、圆锥体、沙土,请同学们利用手中的学具探讨圆锥体积计算方法,看圆柱和圆锥有什么关系。

圆柱和圆锥同底等高,将空圆锥体装满沙子,向空圆柱体倒了三次正好装满。圆柱体体积是和它同底等高圆锥体体积的3倍。也可以说,圆锥体积

引导学生观察、比较、讨论。

(1)圆锥体和圆柱体的高相等、底相同,它们的体积有什么关系?

学生经过认真观察、讨论,师生归纳:

圆柱的体积=底面积×高 V=Sh

通过学具的操作、演示,注意渗透联系的思维方法和同底等高的思想,并通过观察、比较,找到圆锥和圆柱之间的联系,从而使学生在参与中获得知识。

3.巩固知识,运用公式。

(1)教师出示刚才演示过的学具圆锥体,提问:要求这个圆锥体的体积,必须知道什么条件?

[订正:圆锥的底面积和高,或圆锥底面的半径和高。]

请学生到前面量出圆锥教具的底面半径和高,然后让全班学生在练习本上求出该圆锥体的体积。

(2)一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

=76(立方厘米)

答:这个零件的体积是76立方厘米。]

(3)一个圆锥的底面面积是 25平方分米,高是 9分米,它的体积是多少?

答:它的体积是75立方分米。]

(4)一个圆锥的底面直径是20厘米,高是9厘米,体积是多少?

答:它的体积是942立方厘米。]

4.综合提高性练习。(供学有余力的学生完成)

自己动手做一个圆锥,你能想办法算出它的体积吗?说说侧量和计算的方法。

[订正:通常先用软尺量出底面圆的周长,再求出底面半径和面积,然后用学过的方法测量高(或其他可行的方法)。这样就可以求出圆锥的体积。]

5.质疑。

今天我们学习了什么?说一说,如何计算出圆锥的体积?

6.布置作业。(略)

课后反思:学生解决实际问题的能力有所提高。

圆锥的体积

教学内容

教材42-43页 例2及做一做,练习九3-5题。素质教育目标

(一)知识教学点

1.使学生理解求圆锥体积的计算公式。

2.会运用公式计算圆锥的体积。

(二)能力训练点

1.能运用圆锥体积公式解决一些实际问题。

2.通过圆锥体积公式的推导实验,增强学生的操作能力和观察能力。

(三)德育渗透点

通过圆锥体积公式推导的教学,引导学生探索知识的内在联系,渗透转化思想。教学重点

圆锥体体积计算公式的推导过程。教学难点

正确理解圆锥体积计算公式。教具学具准备

1.每组学生准备两个大小不等的圆柱体容器和两个大小不等的圆锥体容器(其中有一个圆柱体容器和圆锥体容器等底等高)。

2.投影仪、投影片 教学步骤

一、铺垫孕伏

1.提问:

(1)圆柱的体积公式是什么?

(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。

2.导入:

同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)

二、探究新知

1.指导探究圆锥体积的计算公式。

(1)教师谈话:

下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒入圆锥体(或圆柱体)容器里。倒的时候要注意,把两个容器比一比、量一量、看它们之间有什么关系,并想一想,通过实验你发现了什么?

(2)学生分组实验:(教师要注意指导学生实验操作中的技巧问题)

(3)学生汇报实验结果:(边演示边说明)

①圆柱和圆锥的底相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。

②圆柱和圆锥的底不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。

③圆柱和圆锥的底相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。

„„

(4)最后引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍,或圆锥的体积是和它等底等高圆柱体积的1/3。

(5)引导学生推导圆锥的体积公式:

板书:

(6)启发学生思考:要求圆锥的体积,必须知道哪两个条件?

(7)反馈练习:

口答,只列式不计算:

圆锥的底面积是5,高是3,体积是()

圆锥的底面积是10,高是9,体积是()

2.教学例1

(1)投影出示例1。

(2)学生独立计算,并把计算结果填在课本上,然后订正。

板书:例1

答:这个零件的体积是76立方厘米。

(3)反馈练习:完成课本44页做一做第1题。

学生在练习本上做,集体订正。

3.启发学生思考讨论:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)(学生回答时,要让学生说出计算思路)

(1)已知圆锥的底面半径和高,求体积。

(2)已知圆锥的底面直径和高,求体积。

(3)已知圆锥的底面周长和高,求体积。

4.反馈练习:完成课本44页做一做第2题。

一名学生板演,其他学生在练习本上做,订正时让学生说明解题思路。

5.教学例2

(1)投影出示例2,引导学生分析题意:

①这道题已知什么?求什么?

②要求小麦的重量,必须先求什么?

③要求小麦的体积应怎么办?

④这道题应先求什么?再求什么?最后求什么?

(2)学生独立解答,然后把计算的步骤填写在课本50页例2的空白处,最后集体订正。

板书:(1)麦堆底面积:

=3.14×4

=12.56(平方米)

(2)麦堆的体积:

12.56×1.=15.072(立方米)

(3)小麦的重量:

735×15.072

=11077.92

≈11078(千克)

答:这堆小麦大约重11078千克。

(3)教师说明:小麦每立方米的重量随着含水量的大小而不同,要经过测量才能确定,735千克并不是一个固定的常数。

(4)教学如何测量麦堆的底面直径和高。

①启发学生根据自己的生活经验来讨论、谈想法。

②教师补充介绍。

a.测量麦堆的底面直径可以用绳子在麦堆底部圆周围圈一圈,量得麦堆的周长,再算直径。也可用两根竹竿平行地放在麦堆的两侧,量得两根竹竿的距离,就是麦堆的直径。

b.测量麦堆的高,可用两根竹竿在麦堆旁边组成两个直角后量得。(投影出示示意图)

6.阅读课本44-45页。

三、巩固发展

1.完成练习九第3题。

指定3名同学做在小黑板上,其他同学在练习本上做,做完后订正。

2.完成练习九第5题。

投影出示题目,学生独立填完,然后订正。订正时让学生讲出相对应的计算公式。

3.判断对错,并说明理由。

(1)圆柱的体积相当于圆锥体积的3倍。()

(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2∶1。()

(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米。()

四、全课小结

通过本节的学习,你学到了什么知识?(引导学生从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

五、布置作业练习九第4题。

课后小记:在本节课的课堂教学中让学生合作探究,发现规律,激发了学生的学习兴趣。不足之处是学生在计算中马虎现象太严重。

球(选学内容)

教学内容:教科书第46~47页的内容。

教具准备:教师演示用的球模型一个,最好是空心的,打开后将一个半球的平面用纸粘牢,并用两条线段表示球的两条直径相交于一点上(如右图)。也可以用其他可以切开的球形物体代替,如把一个近似球形的萝卜削成球状。地球仪一个,米尺一把,切刀一把,夹板两块;每个学生准备一个球形物体,及一个可以切开的球形物体,切刀一把。

教学过程:

一、复习

1.复习圆的特征。

出示圆的几何图形。然后向学生提问:

(1)圆的中心叫什么?

(2)指名画出圆的半径,用字母表示。

(3)指名画出圆的直径,用字母表示。

(4)圆的直径与半径有什么关系?

学生回答后教师板书:

直径=半径的2倍

d=2r

2.指名说出下列各立体图形的名称以及它们的特征。(着重说出每个立体图形是由几个什么样的图形围成的。)

二、新课

1.导入课题。

教师说明:我们已经认识了长方体、正方体、圆柱和圆锥这几种立体图形,了解了它们的特征。今天我们再来认识一种立体图形——球。

板书课题:球。

2.研究球的特征。

教师逐个出示乒乓球、皮球、排球、足球、滚珠等实物,让学生观察它们的形状有什么共同点。然后,指出它们都是球。现在我们来研究球的特点。

(1)认识球面。

请学生把自己搜集的球拿出来,放在手心上,用另一只手摸一摸。教师提问:你有什么感觉吗?它与长方体、正方体、圆柱、圆锥的区别在什么地方?

在学生讨论的基础上,教师说明:球的表面不像长方体和正方体那样有几个平面,也不像圆柱和圆锥那样有平面也有曲面,而是只有一个曲面,这个曲面叫做球面(板书:球面)。

(2)通过实验认识球的重要特征。

教师说明:除去球面不同于我们学过的其他立体图形以外,球还有什么更重要的特征吗?下面我们一起来做个实验,看谁能有所发现。

①在两块互相平行的木板中间夹一个大球。(见教科书第53页图)请一名学生将米尺的零刻度对准一块夹板的内边缘,看另一块夹板的内边缘对准的是哪一个刻度,将这个刻度报告给大家。

②教师一边轻轻转动夹板中间的球(注意不要碰撞夹板),一边请学生注意观察米尺的刻度,让刚才看刻度的学生再次向大家报告米尺的刻度。

③提问:你发现两块木板间的距离有什么变化吗?学生回答后,教师继续提问:“你知道这是什么原因吗?”(引导学生回答,球面和两块木板相交的两个点之间的距离总是相等的。)

(3)认识球心、球的半径和直径。

①教师仿照教科书在黑板上画出球的直观图。指出:“球和圆类似,也有一个中心。”然后在直观图的中心画一个点,说明它叫做球心。(板书:球心)并用字母“O”表示。教师把球的模型平均分成两半(或把削成球状的萝卜平均切成两半,指出球心的位置)。

②两次出示半球模型,指出球的半径,然后指名学生用米尺量一量半径的长度,提问:“想一想,球有多少条半径?”

③教师边在直观图上描画,边口述:“通过球心,并且两端都在球面上的线段,叫做球的直径。”让学生在半球模型上指出哪些是直径。

提问:球的直径有多少条?

指名测量球的直径的长度,然后提问:

“球的直径长度都相等吗?”

“球的直径长度和半径长度有什么关系?”

引导学生回答球的直径长度等于半径长度的2倍。教师将复习圆的知识时板书的“直径=半径的2倍”及“d=2r”下面各画一条红线,强调球的直径与半径的关系和圆的直径与半径的关系相同。

提问学生:你能说明刚才转动木板中间的球,两块木板间的距离没有变化的原因吗?引导学生回答:因为两块互相平行的木板间夹的球和木板相交的两点之间的长度都是通过球心的直径的长度,这些直径的长度都相等,所以在夹板中转动球时,不会改变两块夹板中间的距离。

④研究把球切开的截面形状和大小。

教师举起一个削成球状的萝卜,用切刀随便切一刀,将截面展示给学生。提问:把一个球形物体切开,切开的面是什么形状?

在学生回答后,教师再任意切一刀(但是不与先切的截面相交),又出现了圆形截面,再给学生看,提问:

想一想:怎样切得到的圆的面积最大?用你自己的球形物体试试看。

学生操作,教师注意巡视,了解情况,请一名操作正确的学生汇报自己的实验结果,阐述观点,教师同时进行演示。得出:通过球心切开时,得到的圆的面积最大。

3.介绍地球仪。

(1)教师说明我们居住的地球,它的形状就是一个近似的球。

(2)观察地球仪。

教师出示大地球仪,学生如果有地球仪也可以拿出。指出地球仪上哪一条线是赤道(可以把地球仪的赤道用红纸条围出)。赤道绕地球一周是一个近似的圆。

(3)计算赤道周长。

教师说明赤道是绕地球一周所围成的圆,半径大约是6400千米。让学生独立在练习本上计算出赤道一周大约长多少千米,然后集体订正。

三、小结和练习

1.提问:

“今天我们学习了什么新知识?”

“球有什么特点?什么是球的半径?什么是球的直径?”

“说说你见到过的球形物体的名称。”

2.做第47页“做一做”第2题。

先让学生思考如何解答,再进行实物操作,看看自己想出的答案是否正确。

六年级数学圆柱、圆锥和球 篇2

习》教案

教学要求:通过整理和复习,掌握圆柱和圆锥的特点,求圆柱圆锥体积的计算公式。能区别圆柱、圆锥,正确计算圆柱圆锥的体积,建立空间观念。

教学重点:使学生了解圆柱圆锥的特点,求圆柱圆锥的体积。

教学难点:形成表象,建立空间观念。

教学过程:

整理

圆柱

圆柱的特点

圆柱的各部分名称

圆柱表面积

圆柱的体积

V=Sh

圆锥

圆锥的特点

圆锥的各部分名称

圆锥的体积

V=-1/3Sh

随堂练习、第48页1-3圆柱内容

填书。

练习十第1、2题,第3体求圆柱的体积。

2、第48页4-6题圆锥的内容,填书。

练习十第3题求圆锥的体积。

板书设计:

整理和复习

特征

圆柱

各部分名称

表面积=两个底面积=侧面积

体积=V=Sh

特征

圆锥

各部分名称

六年级数学圆柱、圆锥和球 篇3

(内容:圆柱、圆锥表面积和体积

时间80分钟

分值100分)

一、填一填。(每空2分,共26分)

1、一个长方形长4cm,宽3cm,以这个长方形的长边为轴旋转一周,得到的立体图形是(),这个立体图形的表面积是()cm2,体积是()cm3.2、一个圆锥的底面周长是12.56cm,高6cm,它的体积是()cm3。

3、一个圆柱的侧面积是50.24cm2,高2cm,它的底面积是(),体积是()。

4、一个圆柱形油桶,从里面量底面半径4dm,高1.5m,这个油桶能盛()

升油。

5、如下图,圆柱形烧杯与圆锥形杯子的底面积相等,将圆柱形烧杯装满水后倒

入圆锥形杯子,能装()杯。

6、把一个棱长6cm的正方体木块加工成一个最大的圆锥,这个圆锥的体积是

()cm3。

7、一种圆柱形的罐头盒,它的底面半径为6cm,高15cm,侧面有一圈商标纸,商标纸的面积大约是()cm。

8、把一个圆柱形的木块沿底面半径竖直切成两部分,表面积比原来增加了600cm2,已知圆柱形木料的底面直径为10cm,这根木料的体积是()cm3。

9、一个圆柱与一个圆锥的底面积相等,体积的比是2:3,已知圆柱高12cm,圆锥高()cm。

10、把一个圆柱的底面平均分成若干个扇形,然后沿高切口,拼成一个长31.4cm、宽10cm、高20cm的近似长方体,原来圆柱体的体积是()cm3。

二、判一判。(每小题1分,共6分)

1、把一个圆柱形钢材截成同样的两段,体积与表面积都不变。

()

12、圆锥的体积是圆柱体积的。()

33、一个圆柱的侧面展开图是一个正方形,这个圆柱的高是底面直径的π倍。

()

14、圆柱的底面半径扩大到原来的2倍,高缩小到原来的,圆柱的体积不变。()

5、求长方体、正方体和圆柱的体积时都可以利用公式V=Sh进行计算。()

6、一个圆柱体与一个圆锥的体积和高分别相等,那么圆锥的底面积与圆柱的底面积比是3:1。

()

三、选一选。(每小题2分,共16分)

1、一个圆柱形水桶能装30L水,说明这个水桶的()是30L。

A、表面积

B、体积

C、容积

2、以下图三角形的短边为轴旋转一周得到的几何体的体积是()cm3。

A、150.72

B、28.26

C、50.24

3、甲、乙二人分别用两张完全一样的长方形纸片围一个尽可能大的圆柱形纸筒,甲以纸片的长作为纸筒的高,乙以纸片的宽作为纸筒的高,二人围成的圆柱形纸筒侧面积比较,()

A、甲围成的大

B、一样大

C、乙围成的大

4、一个圆柱的侧面沿高展开是一个边长12.56cm的正方形,这个圆柱体的体积是()cm3。

A、12.56

B、157.7536

C、8π

5、一个圆柱与一个圆锥的底面积相等,圆柱的高是圆锥高的2倍,圆锥的体积是圆柱体积的()。

A、111 B、C、6236、一个圆柱与一个圆锥等底等高,它们的体积之差为6.28cm3,那么它们的体

积之和是()cm3。

A、9.42

B、12.56

C、15.7

7、下面的圆柱与圆锥,体积相比()。

A、圆柱>圆锥

B、圆柱=圆锥

C、圆柱<圆锥

8、把一段圆钢削成一个最大的圆锥,削去的部分重24千克,整段圆钢重()千克。

A、36

B、24

C、12

四、想一想、连一连。(5分)

五、按要求计算。(16分)

1、计算下列图形的表面积。(8分)

2、计算下列图形的体积。(8分)

六、解决问题。(每题5分,最后一题6分,共31分)

1、压路机的前轮是一个圆柱,轮宽1.5m,直径1.2m,前轮每分钟可转动12周,每分钟压出路面的面积是多少平方米?

2、一个人一天的正常饮水量是2L,小华用的事一个底面半径3cm、高8cm的圆柱形水杯,他每天用这个水杯喝几杯水才能满足身体的需要?

3、运动会三级跳远场地的沙坑是长方体,长8m,宽2.8m,深0.5m,工人运来的沙子堆成4个相同的圆锥,每个沙堆的底面周长为9.42m,高1.5m,这些沙子能填满沙坑吗?

4、有一个圆柱形玻璃缸,底面直径2dm,未盛满水,放入一个铁球,当铁球完全沉入水中

之后,水面升高3cm,求铁球的体积。

5、一个酸奶瓶(如图),它的瓶身呈圆柱形(不包括瓶颈),容积是32.4cm3。当瓶子正放 时,瓶内酸奶高为8cm,瓶子倒放时,空余部分高为2cm。请你算一算,瓶内酸奶体 积是多少立方厘米?

6、把一个圆柱沿底面直径竖直切成四块(如图一),表面积增加了48cm2;平行于底面切成三块(如图二),表面积增加了50.24cm2;削成一个最大的圆锥(如图三),体积减少了多少立方厘米?

参考答案:

一、1、圆柱

131.88

113.04 2、25.12 3、50.24cm100.48cm3 4、753.6 5、9 6、56.52 7、565.2 8、2355 9、54 10、6280

二、××√×√√

三、C

C

B

B

A

B

C

A

四、略

五、1、182.12cm6123cm2

2、(1)2198m(2)1130.4cm3

六、1、67.824m2 2、9杯

3、沙坑容积=8×2.8×0.5=11.2(m3)

沙子体积=3.14×(9.42÷3.14÷2)2×1.5×1/3×4=14.13(m3)

14.13m3>11.2m3,能填满。4、2dm=20cm

3.14×(20÷2)2×3=942(cm3)5、25.92cm3

6、分析:先根据图二求出圆柱的底面积和底面直径;再根据图一的切法求出圆柱的高。求把圆柱削成一个最大的圆锥后体积减小了多少立方厘米,就是求圆柱体积的2/3是多少,先求出圆柱的体积,再乘2/3即可。解答:圆柱的底面积:50.24÷[(3-1)×2]=12.56(cm2)

圆柱的直径:12.56÷3.14=4(cm2),即r2=4cm2,推得d=4cm。

圆柱的高:48÷4÷4=3(cm)

六年级数学圆柱、圆锥和球 篇4

各位评委老师好,我是 号参赛者,我说课的内容是义务教育标准实验教科书苏教版六年级下册18-19页的内容,下面我将从教材,教法学法,教学过程和板书设计四个方面进行说课,首先我说一下教材分析:本节课是在学生已经探索并掌握长方形,正方形和圆等一些常见的平面图形的特征,以及长方体正方体的特征,并在学生已经直观认识圆柱的基础上,引导学生进一步探索圆柱和圆锥的特征,本节课拓展了学生的学习空间,为以后学习其他立体图形打好基础。

根据新课标要求,教材特点和学生认知规律我制定了以下三个教学目标: 1.知识和技能:使学生在观察、操作、交流等活动中感知并发现圆柱和圆锥的特征,知道圆柱和圆锥的底面、侧面和高。

2.过程与方法:使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。

3.情感态度和价值观:使学生进一步体验立体图形与生活的联系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。

基于以上分析,可以看出本节课的教学重点是在充分感知的基础上,探索圆柱和圆锥的特征,教学难点是认识和理解圆柱和圆锥的高。

现代教育心理学认为,小学生的思维发展是从具体形象向抽象思维过渡的。因此,按照学生的认知规律,按照从“具体感知——形成表象——进行抽象”的过程,在教学中,我准备利用直观教具,采用引导探究法、观察演示法、讨论法等方式让学生能够多种感官参与学习,自主构建知识。

在学法指导上,我准备让学生采用:动手操作法,观察发现法,合作交流法、自主探究法的方法进行学习。

为了完成教学目标,突破教学重点难点,根据学生的实际情况,我准备从创设情境导入新课,主动参与探索新知,练习巩固开发智能,自我总结深化新知四个方面进行教学

一,创设情境,导入新课

出示一组相关的几何体的实物图,其中有长方体正方体形状的,也有圆柱和圆锥形状的。问:这些物体形状各式各样,其中哪些我们比较熟悉?

根据学生的回答,教师小结:有些是我们已认识的长方体正方体(隐去),有些就是我们今天要认识的新的立体图形——圆柱和圆锥。板书课题(小学生的心理特征很容易理解和接受直观、具体的感性材料,因此在这个环节中为学生提供丰富的素材,调动起学生自主探索解决问题的热情,为学生理解、总结概念奠定基础。)

二,主动参与,探索新知 我分两部分进行教学 第一部分:认识圆柱特征 1观察物体,引导发现

认识圆柱时,由于学生对圆柱已有了一些直观的认识,因此,可以先让学生从课前准备好的物体中找出圆柱,再让学生举例说说生活中还有那些物体的形状是圆柱的。这样学生能从整体上感知圆柱,在交流中进一步积累关于圆柱的感性认识。

2动手操作,得出特征

让同学们进一步仔细观察这些圆柱,摸一摸,看一看,比一比,有什么发现?先让学生在小组里说一说,再组织全班交流,启发学生用自己的语言描述圆柱的特征。

数学新课标指出:有效的数学学习活动不能单纯依赖模仿和记忆,动手操作,动手实践,自主探索和合作交流才是学习数学的重要方式,因此本环节让学生经历独立观察,思考、小组互动、合作交流的过程,通过对模型的分析,形成对概念的初步理解。

3教师总结,理解概念

出示圆柱的直观图,介绍圆柱的底面,侧面和高。在认识底面和侧面时,可以用多媒体展示圆柱展开的过程,学生在下面用笔将两个底描一下,比较一下大小。在认识高时可以想象牙签盒帮助学生理解(圆锥同),发现每条高都相等,因此我们可以用侧面上的一条来表示高。

本环节通过将概念形象具体化,使同学们容易理解,有助于概念的掌握。第二部分:认识圆锥的特征

可以先出示圆锥的物体,向同学们说明它们的形状是圆锥,使学生对圆锥有一个直观的认识。在此基础上可以按照认识圆柱的方法组织学生自主探索圆锥的特征,认识圆锥的直观图以及底面,侧面和高的含义。三,练习巩固,开发技能

1、讨论“练一练”。

⑴让学生各自从教材提供的图片中找出圆柱形的和圆锥形的。⑵交流说一说挑选的理由和不挑选的理由。

2、做练习五第2题。

⑴引导学生从正面、上面、侧面观察圆柱和圆锥,看分别看到的是什么形状? ⑵在书中连线。四,自我总结,开发新知

这节课你获得了哪些信息?掌握了什么本领?

引导学生从知识、能力、感受三个角度进行总结。最后老师在此基础上进行总结和提升,让每个学生都能自主的从这三个方面进行总结和梳理,养成归纳、自主提升的好习惯。最后布置自主练习3、4题作为今天的家庭作业,让学生及时的巩固所学的知识。最后是板书设计:

六年级数学圆柱、圆锥和球 篇5

苏教版六年级下册数学试题

圆柱和圆锥单元复习题(一)

一、基础巩固

1.填一填。

(1)一个棱长为10厘米的正方体与一个高是20厘米的圆柱体底面积相等,圆柱的体积是()立方厘米。

(2)一个圆柱的底面半径是4厘米,高是10厘米,这个圆柱的侧面积是()平方厘米,表面积是()平方厘米,体积是()立方厘米。

(3)一个圆柱的高减少2厘米,表面积就减少18.84平方厘米。这个圆柱的底面积是()平方厘米。

(4)一个圆柱和一个圆锥的等底等体积。如果圆锥的高是6厘米,那么圆柱的高是()厘米;如果圆柱的高是6厘米,那么圆锥的高是()厘米。

(5)一个圆柱形铁皮通风管,横截面直径是10厘米,每节长1.2米。做100节这样的通风管,则至少需要()平方米的铁皮。

(6)把一个圆柱的侧面展开,得到一个正方形,圆柱的高是62.8厘米,圆柱的底面积是()平方厘米。

(7)一个圆锥的底面直径与高相等,它的底面周长是6.28分米。这个圆锥的体积是()立方分米。

(8)棱长是9分米的正方体木料,如果削成一个最大的圆锥,圆锥的体积是()立方分米。

2.选一选。

(1)求一个圆柱形水桶能装多少水,就是求这个水桶的()。

A.侧面积

B.表面积

C.体积

D.容积

(2)一个长方体和一个圆柱的底面周长和高都相等。它们的体积相比()。

A.一样大

B.长方体大

C.圆柱体积大

D.无法比较

3.压路机的滚筒是一个圆柱。滚筒的直径是1.2米,长是1.5米。如果滚筒向前滚动一周,那么所压路面的面积是多少?

4.一个圆锥形小麦堆,底面周长是12.56米,高是1.2米。如果每立方米小麦重0.7吨,这堆小麦重多少吨?(得数保留两位小数)

5.一个近似于圆锥形的旅游帐篷,它的底面半径是4米,高3米。

(1)按每人最低2平方米的活动面积计算,每顶账篷大约能住几人?

(2)每项账篷内的空间有多大?

6.一块圆柱形橡皮泥,底面积是15平方米,高是6厘米,把它捏成底面积是5平方厘米的圆锥形,高是多少厘米?

7.一个铺路队把一堆底面半径3米,高1.5米的圆锥沙石铺在10米宽的公路上。若铺2厘米厚,能铺多少米?

二、思维拓展

1.把一个底面半径为4厘米的圆柱沿底面直径和高剖成两个半圆柱,这两个半圆柱的表面积比原来增加了80平方厘米。原来圆柱的体积是多少立方厘米?

2.在一个圆柱形水桶里,把一段底面半径为5厘米的圆柱形钢材全部放入水中,这时水面上升9厘米。把这段钢材竖着拉出水面8厘米后,水面下降4厘米。求这段钢材的体积。

苏教版六年级下册数学试题

圆柱和圆锥单元复习题(二)

一、基础巩固

1.填一填。

(1)一个圆柱的底面半径是2厘米,高是5厘米,这个圆柱的侧面积是()平方厘米,表面积是()平方厘米,体积是()立方厘米。

(2)一个直角三角形两条直角边的长分别是6厘米和8厘米。将它绕一条直角边所在的直线旋转,所得圆锥的体积最大是()立方厘米,最小是()立方厘米。

(3)将一个圆柱沿直径切开,得到两个边长是8厘米的正方形切面,原来圆柱的表面积是()平方厘米,体积是()。

(4)一个圆柱和一个圆锥的等底等高。如果圆锥的体积是12立方厘米,那么圆柱的体积是()厘米;如果一个圆柱和一个圆锥的等底等体积,如果圆柱的高是12厘米,那么圆锥的高是()厘米。

(5)将底面周长是6.28分米的圆柱的高增加4分米,表面积增加()平方分米,体积增加()立方分米。

(6)把一个圆柱的侧面展开,得到一个正方形,圆柱的高是62.8厘米,圆柱的底面积是()平方厘米。

(7)一个圆柱形水桶,桶内底面直径是4分米,桶内有半桶水,当把一些石子投入水中时(石子全部浸入水中),水面上升了1.5分米(水未溢出),则这些石子的体积是()立方分米。

(8)把一个长8厘米、宽6厘米、高7厘米的长方体削成一个最大的圆柱,这个圆柱的体积是()立方厘米。

2.选一选。

(1)一个圆柱的底面半径是8厘米,高是10厘米,沿着底面直径和高把圆柱切成相等的两部分,表面积增加了()方厘米。

A.80

B.160

C.320

D.40

(2)一个圆柱和一个圆锥的底面半径的比是3:4,高的比是2:3,圆柱与圆锥的体积比是()。

A.1:2

B.3:2

C.9:8

D.3:8

3.3.一种圆柱形油桶,底面半径是4分米,高是1米。做这样的一对油桶,至少需要铁皮多少平方分米?

4.一根长11分米的圆柱形钢材,截成两段后,两段表面积的和比原来增加5.4平方分米。这根钢材原来的体积是多少立方分米?

5.一顶圆柱形厨师帽,高28厘米,帽顶直径20厘米,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

6.把一个圆锥形铁块浸没在一个底面半径是6厘米,水深20厘米的圆柱形容器中,水面上升到22厘米,且水未溢出。这个圆锥形铁块的体积是多少立方厘米?

7.一个铺路队把一堆底面半径3米,高1.5米的圆锥沙石铺在10米宽的公路上。若铺2厘米厚,能铺多少米?

二、思维拓展

1.在圆柱形水桶中放入一段直径为6厘米的圆钢。如果圆钢全部浸入水中,那么桶里的水就会上升8厘米;如果把圆钢垂直插入水中,露出5厘米长的一段,这时桶里的水上升6厘米。这段圆钢的体积是多少立方厘米?

2.把一个圆柱的底面平均分成若干个扇形,再沿高切开,拼成一个近似的长方体。这个长方体的长是6.28厘米,高是5厘米,它的体积是多少立方厘米?

苏教版六年级下册数学试题

圆柱和圆锥单元复习题(三)

一、基础巩固

1.填一填。

(1)圆柱的底面半径是3分米,高是4分米,底面积是()平方分米,侧面积是()平方分米,表面积是()平方分米。

(2)一根长9分米的圆柱形木条,平均锯成3段,表面积增加了12.56平方分米,那么原来木条的体积是()立方分米。如果锯成3段用了6分钟,那么把它锯成5段要用()分钟。

(3)一块长25.12厘米、宽18.84厘米的长方形铁皮应配上直径是()厘米的圆形铁皮,才能做成一个容积尽可能大的无盖容器。

(4)一个底面周长为15.7分米,高为6分米的圆锥,沿着高把它分成完全一样的两部分,这两部分的表面积之和比原来圆锥的表面积增加了()平方分米。

(5)将底面周长是6.28分米的圆柱的高增加4分米,表面积增加()平方分米,体积增加()立方分米。

(6)把一个圆柱的侧面展开,得到一个正方形,圆柱的高是62.8厘米,圆柱的底面积是()平方厘米。

(7)一个底面积是24平方厘米的圆锥和棱长4厘米的正方体体积相等,则圆锥的高是()厘米。

(8)把一个长6厘米、宽和高都是4厘米的长方体橡皮削成一个体积最大的圆锥,这个圆锥的体积是()立方厘米。

(9).一个底面周长为15.7厘米的圆柱,侧面展开是一个正方形。如果沿底面直径把它平均切成两半,它的表面积增加()平方厘米。

2.选一选。

(1)一个圆柱的底面半径是8厘米,高是10厘米,沿着底面直径和高把圆柱切成相等的两部分,表面积增加了()方厘米。

A.80

B.160

C.320

D.40

(2)一个圆柱和一个圆锥的底面半径的比是2:1高的比是1:5,圆柱与圆锥的体积比是()。

A.4:5

B.8:5

C.12:5

3..压路机滚筒是一个圆柱,它的宽是2米,横截面的半径是0.6米。每分钟滚5周计算,1小时压的路面的面积是多少平方米?

4.王大伯家的蔬菜地里有一个圆柱形蓄水池,从里面量水池的底面直径是4米,池深2米。现在王大伯准备在水池的底面和内壁抹上水泥,如果每平方米用水泥2.5千克。

(1)王大伯至少要准备多少千克水泥

(2)这个水池如果蓄满水,水的体积是多少立方米?

5.一个圆锥形沙堆,底面积是25.12平方米,高是1.5米,用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?(用方程解)

6.如图用一块长方形铁皮做一个圆柱形带盖的水桶,这个水桶的容积是多少平方分米?

20.7分米

二、思维拓展

六年级数学圆柱、圆锥和球 篇6

绵阳东辰国际学校 赵波

本单元属于第二学段“空间与图形”领域。它是小学阶段这一领域的最后一部分内容。学习本单元,有利于发展学生空间观念,为进一步应用几何知识解决实际问题打下基础。

我将从以下五方面对教材进行研说。

一、课标对教材的基本要求

通过观察、操作认识圆柱和圆锥,进一步发展学生空间观念,通过认识圆柱的展开图,发展学生几何直观,结合具体情境,探索并掌握圆柱的体积和表面积以及圆锥体积的计算方法,从而发展学生推理能力、运算能力和应用意识。

本单元教学目标:

1.认识圆柱和圆锥,掌握它们的基本特征。

2.探索并掌握圆柱的侧面积、表面积以及圆柱、圆锥体积的计算方法。

3.通过观察、设计和制作圆柱、圆锥体模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4.培养学生观察、比较、归纳的能力及解决实际问题的能力。

二、教材的编写意图及体例

1、编写意图:

小学阶段空间与图形教学的主要目标是发展学生的空间观念,与前几册一样,本册教材的编排,继续注意使学生在获得有关空间与图形知识的同时发展他们的空间观念、自主探索和动手实践能力。圆柱与圆锥是传统的教学内容,对这部分内容的编排,在内容和要求方面没有大的改变,但是,教材的面貌发生了较大的变化。

(1)加强了所学知识与现实生活的联系。对圆柱、圆锥的认识,教材均通过列举大量现实生活中具有圆柱、圆锥体特征的实物直观引入,让学生观察思考这些物体形状的共同的特点,并从实物中抽象出它们的几何图形。当学生认识它们的主要特征后,又让学生从生活中寻找更多的具有如此特征的实物,使学生经历由形象——表象---抽象的认识过程。如此编排加深了学生对圆柱、圆锥的认识,进一步感知几何知识在生活中的广泛应用。

(2)加强了对图形特征、求表面积和体积方法的探索过程。在以往的教学中,这些部分内容的编排更侧重于理解和掌握图形的特征和表面积、体积的计算方法,而对于促进学生

空间观念的发展在学习素材和实践操作方面都显不够。实验教材加强了动手实践、自主探索,让学生经历知识的形成过程,使学生获得较多的有关自主探索和空间观念的训练机会。如,圆柱的特征,是让学生动手实验、自主探索得到的。在教学圆柱展开图的特征时,教材一开始就提出问题:圆柱的侧面展开后是什么形状?让学生动手操作,剪一剪并展开观察,探索:长方形的长、宽与什么有关?有什么关系?再把展开得到的长方形重新包上,发现此长方形的长等于圆柱底面的周长,宽等于圆柱的高。这样的编排为进一步探索圆柱表面积的计算方法打下基础,加深了学生对圆柱特征的认识,锻炼学生空间想像的能力。

(3)加强了学生在操作中对空间与图形问题的思考。教材在编排圆柱和圆锥的认识时,增加了用长方形(或三角形)的硬纸贴在木棒上快速转动转出圆柱(圆锥)的活动。此项活动的编排不仅可以激发学生的学习兴趣,了解平面图形与立体图形之间的联系和转换关系;同时可以使学生在操作、观察、想像、推理过程中,进一步认识圆柱、圆锥的特征,发展空间观念。

(4)加强了学习方法的引导,鼓励学生独立思考,培养学生的学习能力。实验教材注意鼓励学生运用已有的知识对新学习的内容进行联想和猜测,再通过实验和推理验证,培养学生良好的学习和思考习惯。例如,教材联系长方体体积公式鼓励学生估计圆柱体积的计算方法,联系圆柱体积公式鼓励学生猜测圆锥体积的计算方法。圆锥体积的教学是按照引出问题——联想、猜测——实验探究——导出公式的思路设计的,如此编排是让学生在猜测的基础上进行实验和推理,使学生受到研究方法和思维方式的训练,发展和提高自主学习的能力。

2、编写体例

本单元由节、整理和复习两部分组成。每一小节中又包含正文、课堂活动、练习。正文呈现教学内容,体现具体目标要求,其中例题多以问题、留白、填空等形式为学生提供自主探索、发展思维的空间。课堂活动主要是通过生生互动、师生互动等形式使学生在合作交流中完成对知识的自主构建。练习是为学生巩固和应用知识而设立的。本套教材的练习具有插图丰富、题型新颖、素材贴近学生的生活实际等特点。整理和复习是对单元知识的梳理,帮助学生建立知识网络。在整理复习后面跟着一个综合练习,有利于进一步提高学生综合的数学能力。

从编写意图和体例中,我们可以看到,学生的主体地位在该套教科书中得以突显,教师与教科书的关系不再是被统治与统治的关系,而是一种互动的关系。学生和教科书的关系不再是崇拜和权威的关系,而是一种探究和开放的关系。

三、教材知识结构和逻辑关系

本单元由圆柱和圆锥两部分内容组成。圆柱这部分内容是在第一学段直观认识圆柱的基础上,从特征、表面积、体积三方面进一步丰富学生对圆柱的感受和认识。圆锥包括认识和体积两部分内容。圆柱认识这节课分三个层次编排的:圆柱的认识、圆柱的组成及其特征、圆柱的侧面、底面及其之间的关系。

圆柱的表面积主要是教学圆柱表面积的概念,探索表面积的计算方法及实际应用。圆柱的体积有两个例题,分别是教学圆柱体积公式的推导和解决问题。

圆锥这部分内容其编排与圆柱相似,分别教学圆锥的特征及各部分名称,教学圆锥体积公式的推导,利用圆锥体积解决问题。

从这棵知识树上我们不难看出圆柱、圆锥的认识分别是圆柱表面积、体积,圆锥体积的基础,同时圆柱又是圆锥的基础。

由于小学生空间观念的形成需要经历一个长期、反复的过程,因此新教材十分注意把“空间与图形”的知识有层次、有坡度地分配到各个学段中。

一年级上册:直观认识圆柱; 五年级下册:认识长方体、正方体及其表面积、体积的计算方法。

六年级上册:认识圆,会计算周长、面积。这些知识都是本单元知识的基础,同时本单元的学习又为后续的相关内容做好了准备,学生将在第三学段会画圆柱、圆锥的三视图,能根据三视图描述实物原型。

教材在编排时,既强调知识本身内在的纵向联系,又关注数与形的横向沟通与联系,尤其是考虑了小学生空间观念形成的认识规律。

四、教学建议

基于以上分析,我认为本单元教学重点为:圆柱体侧面积、表面积的计算;圆柱、圆锥体体积的计算及简单的实际应用。难点为:圆柱体侧面积计算方法的推导,根据实际情况计算圆柱形物体的用料,圆柱体积公式的推导。

为了突出重点、突破难点,我的教学建议是:

1、让学生经历探索知识的过程,培养自主解决问题的能力。

本单元加强了对图形特征、计算方法的探索。使学生在经历观察、操作、推理、想像过程中掌握知识、发展空间观念。教学时,注意提供给学生积极思考,充分参与探索活动的时间和空间。在教学圆柱展开图特征时,首先让学生摸一摸圆柱形实物,看一看圆柱侧面在哪

里,想像一下侧面展开是什么形状。再动手剪开,看有什么发现。让学生通过操作看到:圆柱的侧面展开后是一个长方形或正方形。可能有的学生得到的是平行四边形,应给予肯定和鼓励,让他说说是怎样剪到的,以培养学生从不同角度思考问题的习惯。然后让学生观察思考“得到的长方形的长、宽与圆柱的什么有关?”让学生经过分析、比较,找到答案。最后,让学生思考:“什么情况下圆柱侧面展开图是正方形?”这样学生通过亲历立体图形与其展开图之间的转化,逐步建立了立体图形与平面图形的联系,进一步发展了空间观念。

2、注重教具、学具和多媒体教学手段的使用,加强教学的直观性。

利用各种教学手段可以使学生的认识和探索过程更具有趣味性和挑战性,也是进一步发展学生的空间观念和实践能力的有效途径。在教学圆柱体积时,先让学生回想圆面积计算公式的推导过程,并直观演示出来。然后结合例5中的几个图形,让学生说说什么是物体的体积,学生说出长方体和正方体的体积计算公式后提问:“能不能把圆柱转化成一种学过的图形,计算出它的体积?”让学生谈谈想法,然后用底面、侧面不同颜色的教具演示。使学生清楚看到,圆柱是如何转化为近似的长方体。再通过多媒体进一步演示,发现底面分成的扇形越多,拼起来的形状就越接近长方体。这时发挥颜色的作用,使学生明确长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高,从而导出圆柱体积的计算公式。

五、评价建议

评价的目的是全面考察学生学习状况,激励学生的学习热情,促进学生全面发展。也是教师反思和改进教学的有利手段。

首先是恰当评价学生的基础知识和基本技能,遵循《标准》的理念,以本学段的知识与技能目标为标准来考察。应强调的是,学段目标是本学段结束时学生应达到的目标,应允许一部分学生经过一段时间的努力逐步达到,对此,我经常选择推迟做出判断的方法。

评价主体多元化。本学段的学生在自主性和独立性方面比第一学段相对要强。除了可以开展教师评价,还可以进行学生自我评价。如在资源评价上每单元结束时都有一个自我评价表,我们可以充分利用。

在呈现评价结果时,应采用定性与定量相结合,以定性描述为主的方式。定量评价可采用等级制的方式。定性描述可以采用评语的形式,更多地关注学生已经掌握了什么,获得了哪些进步,具备了什么能力。

六年级数学圆柱、圆锥和球 篇7

教学目标:1、复习圆柱和圆锥的有关知识,掌握其特点,能借助图形说出公式推导过程,式形结合,构建体积计算公式系统,形成牢固的知识网络。

2、熟练地运用公式进行计算,让学生感受数学与生活的联系。

3、能综合运用所学知识,灵活地解决一些实际问题,培养学生运用知识解决实际问题的能力。

教学重点:系统掌握体积公式的转化与推导过程,形成牢固的知识网络。

教学难点:灵活地运用相关知识解决实际问题。

设计理念: 本节课让学生在梳理和交流中有所收获,并形成一定的知识网络。通过自我整理、自我提高,有效地培养学生根据不同的问题情景解决问题的能力,并正确进行自我评价和反思。

教学步骤 教师活动 学生活动

一、整理知识、形成网络。 1、谈话导入,今天我们一起来复习圆柱和圆锥的有关知识,请各位同学把自己整理好的知识向大家展示一下。

2、圆柱和圆锥有什么特征?请同学们完整地表述一下。

3、强化公式的推导过程。

圆柱体体积公式是什么?请说一说它的转化和推导过程。

圆锥体体积公式是什么?说一说它的转化和推导过程?

4、根据学生的复习整理,让学生把下表填写完整。

图形         特征 计算公式

圆柱 1、上下粗细一样

2、底面是两个相等的圆

3、侧面是一个曲面,沿高展开是一个长方形或正方形 S底=πr

S侧=ch

=πdh

=2πrh

S底=2s底+s侧

V柱=sh

=πr  h

圆锥 1、有一个顶点

2、底面是一个圆

3、侧面是一个曲面,沿母线展开是一个扇形  S底=πr

V锥=1/3sh

=1/3πr  h

5、根据学生填写的表格教师质疑:根据圆柱和圆锥的特征能解决什么问题?运用圆柱和圆锥的体积公式能解决哪些问题?

根据学生的讨论得出:

(1) 根据圆柱和圆锥的特征判断圆柱和圆锥。

(2) 针对有关条件计算圆柱和圆锥的体积,并进行有关的逆运算。

(3) 能运用所学的知识解决现实生活中的许多有关体积和容积的实际问题。 学生先互相交流一下自己整理的结果。

学生填写表格,并互相提问表格中的有关内容

学生分组讨论。

二、运用知识、解决问题。  1、相关概念分得清。

(1)把圆柱的侧面沿高展开后通常得到一个(       ),这个长方形的长就是圆柱的(        ),这个长方形的宽就是圆柱的( ),这个长方形的面积就是圆柱的( ),所以圆柱的侧面积等于(                     )。当圆柱的(      )和(   )相等时,圆柱的侧面展开后是一个正方形。    (2)一个圆柱底面半径是1厘米,高是 2厘米。它的侧面积是 (        )平方厘米。

(3)等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是(    )立方米,圆锥的体积是(     )立方米。

(4)一个圆柱形水箱,从里面量底面周长是18.84米,高3米,它最多能装(      )立方米水。

(5)一个圆锥形机器零件,体积是125.6立方厘米,底面半径是2厘米,这个圆柱的高是(       )厘米。

2、有关计算算得准。

(1)、一个圆柱形铁皮盒,底面半径2分米,

高5分米。

①如果沿着这个铁皮盒的侧面贴一圈商标纸,需要多少平方分米的纸?

②某工厂做这样的铁皮盒100个,需要多少铁皮?

③如果用这个铁皮盒盛食品,最多能盛多少升?

(2)、一个圆锥形沙堆,底面直径8米,高3米,这个沙堆占地多少平方米?如果每立方米沙重15千克,这堆沙一共重多少千克?

3、解决问题用得妙。

(1)、一个长9分米的圆柱形木材,底面半径是4分米。如果将它加工成一个最大的圆锥,这个圆锥的体积是多少立方分米?削去部分的体积是多少?

(2)、一个压路机的滚筒的横截面直径是1米,它的长是2米。如果滚筒每分钟转动8周,5分钟能压路多少平方米?

(3)、一个圆柱形钢块,底面半径和高都是6分米,把它熔铸成一个等高的圆锥,这个圆锥的底面积是多少平方分米?

学生说一说求容积为什么要从里面量。

学生讨论一下每一个问题各是求什么

三、综合运用、提高能力。

1、八仙过海,各显神通:

(1)在一个直径是20厘米的圆柱形容器里,放入一个底面半径3厘米的圆锥形铁块,全部浸没在水中,这时水面上升0.3厘米。圆锥形铁块的高是多少厘米?

(2)一根圆柱形木料,底面直径20厘米,长40厘米,现需要沿直径把它对半锯开,锯开后每根木料的表面积和体积是多少?”

2、总结复习,畅谈收获。

3、作业:34页3、4

数学教案-圆柱和圆锥 篇8

圆柱和圆锥 单元教学要求:

1.使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。

2.使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。

3.使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。

单元教学重点:圆柱体积计算公式的推导和应用。单元教学难点:灵活运用知识,解决实际问题。

圆柱的认识

教学内容:教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。教学要求:

1.使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。

2.使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。

教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物若干,圆柱模型;学生准备圆柱实物,剪下教材第127页图形、糨糊。

教学重点:认识圆柱的特征,掌握圆柱侧面积的计算方法。教学难点:认识圆柱的侧面。教学过程:

一、复习旧知

1.提问:我们学习过哪些立体图形?长方体和正方体有什么特征?

2.引入新课。

出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。

二、教学新课

1.认识圆柱的特征。

请同学们拿出自己准备的圆柱形物体,仔细观察一下,再和讲台上的圆柱比一比,看看它有哪些特征。提问:谁来说一说圆柱有哪些特征?

2.认识圆柱各部分名称。

认识底面。

出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。

认识侧面。

请大家把圆柱竖放,用手摸一摸周围的面,你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?

认识圆柱图形。

请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。

说明:圆柱是由两个底面和侧面围成的。底面是完全相同的两个圆,侧面是一个曲面。在说明的基础上画出下面的立体图形:

认识高。

长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。谁来说说圆柱的高在哪里?说明:两个底面之间的距离叫做高。让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么联系?

3.巩固特征的认识。

提问:你见过哪些物体是圆柱形的?

做练习一第1题。

指名学生口答,不是圆柱的要求说明理由。

老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……

4.教学侧面积计算。

认识侧面的形状。

教师出示圆柱模型说明:请同学们先想一想,如果把圆柱侧面沿高剪开再展开,它会是什么形状。现在请大家拿出贴有商标纸的饮料罐,沿着它的一条高剪开,然后展开,看看是什么形状。学生操作后提问:你发现圆柱体的侧面是什么形状?

侧面积计算方法。

①提问:得到的长方形的长和宽跟圆柱体有什么联系呢?请同学们看从第3页最后两行到4页的“想一想”,并在横线上填空。提问“想一想”所填的结果。

②得出计算方法。

提问:根据它们之间的这种联系,圆柱的侧面积应该怎样算?为什么?

教学例1

出示例1,学生读题。指名板演,其余学生做在练习本上。集体订正。

三、巩固练习

1.提问:这节课学习了什么内容?

2.做圆柱体。

让学生按剪下的第127页的图纸做一个圆柱体。指名学生看着做的圆柱体说一说圆柱的特征,边说边指出圆柱的各个部分。让学生说一说圆柱的侧面积怎样计算。

3.做“练一练”第3题。

指名两人板演,让学生在练习本上列出算式。集体订正,要求说一说每一步求的是什么。

4.思考:

如果圆柱的底面周长和高相等,侧面展开是什么形状,四、布置作业

课堂作业:练习一第2题。家庭作业:练习一第3题。

数学六年级下册圆柱的体积教案 篇9

教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。

教学目标:

1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。

重点难点:

掌握圆柱体积公式的推导过程。

教学资源:

PPT课件圆柱等分模型

教学过程:

一、联系旧知,设疑激趣,导入新课。

1.呈现例4中长方体、正方体和圆柱的直观图。

2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?

启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?

3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。

二、动手操作,探索新知,教学例4

1.观察比较

引导学生观察例4的三个立体,提问

⑴这三个立体的底面积和高都相等,它们的体积有什么关系?

⑵长方体和正方体的体积一定相等吗?为什么?

⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?

2.实验操作

⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。

提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?

⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。

⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?

操作教具,让学生观察。

引导想像:如果把底面平均分的份数越来越多,结果会怎么样?

演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。

3.推出公式

⑴提问:拼成的长方体与原来的圆柱有什么关系?

指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。

⑵想一想:怎样求圆柱的体积?为什么?

根据学生的回答小结并板书圆柱的体积公式

圆柱的体积=底面积高

⑶引导用字母公式表示圆柱的体积公式:V=sh

长方体的体积=底面积高

圆柱的体积=底面积高

用字母表示计算公式V=sh

三、分层练习,发散思维,教学试一试

⑴让学生列式解答后交流算法。

⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?

(s和h,r和h,d和h,c和h)

四、巩固拓展练习

1.做练一练第1题。

⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?

⑵各自练习,并指名板演。

⑶对照板演,说说计算过程。

2.做练一练第2题。

已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。

五、小结

这节课我们学习了什么?有哪些收获?还有什么疑问?

六、作业

六年级数学圆锥认识说课稿 篇10

圆锥的认识和体积计算是《人教版》内容第十二册41—43页的内容。本节课是在认识了圆柱体的基础上继续学习的内容。学习圆锥可以进一步加强学生对立体图形的认识。为了帮助学生认识圆锥体,理解和掌握圆锥体的体积计算公式,教材是从观察入手,到实践操作,让学生通过操作把抽象的概念具体化、形象化。让圆锥体的有关概念,体积计算公式从实践中认识,然后运用到实际生活中去。

根据教材内容,确定教学目标:

1、通过观察和演示,使学生认识圆锥体,掌握它的特征和体积计算公式,并能根据具体问题灵活应用计算方法。

2、让学生理解圆锥体积公式的推导过程,认识圆柱体和圆锥体之间的关系,渗透辨证思维的方法。

3、通过实际操作,培养学生动脑、动手的能力,让学生养成严谨、仔细的良好习惯。

4、培养学生观察、比较、分析、判断推理的能力,发展学生空间观念,提高学生想象能力和逻辑思维能力。

教学重点难点和关键:

1、重点:(1)认识直圆锥并掌握它的一些特征。(2)圆锥体的体积计算。

2、难点:(1)圆锥体体积计算公式的推导。(2)解答有关直圆锥体实物体积。

3、关键:要充分应用直观教具和电脑,进行演示和实验,有目的、有步骤地引导学生观察、思考,从而推导出计算公式和有关概念。

二、说教法和学法。

根据教材的内容和学生的年龄特征,我采用以下教法和学法:

1、直观操作,突破难点。

在这节课中,充分运用实物让学生认识直圆锥,通过圆锥体的点,线,面,认识圆锥体的底和高。发挥学生四人小组的作用,大胆放手让学生动手操作,推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。通过动手操作,让学生用多种感官去感知事物,获取感性知识,使操作与思维紧密结合,加深对直圆锥及体积的认识。

2、运用电脑课件的动感突出重点。

圆锥体的认识是本节课的重点,为了让学生充分地认识圆锥体,把生活中的锥形物体放在屏幕上(如小麦堆,漏斗等),运用电脑闪动形式认识圆锥体的底面,侧面,顶点,高。认识圆锥体积的大小也是本节的重点和难点内容,为了突出重点,突破难点,着重引导学生去探索等底等高的圆锥体与圆柱体体积之间的关系,充分运用电脑屏幕显示操作推导过程,把静态转化为动态,加深学生对所学知识的直观印象,生动、形象、具体的教学使学生能够由具体到抽象,由感觉到知觉进行顺利的过渡。

3、注意培养学生的发散性思维和创新意识。

创新教育是素质教育的核心,因此在课堂教学中注意培养学生的发散性思维和创新意识。

在认识圆锥体的过程中,引导学生思考,发现,认识圆锥体的特征。在认识圆锥体的体积的过程中,引导学生积极地去和等底等高的圆柱体的体积进行比较,通过对比、分析、综合、归纳出圆锥体的体积计算公式。学生在充分认识了圆锥体和圆柱体之间的关系的基础上,从不同方面对学生进行练习,启发学生做一些有创新能力的题目,让学生充分发挥自己创造力的空间,培养学生发散性思维能力。

三、 说教学程序设计。

<一> 悬念引入。

首先让学生回忆近来学习了什么立体图形(圆柱体),在电脑屏幕上展示圆柱体和圆锥体的实物,让学生认识圆柱体,说出圆柱体的体积公式,然后提问:屏幕上还有一些什么图形呢?(这样做一方面可以让学生初步感知圆锥体,另一方面既能激发学生的学习兴趣,又能培养学生独立思考的能力。)

<二> 探究新知。

1、圆锥的认识。

(1)圆锥的组成。

①面。圆锥有几个面?哪两个面?[教师板书:圆锥有两个面(一个侧面,一个底面)。

②棱。提问:圆锥有几条棱?是什么样的一条棱?[教师板书:圆锥有一条棱(一条封闭的曲线)。

③顶点。提问:圆锥有没有顶点?有几个顶点?[教师板书:圆锥一个顶点。

④高。提问:圆锥的高在哪里?教师出示圆锥教具(电脑显示),把它一分为二,让学生观察,得出高的概念。[教师板书:从圆锥的顶点到底面圆心的距离是圆锥的高。

提问:圆锥旁边(手示圆锥侧面)这个长度是不是圆锥的高?圆锥有几条高?(一条高)

(2)圆锥的特征。

①一个底面是圆形。

②一个侧面展开图是扇形。(通过电脑演示得到。)

(3)指导学生看圆锥立体图。

上一篇:建设工程重大危险源安全监理工作实施细则下一篇:教学论文交流发言稿