五年级数学《分数基本性质》教案

2024-11-15 版权声明 我要投稿

五年级数学《分数基本性质》教案(精选9篇)

五年级数学《分数基本性质》教案 篇1

进一步理解掌握分数基本性质在通分中的运用,能熟练而灵活地运用通分的方法进行分数的大小比较。

教学重难点

旋择适当的方法进行分数的大小比较。

教学准备分数卡片

教学过程

一、基本练习

学生自由练习

互相说一个分数,再通分。

学生汇报 纠错

二、集中练习

教师出示:比较下面各组分数的大小

1、 和 和

2、 和 和

请同学评讲

课本练习68页第九题 把下面分数填入合适的圈内。

比 大的分数有:

比 小的分数有:

师生讨论:怎样快速的分类?

自由说一个比 的分数。并说出理由。

三、解决实际问题的练习

小明:我10步走了6米,

小红:我7步走了4米。

问:谁的平均步长长一些?

小组讨论,明确解题步骤。

小明:6÷10= =

小红:4÷7=

因为 = = >

所以 >

答:小明的平均步长长一些。

四、拓展练习:

下面3名小棋手某一天训练的成绩统计

总盘数赢的盘数赢的盘数占总数的几分之几

张129

李107

赵138

谁的成绩最好?

小组合作集体解决题型。

三个分数的大小比较,怎样比较较好?

五、课堂作业

五年级数学《分数基本性质》教案 篇2

1、在教学分数的基本性质的感知、理解、提升、归纳、概括方面,我注重对学生数学思维的表达、辨析、质疑的训练,尽量不给学生的数学思维加上框框,让学生展开思维,大胆思考,学生也提出了不少有价值的问题,如:这相同的数能不能包括小数,如果分数的分子和分母同时乘上或除以一个小数,那所得的数还是不是分数呢?为什么要零除外?大小不变能不能说成结果不变呢?等等一系列有价值的问题,并重视引导学生采用举例说明的方法来解决问题。我想这可能也是我这节课比较有收获的一个环节了。能真正地体现自主开放,转变学生的学习方式。

2、在本节课的设计中有两处合作交流:一个是在验证猜想时合作,由于对小组的要求比较复杂,所以我运用了多媒体优势将小组合作要求打在屏幕上,这样学生就有了合作的方向,并且能对合作的效果加以对照,提高合作的有效性。另一个是在发现规律时合作探究,交流沟通。这时由于本班学生的实际,学生基本上处于一种交流的状态,不能说是合作了。有待今后对这个问题进一步努力。

3、有效地处理课堂生成资源当教师个人的设计意图与学生的实际的实际不相符合,而学生表现出来的行为或语言又是有价值的,这时教师该怎么处理,我认为这就是对课堂生成资源的把握问题了。另一个课堂生成点在其中有一个学生运用了商不变的性质来解释了1/4=2/8=4/16的原因,我却忘了将本节课的一个培养学生迁移类推能力的知识点遗漏了,那就是商不变的性质与分数的基本性质有什么联系与区别?这是一个很具有探究交流价值的问题。可惜我在预设与生成的把握方面做得比较欠缺,暴露出的问题也正是今后必须要努力去学习的地方。

4、练习的设计为了有效地防止学生在课堂教学后期产生注意力分散,较好的调动学生的学习积极性。在练习设计方面,尽量给枯燥的练习赋予丰富多彩的形式,一方面可以集中学生的注意力,另一方面也可以放松学生的心情,让他们在轻松愉快的氛围里学习知识,本案例中设计了:①有探究结束后的分辨是非,②有新课中的尝试性练习,③有游戏活动。较好地把独立思考与合作交流结合起来,学生学得轻松、愉悦。但在学习新知的过程中如何与练

习有效地融合在一起,这也是一个很值得我个人反思的地方

五年级数学《分数基本性质》教案 篇3

教学内容:五年级下册《分数的基本性质》。教学目标:

1、知识与技能:理解并掌握分数的基本性质,能用分数的基本性质解决一些简单的问题。

2、过程与方法:培养学生观察、比较、抽象、概括等初步的逻辑思维能力,并且能够正确认识和理解变与不变的辨证关系。

3、情感态度价值观:渗透事物是相互联系的观点。通过学生的成功体验,培养学生热爱数学的情感。

教学重点: 理解分数基本性质的含义,掌握分数基本性质的推导过程。

教学难点:理解分数基本性质“零除外”的道理,归纳分数的基本性质。

教具准备:多媒体课件。

学具准备:准备三张同样大小的正方形的纸片

教学过程:

一、激趣导入

1、故事引入:

师:妈妈买了一个西瓜回来给全家人消暑,妈妈打算这样分配。小明分给2/4师:也许你们的猜想是对的,科学家们的发现往往也是从猜想开始的,但只有经过验证得出的结论才是科学的,这节课就让我们来做个小数学家,一起来验证这三个分数是不是相等? 师:请看活动要求,哪位同学来读一读。

师:听明白了吗?在操作的过程中如果遇到困难可以看看信封背面老师给你的提示。

2、验证猜想:

师:实验做完了吗?结果怎样?哪个同学先来汇报验证的情况?

二、探索规律:

1、出示思考题。

师:请同学们带着以下问题来思考。

比较分数的分子和分母:

(1)从左往右看,分子和分母是按照什么规律变化的?(2)从右往左看,分子和分母又是按照什么规律变化的?请同桌交流自己的发现,看看这组分数有什么规律?

2、集体讨论,归纳性质。

师:从左往右看,你发现了什么?

(1)从左往右看,由1/2到2/4,分子、分母是怎么变化的?

(2)2/4是怎样变化成4/8的呢?

(3)师:在这里它们的分子、分母各是按照什么规律变化的?

(4)从右往左看,由4/8到2/4,分子、分母是怎么变化的?

(5)2/4是怎样变化成1/2的呢?

(6)分数的分子和分母又是按照什么规律变化的?

(7)引导思考:同时乘、同时除以,两个同时,去掉一个同时,我们应该怎么把它们连起来呢?(8)师:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。在这里相同的数可以指哪些数?

(9)齐读分数的基本性质。你觉得这个规律中哪些词语关键?

(10)师:你能举出几个这样的例子吗?

3、梳理知识,沟通联系。

师:同学们有没有发现,分数的基本性质和我们以前学习的哪个性质非常相似?请回忆“商不变的性质”是怎样说的?

师:前几天,我们学习了分数与除法的关系,那怎么来表示分数与除法的关系呢?

师:同学们真善于观察。数学知识中有许多地方是像商不变的性质和分数的基本性质一样相互沟通的,同学们要学会灵活运用才能取得效果。

三、深入理解:

师:应用今天所学的知识来解决实际的题型。

1、出示例题

2、完成“做一做”

3、判断:

⑴分数的分子和分母同时乘或者除以一个数,分数的大小不变。

⑵把15/20的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。

⑶2/9的分子乘3,分母除以3,分数的大小不变。

⑷5/9和10/18大小相等,分数单位也相同。

四、课堂总结:

五年级数学《分数基本性质》教案 篇4

课本第60—61页内容,练习十一第1—4题。

学习目标:

1.我能通过学习知道分数是怎样产生的。

2.我能在正确认识单位“1”的基础上,理解分数的意义。

学习重难点:

我能理解单位“1”及分数的意义。

课前准备:

正方形纸

学习过程:

一、导入新课

二、合作探究、检查独学

1.小组内检查独学部分的题目完成情况,质疑探讨。

2.自学课本第60、61页内容。根据自学内容我发现:

(1)分数是如何产生的?

(2)分数的意义是什么?

(3)什么是单位“1”?

(4)议一议:分数的分母和分子与什么有关系?结合你创造的分数,说一说分数表示的是什么?

3.小组内合作交流,小组代表展示、汇报。

4.总结升华:分数的定义是:把单位“1”( )若干份,表示这样的( )或者( )的数叫做分数。

五年级数学《分数基本性质》教案 篇5

第一课时

□学习目标:

1、能选择合适的整理方法和呈现方式对《分数的意义和性质》进行整理。

2、能从整体上把握分数相关知识,并能沟通各部分知识之间的联系。

□学习重难点:能从整体上把握分数相关知识,并能沟通各部分知识之间的联系。

一、自主整理

◆学:

同学们,在《分数的意义和性质》这一单元中,我们已经学习了它们许多知识,回顾与分数有关的知识与方法。.........

请借助列表法、气泡图或画知识网络图等方法,将所学知识与方法“加强联系,创意整理”...........................如下:(若有困难可浏览教材60——98页)

◆交流

(一):把你的创意整理与同伴分享,补充完善整理成果。

◆交流

(二):

1、各知识板块之间有联系吗?有什么联系?

2、分数还有以前学过的哪些知识有联系?有什么联系?

二、问题梳理:

◆学:错误资源共享,攻克困难问题。

想一想:本单元学习中,自己经常出错或有困难的地方?请简要梳理1—2个重点问题,反思........

错误原因。(注意简明扼要,自己能看懂就行。)

◆交

把梳理的问题向同伴请教,看看怎样解决这些问题?(请组长作典型问题整理并作简要记录,............口头叙述解决问题的方法。)

◆展示:

三、沟通升华

一、填空:

1、把8袋糖平均分成4份,每份是这些糖的(),每份有()袋。

2、把一根2m长的木条锯成同样长的4段,每段长是()m,每段是这根木条的()。

3、是把单位“1”平均分成()份,表示这样()份的数;它的分数单位是(),有()个分数单位,再添()个这样的分数单位就是最小的质数。

4、五年级一班男生人数占全班人数的,这里的单位“1”是指(),女生人数占全班人数的()

5、5m的和1m的()相等;1小时的()和5小时的49591

91相等。66、分数单位是的最大真分数是(),最小假分数是(),最小带分数是()。

7、一包饼干18块,我和你们俩平均分了吧。平均每人分到()包,平均每人分到()块。

二、比较大小

五年级数学《分数基本性质》教案 篇6

成功之处:

虽然学生在家不能利用学具进行操作,但是微课视频中详细的用动画进行了操作,让学生同样能经历新知的探究过程。学生在观看操作的过程中就会发现1/2 2/4 4/8的涂色部分的大小相同,也就是这几个分数具有相等的关系,由此让学生进行更进一步的观察,在这个相等的分数中,分子和分母的变化规律,也就是从左往右看分子和分母同时乘2,分数的大小不变;从右往左看,分子和分母同时除以2,分数的大小不变。进而让学生举例进行加以验证,最后概括出分数的基本性质。在整个过程中,既渗透了不完全归纳的思想,也培养了学生的合情推理能力。

不足之处:

学生在练习中在数轴上表示相同的分数时,个别学生会出现没有应用分数的基本性质来进行思考并解决问题,导致出现错误。

改进措施:

五年级数学《分数基本性质》教案 篇7

教材第52页例1和“练一练”,第58页练习八的第1~4题。教学目标:

1.使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义,能根据具体情境表示出相应的分数,联系实际情境解释或说明分数的具体意义;认识分数单位,能说明分数的组成。

2.使学生经历有具体到抽象的认识、理解分数意义的过程,感受分数的来源与形成,体会数的发展,培养观察、比较、分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。教学重点:

认识和理解分数的意义。教学难点:

认识和理解单位“1”。教学方法:

探究合作法、讲解分析法、练习法等。教学用具:ppt。教学过程:

一、谈话导入,唤醒已知

在三年级,我们曾经分两次认识分数,今天这节课,我们要在以前学习的基础上,进一步认识分数。

二、合作探索,理解意义

1.教学例1 出示例1中的一组图

请大家根据每幅图的意思,用分数表示每个图中的涂色部分。写出分数后,再想一想:每个分数各表示什么?在小组内交流。

学生汇报所填写的分数,你认为这些图中分别是把什么平均分的? 一个饼可以称为一个物体,一个长方形是一个图形,“1米”是一个计量单位,而左起第四个图形是把6个圆看成一个整体。

左起第四个图形与前三个图形有什么不同?

一个物体,一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。

(1)在这几个图形中,分别把什么看成单位“1”的?

(2)分别把单位“1”平均分成了几份?用分数表示这样的几份?(3)从这些例子看,怎样的数叫作分数? 拿12根小棒自已创造一个分数 说说你是怎么做的?

如果老师要表示6根小棒可以用什么分数表示? 2.完成“练一练”

第1题各图中的涂色部分怎样用分数表示?请大家在书上填空。说说是怎样想的。

每个分数的分数单位是多少?各有几个这样的分数单位?

1第2题,观察直线上是把哪个部分看作“1”的?直线上表示 是怎样想的?

3引导:分数也可以在直线上表示。这里从0起到1是1个单位,同样地从1到2也是1个单位,这1个单位就是把单位1平均分成若干份,就可以用直线上的点表示分数。

让学生在()里填上合适的分数。交流:你是怎样填的?为什么这样填?

三、巧妙联系,深化理解

1.做练习八的第1题

先让学生在每个图里涂色表示三分之二,再说说是怎样涂的、怎样想的。同样是三分之二,为什么涂色桃子的个数不同?

2.做练习第2、3、4题。

第2题先读出每个分数,再说说每个分数的分数单位。第3题让学生填,交流时说说是怎样填的。

第4题在研究分数时,把哪个数量平均分成若干份,这样的数量就是单位“1”

四、全可总结,延伸拓展

五年级数学《分数基本性质》教案 篇8

《分数的意义和性质复习课》教学反思

通过本节课的学习引导学生对已学过的知识进行列举、比较、分类、整合,弄清知识的来龙去脉,沟通其纵横联系,使之条理化、系统化,帮助学生建立起良好的认知结构。使学生对分数的意义、真分数和假分数、分数的基本性质、约分、通分、分数和小数的互化等概念更加清楚。同时,进一步明确了这些概念之间的内在联系,并能灵活应用这些概念解决问题。《分数的意义和性质练习课》教学反思

通过复习我发现学生在约分和通分上还存在一些问题,所以我决定再加一节通分约分的专题课。通过分层练习,巩固所学知识,形成基本技能,提高学生的数学思考、解决问题的能力.有针对性地进行强化练习,进一步帮助学生释疑解难、查漏补缺,既使学生形成的认知结构稳固定型,又让学生的学习能力和解决实际问题的能力进一步提高,同时体验到学习成功的喜悦。

教案 分数的基本性质 篇9

第1课时

分数的基本性质

教学内容:教科书第60~61页,例

1、例

2、练一练,练习十一第1~3题。教学目标:

1、使学生经历探索分数基本性质的过程,初步理解分数的基本性质。

2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。教学重点:让学生在探索中理解分数的基本性质。教学重点:在探索分数基本性质的过程中理解分数的基本性质。

教学难点:在探索分数基本性质的过程中,综合、抽象出分数的基本性质。教学准备:教学光盘,正方形纸。教学过程:

一、导入新课

1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。

2、出示例1图。你能看图写出哪些分数?你是怎样想的?说出自己的想法。

二、教学新课

(一)教学例1。

(1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?(2)你知道其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?(3)演示验证。

(二)教学例2。

(1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。(2)你能通过继续对折,找出和1/2相等的其它分数吗?

学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)

(3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?

(4)观察每个等式中的两个分数,它们的分子、分母是怎样变化的?观察、思考,试着完成填空。在小组中说说你有什么发现?

(5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的基本性质。

(6)讨论分数基本性质中你认为哪些词语比较关键?为什么要“0”除外呢?(7)你能根据分数的基本性质,写出一组相等的分数吗?学生尝试完成。

(三)比较分数基本性质与除法中商不变性质。

根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。

三、巩固练习

1、完成练一练。(1)完成第1题。

涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?(2)完成第2题。

独立完成,汇报想法。5到15乘了几?1怎么办?先看哪个数?(分子9)9到1除以几?分母18怎么办?

2、完成练习十一(1-3)第1题。

平均分成了多少份?表示多少份?涂色表示。涂色部分还表示几分之几? 第2题。

独立完成,交流想法。第3题

学生独立完成填空,集体订正。

四、布置作业:

《补充练习》第44页第1、2、3、4、5题。拓展题:

五、总结

今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?

在巩固练习部分增加以下练习:

(1)把下面各分数化成分母是6而大小不变的分数。

1/2

8/24

10/30

(2)把下面各分数化成分子是1而大小不变的分数。

4/16

5/15

7/35

(3)把下面的数按要求填到指定的括号里。

60/84

4/6

14/21

20/28

15/21

30/45

15/35

10/12

上一篇:浅谈大学生公关意识的培养与提高下一篇:重点项目进展汇报情况