欧姆定律高二物理教案(共6篇)
【摘要】查字典物理网小编编辑整理了高二物理教案:万有引力定律,供广大同学们在暑假期间,复习本门课程,希望能帮助同学们加深记忆,巩固学过的知识!
教学目标
知识与技能
1.了解万有引力定律得出的思路和过程,知道地球上的重物下落与天体运动的统一性。
2.知道万有引力是一种存在于所有物体之间的吸引力,知道万有引力定律的适用范围。
3.会用万有引力定律解决简单的引力计算问题,知道万有引力定律公式中r的物理意义,了解引力常量G的测定在科学历史上的重大意义。
4.了解万有引力定律发现的意义。
过程与方法
1.通过演绎牛顿当年发现万有引力定律的过程,体会在科学规律发现过程中猜想与求证 的重要性。
2.体会推导过程中的数量关系.情感、态度与价值观
1.感受自然界任何物体间引力的关系,从而体会大自然的奥秘.2.通过演绎牛顿当年发现万有引力定律的过程和卡文迪许测定万有引力常量的实验,让
学生体会科学家们勇于探索、永不知足的精神和发现真理的曲折与艰辛。
教学重点、难点
1.万有引力定律的推导过程,既是本节课的重点,又是学生理解的难点。
2.由于一般物体间的万有引力极小,学生对此缺乏感性认识。
教学方法
探究、讲授、讨论、练习
教 学 活 动
(一)引入新课
复习回顾上节课的内容
如果行星的运动轨道是圆,则行星将作匀速圆周运动。根据匀速圆周运动的条件可知,行星必然要受到一个引力。牛顿认为这是太阳对行星的引力,那么,太阳对行星的引力F提供行星作匀速圆周运动所需的向心力。
学生活动: 推导得
将V=2r/T代入上式得
利用开普勒第三定律 代入上式
得到:
师生总结:由上式可得出结论:太阳对行星的引力跟行星的质量成正比,跟行星到太阳的距离的二次方成反比。即:F
教师:牛顿根据其第三定律:太阳吸引行星的力与行星吸引太阳的力是同性质的作用力,且大小相等。于是提出大胆的设想:既然这个引力与行星的质量成正比,也应跟太阳的质量M成正比。即:F
写成等式就是F=G(其中G为比例常数)
(二)进行新课
教师:牛顿得到这个规律以后是不是就停止思考了呢?假如你是牛顿,你又会想到什么呢? 学生回答基础上教师总结:
猜想一:既然行星与太阳之间的力遵从这个规律,那么其他天体之间的力是否也遵从这个规律呢?(比如说月球与地球之间)
师生: 因为其他天体的运动规律与之类似,根据前面的推导所以月球与地球之间的力,其他行星的卫星和该行星之间的力,都满足上面的规律,而且都是同一种性质的力。
教师:但是牛顿的思考还是没有停止。假如你是牛顿,你又会想到什么呢?
学生回答基础上教师总结:
猜想二:地球与月球之间的力,和地球与其周围物体之间的力是否遵从相同的规律?
教师:地球对月球的引力提供向心力,即F= =ma
地球对其周围物体的力,就是物体受到的重力,即F=mg 从以上推导可知:地球对月球的引力遵从以上规律,即F=G
那么,地球对其周围物体的力是否也满足以上规律呢?即F=G
此等式是否成立呢?
已知:地球半径R=6.37106m , 月球绕地球的轨道半径r=3.8108 m ,月球绕地球的公转周期T=27.3天, 重力加速度g=9.8
(以上数据在当时都已经能够精确测量)
提问:同学们能否通过提供的数据验证关系式F=G 是否成立?
学生回答基础上教师总结:
假设此关系式成立,即F=G
可得: =ma=G F=mg=G
两式相比得: a/g=R2 / r2
但此等式是在以上假设成立的基础上得到的,反过来若能通过其他途径证明此等式成立,也就证明了前面的假设是成立的。代人数据计算:
a/g1/3600
R2 / r21/3600
即a/g=R2 / r2 成立,从而证明以上假设是成立的,说明地球与其周围物体之间的力也遵从相同的规律,即F=G
这就是牛顿当年所做的著名的月-地检验,结果证明他的猜想是正确的。从而验证了地面上的重力与地球吸引月球、太阳吸引行星的力是同一性质的力,遵守同样的规律。
教师:不过牛顿的思考还是没有停止,假如你是牛顿,此时你又会想到什么呢? 学生回答基础上教师总结:
猜想三:自然界中任何两个物体间的作用力是否都遵从相同的规律?
牛顿在研究了这许多不同物体间的作用力都遵循上述引力规律之后。于是他大胆地把这一规律推广到自然界中任意两个物体间,于1687年正式发表了具有划时代意义的万有引力定律。
万有引力定律
①内容
自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比。
②公式
如果用m1和m2表示两个物体的质量,用r表示它们的距离,那么万有引力定律可以用下面的公式来表示(其中G为引力常量)
说明:1.G为引力常量,在SI制中,G=6.6710-11Nm2/kg2.2.万有引力定律中的物体是指质点而言,不能随意应用于一般物体。
a.对于相距很远因而可以看作质点的物体,公式中的r 就是指两个质点间的距离;
b.对均匀的球体,可以看成是质量集中于球心上的质点,这是一种等效的简化处理方法。
教师:牛顿虽然得到了万有引力定律,但并没有很大的实际应用,因为当时他没有办法测定引力常量G的数值。直到一百多年后英国的另一位物理学家卡文迪许才用实验测定了G的数值。
利用多媒体演示说明卡文迪许的扭秤装置及其原理。
扭秤的主要部分是这样一个T字形轻而结实的框架,把这个T形架倒挂在一根石英丝下。若在T形架的两端施加两个大小相等、方向相反的力,石英丝就会扭转一个角度。力越大,扭转的角度也越大。反过来,如果测出T形架转过的角度,也就可以测出T形架两端所受力的大小。现在在T形架的两端各固定一个小球,再在每个小球的附近各放一个大球,大小两个球间的距离是可以较容易测定的。根据万有引力定律,大球会对小球产生引力,T形架会随之扭转,只要测出其扭转的角度,就可以测出引力的大小。当然由于引力很小,这个扭转的角度会很小。怎样才能把这个角度测出来呢?卡文迪许在T形架上装了一面小镜子,用一束光射向镜子,经镜子反射后的光射向远处的刻度尺,当镜子与T形架一起发生一个很小的转动时,刻度尺上的光斑会发生较大的移动。这样,就起到一个化小为大的效果,通过测定光斑的移动,测定了T形架在放置大球前后扭转的角度,从而测定了此时大球对小球的引力。卡文迪许用此扭秤验证了牛顿万有引力定律,并测定出万有引力恒量G的数值。这个数值与近代用更加科学的方法测定的数值是非常接近的。
卡文迪许测定的G值为6.75410-11 Nm2/kg2,现在公认的G值为6.6710-11 Nm2/kg2。由于万有引力恒量的数值非常小,所以一般质量的物体之间的万有引力是很小的,我们可以估算一下,两个质量50kg的同学相距0.5m时之间的万有引力有多大(可由学生回答:约6.6710-7N),这么小的力我们是根本感觉不到的。只有质量很大的物体对一般物体的引力我们才能感觉到,如地球对我们的引力大致就是我们的重力,月球对海洋的引力导致了潮汐现象。而天体之间的引力由于星球的质量很大,又是非常惊人的:如太阳对地球的引力达3.561022N。
本节内容是在学生学习了电路、电压、电阻及电流表、电压表的使用基础上的综合应用,是本章的重点,也为后面电功、电功率内容做铺垫。欧姆定律是通过实验探究,归纳总结出来的定律,它的逻辑性、理论性都很强,实验难度也比较大,特别是在实验设计、数据分析方面对学生来说有难度,所以教师要做好适时引导、恰当点拨,要学生加强交流解决遇到的问题,不过教材在这方面已降低难度,只要求探究“同一个电阻,电流与电压的关系”实验,不再要求探究“固定电压,电流与电阻的关系”实验。
通过学习欧姆定律,让学生经历实验探究过程,领悟“控制变量法”这种科学探究的方法,理解这种方法在实验探究中的普遍性和重要性,体验科学探究的乐趣,形成尊重事实、探究真理的科学态度。【教学目标】 1知识与技能
会用实验探究的方法探究电流与电压、电阻的关系; 理解欧姆定律,并能进行简单计算;
使学生同时使用电压表和电流表测量一段导体两端的电压和其中的电流; 会用滑动变阻器改变部分电路两端的电压; 培养学生的观察、实验能力和分析概括能力; 2 过程与方法
通过实验探究学习研究物理问题常用的方法──控制变量法; 经历欧姆定律的发现过程并掌握实验思路和方法
学会对自己的实验数据进行分析评估,找出成功和失败的原因; 3 情感态度与价值观
重视学生对物理规律的客观性、普遍性、科学性的认识; 培养学生大胆猜想,小心求证,形成严谨的科学态度; 【学习者的分析】
学习了电路基础知识,多数学生能正确连接电路元件,正确使用电流表、电压表和滑动变阻器,对于控制变量的研究方法也有一定的了解。学生有较强的好奇心和求知欲,他们渴望自己动手进行科学探究,体验成功的乐趣,但对于U、I、R三者关系知之甚少,规律性知识的概括往往以偏概全。【重点与难点】
利用实验探究出欧姆定律; 欧姆定律的内容和公式;
能利用欧姆定律进行计算和解释有关现象; 【教具与学具】
小灯泡、开关、电源、导线若干、定值电阻(5Ω、10Ω)、,电流表、电压表、滑动变阻器,多媒体展示平台,自制课件。
【板书设计】
第四节
欧姆定律
1、探究:电阻上的电流和电压的关系
2、欧姆定律:导体的电流,跟导体两端的电压成正比,跟导体的电阻成反比。即 I=U/R 单位:U-电压-伏特(V),I- 电流-安培(A)R-电阻-欧姆(Ω)
公式变换:U=IR 或 R=U/I
3、额定电压:用电器正常工作时的电压。额定电流:用电器正常工作时的电流。短路:R=0,I很大;断路:R很大,I=0 【教学设计】 教师活动 学生活动 说明
一、引入新课
●.展示演唱会舞台灯光和声音变化的视频片段,问:舞台灯光强弱和声音强弱变化是如何实现的? 引导回答:电压越大,电流越大;电阻越大,电流越小。●.问:电流与电压、电阻可能有什么关系?
教师鼓励学生积极猜想并归纳总结学生的各种猜想:I=UR,I=U、R,I=U R,I=U-R等
●.学生积极思考,讨论,提出各种猜想 ●.学生积极思考,讨论,提出各种猜想。
●.通过生活中熟悉的现象提起学生的好奇心,引入到抽象的知识点。●.培养学生大胆提出自己猜想,提出学习的主动性。
二、进行新课 1.引导讨论
●.问:既然电流与电压、电阻都有关系,那电流的变化究竟是电压还是电阻变化引起的呢?
引导学生回答:物理实验探究中经常用的一种方法,当一个物理量与另两个变量有关时,可以先探制其中一个变量不变,再探究另一个变量与物理量的关系,即控制变量法。
●.学生积极思考,讨论:在电压不变时,电流变化是由电阻引起的;在电阻不变时,电流变化是由电压引起的。
●.启发学生思维,引导学生思考问题的方法,让学生学会使用控制变量法来研究问题。
2、设计实验
●.实验课题:在电阻一定时,改变电阻两端的电压,研究通过电阻的电流与电压的关系。●.问:如何保证电阻一定?怎样改变电阻两端的电压?
引导回答:定值电阻可保证电阻一定,调节滑动变阻器可以改变定值电阻两端电压。
●.问:根据你们的猜想,想想需要的什么实验器材?设计出实验电路图和记录实验数据的表格?
教材巡视并给予必要的指导,要多给予鼓励,鼓励学生积极讨论并作简单分析和评价。最后把较好的作品投影给全班同学,简要分析优点。
●.阅读教材18-19页实验探究内容,●.学生讨论,积极回答。
●.学生积极思考,讨论,交流,评估
●.培养学生自学能力。
●.帮助学生理清思路,找到解决问题的正确方法。
●.设计实验对学生是有较大难度的,所以通过学生间积极讨论交流,教师适时给予必要的指导,找到解决问题的最好方法。
3、进行实验(课件)
●.问:请同学们根据自己设计的实验电路图完成实验,并把实验数据记录到表格中。教师提醒实验时的注意事项,如电压表、电流表、滑动变阻器的正确使用。教师巡视学生实验过程,对于存在的问题给予及时的指导。
●.明确实验任务,实验方法,进行分组实验,并记录实验数据。
●.通过实验过程复习实物的正确连接方法,电压表、电流表、滑动变阻器的正确使用,培养学生动手能力和合作交流能力。
4、分析评估
●.展示几组学生的实验数据,并要求学生简要分析自己的实验数据,得出什么结论。对于实验数据出入较大的组别,鼓励其思考出错的原因,找出解决的方法。
引导回答实验结论:导体的电流,跟导体两端的电压成正比,跟导体的电阻成反比。即 I=U/R
●.共同分析展示的学生的实验数据,比较自己实验数据的优缺点,归纳出实验的初步结论,并用图象法表示。
●.提出学生分析表格数据能力,学会用图象分析数据。
5、欧姆定律
●.内容:导体的电流,跟导体两端的电压成正比,跟导体的电阻成反比。即 I=U/R 单位:U-电压-伏特(V),I- 电流-安培(A)R-电阻-欧姆(Ω)
●.简述欧姆个人生平和他的一些趣事。
●.公式变换:U=IR 或 R=U/I,展示教材相应例题,提醒注意解题格式以及计算过程要统一国际单位。
●.认真听讲,做好笔记
●.阅读教材19页欧姆生平内容。
●.阅读教材,留意解题思路和格式,积极回答。
●.帮助理解欧姆定律的内容,为其应用做好准备。●.提高学生学习的兴趣,激发奋发向上的斗志。●.学以致用,巩固反馈。
三、额定电压
指导学生阅读教材相关内容,回答什么是额定电压? 引导回答:额定电压就是用电器正常工作时的电压。
阅读教材,积极思考作答。
额定电压不是本章重点,只作常识性了解即可。
四、短路
问:电路的三种工作状态是什么?什么是短路?演示短路实验。从欧姆定律出发,让学生理解什么是短路。
引导回答:短路就是电路中电阻很小,电流很大。
积极思考并回答,认真观察实验现象,复习相关知识,让学生知道短路是故障的一种,它的危害,为下来安全用电知识的学习做准备。
五、评价小结
1.学生小结学到的知识。2.什么是控制变量法?
3.设计实验探究“电压一定,电流与电阻的关系”。3.课堂巩固练习。(课件展示)
积极回答,思考并完成相关练习。
检测学习效果,加深对欧姆定律的理解。
教师姓名学生姓名填写时间2012-07-29 年级八年级学科物理上课时间 2012-07-30 14:00-16:00 阶段基础(提高(√强化(课时计划
(6)小珍连接好电路后闭合开关,发现无论如何移动变阻器的滑片 P,电压表、电流表 均有示数,但都不改变,原因可能是_______________________________。(写出一 种即可)
三、计算题 1.在电路中,已知 R1=6Ω,R2=10Ω,当开关闭合时,V1 的示数为 3V,求电源电压和电 路中的电流大小。2.如图所示的电路,R1=30Ω,R2=10Ω,开关 S 闭合后,电流表 A 的示数为 0.4A,求电源电压、通过 R2 的电流和干路中的电流。3.电源电压不变,某电阻的阻值增加 3 欧姆时,电流强度变为原来的五分之四,求:原 来的电阻是多少? 4.某导体两端电压是 12 伏特,通过它的电流强度是 0.9 安培,欲使通过它的电流强度 为 0.6 安培,加在它两端的电压应是多大?(用比例法)5.如图 23-甲所示电路,滑动变阻器的最大阻值为 R1=40Ω,电源电压及灯 L 的电阻保 持不变。当滑片滑到 b 端时,将 S1、S2 均闭合,电流表 A1、A2 的示数分别为如图 23 乙、丙 所示;当 S1、S2 均断开且滑片 P 置于变阻器的中点时,电流表 A1 的示 数为 0.4A,求:(1电源的电压;(2R2 的电阻;(3灯 L 的电阻。
教学目标
知识目标
1.知道电流的热效应.2.理解焦耳定律的内容、公式、单位及其运用.能力目标
知道科学研究方法常用的方法等效替代法和控制变量法在本节实验中的运用方法.情感目标
通过对焦耳生平的介绍培养学生热爱科学,勇于克服困难的信念.教学建议
教材分析
教材从实验出发定性研究了电热与电流、电阻和时间的关系,这样做的好处是体现物理研究问题的方法,在实验过程中学生能更好地体会的一些科学研究的方法,避免了一开始就从理论上推导给学生造成理解的困难和对纯电阻电路的理解的困难.在实验基础上再去推导学生更信服.同时启发学生从实验和理论两方面学习物理知识.做好实验是本节课的关键.教法建议
本节课题主题突出,就是研究电热问题.可以从电流通过导体产生热量入手,可以举例也可以让学生通过实验亲身体验.然后进入定性实验.对焦耳定律内容的讲解应注意学生对电流平方成正比不易理解,可以通过一些简单的数据帮助他们理解.推导中应注意条件的交代.定律内容清楚后,反过来解决课本中在课前的问题.教学设计方案
提问:
灯泡发光一段时间后,用手触摸灯泡,有什么感觉?为什么?
电风扇使用一段时间后,用手触摸电动机部分有什么感觉?为什么?
学生回答:发烫.是电流的热效应.引入新课
演示实验:
1、介绍如图9-7的实验装置,在两个相同的烧瓶中装满煤油,瓶中各装一根电阻丝,甲瓶中电阻丝的电阻比乙瓶中的大,串联起来,通电后电流通过电阻丝产生的热量使煤油的温度升高,体积膨胀,煤油在玻璃管里会上升,电流产生的热量越多,煤油上升得越高.观察煤油在玻璃管里上升的情况,就可以比较电流产生的热量.2、三种情况:
第一次实验:两个电阻串联它们的电流相等,加热的时间相同,甲瓶相对乙瓶中的电阻较大,甲瓶中的煤油上升得高.表明:电阻越大,电流产生的热量越多.第二次实验:在两玻璃管中的液柱降回来的高度后,调节滑动变阻器,加大电流,重做实验,让通电的时间与前次相同,两次实验比较甲瓶前后两次煤油上升的高度,第二交煤油上升的高,表明:电流越大,电流产生的热量越多.第三次实验:如果加长通电的时间,瓶中煤油上升越高,表明:通电时间越长,电流产生的热量越多.(2)焦耳定律
英国物理学家焦耳做了大量的实验于1840年最先精确地确定电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比.跟通电时间成正比,这个规律叫做焦耳定律.焦耳定律可以用下面的公式
表示:Q=I2Rt
公式中的电流I的单位要用安培(A),电阻R的单位要用欧姆,通过的时间t的单位要用秒这样,热量Q的单位就是焦耳(j).例题 一根60Ω的电阻丝接在36V的电流上,在5min内共产生多少热量.解: I=U/R=36V/60Ω=0.6A
Q=I2Rt=2×60Ω×300s=6480j
在一定的条件下,根据电功公式和欧姆定律公式推导出焦耳定律公式如果电流通过导体时,其电能全部转化为内能,而没有同时转化为其他形式的能量,也就是电流所作的功全部用来产生热量.那么,电流产生的热量Q就等于电流做的功w,即Q=w.w=UIt,根据欧姆定律U=IR推导出焦耳定律Q=I2Rt,总结
在通电电流和通电时间相同的条件下,电阻越大,电流产生的热量越多.在电阻和通电时间相同的条件下,电流越大,电流产生的热量越多,进一步的研究表明产生的热量与电流的平方成正比.在通电电流和电阻相同的条件下,通电时间越长,电流产生的热量越多.探究活动
【课题】“焦耳定律”的演示
【组织形式】学生分组或教师演示
【活动方式】
1.提出问题
2.实验观察
3.讨论分析
【实验方案示例】
1.实验器材:干电池四节,玻璃棒,若干电阻丝,蜡烛,火柴棒.
2. 制作方法
把同一根电阻丝分别绕在玻璃棒的两端,绕线匝数比例为1∶8,两线圈相距5cm左右,然后在这两个线圈上滴上同样多的蜡,使线圈被蜡均匀地包住.点着火柴立即吹灭,靠其余热将两根火柴杆粘在两个线圈上,如图1所示.
图1
3.实验步骤
(1)用两节干电池给玻璃棒上的电阻丝通电,可看到匝数多的线圈(电阻大)上的火柴杆比匝数少的线圈(电阻小)上的火柴杆先掉.这就表明:在电流强度和通电时间相同的情况下,电阻越大,电流产生的热量就越多.
(2)经过较长时间后,匝数少的线圈(电阻小)上的火柴杆也会掉下来.这就说明:通电时间越长,电流产生的热量越多.
(3)用四节电池(增大电源电压)重做上述实验,可看到两根火柴杆都先后很快掉下来.在线圈的温度不太高时,可认为总电阻不变,电压增大时,通过它们的电流增大.这就表明:电流越大,电流产生的热量越多.
律单元检测
一、单选题(本大题共10小题,共40.0分)
1.在一根足够长的水平杆上穿着4个质量相同的珠子,珠子可以在水平杆上无摩擦地运动.初始时若各个珠子可以有任意的速度大小和方向,则它们之间最多可以碰撞()次. A.3 B.5 C.6 D.8 2.甲、乙两个溜冰者质量分别为48kg和50kg,甲手里拿着质量为2kg的球,两人均以2m/s的速率,在光滑的冰面上沿同一直线相向滑行,甲将球传给乙,乙再将球传给甲,这样抛接几次后,球又回到甲的手里,乙的速度为零,则甲的速度的大小为()A.0 B.2m/s C.4m/s D.无法确定
3.使用无人机植树时,为保证树种的成活率,将种子连同营养物质包进一个很小的荚里。播种时,在离地面10m高处、以15m/s的速度水平匀速飞行的无人机中,播种器利用空气压力把荚以5m/s的速度(相对播种器)竖直向下射出,荚进入地面下10cm深处完成一次播种。已知荚的总质量为20g,不考
2虑所受大气阻力及进入土壤后重力的作用,取g=10m/s,则()A.射出荚的过程中,播种器对荚做的功为2.5J B.离开无人机后,荚在空中运动的时间为s C.土壤对荚冲量的大小为3kg•m/s
D.荚在土壤内受到平均阻力的大小为22.5N
4.在撑杆跳高场地落地点都铺有厚厚的垫子,这样做的目的是减少运动员受伤,理由是()
A.减小冲量,起到安全作用
B.减小动量变化量,起到安全作用 C.垫子的反弹作用使人安全
D.延长接触时间,从而减小冲力,起到安全作用
5.蹦床是一项运动员利用从蹦床反弹中表现杂技技巧的竞技运动,一质量为50kg的运动员从1.8m高出自由下落到蹦床上,若从运动员接触蹦床到运动员陷至最低点经历了0.2s,则这段时间内蹦床对运动
2员的冲量大小为(取g=10m/s,不计空气阻力)()A.400N•s B.300N•s C.200N•s D.100N•s 6.如图所示,在光滑的水平面上放有一物体M,物体上有一光滑的半圆弧轨道,轨道半径为R,最低点为C,两端A、B等高,现让小滑块m从A点静止下滑,在此后的过程中,则()
A.M和m组成的系统机械能守恒,动量守恒 B.M和m组成的系统机械能守恒,动量不守恒
C.m从A到C的过程中M向左运动,m从C到B的过程中M向右运动
D.m从A到B的过程中,M运动的位移为
7.甲、乙两球在光滑的水平轨道上同向前进,已知它们的动量分别是p甲=5kg•m/s,p乙=7kg•m/s,甲追乙并发生碰撞,碰后乙球的动量变为p乙′=10kg•m/s,则两球质量m甲与m乙的关系可能是()A.m甲=m乙 B.m乙=2m甲 C.m乙=4m甲 D.m乙=6m甲 8.如图所示,在光滑的水平面上有两物体A、B,它们的质量均为m.在物体B上固定一个轻弹簧处于静止状态.物体A以速度v0沿水平方向向右运动,通过弹簧与物体B发生作用.
下列说法正确的是()
A.当弹簧获得的弹性势能最大时,物体A的速度为零 B.当弹簧获得的弹性势能最大时,物体B的速度为零
第1页,共11页 C.在弹簧的弹性势能逐渐增大的过程中,弹簧对物体B所做的功为
2D.在弹簧的弹性势能逐渐增大的过程中,弹簧对物体A和物体B的冲量大小相等,方向相反
9.向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a、b两块,若质量大的a块速度仍沿原方向则()A.b的速度一定和原来反向
B.从炸裂到落地的过程中,a、b两块经历的时间一定相同 C.在炸裂过程中,a、b受到爆炸力的冲量一定相同
D.在爆炸过程中,由动量守恒定律可知,a、b的动量大小相等 10.如图,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是()A.A和B都向左运动 B.A和B都向右运动 C.A静止,B向右运动 D.A向左运动,B向右运动
二、多选题(本大题共5小题,共20.0分)
11.在光滑水平面上A、B两小车中间有一弹簧(如图所示),用手抓住小车将弹簧压缩并使小车处于静止状态.将两小车及弹簧看做一个系统,下列说法正确的是()
A.两手同时放开后,系统总动量始终为零 B.先放开左手,再放开右手后,动量不守恒 C.先放开左手,再放开右手后,总动量向左
D.无论何时放手,两手放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零
12.如图所示,小车A 静止于光滑水平面上,A上有一圆弧PQ,圆弧位于同一竖直平面内,小球B由静止起沿圆弧下滑,这一过程中()A.若圆弧光滑,则系统的动量守恒,机械能守恒 B.若圆弧光滑,则系统的动量不守恒,机械能守恒
C.若圆弧不光滑,则系统水平方向的动量守恒,但机械能不守恒 D.若圆弧不光滑,则系统水平方向的动量不守恒,机械能不守恒
13.甲、乙两球在光滑水平轨道上沿同一方向运动,已知它们的动量分别是P甲=5kg•m/s,P乙=7kg•m/s,甲追上乙并发生碰撞,碰后乙球的动量变为P′乙=10kg•m/s,则两球质量m甲与m乙的关系可能是()
A.m乙=m甲 B.m乙=3m甲 C.m乙=4m甲 D.m乙=5m甲
14.如图所示,小球位于光滑的曲面体顶端,曲面体位于光滑的水平地面上,从地面上看,在小球沿曲面下滑的过程中,则下列说法正确的是()
A.小球与曲面体组成的系统动量守恒,机械能守恒 B.曲面体对小球的作用力垂直于接触面且对小球做负功 C.球和曲面体对地的水平位移与二者的质量成反比
D.球沿曲面体下滑过程中,球和曲面体所受合外力的冲量始终等大反向 15.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m的小物块从槽上高h处开始下滑,重力加速度为g,下列说法正确的是()
A.物体第一次滑到槽底端时,槽的动能为B.物体第一次滑到槽底端时,槽的动能为
第2页,共11页 C.在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒 D.物块第一次被弹簧反弹后能追上槽,但不能回到槽上高h处
三、实验题探究题(本大题共1小题,共10.0分)
16.某同学利用打点计时器和气垫导轨做“探究碰撞中的不变量”的实验;气垫导轨装置如图(a)所示,所用的气垫导轨装置由导轨、滑块、弹射架等组成.在空腔导轨的两个工作面上均匀分布着一定数量的小孔,向导轨空腔内不断通人压缩空气,压缩空气会从小孔中喷出,使滑块稳定地漂浮在导轨上,如图(b)所示,这样就大大减小了因滑块和导轨之间的摩擦而引起的误差. 滑块1右端安有撞针,滑块2左端粘有橡皮泥.
(1)下面是实验的主要步骤:
①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平; ②向气垫导轨通入压缩空气;
③把打点计时器固定在紧靠气垫导轨左端弹射架的外侧,将纸带穿过打点计时器越过弹射架并固定在滑块1的左端,调节打点计时器的高度,直至滑块拖着纸带移动时,纸带始终在水平方向; ④滑块1挤压导轨左端弹射架上的橡皮绳; ⑤把滑块2放在气垫导轨的中间;
⑥先______,然后______,让滑块1带动纸带一起运动,与滑块2相撞并合在一起共同运动; ⑦取下纸带,重复步骤④⑤⑥,选出较理想的纸带如图(c)所示:
⑧测得滑块1(包括撞针)的质量为310g,滑块2(包括橡皮泥)的质量为205g;试完善实验步骤⑥的内容.
(2)已知打点计时器每隔0.02s打一个点,计算可知,两滑块相互作用前质量与速度的乘积之和为______ kg•m/s;两滑块相互作用以后质量与速度的乘积之和为______ kg•m/s(保留三位有效数字).(3)试说明(2)问中两结果不完全相等的主要原因是______ .
四、计算题(本大题共3小题,共30.0分)
17.质量为M=2kg的小平板车静止在光滑水平面上,车的一端静止着质量为mA=2kg的物体A(可视为质点),如图所示,一颗质量为mB=20g的子弹以600m/s的水平速度射穿A后,速度变为100m/s,最后物体A仍静止在车上,若物体A与小车间的动摩擦因数μ=0.5,取g=10m/s2,求(1)平板车最后的速度是多大?(2)小车长度至少是多少.
第3页,共11页
18.如图所示,在光滑的水平面上静止放一质量为2m的木板B,木板表面光滑,右端固定一轻质弹簧。质量为m的木块A以速度v0从板的左端水平向右滑上木板B,求:(1)弹簧的最大弹性势能;
(2)弹被簧压缩直至最短的过程中,弹簧给木块A的冲量;(3)当木块A和B板分离时,木块A和B板的速度。
19.如图所示,将质量为m1的铅球以大小为v0、仰角为θ的初速度抛入一个装有砂子的总质量为M的静止的砂车中,砂车与水平地面间的摩擦可以忽略.求:
(1)球和砂车的共同速度;
(2)球和砂车获得共同速度后,砂车底部出现一小孔,砂子从小孔中流出,当漏出质量为m2的砂子时砂车的速度.
第4页,共11页
答案和解析
【答案】 1.C 2.A 3.D 4.D 5.A 6.B 7.C 8.D 9.B 10.D 11.ABCD 12.BC 13.BCD 14.BC 15.AD
16.接通打点计时器的电源;放开纸带;0.620;0.618;纸带与打点计时器限位孔有摩擦力的作用
17.解:(1)子弹击中物体过程中,系统动量守恒,以子弹的初速度方向为正方向,由动量守恒定律得: mBv0=mBv′+mAvA,0.02×600=0.02×100+2vA,解得:vA=5m/s,平板车与物体A组成的系统自子弹穿出后直至相对静止过程中系统动量守恒,以A的初速度方向为正方向,由动量守恒定律得:mAvA=(M+mA)v车,代入数据解得,平板车最后速度为:v车=
=2.5m/s;
(2)物体和平板车损失的机械能全转化为系统发热,假设A在平板车上滑行距离为s,由能量守恒定律得:μmAgs=mAvA-(M+mA)v车,即:0.5×2×10s=×2×52-×(2+2)×2.52,解得:s=1.25m,则平板车的长度至少为1.25m; 答:(1)平板车最后的速度是2.5m/s;(2)小车长度至少为1.25m.
18.解:(1)弹簧被压缩到最短时,木块A与木板B具有相同的速度,此时弹簧的弹性势能最大。设共同速度为v,从木块A开始沿木板B表面向右运动至弹簧被压缩到最短的过程中,A、B系统的动量守恒,取向右为正方向,则有:
mv0=(m+2m)v,由能量关系,得:弹簧的最大弹性势能Ep=mv02-(m+2m)v2,解得:Ep=。
22(2)对木块A,根据动量定理得I=mv-mv0。得I=-,方向向左。
(3)从木块A滑上木板B直到二者分离,系统的机械能守恒,设分离时A、B的速度分别为v1和v2。根据动量守恒定律有mv0=mv1+2mv2。根据机械能守恒定律有mv02=mv12+解得v1=-,方向向左,v2=
2mv22。,方向向右。
;,方向向左;,方向向右。
答:(1)弹簧的最大弹性势能是(2)弹簧呗压缩直至最短的过程中,弹簧给木块A的冲量是(3)当木块A和B板分离时,木块A板的速度为,方向向左,B的速度大小为
第5页,共11页 19.解:(1)以铅球、砂车为系统,水平方向动量守恒,m1v0cosθ=(M+m1)v,得球和砂车的共同速度
v=.
(2)球和砂车获得共同速度后漏砂过程中系统水平方向动量也守恒,设当漏出质量为m2的砂子时砂车的速度为v′,砂子漏出后做平抛运动,水平方向的速度仍为v,由(M+m1)v=m2v+(M+m1-m2)v′,得v′=v=,方向水平向右.
答:(1)球和砂车的共同速度是
(2)当漏出质量为m2的砂子时砂车的速度是,方向水平向右.
【解析】 1.【分析】
根据弹性碰撞和非弹性碰撞的性质明确可能出现的情况,讨论可能出现的碰撞过程即可明确碰撞次数.本题考查弹性碰撞和非弹性碰撞,注意在完全非弹性碰撞中两球连在一起;而在于完全弹性碰撞中两球交换速度。【解答】
如果珠子之间的碰撞是完全非弹性碰撞,每碰撞一次,运动的个体就减小一个,所以最多碰4次; 如果是完全弹性碰撞,则碰撞一次,珠子将交换速度,最终应该是外面的珠子速度大,里面的珠子速度小.初始状态时,如果外面的珠子速度大,里面珠子速度小,且外面珠子在向里运动时,它们发生碰撞的次数最多,如图所示,它们的速率关系为:v1>v4>v2>v3.珠子1的速度传递给速度4,需要3次碰撞,珠子2的速度传递到珠子4,需要2次碰撞,珠子3的速度传给4,需要1次碰撞,所以它们之间最多可以碰撞3+2+1=6次; 故选C。
2.解:设甲溜冰者的运动方向为正方向,根据动量守恒定律,选择开始和最后两个状态列方程得:
(M甲+m)v0-M乙v0=M乙×0-(M甲+m)v,代入数据解得v=0,故BCD错误,A正确. 故选A.
以两人和球为研究对象,系统水平方向动量守恒,根据动量守恒列方程即可正确解答.
该题比较简单,考查了动量守恒定律的应用,注意该定律的应用条件,同时注意动量守恒定律公式的矢量性.
3.解:A、播种器利用空气压力把荚以5m/s的速度(相对播种器)竖直向下射出,该过程中播种器对荚做的功转化为荚的动能:W=
J.故A错误;
B、离开无人机后,荚做斜下抛运动,竖直方向:y=代入数据可得:t=1s(t=-2s不符合题意);故B错误;
第6页,共11页 C、荚离开无人机时的速度:v0=设荚到达地面的速度为v,则:
m/s
代入数据可得:v=15m/s 不考虑重力的作用,则土壤对荚冲量的大小等于荚的动量的变化,大小为:
kg•m/s。故C错误;
D、荚的初速度为15m/s,到达地面的速度为15m/s,由几何关系可知,荚到达地面的速度方向与水平方向之间的夹角为45°
荚能进入地面下10cm,则荚相对于地面的位移大小为:s=m 不计重力,根据动能定理可得:-Fs=0-
代入数据可得:F=22.5N.故D正确。故选:D。
由动能定理即可求出播种器对荚做的功;由平抛运动的特点即可求出荚在空中运动的时间;由机械能守恒求出荚到达地面的速度,由动量定理即可求出土壤对荚冲量的大小;由动量定理即可求出荚在土壤内受到平均阻力的大小。
该题属于物理知识在日常生活中的应用,解答的关键是要注意荚空中的运动为斜下抛运动,解答的过程中要将荚的运动分解为竖直方向的分运动与水平方向的分运动。
4.解:跳高运动员在落地的过程中,动量变化一定.由动量定理可知,运动员受到的冲量I一定;跳高运动员在跳高时跳到沙坑里或跳到海绵垫上可以延长着地过程的作用时间t,由I=Ft可知,延长时间t可以减小运动员所受到的平均冲力F,故D正确,A、B、C错误. 故选:D
跳高运动员在落地的过程中,动量变化一定.由动量定理可知,运动员受到的冲量一定,延长与地面的接触时间,可以减小运动员受到的冲击力.
沙坑或海绵垫子具有缓冲作用,可以延长运动员与地面的接触时间,减小运动员受到的冲击力,避免运动员受伤.
5.解:设运动员的质量为m,他刚落到蹦床瞬间的速度为v,运动员自由下落的过程,只受重力作用,故机械能守恒,即:,解得:
;
选取小球接触蹦床的过程为研究过程,取向上为正方向。设蹦床对运动员的平均作用力为,由动量定理得:;
蹦床对运动员的冲量大小为 ;
结合以上两个式子可得:.故A正确、BCD错误。故选:A。
根据机械能守恒求出小球落到蹦床瞬间的速度;到最低点时,小球的速度和动量均为零,运用动量定理可求得软蹦床对运动员的冲量大小。
本题题型是用动量定理求解一个缓冲过程平均作用力的冲量问题,一定要注意选取合适的研究过程和正方向的选取;本题也可选小球从开始下落到最低点全过程来解答。
6.解:A、小滑块m从A点静止下滑,物体M与滑块m组成的系统水平方向所受合力为零,系统水平方向动量守恒,竖直方向有加速度,合力不为零,所以系统动量不守恒.M和m组成的系统机械能守恒,故A错误,B正确; C、系统水平方向动量守恒,由于系统初始状态水平方向动量为零,所以m从A到C的过程中,m向右运动,M向左运动,m从C到B的过程中M还是向左运动,即保证系统水平方向动量为零.故C错误; D、设滑块从A到B的过程中为t,滑块发生的水平位移大小为x,则物体产生的位移大小为2R-x,取水平向右方向为正方向.则根据水平方向平均动量守恒得:
m-M=0
第7页,共11页 解得:x=,故D错误; 所以物体产生的位移的大小为2R-x=故选:B.
小滑块m从A点静止下滑,物体M与滑块m组成的系统水平方向所受合力为零,系统水平方向动量守恒,竖直方向有加速度,合力不为零,系统动量不守恒.
用位移表示平均速度,根据水平方向平均动量守恒定律求出物体M发生的水平位移.
分析清物体运动过程,该题属于水平方向动量守恒的类型,知道系统某一方向动量守恒的条件,求解两个物体的水平位移时,注意要以地面为参照物.
7.解:因为碰撞前,甲球速度大于乙球速度,则有:>
得:>1.4 根据动量守恒得:p甲+p乙=p甲′+p乙′,代入解得:p甲′=2kg•m/s。据碰撞过程总动能不增加,得:
+
≥
+
代入数据解得:>
碰撞后两球同向运动,甲的速度不大于乙的速度,则有:≤
代入数据解得:≤5
所以有:<≤5
则m乙=4m甲,不可能,其他三式子是可能的,故ABD错误,C正确。故选:C。
两球碰撞过程遵守动量守恒定律,由动量守恒定律求出碰撞后甲的动量。根据碰撞前甲球速度大于乙球速度,以及碰撞过程中总动能不增加,列出不等式,求出m甲与m乙比值的范围,再进行选择。
本题考查对碰撞规律的理解和应用能力。要知道碰撞有三个基本规律:
一、动量守恒;
二、系统总动能不增加;
三、碰撞后如同向运动,后面的物体的速度不大于前面物体的速度,即要符合实际运动情况。8.解:A、当A、B速度相同时,弹簧被压缩到最短,弹簧的弹性势能最大,以AB组成的系统为研究对象,以A的初速度方向为正方向,由动量守恒定律得:mv0=2mv,解得:v=,则速度AB速度都不为零,故AB错误;
C、对B,根据动能定理得:弹簧对物体B所做的功,故C错误;
D、在弹簧的弹性势能逐渐增大的过程中,弹簧对物体A和物体B的弹力大小相等,方向相反,根据I=Ft可知,弹簧对物体A和物体B的冲量大小相等,方向相反,故D正确. 故选:D 第8页,共11页 物体速度相等时弹簧压缩量最大,弹簧的弹性势能最大,由动量守恒定律求出速度,对B根据动能定理求出弹簧对物体B所做的功,弹簧对物体A和物体B的弹力大小相等,方向相反,根据I=Ft判断冲量关系. 本题考查了动量守恒定律以及动能定理的直接应用,要求同学们能正确分析物体的运动情况,注意使用动量守恒定律时要规定正方向,难度适中.
9.解:AD、在炸裂过程中,由于重力远小于内力,系统的动量守恒.炸裂前物体的速度沿水平方向,炸裂后a的速度沿原来的水平方向,根据动量守恒定律判断可知:b的速度一定沿水平方向,但不一定与原速度方向相反,取决于a的动量与物体原来动量的大小关系.由于物体原来的动量不是零,所以根据动量守恒定律可知,a、b的动量大小不一定相等.故A、D错误.
B、从炸裂到落地的过程中,a、b都做平抛运动,竖直方向做自由落体运动,由于高度相同,由h=gt2得知,a、b飞行时间一定相同.故B正确.
C、在炸裂过程中,a,b受到爆炸力大小相等,方向相反,作用时间相同,由冲量的定义I=Ft知,爆炸力的冲量大小相等、方向相反,所以冲量不同.故C错误. 故选:B
当物体的速度沿水平方向炸裂成a、b两块时,质量较大的a的速度方向仍沿原来的方向,根据动量守恒定律判断可知b运动方向一定沿水平方向,a、b均做平抛运动,高度相同,运动时间相同,同时到达地面.在炸裂过程中,a、b间相互作用力大小相等,作用时间相等,冲量大小一定相等.
本题是动量守恒定律的应用问题.系统的动量守恒,不仅作用前后总动量的大小保持不变,总动量的方向也保持不变,解题时要抓住这一点.
10.解:两球碰撞过程动量守恒,以两球组成的系统为研究对象,取水平向右方向为正方向,碰撞前,A、B的速度分别为:vA=2v0、vB=v0.
碰撞前系统总动量:P=mAvA+mBvB=m×2v0+2m×(-v0)=0,P=0,系统总动量为0,系统动量守恒,则碰撞前后系统总动量都是0;
由于碰撞是弹性碰撞,则碰撞后二者的速度不能等于0,运动的方向一定相反. 故D正确,ABC错误. 故选:D.
两球碰撞过程,系统动量守恒,先选取正方向,再根据动量守恒定律列方程,求解即可.
本题碰撞过程中遵守动量守恒,不仅碰撞前后总动量的大小不变,方向也保持不变,要注意选取正方向,用符号表示速度的方向.
11.解:A、若两手同时放开A、B两车,系统所受合外力为零,系统动量守恒,由于系统初动量为零,则系统总动量为零,故A正确;
B、先放开左手,再放开右手,两车与弹簧组成的系统所受合外力不为零,系统动量不守恒,故B正确; C、先放开左手,再放开右手,系统所受合外力向左,系统所受合外力的冲量向左,系统总动量向左,故C正确;
D、无论何时放手,两手放开后,系统所受合外力为零,系统动量守恒,在弹簧恢复原长的过程中,系统总动量都保持不变,如果同时放手,系统总动量为零,如果不同时放手,系统总动量不为零,则系统的总动量不一定为零,故D正确; 故选:ABCD。
根据动量守恒的条件分析答题,系统所受的合外力为零系统动量守恒. 本题考查了动量守恒的判断,知道动量守恒的条件即可正确解题,系统所受合外力为零时,系统动量守恒. 12.解:不论圆弧是否光滑,小车与小球组成的系统在小球下滑过程中系统所受合外力都不为零,则系统动量都不守恒.但系统水平方向不受外力,所以系统水平方向的动量守恒.
若圆弧光滑,只有重力做功,系统的机械能守恒.若圆弧不光滑,系统要克服摩擦力做功,机械能减少,故AD错误,BC正确. 故选:BC
系统所受合外力为零,系统动量守恒.只有重力或弹力做功时,物体的机械能守恒.根据题意与守恒条件分析答题.
第9页,共11页 判断动量是否守恒时,要分析受力,确定合外力是否为零.判断机械能守恒时,可以根据是否只有重力做功分析,也可以根据是否只发生动能和势能之间的转化分析.
13.解:因为碰撞前,甲球速度大于乙球速度,则有根据动量守恒得,p甲+p乙=p甲′+p乙′,代入解得p甲′=2kg•m/s.
据碰撞过程总动能不增加得到:
+≥+
>,得到<
代入解得:=
碰撞后两球同向运动,甲的速度不大于乙的速度,则≤,代入解得≥
所≤≤
故选:BCD.
两球碰撞过程遵守动量守恒定律,由动量守恒求出碰撞后甲的动量.根据甲球速度大于乙球速度,以及碰撞过程中总动能不增加,列出不等式,求出甲与乙质量比值的范围进行选择.
本题考查对碰撞规律的理解和应用能力.碰撞有三个基本规律:
一、动量守恒;
二、系统总动能不增加;
三、碰撞后如同向运动,后面的物体的速度不大于前面物体的速度,即要符合实际运动情况.
14.解:A、在小球沿曲面下滑的过程中,小球有竖直分加速度,系统的合外力不为零,动量不守恒。只发生重力势能与动能的转化,所以系统的机械能守恒,故A错误。
B、曲面体对小球的作用力垂直于接触面,由于曲面向右移动,曲面体对小球的作用力与小球相对于地的速度方向成钝角,所以曲面体对小球的作用力垂直于接触面且对小球做负功,故B正确。
C、取水平向左为正方向,由系统水平动量守恒得m球-m曲=0,得=,即球和曲面体对地的水平位移与二者的质量成反比,故C正确。
D、球沿曲面体下滑过程中,球对曲面体的作用力冲量与曲面体对球的作用力冲量始终等大反向,而合外力是物体受到的所有力的合力,则球和曲面体所受合外力的冲量关系不能确定,故D错误。故选:BC。
小球下滑过程中,系统水平方向不受外力,水平方向动量守恒.只发生动能和重力势能的转化,系统的机械能守恒;根据系统水平方向动量守恒列式求解水平位移关系.结合动量定理分析.
本题关键要掌握小球下滑过程中,系统水平方向不受外力,由动量守恒定律分析水平位移关系.对于机械能是否守恒,可根据能量的转化情况分析.
15.解:AB、物体下滑过程中,物体与槽组成的系统水平方向不受外力,系统水平方向动量守恒,只有重力做功,系统机械能守恒。设物体到达水平面时速度大小为v1,槽的速度大小为v2,规定向右为正方向,由系统水平方向动量守恒得:mv1-2mv2=0 由系统的机械能守恒得:mgh=mv12+•2mv22,由以上两式解得:v1=2底端时,槽的动能为Ek2=•2mv22=,故A正确,B错误。,v2=,所以物体第一次滑到槽C、在压缩弹簧的过程中,墙壁对弹簧有作用力,所以物块和弹簧组成的系统动量不守恒,故C错误。
第10页,共11页 D、物块第一次被弹簧反弹后能追上槽,到达最高点时物体与槽的速度相同,物体的动能一部分转化为槽的动能,到达最高点时的重力势能减小,所以不能回到槽上高h处。故D正确; 故选:AD。
物体在下滑过程中,物体与槽组成的系统水平方向不受外力,系统水平方向动量守恒,系统机械能也守恒,应用动量守恒定律与机械能守恒定律求出物体第一次滑到槽底端时槽的动能.根据动量守恒的条件和机械能守恒的条件判断机械能和动量是否守恒.结合物体与槽的速度大小关系判断物体能否回到高h处. 本题考查了动量守恒定律与机械能守恒定律的应用,分析清楚物体运动过程,应用动量守恒定律与机械能守恒定律即可正确解题.
16.解:(1)使用打点计时器时,先接通电源后释放纸带,所以先接通打点计时器的电源,后放开滑块1;
(2)放开滑块1后,滑块1做匀速运动,跟滑块2发生碰撞后跟2一起做匀速运动,根据纸带的数据得: 碰前的速度打出5个点的位移为20.0cm=0.20m;用时0.1s 碰后打7个点的位移为16.8cm=0.168m,用时0.14s; 碰撞前滑块1的动量为:P1=m1v1=0.310×
=0.620kg•m/s,滑块2的动量为零,所以碰撞前的总动量为0.620kg•m/s
碰撞后滑块1、2速度相等,所以碰撞后总动量为:
P2=(m1+m2)v2=(0.310+0.205)×=0.618kg•m/s
(3)结果不完全相等是因为纸带与打点计时器限位孔有摩擦力的作用.
故答案为:(1)接通打点计时器的电源;放开纸带;(2)0.620;0.618;(3)纸带与打点计时器限位孔有摩擦力的作用
使用打点计时器时,先接通电源后释放纸带;本实验为了验证动量守恒定律设置滑块在气垫导轨上碰撞,用打点计时器纸带的数据测量碰前和碰后的速度,计算前后的动量,多次重复,在实验误差允许的范围内相等,则动量守恒定律得到验证.
本题利用气垫导轨验证动量守恒定律的实验,本实验中要注意明确实验原理,同时还要注意打点计时器的使用方法,知道气垫导轨要水平才能满足动量守恒. 17.(1)由动量守恒定律可以求出平板车的速度;
(2)由能量守恒定律可以求出A相对于平板车滑行的距离,然后求出平板车的长度.
本题考查了求速度、A的滑行距离问题,分析清楚物体运动过程、应用动量守恒定律与能量守恒定律即可正确解题.
18.(1)弹簧的弹性势能最大时,A、B的速度相同。A、B组成的系统所受的合外力为零,系统动量守恒,由动量守恒定律可以求出共同速度。再由能量守恒定律(或机械能守恒定律)可以求出弹簧的最大弹性势能。
(2)对木块A,运用动量定理可求弹簧给木块A的冲量;
(3)当木块A和B板分离时,对系统运用动量守恒定律和机械能守恒定律列式,可求得木块A和B板的速度。
本题要分析清楚物体的运动过程,知道两个物体的速度相同时弹性势能最大,应用动量守恒定律与能量守恒定律即可正确解题。
19.1、以铅球、砂车为系统,水平方向动量守恒列出等式求解
2、球和砂车获得共同速度后漏砂过程中系统水平方向动量也守恒,列出等式求解
解决该题关键掌握动量守恒的应用,正确选择研究对象是前提,系统所受合力不为零,但是可以在某一方向所受合力为零即在该方向上系统动量守恒.
在第一节课“探究碰撞中的不变量”的基础上总结出动量守恒定律就变得水到渠成。因此本堂课先是在前堂课的基础上由老师介绍物理前辈就是在追寻不变量的努力中,逐渐明确了动量的概念,并经过几代物理学家的探索与争论,总结出动量守恒定律。接下来学习动量守恒的条件,练习应用动量守恒定律解决简单问题。
二、学情分析
学生由于知道机械能守恒定律,很自然本节的学习可以与机械能守恒定律的学习进行类比,通过类比建立起知识的增长点。具体类比定律的内容、适用条件、公式表示、应用目的。
三、教法分析
通过总结前节学习的内容来提高学生的分析与综合能力,通过类比教学来提高学生理解能力。通过练习来提高学生应用理论解决实际问题的能力。整个教学过程要围绕上述能力的提高来进行。
四、教学目标
4.1知识与技能
(1)知道动量守恒定律的内容、适用条件。
(2)能应用动量守恒定律解决简单的实际问题。
4.2过程与方法
在学习的过程中掌握动量守恒定律,在练习的过程中应用动量守恒定律,并掌握解决问题的方法。
4.3情感态度与价值观
体验理论的应用和理论的价值。
五、教学过程设计
[复习与总结]前一节通过同学们从实验数据的处理中得出:两个物体各自的质量与自己速度的乘积之和在碰撞过程中保持不变。今天我还要告诉大家,科学前辈在追寻“不变量”的过程,逐渐意识到物理学中还需要引入一个新的物理量——动量,并定义这个物理量的矢量。
[阅读与学习]学生阅读课本掌握动量的定义。具体有定义文字表述、公式表示、方向定义、单位。
[例题1]一个质量是0.1kg的钢球,以6 m/s 速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动(如图二所示),
求:(1)碰撞前后钢球的动量各是多少?
(2)碰撞前后钢球的动量变化?
分析:动量是矢量,虽然碰撞前后钢球速度的大小没有变化,都是6m/s,但速度的方向变化了,所以动量也发生了变化。为了求得钢球动量的变化量,先要确定碰撞前和碰撞后钢球的动量。碰撞前后钢球是在同一条直线上运动的。选定坐标的方向为矢量正方向。
解:略
[阅读与学习]学生阅读课本掌握系统、内力和外力概念。
师:请一个同学举例说明什么系统?什么叫内力?什么叫外力?
生:两个同学站在冰面上做互推游戏。如果我们要研究互推后两个人的速度大小,可以把两人看成一个系统。两人的相互作用力为内力。两人所受的重力和支持力为外力。
[阅读与学习]学生阅读课本掌握动量守恒定律。
例题2:在列车编组站里,一辆m1=1.8×104kg的货车在平直轨道上以V1=2m/s的速度运动,碰上一辆m2=2.2×104kg的静止的货车,它们碰撞后结合在一起继续运动。求:货车碰撞后运动的速度。
[要求]学生练习后,先做好的学生将解答过程写在黑板上,老师依据学生的解答进行点评。目的让学生学会判断动量守恒定律成立的条件,会利用动量守恒定律列方程,根据计算结果判断运动方向。
例题3:甲、乙两位同学静止在光滑的冰面上,甲推了乙一下,结果两人相反方向滑去。甲推乙前,他们的总动量为零。甲推乙后,他们都有了动量,总动量还等于零吗?已知甲的质量为50kg、乙的质量为45kg,甲的速率与乙的速率之比是多少?
[要求]学生思考后回答问题:因为动量是矢量,正是因为是矢量,两个运动方向相反的人的总动量才能为零。再要求学生列方程求解,并注意矢量的方向。
六、教学反思
【欧姆定律高二物理教案】推荐阅读:
高二物理欧姆定律说课稿07-20
初中物理――欧姆定律教案10-10
高二物理电荷库仑定律07-25
欧姆定律概念07-16
欧姆定律计算题06-26
欧姆定律的应用10-01
欧姆定律评课稿11-04
闭合电路欧姆定律说课07-05
《欧姆定律和安全用电》教学设计06-22
7-4欧姆定律和安全用电教学设计11-13