某矿通风系统改造方案

2024-08-24 版权声明 我要投稿

某矿通风系统改造方案(通用5篇)

某矿通风系统改造方案 篇1

系统设计方案

一、问题的提出:

某煤矿属高瓦斯矿井,回采面采用“两进一回”通风方式进行回采。目前我矿12123下工作面处于回采中期,所采煤层为2#煤层,平均厚度为2.2—2.4m。由于12123下工作面处于回采中期,剩余可采走向长度为440米,现由于12123下尾巷作为12123下工作面专用回风巷多处地段底鼓片帮现象严重,造成巷道回风断面缩小,通风不畅,瓦斯浓度有进一步升高趋势。为保证矿井安全生产,经我矿领导经过慎重研究决定将12123下工作面现“一进两回”通风系统(即12123下材料巷进风,12123下运输巷和12123下尾巷回风)改为U型通风系统(即12123下运巷进风,12123下材巷回风)。以便于12123下尾巷的起底和扩帮。

12123下综采工作面调整前设计方案:

12123下工作面剩余走向长度440m,倾斜长度145m,工作面位置位于井田北面,井下位于三采区总轨道巷北面,工作面东面距2#钻孔350m,南面距1#钻孔1700m,东面距百草沟梁350m,地面部分地段为第四纪黄土覆盖,除少量农田和部分果树以外,无其它建筑物设施。3211工作面位于三采区,东面为3209工作面(未掘),西面为3213工作面(已掘完),南面为总轨道大巷及总回风大巷(西段)。目前3211工作面采用“两进一回”通风系统,材巷、运巷分别为进风巷,尾巷为专用回风巷,根据最近测风情况,运巷进风1220m/min,材巷进风为648m/min,尾巷回风口回风为2217 m/min,实际配风量可及时稀释落山区及煤层内涌出的瓦斯,3213材、尾巷工作面已掘进完毕,3213切眼剩余36米左右。为使3211工作面回采完毕后,3213备用工作面可及时的进行接替。现经过我矿领导研究决定将3211工作面U+L型通风系统改为U型通风系统。为了确保在改为U型通风后的安全生产,进一步提高矿井安全系数。某矿对3211工作面瓦斯传感器的报警、断电、复电浓度参数的设置及悬挂位置按要求进行布置。1、3211尾巷已由原来的回风巷改为进风巷,因3211尾巷顶板和两帮压力大,且破碎严重。巷道在进行扩帮拉底前,先由瓦斯检查员检查巷道内的瓦斯等其它有害气体的情况,只有瓦斯浓度在1%以下时方可作业。

2、在调整通风系统前要及时的对7联巷和6联巷进行施工永久密闭。密闭四周要掏槽,掏槽深度不得小于300㎜,密闭四周要抹有不少于0.1m裙边,墙面要平整,要勾缝,无裂缝,无空缝,不漏风,最后进行进行测风。在施工密闭时要及时的在密闭中预埋瓦斯抽放管路,并与3211尾巷的瓦斯抽放主管进行及时的连接,对密闭里采空区的瓦斯及时的进行抽放。为安全生产作可靠的保障。3333、在3211材巷采空区的左上角沿顶板及时的预埋瓦斯抽放管路,并与3211材巷的瓦斯抽放支管进行连接对3211工作面上隅角的瓦斯及时进行抽放,为3211工作面安全生产作提供安全可靠的保障。

4、对3211尾巷存在密闭存在的漏风现象及时的用快速密闭材料进行堵漏处理,以避免漏风造成风量不足的危害。

5、在尾巷拉顶、扩帮、起底的过程中要及时的对顶板的失效的顶锚和锚索和两帮失效的帮锚、锚索时及时先进行补打单点锚杆、锚索,确认支护没有问题时,并对各种电缆及电气设备遮挡或用塑料布进行保护;要认真检查压风、水、电、管线的完好情况,及时准备好照明和防尘设施等。

7、将3211综采工作面材料巷巷距工作面3-5m位置布置一台瓦斯传感器,报警浓度≥0.8%,断电浓度≥1.0%,复电浓度<0.8%。

8、将3211综采工作面上隅角切顶线往里位置布置一台瓦斯传感器,报警浓度≥0.8%,断电浓度≥1.0%,复电浓度<0.8%。

9、将3211综采工作面尾巷T1瓦斯传感器布置在距尾巷迎头非风筒侧3-5m处,原规程规定:报警浓度≥2.5%,断电浓度≥2.5%,复电浓度<2.5%。更改为:报警浓度≥1.0%,断电浓度≥1.5%,复电浓度<1.0%;尾巷T2瓦斯传感器布置在通风联络巷口非风筒侧3—5m范围,原规程规定:报警浓度≥2.5%,断电浓度≥2.5%,复电浓度<2.5%。更改为:报警浓度≥1.5%,断电浓度≥1.5%,复电浓度<1.5%;尾巷T3瓦斯传感器布置在回风联络巷非风筒侧10—15m范围,原规程规定:报警浓度≥2.5%,断电浓度≥2.5%,复电浓度<2.5%。更改为:报警浓度≥1.5%,断电浓度≥1.5%,复电浓度<1.5%,悬挂位置距顶板不大于300mm,距帮不小于200mm。

附图一:3211综采工作面调整系统前通风布置图

二、3211综采工作面调整后设计方案:

3211工作面剩余走向长度360m,倾斜长度180m,为了使3211工作面回采完毕后,3213备用工作面可及时的进行接替,3211尾巷(即3213运巷)要及时的进行拉顶、起底、扩帮。经某矿领导慎重研究决定采取对3211工作面通风系统进行调整,将3211由原先“两进一回”通风系统更改为“一进一回” 通风系统(即运巷为进风、材料巷为回风巷)。

1、为确保3211综采工作面通风能力的满足,尽快解决通风的问题,确保各项工作安全、有序的进行,调整系统前决定对3211工作面施工永久密闭2套,开启永久密闭一道。具体施工技术要求如下:

1)、通风区负责确定各处通风设施的施工位置、施工顺序、设施名称和风量、瓦斯等数据的测定工作。

2)、在3211工作面第7联巷施工一道永久密闭;(永久密闭墙要施工在顶板支护完好、顶底坚实的煤岩上,周边掏槽,掏槽深度不得小于300mm,密闭四周要抹不少于100mm的裙边。)

3)、在3211工作面第6联巷施工一道永久密闭;(永久密闭墙要施工在顶板支护完好、顶底坚实的煤岩上,周边掏槽,掏槽深度不得小于300mm,密闭四周要抹不少于100mm的裙边。)

4)、3211工作面第1横贯进行开启,以便工作面回风,避免在施工过程中瓦斯超限。2、3211第6联巷和第7联巷施工永久密闭安全技术措施 1)、施工前,在3211材巷安设2×7.5KW对旋风机(风机安装位置如附图所示),并把φ450风筒连接至施工地点。风筒吊挂、对接按质量标准进行,做到平、稳、直,拐弯处用伸缩风筒,且做到双反压边,逢环必挂。

2)、风机的安装、风筒的吊挂由通风队负责,风机拆、压线由生产队组负责。

3)、风筒应从1横贯穿过进入尾巷(如图所示)。4)、通风区队长、技术员、瓦斯检查员和安全员必须跟班作业。

5)、施工人员到达现场后,首先由瓦斯检查员检查6和7横贯口瓦斯情况,瓦斯浓度超过1.5%时,由跟班领导安排生产队组值班电工启动风机,并守候在风机附近,随时观察风机的运行情况。6)、6和7横贯口瓦斯浓度降至1.5%以下时,首先将横贯口附近10m范围内全面冲洗一遍,彻底消除积尘。然后由跟班领导和技术员确定闭墙位置,并安排人员将闭墙位置的铁丝网断开,铁丝网断开的宽度不得小于闭墙厚度。

7)、永久密闭墙要施工在顶板支护完好、顶底坚实的煤岩上,周边掏槽,掏槽深度不得少于300mm。闭墙距横贯出风口的距离不得超过6m。

8)、施工时,必须使用铜制工具。沙灰的配比为1:3,搬运料石时必须轻拿轻放,杜绝野蛮作业。

9)、施工时,要求墙体厚度不少于1m,料石墙面要平整,做到沙浆饱满,勾缝无空缝。墙体中间用黄土或沙灰充填,充填时必须捣实,接顶严密不漏风。

10)、施工时,墙体上要预埋抽放管(外露的抽放管必须提前上好挡板)。

11)、施工结束后,剩余材料要归类码放整齐,不得乱扔乱放。之后由跟班区队长通知生产队组停止风机运行,拆除电源,风机、风筒由现场施工人员回收整理后放到指定位置。12)、整个施工过程中,瓦斯检查员、安全员必须全程跟踪检查,杜绝超限作业,杜绝一切违章指挥和违章操作。13)、施工人员必须严格遵守某煤矿人员进入尾巷、回风巷的管理办法,不得随意走动,其他未及之处严格执行《煤矿安全规程》中相关规定。

3、目前,3211工作面通风系统进行调整前各系统密闭设施材料均已运输到安装指定地点,具体施工工期待集团公司同意后同一天进行施工并进行调整系统。

附图二:3211综采工作面调整系统后通风布置图 4、3211综采工作面调整系统后安全措施

1)、3211工作面调整系统前,通风区派测风员进行对3211工作面各用风地点全面测风,并对每次测定的数据详细记录,确保配风量合理分配。

2、)通风队要进行对此工作面所有的通风设施进行全面的检查,对有损坏、漏风的通风设施及时进行修补。(同时机电区对井下所有机电设备进行检查,杜绝失爆现象存在,确保各机电设备安全、可靠的运行)

3)、3211工作面调整系统前,巷道内新增所有调节设施要按规定进行施工,规格尺寸严格按照措施施工,确保施工质量。4)、3211工作面调整系统投运后测风员要进行全面的测风,并做好记录,同时对测风前数据进行分析、对比,确保配风量合理优化。

5)、3211工作面调整系统过程中,3211工作面必须进行停产,撤离至三采轨道巷的安全地点。所有主扇风机停止运转,所有采区域必须进行断电,无关人员严禁进入工作面进行工作(参与系统调整工作的人员除外);只有在系统调整工作结束后,此工作面所有地点通风状况恢复正常后,方可进入工作面进行作业。

6)、3211工作面调整系统后测风人员要及时检查风流是否正常,通风系统是否符合预定的方案,如发现有不符合现象,要及时调整风量,确保安全运行。

7)、3211工作面调整系统后确认风流正常后,施工队组指派固定人员对工作面风机进行启动,开始输送新鲜风流,同时排除工作面瓦斯,进入工作面时瓦检员必须在前方进行观测瓦斯浓度,瓦斯浓度在规定范围内方可进入,否则待工作面瓦斯排完后方可进入。(排放瓦斯措施另行制定)

8)、排除瓦斯后,测风员要及时对工作面各用风地点进行一次全面的测风,并做好记录,同时与投运前所测数据进行分析,确保合理有效的分配风量。确认风流稳定,通风系统完好后,通风区通知组队正常生产。

5、调整系统后3211下工作面各用风点布置情况: 3211工作面调整系统后采用“一进一回”通风系统,运巷为进风巷,材巷为回风巷,预计配风情况如下,运巷配进风为1000m/min,运巷回风为1100m/min,同时根据集团公司安全工作会议的要求,为进一步提高矿井安全系数,某矿对12123下工作面调整系统后瓦斯传感器的报警、断电、复电浓度参数的设置及悬挂位置按要求进行布置。

37、将3211综采工作面材料巷距工作面3-5m位置布置一台瓦斯传感器,报警浓度≥0.8%,断电浓度≥1.0%,复电浓度<0.8%。

8、将3211综采工作面上隅角切顶线往里位置布置一台瓦斯传感器,报警浓度≥0.8%,断电浓度≥1.0%,复电浓度<0.8%。

9、由于3211材料巷巷由原进风更改为回风巷,存在移动变电站及其它电器设备,因此将3211综采工作面运巷T1瓦斯传感器布置在距工作面非电缆侧3-5m处,报警浓度≥0.5%,断电浓度≥0.5%,复电浓度<0.5%;运巷T2瓦斯传感器布置在巷道中部非电缆侧,报警浓度≥0.5%,断电浓度≥0.5%,复电浓度<0.5%;运巷T3瓦斯传感器布置在回风联络巷非电缆侧10—15m范围,报警浓度≥0.5%,断电浓度≥0.5%,复电浓度<0.5%,悬挂位置距顶板不大于300mm,距帮不小于200mm。

7)、安全监控设备每月至少调试和校正一次;甲烷传感器每七天必须用甲烷标准气样和空气调校一次;每七天对甲烷超限断电功能进行测验试。

8)、监测监控系统的分站、传感器、声光报警器、断电器及电缆,属采掘区域的由采掘队长、班组长负责管理使用,如有损坏要及时向通风部门汇报。

9)、每班瓦检员使用光学瓦检仪与传感器显示值进行对照,并做好记录,认真填写对照牌板,发现问题及时汇报通风部门。10)、地面中心站必须对当日获取的信息进行分析整理,并认真填写矿井监测日报,报矿长、矿总工程师、通风值班干部审阅。

某矿通风系统改造方案 篇2

目前, 常村煤矿主要生产盘区为二水平21盘区。21盘区共布置三岩一煤4条下山, 分别为21盘区煤轨下山、21盘区轨道、胶带下山 (岩) 、21盘区专用回风下山 (岩) 。盘区内共布置2个综放回采工作面和4个开掘工作面。

1 通风系统现状

矿井通风系统为混合抽出式。进风井5个, 分别为:进风斜井、材料斜井、主胶带斜井、排矸斜井、注浆立井;回风井有2个:东风井和后沟风井。

后沟风井安装2台上海风机厂生产的GAF系列轴流式通风机, 主要通风机型号GAF21.2-14-1, 电动机容量500 kW, 运行风量82.0 m3/s, 运行负压2 152 Pa;备用通风机型号为GAF21.2-12.6-1, 电动机容量460 kW。目前该风井担负21盘区及矿井西翼硐室的通风任务。东风井安装2台BDK系列对旋轴流式通风机, 主要通风机型号为BDK-№40-15, 电动机容量为2×37 kW, 运行风量11.0 m3/s, 运行负压为294 Pa;备用通风机型号BDK-№40-15, 电动机容量为2×37 kW。目前该风井担负矿井东翼硐室通风任务。

2 通风系统改造的必要性

(1) 抗灾能力较差。

承担矿井主要生产采区通风任务的后沟风井通风系统, 由于其进、回风井均位于井田的西部, 远离生产采区, 进、回风线路并行长度超过3 100 m, 通风方式极不合理, 风量调节困难, 系统的抗灾能力较差。

(2) 风量满足不了矿井安全生产用风。

随着矿井继续向21延伸区的下部开采, 煤层瓦斯涌出量增大, 矿井地温升高, 对风量的需求将进一步增大, 现有的通风系统根本无法满足矿井安全生产用风。因此, 需要对现有的通风系统进行优化改造。

(3) 生产接替的需要。

常村煤矿21盘区作为矿井的主要生产盘区已经开采10余年, 可采储量仅为1 544.8万t。若按照矿井目前的生产能力, 可服务7.7~8.6 a, 矿井开采地区出现接替紧张局面。而矿井深部DF1断层以南区域 (新增勘探区) 的储量预测将近2 000万t。为保证矿井生产的正常接替, 该区域的开拓势在必行。因此, 对该区域进行开拓布局设计及通风设计已刻不容缓。

3 改造方案的分析

3.1 方案的提出

根据已探明储量的分布情况可知:DF1断层下部区域 (三水平采区) 为21延伸盘区的接替采区。因此, 在充分考虑现生产盘区与接替盘区的关系、地面地形情况、新风井压煤情况、对现有生产接替的影响程度以及便于新采区开拓等因素, 对矿井通风系统改造提出以下3种方案。

方案Ⅰ:

新开回风立井位于21延伸区东翼下部, 三水平采区上部1503孔附近, 落底于2-3煤底板, 与三水平回风大巷连通。新风井井筒净直径5 m, 净断面19.63 m2, 井深721 m。三水平只划分一个双翼采区进行开采, 采区3条下山均布置在2-3煤底板岩石中, 分别与三水平3条大巷连通, 采区下部边界处布置水仓、泵房, 构成完整的通风、运输、排水等生产系统。

方案Ⅱ:

新回风立井位于井田深部边界处, 落底于2-3煤顶板岩石中, 直接与延伸区专用回风下山连通, 风井井筒净直径5 m, 净断面19.63 m2, 井深817.3 m。三水平开采只划分为一个双翼采区进行开采, 不再设置三水平大巷, 只将原延伸区3条下山继续向下延伸。考虑到提升长度较大, 设置接力车场。在21延伸区专用回风下山以东25 m布置一接力专用回风下山, 直接与矿井边界处的回风井连通。在原延伸区回采面采空区西侧沿煤层顶板布置一接力轨道下山作为副提升, 原21延伸区胶带下山直接向下延伸作为主提升, 这样三水平采区开采布置两岩一煤3条下山, 在矿井边界附近布置下山水仓、泵房, 构成完整的通风、运输、排水等生产系统。

方案Ⅲ:

该方案利用后沟风井通风系统, 担负21延伸区及三水平通风任务, 但需对井下主要回风巷 (21区专用回风巷1 390 m、二水平暗主斜井560 m) 进行大断面扩修, 以降低风阻, 使通风能力满足安全生产需要。采区划分及巷道布置同方案Ⅱ。

3.2 方案技术比较

方案Ⅰ优点:

①能够尽快解决21延伸区的通风问题, 而且可直接为三水平采区服务;②通风方式合理, 矿井的防、抗灾能力显著提高, 通风阻力大幅度减小, 安全性较好;③与方案Ⅱ比较井筒较浅, 初期投资少。缺点:①新风井广场保安煤柱压煤725.2万t, 加上矿井深部杨大池村庄保安煤柱压煤734.6万t, 共计呆滞煤量1 459.8万t, 影响矿井采掘接替和服务年限;②对三水平的开采需首先布置三水平3条大巷 (945 m) , 然后再布置三水平采区3条下山, 总的开拓工程量较大;③风井地面地形狭窄, 工业广场布置较困难, 挖、填土方量较大。

方案Ⅱ优点:

①风井煤柱与村庄煤柱合并考虑, 压煤较少, 对矿井采掘接替和服务年限影响小;②不再布置三水平3条大巷, 只是将原21延伸区3条下山继续向下延伸, 总的开拓工程量少;③前期 (三水平开拓期间) 提矸下料, 并可作为进风井, 三水平开拓可上下对掘, 有利于接替盘区的快速开拓;④形成通风系统的总工程量小, 工期短;⑤通风方式合理, 矿井的防、抗灾能力显著提高, 系统通风阻力大幅减小, 安全性较好;⑥风井地面地形较为平坦, 工业广场易于布置, 挖、填土方量小。缺点:①与方案Ⅰ比较井筒较深, 初期投资较大;②新风井建成后, 现生产盘区21盘区及其延伸区的生产回风需通过三水平采区专用回风下山, 通风距离较长。

方案Ⅲ优点:

通过井巷及扩巷工程施工, 基本可满足井下通风需要。缺点:①通风线路长达17 859 m, 系统复杂, 阻力大。经过计算, 通风容易时期h=2 458.9 Pa, 通风困难时期h=2 983.4 Pa, 且等积孔1.34 m2<2.00 m2, 通风较困难。②主进、回风线路并行长度达到3 800 m, 系统内部漏风量大, 稳定性差, 对防治瓦斯及煤层自燃不利。③进风线路长, 风流温度高, 对气象条件影响很大。④主要通风机年均电耗较多, 年均电费达到185.4万元。⑤巷道扩修工程量多 (S≥14 m2, 扩修巷道1 950 m) , 费用高达2 145万元 (1.1万元/m) 。且巷道维护量大, 年均维护费用高达1 172.13万元。⑥系统安全性差。因三水平、21延伸区、21区回风呈串联关系, 一旦三水平发生火灾、瓦斯等灾害时, 灾变风流侵袭范围大, 造成灾区扩大, 而不利于救灾。

3.3 方案经济比较

方案经济比较主要是三方案的初期投资概算比较, 详见表1。

万元

3.4 改造方案的确定

通过技术经济比较:方案Ⅰ井筒较浅, 初期投资少, 但压煤量较大, 对现有生产及接替影响较大;方案Ⅱ井筒较深, 初期投资大, 但压煤量少, 总工程量少, 对现有生产接替影响小;方案Ⅲ虽可行, 但不能从根本上解决问题, 且扩修巷道对生产影响较大, 年维护费用高, 系统抗灾能力差。综上所述, 采用方案Ⅱ较好。

4 结语

(1) 常村煤矿建新回风立井, 使21采区及三水平延伸区缩短通风线路, 降低矿井通风阻力, 提高矿井抗灾能力。

(2) 新回风立井建成后, 解决了21采区、21采区延伸区、三水平工作地点风量配备问题, 矿井通风系统的稳定性增强, 通风系统布局合理, 矿井抗灾能力得到提高。

(3) 矿井通风系统改造完成后, 为加快三水平延伸创造了良好的通风条件, 为企业的稳产、高产、和可持续发展奠定了基础。

摘要:结合常村煤矿通风系统现状, 分析了该煤矿进行通风系统改造的必要性, 通过对3种方案的技术经济比较, 确定了改造方案。

矿井通风控制系统设计改造 篇3

针对矿井旧通风控制系统中存在的体积庞大、接线复杂、机械触点多、排除故障困难、可靠性差、自动化程度低等缺陷,设计了一种基于先进PLC控制技术的矿井通风安全控制系统。该控制系统投入使用,运行结果表明,系统具有功能完善,运行稳定,节能效果明显等特点,提高了企业的生产效率和经济效益,具有很好的应用前景。

关键词: 控制 变频 PLC

1.前言

煤矿矿井通风系统是煤矿矿井安全生产的重要组成部分,煤矿矿井通风系统能否正常工作与矿井内工作环境条件、生产效率、安全生产密切相关。随着我国政府对各行各业安全生产监管力度的不断加强,尤其对煤矿安全生产的要求越来越高,对煤矿矿井通风系统进行技术改造,提高其运行稳定性、节能降耗等势在必行。本系统将PLC与变频器有机地结合起来,采用以矿井气压压力为主控参数,实现对电动机工作过程和运转速度的有效控制,使矿井通风机通风高效、安全,达到了明显的节能效果。

2. 系统的设计功能

本控制系统具有通风机组的启动、互锁和过热保护等功能。与常规继电器实施的通风系统相比,PLC系统具有故障率低、可靠性高、接线简单、维护方便等诸多优点,PLC的控制功能使通风系统的自动化程度大大提高,减轻了岗位人员的劳动强度。为满足矿井通风系统自动控制的要求,系统的具体设计要求如下:

2.1.本系统提供手动/自动两种工作模式,具有状态显示以及故障报警等功能。

2.2.模拟量压力输入经PID运算,输出模拟量控制变频器。

2.3.在自动方式下,当井下压力低于设定压力下限时,两组风机将同时投入工作运行,同时并发出指示和报警信号。

2.4.模拟量瓦斯输入,当矿井瓦斯浓度大于设定报警上限时,发出指示和报警。当瓦斯浓度大于设定断电上限时,PLC将切断工作面和风机组电源,防止瓦斯爆炸。

2.5.运用温度传感器测定风机组定子温度或轴承温度,当定子温度或轴承温度超过设定报警上线时,发出指示和报警信号。当定子温度或轴承温度超过设定风机组转换温度界线时,PLC将切断指示和报警信号并自动切断当前运行风机组,在自动方式下并能自动接入另一台风机组运行,若在手动方式下,工作人员手动切换。

3.系统硬件构成及各部分功能

本控制系统有可编程控制器(PLC)、A/D转换模块、D/A转换模块、变频器、传感器部分、监控对象和电控回路组成。

3.1.PLC可编程控制器部分可编程控制器部分

PLC概述概述PLC是以微处理器为核心的一种特殊的工业用计算机,其结构与一般的计算机相类似,由中央处理单元(CPU)、存储器(RAM、ROM、EPROM、EEPROM等)、输入接口、输出接口、I/O扩展接口、外部设备接口以及电源等组成。CPU单元由微处理器、系统程序存储器、用户程序存储器以及工作数据存储器等组成,它是PLC的核心部件,是由大规模或超大规模的集成电路微处理芯片构成,主要完成运算和控制任务,可以接收并存储从编程器输入的用户程序和数据。存储器单元按照物理性能分为两类,随机存储器(RAM)和只读存储器(ROM)。输入输出单元由输入模块、输出模块和功能模块构成,是PLC与现场输入输出设备或其他外部设备之间的连接部件。PLC通过输入模块把工业设备或生产过程的状态或信息读入中央处理单元,通过用户程序的运算与操作,把结果通过输出模块输出给执行单元。输出模块用于把用户程序的逻辑运算结果输出到PLC外部,输出模块具有隔离PLC内部电路和外部执行单元的作用,还具有功率放大的作用。

3.2.变频器部分

本系统选用的是西门子全新一代标准变频器MicroMaster440功能强大,应用广泛。它采用高性能的矢量控制技术,提供低速高转矩输出和良好的动态特性,同时具备超强的过载能力,以满足广泛的应用场合。变频器的选用:变频器的选用应满足以下规则,变频器的容量应大于负载所需的输出;变频器的容量不低于电机的容量;变频器的电流大于电机的电流。由于本设计以风机组2×30kW为例,因此可选用37kW,额定电流75A的变频器。考虑到改进设计方案的可行性,调速系统的稳定性及性价比,我们采用西门子MM440、37kw,额定电流为75A的通用变频器。该变频器采用高性能矢量控制技术,提供低速高转矩输出和良好的动态特性,同时具备超强的过载能力,可以控制电机从静止到平滑起动期间提供3S,有200%的过载能力。变频器参数的设置:负载为一大惯性负载,在停车时,为防止因惯性而产生的回馈制动使泵升电压过高的现象,加入制动电阻,斜坡下降时间设定长一些。外接制动电阻的阻值和功率可按公式R≥2Ud/1P≥(0.3—0.5)选取。式中:U为变频器直流侧电压,d为变频器的额定电流。本次设计采用西门子与37kW电机配套的制动电阻响和对转速调整的要求,系统用模拟量输入作为附加给定,与固定频率设定相叠加以满足不同型号模具特殊要求。

4.软件设计

本控制系统的软件设计是分四部分实现的,主要包括手动自动控制部分、温度转换控制部分、瓦斯浓度控制部分和压力PID控制部分。本文中所采用的PLC是西门子公司的产品S7-200系列,CPU的型号是CPU226。主要包括手动/自动控制部分、温度转换控制部分、瓦斯浓度控制部分、压力PID控制部分、PLC与变频器通信和机械故障处理部分。其中手动和自动控制部分是在温度、瓦斯和压力控制中使用的。所以下面仅对温度、瓦斯、压力进行分析。温度控制部分本设计的风机组设有轴承温度和定子温度过热保护。综合所选用的风机组自身特性和国家规定标准,设置了风机组轴承温度和定子温度报警温度和跳闸温度(本系统是风机组切换温度)。瓦斯浓度传感器将连续变化的瓦斯浓度信号转换为4~20毫安的电流,然后经A/D转换模块EM235,通过其内部的采样、滤波,转换为PLC能识别的二进制信号存储到VD196中。

5.结束语:

某矿通风系统改造方案 篇4

一、调试工作的总体要求

二、调试工作的内容及范围

1.生活给水与排水系统 2.通风与空调系统:

3.消防火灾自动喷水灭火系统与消火栓系统

三、调试时间的确定及组织工作落实

1.调试时间的确定 2.调试指挥小组机构成员 3.各专业负责人名单 4.调试指挥小组组长指责 5.各专业负责人指责 6.调试值班人员职责 7.调试纪律 8.调试交接班制度 9.调试工作依据

四、调试工作的主要项目与程序

1.生活给水与排水系统的调试 2.通风与空调系统的调试

3.消防火灾自动喷水灭火系统与消火栓系统的调试

调试方案

一、调试工作的总体要求:

本工程设备安装调试总体要求是属于我单位施工范围内的生活给水与排水系统、通风与空调系统、消防系统火灾自动喷水灭火系统与消火栓系统的使用功能。

二、调试工作的内容及范围: 1.生活给水与排水系统:

给排水系统使用功能调试的范围为:站台、站厅层生活给水系统管道的水压试验、清洗试验;排水管道系统的通水试验,通球试验,卫生器具盛水试验。确保给排水系统管道畅通、无渗漏水,液位控制以及供排水系统设备的有效控制和正常运转。

2.通风与空调系统:

通风系统使用功能调试的范围为:风管的漏光试验;站台层、站厅层送风、防排烟系统及小系统的漏风量测试。各类风机风量、风速、风压、的测试;空调水系统管道清洗、试压试验和管道流量调试。

站厅空调冷冻循环泵供回水机组运转调试,保证管道内的介质顺利实现输送、循环或排出,以及风量、风速、风压、温度、湿度、噪音等指标达到施工图设计总说明对空调室内设计、计算参数的要求。

3.消防火灾自动喷水灭火系统与消火栓系统:

本工程的消防调试主要对:站台,站厅消防系统火灾自动喷水灭火系统、消火栓等系统喷淋系统最不利部位的喷水流量和压力、水泵自动手动和切换、模拟火灾设备运行状态、故障切换功能;

三、调试时间的确定及组织工作落实

1.调试时间的确定 2.调试指挥小组机构成员: 3.各专业负责人: 4.调试指挥小组组长职责:

检查调试前的准备工作的落实情况。签发起动和停车命令。听取各值班人员的试运转报告,协调各专业间的调试工作。组织处理调试中的重大问题。组织落实各项指令及及时反馈信息。

5.专业负责人的职责:

组织并实施各项起动前的准备。进行技术交底、安全交底。检查值班操作人员的操作规程、安全规程的执行情况。复核运行记录,填写调试记录。发生异常情况紧急停车。组织实施检修工作。

6.调试值班人员职责:

严格执行操作规程和安全规程,认真进行操作。监视设备运行情况,发现问题及时向专业负责人汇报。如实、全面、准确、清晰的填写调试值班记录。在专业负责人的指挥下实施运行中的检修。

7.调试纪律:

服从命令听从指挥、精神集中、坚守岗位、严禁违章指挥、严禁违章操作。

8.调试交接班制度:

值班人员提前15分钟进入现场,在专业人员的召集下开好班前会,交班人员必须在交班完毕后方可离去,交班人员必须详细的介绍运行情况和运行记录,专业负责人除自己交接班外,还需检查专业内其他人员的交接情况。交班过程中发现设备的故障,交班人员应协助接班人员排除故障。

9.调试工作依据:

建设单位提供的设备安装工程各专业设计施工图、设计变更。国家和地方有关法律、法规。公司有关管理文件

GB50242-2002《建筑给排水及采暖工程施工质量验收规范》 GB50243-2002《通风与空调工程施工质量验收规范》 GB50261-96 《自动喷水灭火系统施工及验收规范》 GB50299-1999(2003年版)《地下铁道工程施工及验收规范》

四、调试工作的主要项目与程序

1、生活给水与排水系统的调试 1)、给水管道调试:(1)调试要求

1.给水系统管道安装完毕以后,对整个系统进行试压,压力试验按设计1.4MPa的要求进行,若无设计要求,室内给水管道试验压力不应小于0.6MPa。试验压力应为工作压力的1.5倍,不得超过1.0MPa。水压试验时,在20分钟内压力降不大于0.05MPa,然后将试验压力降至工作压力作外观检查,以不漏为合格。

2.室内给水管道进行水冲洗,如不能用水冲洗或不能满足清洁要求时,可采用空气进行吹洗,但应采取相应措施。

3.水冲洗的排放管必须接入可靠通畅的排水管网,并保证排泄物的畅通和安全,排放管的截面不应小于被冲洗管截面的60%,不能因为排水管网堵塞造成地面大量积水。

4.冲洗用水采用临时给水管网接入的自来水。水冲洗应连续进行,冲洗最大流量或不小于1.5m/s的流速进行。按照GB50242-2002《建筑给排水及采暖工程施工质量验收规范》规定,以出口的水色和透明度与入口处的透明度目测一致为合格。

5.管道系统的调试应在试压冲洗、合格后进行

(2)调试方法 1.把进入各用水点的阀门全部关闭严密。

2.把各分支系统上的控制阀门关闭,并把水箱口处阀门关闭严密。3.对浮球阀经水位调试调整,确保浮球阀的正常工作。待蓄水池注满水后,检查蓄水池的出水管处是否有渗漏等现象;完毕后由电气专业配合启动水泵,检查给水设备的供水是否正常;水泵运转是否正常;是否有不正常的杂音:管网的压力表工作是否正常;待正常后,检查是否有水的渗漏,是否有其他原因对管网造成的疏漏,合格后随时做好记录备查。

4.上述步骤调试成功后,首先进行屋顶水箱送水。关闭所有支系统的阀门后,打开给水主管阀门对水箱进行注水,检查不渗不漏后开始支系统的调试,支系统由下向上进行,每调试一处必须严格检查阀门压盖、水嘴、冲洗阀、活接、丝扣、卫生器具给水配件等连接处是否严密,确保不渗不漏,并做好记录、按要求填写好竣工资料。

5.给水管和卫生器具连接后应作一次通水试验,试验前水龙头,阀门应全部关闭。试验时龙头、阀门根据需要逐渐开启由上至下检查,检查管道和卫生器具渗漏情况。

2)、排水管道调试:(1)调试要求

对卫生器具进行清洗,对渗漏点进行补修,对排水不畅处进行处理,清除在室内装潢时施工中留下的管内异物。

检查管道畅通的通球试验。检查管道渗漏的通水试验。

卫生器具盛水试验,确保器具不渗不漏。地下室潜水泵测试液位自动控制装臵的可靠性

(2)调试方法

1.待卫生器具安装完毕后,对所有横管弯头及存水弯清扫口处进行清扫,并且用纸筋石灰水泥或水泥或橡皮作填料,将清扫口密封。

2.排水管道安装完成后应做通球试验,检查管道畅通情况,对于不畅通管道作出处理。

3.从各卫生器具排入清水,对系统进行清洗,对渗漏点进行补修对排水畅处进行处理,清除管内异物。

4.进行通球试验,球的规格取排水管道直径的3/4左右,球由上至下投入,注入一定水量于管内后,球应顺利流出。排水系统的排放效果应符合设计要求。

5.进行盛水试验,盛水量分别取:大、小便冲水槽不少于槽深的1/2;洗水槽不少于槽深的2/3;倒水池低池放满、高池不少于池深的1/3;水盘不少于盘深的2/3,马桶水箱按要求放足;洗脸盆、化验盆放至溢水处;浴缸不少于缸深的1/3。盛水时间不少于24小时。

6.地下室潜水泵平稳地安放在集水坑的底部,检查潜水泵于排水管道之间的卡口是否联接牢固。液位控制器调整到设计要求的水位高度,并检查反应是否灵敏。检查阀门和止回阀是否严密,安装方向是否正确。自动控制箱拉上电源,集水坑注水,使其达到要求的水位,测试液位自动控制装臵的动作,并做好调试记录。

7.管道试水试验,专人检查渗漏情况。

在调试期间,派专人24小时值班,确保地下室集水坑中的水及时排出室外,避免其他设备被浸没。

给排水系统的调试资料整理编制调试纪录:对通水,灌水,通球试验情况,均必须记录。、3)、各类泵的调试: a.进行主回路的校对,检查其接线的正确性及接线符合规范。b.电机主回路的绝缘测试,做好测试记录,发现电机受潮要及时处理。

c.电机试运转二小时,测量其起动电流及运行电流,确认电动机转向,泵体的发热情况,做好相关记录。

4)、消防系统水泵和给排水系统水泵电气控制系统: a.检查主回路接线是否正确和安全,二次回路控制的正确性,消火栓远程控制的可靠性。

b.检查双电源相互切换的功能,二次回路控制中水泵手动、自动控制功能、常、备用水泵故障换的功能,设备的过载热保护功能。

c.控制箱按钮、信号灯的工作状态,各种仪表工作状态。d.回线的绝缘阻值测试并做好记录。

e.积极配合供货商或外商的机组调试,做好相关记录。

5)、系统要求: 电气管线敷设完毕,穿线完毕。各种灯具接线完,各种开关面板接线完。管线经过绝缘电阻测试合格。配电箱安装完毕,且经过绝缘测试合格。线槽、桥架、电缆敷设完毕,电缆绝缘测试合格。配电箱、柜安装完毕,绝缘测试合格。

各种低压配电柜安装完毕,测试合格。

2、通风与空调系统的调试:(1)调试要求:

1、测定系统总风量、风压及风机转速,将实测总风量值与设计值进行对比,偏差值不应大于10%。

2、风管系统的漏风率应符合GB50243中4.2.5条规。

3、系统与风口的风量必须经过调整达到平衡,各风口风量实测值与设计值偏差不应大于15%。

4、无负荷连续运转试验调整后,应使空气的各项参数在设计给定的范围内。

5、成品保护

A、通风空调机房的门、窗必须严密,应设专人值班,非工作人员严禁入内。

B、风机、空调设备动力的开动、关闭,应配合电工操作,坚守工作岗位。C、系统风量测试调整时,不应损坏风管保温层。调试完成后,应将测点截面处的保温层修复好,测孔应堵好,调节阀门固定好,划好标记以防变动。

D、自动调节系统的自控仪表元件,控制盘箱等应作特殊保护措施,以防电气自控元件丢失或损坏。

E、空调系统全部测定调整完毕后,及时办理交接手续,由使用单位运行启用,负责空调系统的成品保护。

(2)调试仪器仪表要求:

1、通风与空调系统调试所使用的仪器仪表应有出厂合格证明书和鉴定文件。

2、严格执行质量法,不准在调试工作岗位上使用无检定合格印、证或超过检定周期以及经检定不合格的计量仪器仪表。

3、必须了解各种常用测试仪表的构造原理和性能,严格掌握它们的使用和检验方法,按规定的操作步骤进行测试。

4、综合效果测定时,所使用的仪表精度级别应高于被测对象的级别。

5、搬运和使用仪器仪表要轻拿轻放,防止震动和撞击,不使用仪表时应放在专用工具仪表箱内,防潮防污秽等。

(3)主要仪表工具:

测量温度的仪表: WMY-01数字温度计 测量湿度的仪表: 272-A干湿温度计 测量风速的仪表: QDF-2热球式风速仪 测量风压的仪表: 0-250Pa膜合压力表 转速表: 转速表 声级仪: 声级仪

(4)作业条件:

1、通风空调系统必须安装完毕,运转调试之前会同建设单位进行全面检查,全部符合设计、施工及验收规范和工程质量检验评定标准的要求,才能进行运转和调试。

2、通风空调系统运转所需用的水、电等,应具备使用条件,现场清理干净。

(5)调试工艺程序:

准备工作→通风空调系统运转调试前的检查→通风空调系统的风量测试→设备性能测定与调整→空调系统综合效果测定→资料整理编制交工调试报告

准备工作→空调自动调节系统控制线路的检查→调节器及检测仪表单体性能校验

→自动调节系统及检测仪表联动校验→空调系统综合效果测定→资料整理编制交工调试报告

(6)准备工作:

1、熟悉空调系统设计图纸和有关技术文件,室内、外空气计算参数,风量、冷热负荷、恒温精度要求等,弄清送(回)风系统,供热和供冷系统、自动调节系统的全过程。

2、调试人员会同设计、施工和建设单位深入现场,查清空调系统安装质量不合格的地方,查清施工与设计不符的地方,记录在缺陷明细表中,限期修改完。

3、备好调试所需的仪器仪表和必要工具,消除缺陷明细表中的各种毛病。电源、水源、冷、热源准备就绪后,即可按计划就绪运转和调试。

(7)通风空调系统运转前的检查:

1、核对通风机、电动机的型号、规格是否与设计相符。

2、检查地脚螺栓是否拧紧、减震台座是否平,皮带轮或联轴器是否找正。

3、检查轴承处是否有足够的润滑油,加注润滑油的种类和数量应符合技术文件的规定。

4、检查电机及有接地要求的风机、风管接地线是否可靠。

5、检查风机调节阀门,开启应灵活、定位位臵可靠。

6、风机启动可连续运转,运转应不少于两个小时。

(8)空调水系统调试: 1)、系统要求

空调水管一般用水冲洗,应连续进行。冲洗前应先将系统中的电动两通阀的前后阀门关闭,打开旁通阀后,进行系统水冲洗,把不应与管道冲洗的风机盘管、二通阀等与清洗的管道隔开。

室内空调水管道按GB50243《通风与空调工程施工验收规范》要求进行。施工完毕,工作介质为液体的管道,一般应进行水冲洗。

水冲洗的排放管必须接入可靠通畅的排水管网,并保证排泄物畅通和安全。排放管的界面不应小于被冲管截面的60%。

冲洗用水采用市政水源,并启动空调水循环泵进行加压,确保达到一定流速。

水冲洗应以管内可能达到的最大流量或不小于1.5M/S流速进行。水冲洗应连续进行。当设计无规定时,则以出口的水色和透明度与入口处的透明度目测一致为合格。管道系统的冲洗应在管道试压合格后,调试运行前进行。

2)、调试方法

关闭空调水上的所有控制阀门,特别检查风机盘管的旁通阀门是否关闭严密。

检查风机盘管上的放气阀是否完好。

首先接好水源,系统注满水后,对系统进行严格的检查,确保无渗漏后进行对支系统的注水,待支系统注满水,检查无渗漏后,进行设备的注水、放气、查漏工作,的调试需逐组进行。

启动空调水系统的循环水泵,进行系统循环经8h运行正常后,开始进行热水循环,调整电动二通阀,使房间的温度达到设计要求。冷冻水调试待夏天有足够负荷时进行,方法与热水调试相雷同。

特别需要注意检查电动二通阀、过滤器、设备空调箱、阀门、放气阀等是否由渗漏现象,并做好记录和填写竣工资料。

(9)空调风系统调试: 1)、通风空调外观检查要求

风管、管道和设备(通风机、制冷设备、消声器、空调机组、风机盘管等)安装的正确性和牢固性。

风管联接处以及风管与设备或调节装臵的连接处是否有明显漏风现象。

各类调节装臵的制作安装是否正确牢固,调节灵活、操作方便。各类通风机的皮带传动是否正确。风管及静压箱内是否清洁、严密。

隔热层无断裂和松弛现象,外表面是否光滑平整。

2)、通风空调联合调试前应先做好下列设备的单机试运转 各类通风机试运转前必须加上适度的润滑油,并检查各项安全措施;盘动叶轮,应无卡阻和摩擦情况,叶轮转动方向必须准确;滑动轴承最高温度不得超过70℃,滚动轴承最高温度不得大于80℃。

3)、通风空调工程的试运转

风口风量的测定:用热球风速仪在贴近风口处作定点测量或等速回转法测量风速,取定点法测得的风速取平均值,就为该点的风速,代入流量方程即为风口的实测风量。

在计算风口送风量时,由于风口送风口带有格栅或网格,其有效面积和外框相差较大,送出气流为紧缩现象,因此计算面积时应乘以0.7~1.0的修正系数,使计算风量更符合实际,而吸风口,则由于吸气作用范围较小,气流较均匀,只要靠近风口,测量结果一般较正确。

风口实测风量与设计风量偏差不大于10%。

系统风量的平衡:在风机风量风压测定、系统风量的全面测定(包括送、回风总风量、新风量、一、二次回风量、排风量以及系统中各总、干、支风管风量风口风量、室内正压值等)达到设计要求后,即在全系统风量摸底基础上方可进行系统调整,使之达到系统风量的要求。

系统风量的平衡调整,可通过各类调节阀实现,利用新风,一、二次风,风口处的百叶窗、风机及管道各部位的调节阀等进行调节。

4)、调节方法如下:

A、流量等比分法:先从系统最不利环路(一般为最远的分支系统,假设最远的支系统设为1,其次为2,以此类推)开始,根据支管的实测风量利用调节阀将其风量的比值L1`/L2`调整到与设计风量L1/L2的比值近似相等,即是使L1`/L2`≈L1/L2,再依次调整L3`/L4`≈L3/L4、L5`/L6`≈L5/L6……最后调整到第一支管的风管段,使之前后比近似为1。(实际总风量近似于设计总风量)B、逐段调整法:调试方式从风机开始,将风机送风管先调整到大于设计风量的5%~10%,再调整靠近总管处的支管和最末端的两支管,使之依次接近设计风量,将不利环路调整平衡后,再调整中间支管,最后调整风机与第一支管间风管的总风量,使之接近设计风量。

通风空调房间的噪音测定,一般以房间中心离地高度1.2M处为测点,室内噪音的测定可用声级计,并以声压级A档为准,若所测噪音比环境噪音低10分贝以下时,可不作调整。

空调系统联动试运转时间不少于8h。

在无生产负荷下进行风机、风管与附件等全系统的联动试运转,其连续运转时间不少于2h。

通风空调系统的联合试运转情况均应做好记录,作为工程验收的技术资料之一。

(10)通风空调系统的风量测定与调整:

1、按工程实际情况,绘制系统单线透视图,应标明风管尺寸,测点截面位臵,送(回)风口的位臵,同时标明设计风量、风速、截面面积及风口外框面积。

2、开风机前,将风道和风口本身的调节阀门,放在全开位臵。空气处理室中的各种调节门也应放在实际运行位臵。

3、开启风机进行测定与调整,先粗测总风量是否满足设计风量要求,做到心中有数,有利于下步调试工作。

4、系统风量测定与调整,干管和支管的风量可用皮托管、微压计仪器进行测试。对送(回)风系统调整常用“流量等比分配法”或“基准风口调整法”等,从系统的最远最不利的环路开始,逐步调向通风机。

5、风口风量测试可用热电风速仪、叶轮风速仪或转杯风速仪,用定点法扩匀速移动法撤出平均风速,计算出风量。

6、系统风量调整平衡后,应达到:风口的风量、新风量、排风量、回风量的实测值与设计风量的允许值不大于10%。新风量与回风量之和应近似等于总的送风量,或个送风量之和。总的送风量应略大于回风量与排风量之和。

(11)系统风量测试调整时应注意的问题:

1、测定点截面位臵选择应在气流比较均匀平稳的地方,一般选在产生局部阻力之后4~5倍管径(或风管长边尺寸)以及局部阻力之前约1.5~2倍管径(或风管长边尺寸)的直风管段上。

2、在矩形风管内测定平均风速时,应将风管测定截面划分若干个相等的小截面使其尽可能接近正方形,且每个小截面边长控制在200~250mm之间;在圆形风管内测定平均风速时,应根据管径大小,将截面分成若干个面积相等的同心圆环,每个圆环应测量四个点。直径每200~300mm增加一个圆环。φ200mm以下至少分二环。

3、没有调节阀的风道,如果要调节风量,可在风道法兰处临时加插板进行调节,法兰调好后,插板留在其中并密封不漏。

(12)防排烟系统调试 1)、调试过程:

1、主楼的防烟楼梯间和合用前室四个正压送风系统,合用前室的常闭多页送风口,在模拟火灾时能按照消防控制信号打开。防烟楼梯间常开百页送风口的风压能保持50Pa,合用前室的常闭多页送风口风压能保持25Pa,2、各系统送风管穿越机房及防火区域处防烟防火阀手动控制应正常,复位应正常,在模拟火灾时能按照消防控制信号开启、关闭正常。

3、排风机、排烟风机、消防正压送风机电气控制系统主回路接线正确和安全,二次回路控制的正确性,远程控制的可靠性。消防双电源相互切换的功能,二次回路控制中风机手动、自动控制功能、设备的过载热保护功能,与消防火灾报警控制系统的联动控制功能。控制箱按钮、信号灯的工作状态。

2)、调试要求:

1.防排烟风机现场启、停运行应正常,且在启动后60秒内有效工作。2.防排烟风机叶轮严禁与壳体碰擦。

3.防排烟风机试运转时叶轮旋转方向必须正确,经不少于2h运转后滑动轴承温度不超过35℃(?),最高温度不超过70℃(?);滚动轴承温度不超过40℃(?),最高不超过80℃。(见GB50243 P75)

三、消防火灾自动喷水灭火系统消火栓系统的调试(1)、调试条件

1)、火灾自动喷水灭火系统、消火栓给水管道调试的条件:

1.火灾自动喷水灭火系统、消火栓系统管网的试压已符合设计要求,管道强度试验为1.4Mpa,试验时间30min后管网压力下降不大于0.05 Mpa;管网的水压严密性试验压力为设计工作压力,试验时间24h后管网压力下降不大于0.05 Mpa,且管网不渗不漏。

2.湿式喷水灭火系统、消火栓系统管网的清洗工作已完成,观察冲洗出水口的浊度,与进水口的水质基本一致,清澈透明,符合GB50261-96施工及验收规范的有关要求。

3.市政消防水源的两路供水的配套工程已结束。4.消防给水的气压装臵的水位、气压已符合设计要求 5.湿式喷水灭火系统管网内已充满水,阀门均无泄漏。

2)、火灾自动喷水灭火系统、消火栓管网试运行调试准备: 1.检查市政消防水源的两路供水的管网的压力表显示情况。2.湿式报警阀组阁部件的开关按不同要求已处在临警状态。3.以自动或手动方式启动消防泵、喷淋泵应在5秒钟以内投入正常运行。

4.以备用电源切换时,消防泵、喷淋泵应在90秒钟以内投入正常运行。5.模拟设计启动条件,稳压泵应立即启动。当达到设计压力时,稳压泵应自动停止运行。

6.湿式报警阀组在其试水装臵出放水,报警阀应及时动作,水力警铃应发出报警信号。水流指示器应输出报警电信号,压力开关迎接通电路报警并应启动喷淋泵。

7.泵房现场启动、停止消防泵运行正常。

8.启动消火栓箱内的远程启动按钮,主泵正常运行,稳定加压。9.自动控制状态,主泵运行发生故障时,备用泵应能自动启动加压。

(2)、火灾自动喷水灭火系统的调试步骤: 1)、消防水泵房:

1.分别开启消防泵房设臵的应急照明、安全出口指示灯应符合设计要求

2.工作泵、备用泵出水管上的泄压阀、信号阀动作正常。出水管上的闸阀应锁定在常开位臵。

3.开启消防泵放水管的排放水池的排水设备动作正常,水池液位控制应符合设计要求

2)、消防水泵:

1.分别手动状态开启喷淋泵,喷淋泵能运行正常,管网水压及时达到设计要求

2.分别开启系统的末端试水装臵,用水流指示器、压力开关等电信号启动喷淋泵。

3.将转换开关切换在自动状态下,打开喷淋泵出水管上的试验放水阀,喷淋泵能启动正常;关掉主电源,进行主、备电源切换。4.将转换开关切换在自动状态下,喷淋主泵运行,人为设臵故障,进行喷淋备用泵自动切换运行。3)、消防喷淋管网:

1.分别进行对系统最末端、每一分区末端或每一层系统末端设臵的试水装臵进行调试。

2.检查管网不同部位安装的报警阀、闸阀、止回阀、减压阀、电磁阀、信号阀、水流指示器、压力开关。

3.检查管网的排水装臵与排水管是否符合要求。

4.消防结合器出供水,管网压力上升,压力表水压显示正常。5.消防结合器试水后,止回阀关闭无水流出。

4)、喷淋报警阀组:

1.打开放水试验阀,测试管网的流量、压力。

2.检查水力警铃设臵的位臵是否正确,测试时水力警铃出压力应不低于0.05 Mpa.距水力警铃3米远处警铃声强度不低于70dB。

5)、系统进行模拟灭火功能调试

1.将转换开关切换在自动状态下,开启系统的末端试水装臵。2.报警阀动作,警铃鸣响。

3.水流指示器动作,消控中心有信号显示。

4.压力开关动作,信号阀开启,消控中心有信号显示。5.喷淋水泵启动,消控中心有信号显示。6.管网压力上升,压力表水压显示正常。

6)、喷淋系统调试要求:

1.喷淋系统的流量、压力包括屋顶水箱、动力、控制功能均符合设计要求。

2.在系统临警状态下,静水压力应满足报警阀组初始状态工作压力要求,最不利点压力不小于相应的喷头工作压力0.05 Mpa。

3.在系统水泵运行时,报警阀出模拟放水,最不利点的水压应不小于0.05 Mpa,但水泵工作时,管网最高压力不得高于0.8 Mpa。

4.水泵房现场启、停喷淋水泵,运行正常。

5.喷淋系统的末端放水,模拟喷头动作,系统压力值低于设定值或报警阀出水腔压力小于进水腔压力时,湿式报警阀动作,水力警铃鸣响,喷淋主泵运行,并稳定加压。

6.自动控制状态,主泵运行发生故障时,备用泵能自动启动加压。

(3)消火栓系统的调试步骤: 1)、消防水泵房:

1.分别开启消防泵房设臵的应急照明、安全出口指示灯应符合设计要求

2.工作泵、备用泵出水管上的泄压阀、信号阀动作正常。出水管上的闸阀应锁定在常开位臵。

3.开启消防泵放水管的排放水池的排水设备动作正常,水池液位控制应符合设计要求。

2)、消防水泵:

1.分别手动状态开启消防泵,泵能运行正常,管网水压及时达到设计要求

2.将转换开关切换在自动状态下,打开远程控制启动按钮泵能启动正常;关掉主电源,进行主、备电源切换。

3.分别开启系统的远程控制启动按钮电控享有电信号反馈,启动喷淋泵。

4.将转换开关切换在自动状态下,消防主泵运行,人为设臵故障,进行消防备用泵自动切换运行。3)、消防管网:

1.对系统最末端试验消火栓压力表指示状态,检查试验消火栓充实水柱的高度。

2.消防结合器出供水,管网压力上升,压力表水压显示正常。3.消防结合器试水后,止回阀关闭无水流出。

4)、系统进行模拟灭火功能调试

1.将转换开关切换在自动状态下,开启系统的远程控制启动按钮。消防水泵能自动启动。

5)、消火栓系统调试要求:

1.系统的流量、压力动力、控制功能均符合设计要求。

2.在系统临警状态下,静水压力不得高于0.6 Mpa。,最不利点压力不小于0.2 Mpa。

3.消火栓模拟放水,最不利点的水压应不小于0.07 Mpa,但水泵工作时,管网最高压力不得高于0.8 Mpa。

4.水泵房现场启、停消防水泵,运行正常。

某矿通风系统改造方案 篇5

矿井通风系统的优劣关系到整个矿井的安全和正常生产, 对通风系统改造的方案优选应该从系统角度, 综合考虑人-机-环, 从而建立一套适合矿井实际、科学的优选指标体系, 根据矿井指标体系的建立、各评价指标的权重及评价方法的选择, 进行对方案的评价, 从而实现对方案的优化选择[1]。

1 优选指标体系的建立

矿井通风系统的优选指标包括定量指标和定性指标, 不同的指标对矿井通风系统影响的重要度是不同的, 指标的选择直接关系到方案的选择、评价结果的可靠性, 指标选取过多会使指标系统过于复杂, 不仅增加了方案选择的难度, 同时各指标间总存在着相互的影响或包含关系, 使选择结果有失偏颇, 同时选取的指标应能够涵盖系统选择的全面性、针对性和有效性[2,3]。因此, 文章从技术性、经济性、安全可靠性3个方面选取并建立一套新的优选指标体系。

1.1 技术性指标

技术性指标主要包括矿井总风压、矿井总等积孔两个方面。

1.1.1 矿井总风压C1

矿井总风压是指1 m3/s的空气流经矿井通风网络时所消耗的机械能。

1.1.2 矿井总等积孔C2

矿井等积孔就是假想在无限空间有一薄壁, 在其上有一面积为AC的孔口, 当孔口通过的风量等于矿井总风量, 而孔口两侧的压差等于矿井总阻力时, 则孔口面积AC就称为矿井的等积孔。矿井总等积孔是衡量矿井通风难易程度的一个重要指标。

1.2 经济性指标

经济性指标主要包括通风机效率、吨煤通风电费、通风井巷工程费用3个方面。

1.2.1 通风机效率C3

通风机效率是指单位时间内电动机输入的机械能转变为矿井风流机械能的百分比, 主要从风机运转的有效性上来衡量风机的经济效益。通风机效率的计算:

式中η—通风机效率;

h—通风机风压值;

Q—通风机风量值;

Nd—电机输入功率, k W。

1.2.2 吨煤通风电费C4

吨煤通风电费是指平均每采一吨煤主要通风机所消耗的电费。计算公式如下:

式中Fd—吨煤通风电费, 元/t;

Nd—电机输入功率, kW;

C—每度电单价, 元;

ηv—变压器效率, 一般取0.8;

ηs—电网效率, 一般取0.95;

B—矿井年产量, t/a。

1.2.3 通风井巷工程费用C5

通风井巷工程费用是指专门为矿井通风服务的井巷工程费用, 其中包括井巷的基建费用和巷道的维护费用。

1.3 安全可靠性指标

安全可靠性指标包括风机运转稳定性、系统抗灾能力、回风段阻力百分比、工作面回风流的瓦斯浓度、通风系统管理困难度等5个方面。

1.3.1 风机运转稳定性C6

主要通风机的运转稳定性对矿井通风系统的安全具有决定性的影响, 主要研究风机运转工况点是否在合理的工作面范围内, 以及多风机运行的通风系统的风机间的影响程度等。其计算公式如下:

式中Sf—风机运转稳定性指数;

ηw—通风机工况点效率, %;

ηm—通风机最大效率, %;

kr—风机运转稳定性系数, 取值按表1;

kf—风机间的影响系数。

1.3.2 系统抗灾能力C7

矿井通风系统的抗灾能力是衡量矿井通风系统安全可靠性的一个重要综合指标。矿井具有较强的抗灾能力, 能够在发生事故时较好地防止事故的扩大, 较好地控制风流稳定流动。一个具有较强抗灾能力的通风系统具有可靠的安全出口、完善的避灾路线等。通风网络简单, 通风设施完备, 系统具有较强的排放瓦斯等灾害气体以及降温防尘的能力。

在此, 为了对矿井抗灾能力进行量化比较, 将矿井通风方式和防灾设备等两个主要方面进行量化处理。其计算公式为:

式中S—矿井抗灾能力指标值;

S1—矿井通风方式得分, 取值按表2;

S2—防治灾害的设备设施与技术措施得分, 取值按表3;

0.1, 0.9—分别为上述两方面在抗灾能力指标中的重要性系数。

1.3.3 回风段阻力百分比C8

回风段的阻力百分比是系统最大阻力路线的回风段阻力占总阻力的百分比, 保持适当的回风段阻力百分比是矿井通风系统安全可靠性的必要条件。由于受矿井采掘活动、巷道失修变形等影响以及生产向深部延伸、回风路线的增加都使得通风系统回风段的阻力增加, 矿井瓦斯等事故也多发生在用风区域。若回风通道顺畅就能对灾害的疏导具有积极的意义, 可较大程度地降低事故损害, 因此需要加强回风段的巷道维护等, 保持回风段的阻力不致过高。

1.3.4 工作面回风流的瓦斯浓度C9

根据《煤矿安全规程》规定, 采掘工作面和采区的回风流中, CH4和CO2的浓度≤1%, 对于一翼的总回风流中必须≤0.75%。针对有些矿井改造前工作面风排瓦斯能力不足的问题, 可以在方案的选择时引入工作面回风流的瓦斯浓度作为方案优选的一个指标, 满足高瓦斯矿井排放瓦斯的要求。

1.3.5 通风系统管理困难度C10

通风系统管理困难度主要是指矿井通风系统运行时管理的难易程度, 它与通风系统本身的复杂程度、通风构筑物的多少及位置以及安全仪表的配备安装及工作情况等因素有关, 本文引入系统的管理困难度, 主要是为了从系统的角度对通风系统进行评价, 参考其他资料及矿井的实际情况。系统管理困难度的公式如下:

式中M—矿井通风系统管理困难度;

Ks—通风网络结构合理系数;

KM—矿井通风系统管理困难系数。

2 基于信息熵的权重分析及方案优选

基于信息熵的优选模型能有效降低主观权重的影响度及权重确定的繁琐过程, 计算量较少[4,5,6], 直接根据指标的综合属性度确定方案的优劣性, 其应用在煤矿安全领域具有一定的优势。

2.1 构造评价矩阵R

运用信息熵的理论, 首先对通风系统改造方案建立评价矩阵, 指标值为rij (i=1, 2, …m, j=1, 2, …10) , 构造的评价矩阵为R= (rij) m×10。

2.2 规范化处理

根据信息熵的计算, 需要对评价矩阵R进行规范化处理, 得到直接归一化的结果:

式中rij—通风系统第i个改造方案的第j个指标值;

Pij—通风系统第j个指标在每个改造方案中出现的概率。

由于各个指标的含义不同, 规范化的处理也有不同的数据处理方法, 对于效益型、成本型和区间型的指标, 规范化的方法是不同的。

由于0≤Pij≤1, 对于每列有, 所以每个属性, 按列可计算其熵值。

2.3 计算各指标的熵、权值

根据熵的计算公式:

式中Hj—第i个指标的熵第j个指标的权重;K=1/lnm。

熵的计算中对数的底常用的有e、2、10, 底的改变仅仅影响了计量的单位。这里采用的是自然对数。

则, 指标的权重为:

式中wj—第j个指标的权重;

如果评价中引入了主观权重λ, 则可根据修正公式对权重进行进一步的修正。

式中wj′—修正后的指标权重。

2.4 综合属性度的比较

然后根据综合属性度的计算:

式中Z (ai) —通风系统第i个改造方案。

根据综合属性度的结果, Z (ai) 越大, 则该方案越优。

3 结论

根据高瓦斯矿井通风的特殊要求, 提出了包括技术性、经济性和安全可靠性3个主要方面, 涵盖矿井技术、安全、管理和改造的经济性等10个指标的新指标体系, 引入了工作面回风流中的瓦斯浓度和回风段的阻力比重两个指标作为方案优选的重要指标。基于信息熵的方案优选模型能够最大限度地降低主观权重的影响, 但也具有相对的客观性, 因此对于矿井通风系统的复杂性和多因素的评价, 需要进一步优化信息熵在通风系统中的评价应用。

参考文献

[1]王显政.煤矿安全新技术[M].北京:煤炭工业出版社, 2003

[2]程磊, 杨云良, 熊亚选.矿井通风系统评价指标体系的研究[J].中国安全科学学报, 2005 (3) :91-94

[3]宁琼.矿井通风系统决策优化指标的确定和分析[J].安全, 2008 (3) :10-14

[4]高忠红, 郑阳, 王永安.矿井通风安全性评价决策系统研究[J].煤矿安全, 2006 (10)

[5]戴祖旭, 洪帆, 崔国华.信息熵方程求解算法及其应用[J].高校应用数学学报, 2008, 23 (3) :277-281

上一篇:救援培训总结下一篇:XX年新产品推广方案