不等式基本性质练习

2025-02-09 版权声明 我要投稿

不等式基本性质练习(精选11篇)

不等式基本性质练习 篇1

一、选择题

1、已知ab0,下列不等式恒成立的是()

A.a2

b2

B.ab1C.1111

abD.ab2、已知a0,b1,下列不等式恒成立的是()

A.a

ababB.aaaaaab2baC.bb2aD.bab3、若a,b,c,d四个数满足条件:1dc;2abcd;3adbc,则()

Ab.cdaB.adc bC.dba cD.bdc a4、如果a,b,c满足cba,且ac0,则以下选项中不一定成立的是()

A.abacB.cba0C.cb2ab2D.acac05、下列命题中正确的是()

Aa.b,kN*akbkB.ab,c1

c1c1

ba

C.ab,cdab

cd2

D.ab0,cd0abdc6、如果a,b是满足ab0的实数,则()

A.ababB.aa bC.aa b

D.abab

7、若a0,b0,则不等式b1

x

a的解为()

A.1bx0或0x1aB.111111axbC.xa或xbD.xb或xa

二、填空题

8、若m0,n0,mn0,则m,n,m,n的大小关系为

9、若1ab1,2c3,则abc的取值范围是

10、若0a1,给出下列四个不等式,其中正确的是

1○

1log111a111a1aloga1a○2loga1alogaa

a1a

○3aa○4aaa11、已知三个不等式:1ab02

cad

b

3bcad,以其中两个作为条件,余下一个作为结论,可以组成个正确的命题。、设x,y为实数,且满足3xy2

8,4x2y9,则x3

12y

4的取值范围是

三、解答题、(1)设2a3,4b3,求ab,ab,ab2

13b,ab,a的取值范围。

(2)设二次函数fx的图像关于y轴对称,且3f11,2f23,求f3的最大值和最小值。

14、(1)已知

1a0,A1a2,B1a211

2,C1a,D1a,试将A,B,C,D按从小到大的顺序排列,并说明理由。

bc0,比较aabbcc

与abc

abc

(2)已知a3的大小。

15、火车站有某公司待运的甲种货物1530t,乙种货物1150t。现用A,B两种型号车厢共50节

运送这批货物。已知35t甲种货物和

不等式基本性质练习 篇2

湘教版初中数学七年级上册第五章“一元一次不等式”的第一节“不等式的基本性质”.

二、教学目标

1. 知识目标

(1) 使学生了解不等式概念的数学表现形式.

(2) 使学生能够复述不等式的三个基本性质的内容.

2. 能力目标

(1) 理解不等式数形结合的内涵.

(2) 培养学生不等式的思维方法.

(3) 能利用不等式的基本性质解答不等式相关问题.

(4) 提高学生综合运用基本知识解决复杂问题的能力.

三、教学重点和难点

1. 重点:理解不等式的三个性质的内容.

2. 难点:探索不等式的两边都乘 (或除) 以同一个数, 不等号方向变化的情况.

四、教学背景分析

不等式是一种应用广泛的技巧性工具, “一元一次不等式的基本性质”是不等式知识的基础部分, 也是中学数学不等式教学的一个重点, 其教学内容承前启后:前接一元一次方程, 后承不等式的应用.本节课的教学目的, 是让学生由方程的思维递进为不等式的思维, 掌握不等式的三个基本性质, 能指认这些基本性质, 记住并运用不等式的基本性质.由于学生刚接触不等式, 要在复杂的数学问题中找出并综合运用这些不等式的性质进行解答, 这是教学中的一个难点.因此, 本节教学中设计了多种类型的教学例题, 并将一些例题一般化, 由具体到抽象, 使学生感觉不等式的知识简单易懂, 提高了学习兴趣.

五、教学过程

1. 引入不等式的概念

教学开始时, 我列出了两组式子:

(1) 5>2, a>b, x>2, x>b.

(2) 2<5, b

然后让学生讨论:这两组式子都具有不等号“>”或“<”, 是否这些式子就叫不等式呢?学生回答:具有不等号的式子就叫不等式.肯定学生的回答后, 请他们继续分析其中x>2, x>b, 2

2. 合作学习、启发学生找出不等式性质的内容

本课教学要掌握的第一个知识点, 是不等式性质1, 也称为不等式的传递性, 即“若a>b, b>c, 则a>c”, 并能根据性质1, 让学生逻辑判断数与数之间大小.由此, 我以探究性问题为切入点, 师生一起在探索中找出教学知识点.

问题1已知a, b和c在数轴上的位置如图, 比较a与b的大小, b与c的大小.

师生一起回忆以前学习的数轴相关知识, 大家都知道, 数轴上右边点表示的数大于左边点表示的数, 学生很容易回答出a>b, b>c.同样, 让学生观察数轴上a和c的位置, 师生一起分析推导出a>c.那么, 通过探究性分析, 学生发现了不等式具有传递性, 随后用课堂练习加以巩固.

问题2若a>b, 则a+c和b+c比较, 哪个大?a-c与b-c呢?

数轴上确定a, b的位置, 启发学生讨论c>0和c≤0的条件.先讨论c>0时, a+c和b+c两个数在数轴上的位置, 从下图中显然可见a+c>b+c, 提示学生跃然发生量变 (数的大小) , 但质未变 (相对位置) ;同样地, 他们从数轴上也发现了a-c>b-c.再讨论c≤0时, 结果也是量变质不变, 即a和b分别加上 (或减去) 同一个数, 不等号方向没有发生改变.

这样, 就启发他们自己找到不等式性质2的内容, 用符号表示为“如果a>b, 那么a+c>b+c, a-c>b-c;如果a

问题3如果a>b, c>0, 那么ac _______bc;如果a>b, c<0, 那么ac ________bc呢.

引导学生由问题2的问入手, 类推a>b, c>0时, 可知ac>bc.分析c<0时, 注意相比较点的位置发生了改变, 由数轴上点ac位于点bc左侧的位置, 得出acb, 且c>0, 那么ac>bc, a÷c>b÷c;如果a>b, 且c<0, 那么ac

3. 课堂小结

这节课我们学习了不等式的概念, 研究了不等式的三个性质, 请同学们口头讲述这三个性质的内容.不等式的三个性质不是独立存在, 它们之间有着相互联系, 通过对不等式性质的探讨, 我们看到由具体到一般的数学思想, 数形结合的方法, 以及量变与质变之间的辩证关系在这里得到了充分的体现.

六、引导学生反思提高

1.这堂课我们主要学习了什么?

2. 不等式性质1告诉了我们不等式具有传递性, 如何运用数形结合的方法解答这类问题?

3. 不等式性质2用于解决何种类型的问题?如何与性质1结合?

4. 不等式性质3的不等号改变的条件是什么?

七、教学评价

不等式作为一个重要的分析工具和分析手段, 在数学中具有举足轻重的地位, 本节课主要采用了以问题引导学生探索的教学方法, 整个教学设计由浅入深, 由具体到抽象, 由感性到理性, 循序渐进, 鼓励学生去发现, 分析并解决问题, 使学生在积极参与和积极思维的基础上, 发现不等式的几种性质, 又借助于图形, 更符合学生的认知规律, 帮助他们真正理解并形成知识.此外, 借助课堂练习和课堂反馈, 加大课堂容量, 提高课堂教学效益.

参考文献

[1]段明达.不等式证明的若干方法.教学月刊, 2007 (6) .

不等式基本性质的应用 篇3

1. 不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变;

2. 不等式的两边都乘以(或除以)同一个正数,不等号方向不变;

3. 不等式的两边都乘以(或除以)同一个负数,不等号方向改变.

这三条基本性质是进行不等式变形的主要依据,现列举几例分析如下,供同学们复习时参考.

例1判断正误:

(1)若a>b,则ac>bc;

(2)若a>b,则ac2>bc2;

(3)若ac>bc,则a>b;

(4)若ac2>bc2,则a>b.

[分析:](1)中是在a>b两边同乘以c,而c是什么数并不确定,若c>0,由不等式的基本性质2知,ac>bc;若c<0,由不等式的基本性质3知,ac

(2)中,当c=0时,ac2=bc2.故(2)是错误的.

对于(3),在不等式两边同除以c,因为不知道c是正数、负数或0,与(1)类似,可推出结论是错误的.

(4)中是在ac2>bc2两边同除以c2,而c2>0(为什么c≠0 ?) ,故(4)是正确的.

解: (1)错误;(2)错误;(3)错误;(4)正确.

[点评:]解这类题的关键是对照不等式的三条基本性质,分析从条件到结论到底应该运用哪一条性质,运用不等式性质的条件是否具备.

例2有理数a、b、c在数轴上对应点的位置如图1所示,下列式子中正确的是().

A. b+c>0B. a+b

C. ac>bc D. ab>ac

[分析:]由数轴上点的位置可以确定a、b、c之间的大小关系及它们各自的正负性,再根据不等式的基本性质对选项逐一分析,即可得出答案.

解: 对于A,由图知c<0c,两边同加上a后,根据不等式的基本性质1,有a+b>a+c,故B不正确;对于C,由图知a>b>0,c<0,根据不等式的基本性质3,有acc,a>0,根据不等式的基本性质2,有ab>ac,故应选D.

[点评:]解答此题的关键是既要能从数轴上看出a、b、c的大小关系及它们各自的正负性,还要考虑运用不等式的三条基本性质.

例3已知a<0,-1

[分析:]由a<0,b<0,可得ab>0,ab2<0.由-1a.

解: 因为a<0,-10.

又-1a.

所以a

[点评:]灵活运用不等式的基本性质是解决这类题的关键.要特别注意,运用基本性质3时,不等号的方向要改变!

不等式和它的基本性质1教案 篇4

(一)教学目标:1.了解不等式的意义,掌握不等式的基本性质,并能正确运用它们将不等式变形;

2.提高学生观察、比较、归纳的能力,渗透类比的思维方法;

重、难点:掌握不等式的基本性质并能正确运用它们将不等式变形。教

法:尝试、讨论、引导、总结 教

具:投影仪 教学内容及程序:

一、前提测评

1.前边,我们已学习了等式和它的基本性质。请同学们思考并回答下列问题。2.由“等式表示相等关系”,教师问:在现实生活中,同种量间有没有不等的关系呢?(如身高与身高、面积与面积等)请学生举一些实例。

3.这节课,我们就来认识表示不等式关系的式子,并研究它的性质。(板书:不等式和它的基本性质)

二、达标导学

我们先来认识不等式。(板书:“1.不等式的意义”)1. 教师出示下列式子(板书):

-7<-5 ,3+4>1+4 ,5+31≠2-5 ,a≠0 ,a+2>a+1 ,x+3<6。学生观察上面式子时,教师问:哪位同学能由等式的意义,说说“什么叫做不等式?”(对学生的回答作以修正并板书:“不等式的意义:用不等号表示不等关系的式子,叫做不等式”。)

2. 例

1、用不等式表示:

①a是负数;

② x的6倍减去3大于10;③ y的1与6的差小于1 ④ x与2的和是非负数;

⑤ x的2倍与y的一半的差不大于1 3. 练习:P56 练习1、2、3 4. 学生做了课本第56页练习后,教师:本章我们主要研究含有未知数的不等式,如x+3<6。对于“x+3<6”中,当x取某些数值(-

1、0、„„)时,不等式成立;当x取另外一些数值(如3、6、„„)时,不等式不成立。与前面学过的方程类似,使不等式成立的数,我们说它是不等式的解,反之,使不等式不成立的数,我们说它不是不等式的解。完成课本上P56想一想 5. 练习:P57 练习4 ▲下面,我们研究不等式的基本性质。(板书:“2.不等式的基本性质“)1.引导发现

教师引导学生回忆等式的基本性质(教师叙述)为促使类比,教师说明;“等式”和“不等式”都是表示同种量间的数量关系。并提

出问题:不等式作类似变形后,所得结果左、右两边的不等式关系会不会发生变化呢?

学生讨论3-5分钟。教师视学生讨论情况可再做适当引导。讨论结果:有时两边大小关系不变,有时两边大小关系改变了。

6. 实例探究

不等式在作上述哪种变形时,两边大小关系不变或两边大小关系改变呢?

将学生分组,对下列不等式作:①两边都加上(减去)同一个数;②两边都乘以(除以)同一个正数;③两边都乘以(除以)同一个负数,这三种变形。

A组:7>4

B组-3<5;

C组-4>-5;

D组-2<-1。

变形教师了解各组学生变形的结果,引导归纳:“不等式的三条基本性质”(板书)。3.强化认识

①学生再作“对数字不等式”的第三种变形即给两边都乘以(除以)一个负数。②口答:判断:

①∵3>2

∴-3>-2

()

②∵-1<2

∴1<-2

()

③∵1x0

∴x>0

()2④∵-a<-3

∴a<3

()

三、达标检测(另附纸)

四、评价总结:

五、作业:

P12 A1-

3B1

数学教案-不等式和它的基本性质 篇5

教学建议

一、知识结构

二、重点、难点分析

本节教学的重点是不等式的三条基本性质.难点是不等式的基本性质3.掌握不等式的三条基本性质是进一步学习一元一次不等式(组)的解法等后续知识的基础.

1.不等式的概念

用不等号(“<”、“>”或“≠”表示不等关系的式子,叫做不等式.

另外, (“≥”是把“>”、“=”)结合起来,读作“大于或等于”,或记作“≮”,亦即“不小于”)、 (“≤”是把“<”、“=”结合起来,读作“小于或等于”,或记作“≯”,也就是“不大于”)等等,也都是不等式.

2.当不等式的两边都加上或乘以同一个正数或负数时,所得结果仍是不等式.但变形所得的不等式中不等号的方向,有的与原不等式中不等号的方向相同,有的则不相同.因而叙述时不能笼统说成“……仍是不等式”,而应明确变形所得的不等式中不等号的方向.

3.不等式成立与不等式不成立的意义

例如:在不等式 中,字母 表示未知数.当 取某一数值 时, 的值小于2,我们就说当 时,不等式 成立;当 取另外某一个数值 时, 的值不小于2,我们就说当 时, 不等式不成立.

4.不等式的三条基本性质是不等式变形的重要依据,性质1、2类似等式性质,不等号的方向不改变,性质3不等号的方向改变,这是不等式独有的性质,也是初学者易错的地方,因此要特别注意.

一、素质教育目标

(-)知识教学点

1.了解不等式的意义.

2.理解什么是不等式成立,掌握不等式是否成立的判定方法.

3.能依题意准确迅速地列出相应的不等式.

(二)能力训练点

1.培养学生运用类比方法研究相关内容的能力.

2.训练学生运用所学知识解决实际问题的能力.

(三)德育渗透点

通过引导学生分析问题、解决问题,培养他们积极的参与意识,竞争意识.

(四)美育渗透点

通过不等式的学习,渗透具有不等量关系的数学美.

二、学法引导

1.教学方法:观察法、引导发现法、讨论法.

2.学生学法:只有准确理解不等号的几种形式的意义,才能在实际中进行灵活的运用.

三、重点·难点·疑点及解决办法

(一)重点

掌握不等式是否成立的判定方法;依题意列出正确的不等式.

(二)难点

依题意列出正确的不等式

(三)疑点

如何把题目中表示不等关系的词语准确地翻译成相应的数学符号.

(四)解决方法

在正确理解不等号的意义后,通过抓住体现不等量的关系的词语就能准确列出相应的不等式.

四、课时安排

一课时.

五、教具学具准备

投影仪或电脑、自制胶片.

六、师生互动活动设计

1.创设情境,通过复习有关等式的知识,自然导入新课的.学习,激发学生的学习热情.

2.从演示的有关实验中,探究相应的不等量关系,从学生的讨论、分析中探究代数式的不等关系的几种常见形式.

3.从师生的互动讲解练习中掌握不等式的有关知识,并培养学生具有一定的灵活应用能力.

七、教学步骤

(一)明确目标

本节课主要学习依题意正确迅速地列出不等式.

(二)整体感知

通过复习等式创设情境,自然过渡到不等式的学习过程中,又通过细心的分析、审题寻找出正确的不等量关系,从而列出正确的不等式.

(三)教学过程()

1.创设情境,复习导入

我们已经学过等式和它的基本性质,请同学们观察下面习题,思考并回答:

(1)什么是等式?等式中“=”两侧的代数式能否交换?“=”是否具有方向性?

(2)已知数值:-5, ,3,0,2,7,判断:上述数值哪些使等式 成立?哪些使等式 不成立?

学生活动:首先自己思考,然后指名回答.

教师释疑:①“=”表示相等关系,它没有方向性,等号两例可以相互交换,有时不交换只是因为书写习惯,例如方程的解 .

②判断数取何值,等式 成立和不成立实质上是在判断给定的数值是否为方程 的解,因为等式 为一元一次方程,它只有惟一解 ,所以等式 只有在 时成立,此外,均不成立.

【教法说明】设置上述习题,目的是使学生温故而知新,为学习本节内容提供必要的知识准备.

2.探索新知,讲授新课

不等式和等式既有联系,又有区别,大家在学习时要自觉进行对比,请观察演示实验并回答:演示说明什么问题?

师生活动:教师演示课本第54页天平称物重的两个实例(同时指出演示中物重为 克,每个砝码重量均为1克),学生观察实验,思考后回答:演示中天平若不平衡说明天平两边所放物体的重量不相等.

【教法说明】结合实际生活中同类量之间具有一种不相等关系的实例引入不等式的知识,能激发学生的学习兴趣.

在实际生活中,像演示这样同类量之间具有不相等关系的例子是大量的、普遍的,这种关系需用不等式来表示.那么什么是不等式呢?请看:

, ,

, ,

提问:(l)上述式子中有哪些表示数量关系的符号?(2)这些符号表示什么关系?(3)这些符号两侧的代数式可以随意交换位置吗?(4)什么叫不等式?

学生活动:观察式予,思考并回答问题.

答案:(1)分别使用“<”“>”“≠”.(2)表示不等关系.(3)不可以随意互换位置.(4)用不等号表示不等关系的式子叫不等式.

不等号除了“<”“>”“≠”之外,还有无其他形式?

学生活动:同桌讨论,尝试得到结论.

教师释疑:①不等号除“<”“>”“≠”外,还有“≥”“≤”两种形式(“≥”是指“>”与“=”结合起来,读作“大于或等于”,也可理解成“不小于”;同理“≤”读作“小于或等于”,也可理解成“不大于”.)现在,我们来研究用“>”“<”表示的不等式.

②不等号“>”“<”表示不等关系,它们具有方向性,因而不等号两侧不可互交换,例如 ,不能写成 .

【教法说明】①通过学生自己观察思考,进而猜测出不等式的意义,这种教法充分发挥了学生的主体作用.

②通过教师释疑,学生对不等号的种类及其使用有了进一步的了解.

3.尝试反馈,巩固知识

同类量之间的大小关系常用“>”“<”来表示,请同学们根据自己对不等式的理解,解答习题.

(1)用“<”或“>”境空.(抢答)

①4___-6;②-1____0③-8___-3;④-4.5___-4.

(2)用不等式表示:

① 是正数;② 是负数;③ 与3的和小于6;④ 与2的差大于-1;⑤ 的4倍大于等于7;⑥ 的一半小于3.

(3)学生独立完成课本第55页例1.

注意:不是所有同类量都可以比较大小,例如不在同一直线上的两个力,它们只有等与不等关系,而无大小关系,这一点无需向学生说明.

学生活动:第(l)题抢答;第(2)题在练习本上完成,由两个学生板演,完成之后,由学生判断板演是否正确

教师活动:巡视辅导,统计做题正确的人数,同时给予肯定或鼓励.

【教法说明】①第(1)题是为了调动积极性,强化竞争意识;第(2)题则是为了训练学生书面表述能力.

②教学时要注意引导学生将题目中表示不等关系的词语翻译成相应的不等号,例如“小于”用“<”表示,“大于等于”用“≥”表示.

下面研究什么使不等式成立,请同学们尝试解答习题:

已知数值;-5, ,3,0,2,-2.5,5.2;

(1)判断:上述数值哪些使不等式 成立?哪些使 不成立?

(2)说出几个使不等式 成立的 的数值;说出几个使 不成立的 数值.

学生活动:同桌研究讨论,尝试得到答案.

教师活动:引导学生回答,使未知数 的取值不仅有正整数,还有负数、零、小数.

师生总结:判定不等式是否成立的方法就是:如果不等号两侧数值的大小关系与不等另一致,称不等式成立;否则不成立.例如对于 ;当 时, 的值小于6,就说 时不等式 成立;当 时, 的值不小于6,就说 时, 不成立.

【教法说明】通过学生自己举例,培养他们运用已有的知识探索新知识的意识,同时也活跃了课堂气氛.

4.变式训练,培养能力

(1)当 取下列数值时,不等式 是否成立?

-7,0,0.5,1, ,10

(2)①用不等式表示: 与3的和小于等于(不大于)6;

②写出使上述不等式成立的几个 的数值;

③ 取何值时,不等式 总成立?取何值时不成立?

学生在练习本上完成1题,2题,同桌订正;教师抽查,强调注意事项.

【教法说明】

①使学生进一步了解使不等式成立的未知数的值可以有多个,为6.2讲解不等式的解集做准备.

②强化思维能力和归纳总结能力.

(四)总结、扩展

学生小结,师生共同完善:

本节课的重点内容:1.掌握不等式是否成立的判断方法;2.依题意列出正确的不等式.

注意:列不等式时,要注意把表示不等关系的词语用相庆的不等号来表示.例如“不大于”用“≤”表示,而不用“<”表示,这一点学生容易出现错误.

八、布置作业

(一)必做题:P61 A组1,2,3.

(二)选做题:

1.单项选择

(1)绝对值小于3的非负整数有( )

A.1,2 B.0,1 C.0,1,2 D.0,1,3

(2)下列选项中,正确的是( )

A. 不是负数,则

B. 是大于0的数,则

C. 不小于-1,则

D. 是负数,则

2.依题意列不等式

(1) 的3倍与7的差是非正数

(2) 与6的和大于9且小于12

(3)A市某天的最低气温是-5℃,最高气温是10℃,设这天气温为 ℃,则 满足的条件是____________________.

【设计说明】1.再现本节重点,巩固所学知识.

2.有层次性地布置作业,可以调动全体学生的学习积极性,这也是实施素质教育的具体体现.

参考答案

1.<,<,>,>,<,<

2.5.2,6,8.3,11是 的解,-10,-7,-4. 5,0,3不是解

3.(1) (2) (3) (4)

(二)1.(1)C (2)D

2.(1) (2) (3)

九、板书设计

6.1 不等式和它的基本性质(一)

一、什么叫不等式?

用:“>”“<”“≠”“≥”“≤”表示不等关系的式子叫不等式.

重点研究“>”“<”

二、依题意列不等式

“大于”“>”;“小于”“<”;“不大于”“≤”;“不小于”“≥”;

三、不等式 能否成立

时, (√); 时, (×);

时, (×)

四、归纳总结重点

(一)依题意列不等式.

(二)会判断不等式是否成立.

十、背景知识与课外阅读

费 马 数

费马(P.de Fermat)是17世纪法国著名数学家,是法国南部土鲁斯议会的议员,他在数论、解析几何、概率论三个方面都有重要贡献.他无意发表自己的著作,平生没有完整的著作问世.去世后,人们才把他写在书页空白处和给朋友的书信中,以及一些陈旧手稿中的论述收集汇编成书.费马特别爱好数论,在这方面有好几项成就,如费马数、费马小定理、费马大定理等.

费马于1640年前后,在验算了形如

的数当 的值分别为

3,5,17,257,65537

后(请注意这些数均为质数)便宣称:对于为任何自然数,是质数.

大约过了1,1732年数学家欧拉(L.Euler)指出

.

从而否定了费马的上述结论(猜想).

尔后,人们又对 进行了大量研究,发现在 中,除了上述五个质数外,人们尚未再发现新的质数.

《等式的基本性质》的教学反思 篇6

在教学之后,我们发现这样的设计,重点不够突出,在经过了网络研讨和集体反思之后,最终形成了将等式两边同加的这条性质作为重点讲解内容,其它的三条性质在第一条性质之后,由学生通过观察、理解、操作等学习方法,共同探索得出结论,教师只是给予适时的点拨,总结。加法是学生学习计算的基础,因此在教学等式同加的性质上,我们设计了两个层次的实验。第一层次,在天平两边同时放上同样的物品,第二层次,在天平的两边同时放上等质量的不同物品,让学生观察现象,并总结归纳出结论。第一个层次的实验,学生通过教师的直观操作演示,很容易得出,只要天平两边加上同样的物品,天平就会保持平衡。然后,教师引导学生构建出天平与等式之间的联系,将天平上的实物,通过测量,抽象到等式的计算中,使学生初步形成:在等式的两边同时加上相等的数,等式不变。

实验过后,有些学生会形成思维的定势,只是认为在天平两边加同样的物品,天平才会平衡。为了打破学生的这种思想,我们设计了第二层次的实验,即在天平的两边同时放上等质量的不同物品。通过这一层次的实验,让学生清楚地意识到:天平是否保持平衡,不是取决于放的物品是相同的,而是真正取决于所放物品的质量是否相同。这样的教学设计,将学生的思维引入到了对事物的本质探究上,使学生明确对知识的探索不要仅停留在表面,而要进行更深入的思考。教师在引导学生进行实验的同时,也注意到将等式与实验进行结合,两个实验之后,学生对于等式的同加性质有了更深入的理解,能够较为准确地概括出等式的性质。

不等式基本性质练习 篇7

师大版

一、学生知识状况分析

本章是在学生学习了一元一次方程、二元一次方程组和一次函数的基础上,开始研究简单的不等关系。通过前面的学习,学生已初步体会到生活中量与量之间的关系是众多而且复杂的,但面对大量的同类量,最容易使人想到的就是它们有大小之分。学习时可以类比七年级上册学习的等式的基本性质。

二、教学任务分析

不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同,掌握不等式的基本性质。本节课教学目标:

(1)知识与技能目标: ①掌握不等式的基本性质。

②经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。

(2)过程与方法目标:

①能说出一个不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。

②进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。(3)情感与态度目标:

①尊重学生的个体差异,关注学生的学习情感和自信心的建立。②关注学生对问题的实质性认识与理解。

三、教学过程分析

本节课设计了五个教学环节:第一环节:情景引入,提出问题;第二环节:活动探究,验证明确结论;第三环节:例题讲解及运用巩固;第四环节:课堂小结;第五环节:布置作

用心

爱心

专心

业。

第二环节:活动探究,验证明确结论

活动内容: 参照教材与多媒体课件提出问题:(1)还记得等式的基本性质吗?

a(2)等式的基本性质1用字母可以表示为:等式的基本性质1是什么?先猜一猜。

b,acbc,那么不(3)如果在不等式的两边都加上或都减去同一个整式,结果会怎样?请举几例试一试,并与同伴交流。

(4)不等式的基本性质与等式的基本性质类似,对于等式的基本性质2,用字母可以表示为:ab,acbc,acbc,其中c0。对应的大家能不能归纳出不等式的基本性质2是什么呢?

(5)例如:如果比高度的两个人不是同时增加或减少相同的高度,而是成倍的增加(或缩小)自身的高度,结果又会怎样?

(6)例如:商场A种服装的标价高于B种服装的标价,如果都打八折出售,那么还是A种服装价格高。通过这些例子,你发现了什么?能得到一个什么类似的结论?

(7)如果乘以(或除以)同一个负数呢?

(8)通过实际的计算、观察、与同伴交流,得出什么类似的结论?

用心

爱心

专心

活动目的:通过等式的基本性质对比不等式的基本性质,由数学情境转化成数学问题,由特殊的数值到字母代表数,从中归纳出一般性结论。进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。

活动实际效果:以问题串的形式引导学生一步步从对比中自己先猜想不等式的基本性质、再通过具体数值验算性质、最后自己总结归纳出性质并能用字母表示出来。因此在整个教学教程中,学生均处于主导地位,教师只是从旁引。这时,学生对于由自己推导出性质定理感到非常兴奋。

第三环节:例题讲解及运用巩固

活动内容:

1、在上一节课中,我们猜想,无论绳长l取何值,圆的面积总大于正方形l2l2的面积,即。你相信这个结论吗?你能利用不等式的基本性质解释这一结论吗?

4162、将下列不等式化成“xa”或“xa”的形式:(1)x51(2)2x3

3、将下列不等式化成“xa”或“xa”的形式:(1)x12(2)x51(3)x3 624、已知xy,下列不等式一定成立吗?

(1)x6y6(2)3x3y(3)2x2y(4)2x12y1

活动目的:在讲解例题的过程中要求学生说出每一步变形的依据,加强学生对不等式的基本性质的理解。随堂练习学生独立完成,师生共同讲解,能说出一个不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯,并通过这种方式达到熟练掌握不等式的基本性质的目的。

活动实际效果:学生在讲解例题与练习的过程中,思维非常活跃,都非常踊跃的举手要求上黑板示范,并且每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范,达到预期教学目的。

第四环节:课堂小结

活动内容:学生自己总结今天这节课有什么收获,思考后对全班说出,与全班同学讨论

用心

爱心

专心

交流。

活动目的:学生说出自己的收获与感想与全班交流,若有任何疑问可以当堂提出供大家讨论。教师要学会倾听并鼓励学生的回答,关注学生对问题的实质性认识与理解,尊重学生的个体差异,关注学生的学习情感和自信心的建立。

活动实际效果:学生自我总结本节课所学到的知识和重点注意的问题,畅所欲言自己的切身感受与实际收获,除了今天所学新的内容之外,还复习巩固了等式的基本性质,体会新旧知识的联系与区别。

第五环节:布置作业

习题1.2

四、教学反思

对于不等式的基本性质的引入,生活中不相等的量有很多,具体教学时可以根据实际情况列举不同的例子。

本节课是以比高矮这个贴近生活的例子引入,充分的调动学生积极性。教学中问题串的设置均与等式的基本性质相联系,引导学生一步步从类比中自己先猜想不等式基本性质的雏形、再通过具体数值验算性质、最后自己总结归纳完善性质定理并能用字母表示出来。在接下来的讲解例题与练习的过程中,全班同学思维活跃,踊跃的举手要求上黑板示范,并且每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范。

在整个教学教程中,学生均处于主导地位,教师只是从旁引,学生对于由自己推导出性质定理感到非常兴奋。

再教设计:在探索及运用不等式的基本性质时,应该让学生多举一些生活中的不等关系,更加容易加深学生的理解。

用心

爱心

不等式基本性质练习 篇8

教学目标:

(1)知识与技能目标:

①掌握不等式的基本性质。

②经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。(2)过程与方法目标:

①能说出一个不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。

②进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。

(3)情感与态度目标:

①尊重学生的个体差异,关注学生的学习情感和自信心的建立。②关注学生对问题的实质性认识与理解。

教学重难点:不等式的基本性质2和不等式的基本性质3 教学过程:

本节课设计了五个教学环节:第一环节:情景引入;第二环节:活动探究,验证明确结论;第三环节:例题讲解及运用巩固;第四环节:课堂小结;第五环节:布置作业。第一环节:情景引入 如果a=b,那么(1)acbc;(2)acbc;

归纳出等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式。

(3)aca(4)bc;cb.c

归纳出等式基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式。

第二环节:探究新知

1、对于4<6,那么(1)42(3)4062;(2)4260;(4)4062;60.对比“等式基本性质1”,你有什么想法?

不等式的基本性质1与等式的基本性质1类似,你能总结出不等式的基本性质1吗?

不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变;

用字母表示:如果a>b,那么a+c>b+c,a-c>b-c

如果a

2、对于4<6,那么

(1)42(3)404(2)62;24(4)60;06;2 6.0

对比“等式基本性质2”,你有什么想法?

不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;

用字母表示:如果a>b,并且c>0那么ac>bc,ac>b÷c

如果a0那么ac

3、对于4<6,那么

(1)4(2)1(3)4()24(2)6(2);216().2

6;2

对比“等式基本性质2”,你有什么想法?

不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

用字母表示:如果a>b,并且c<0那么ac

如果abc,ac>b÷c 思考:不等式的两边能不能同时乘以0,为什么? 不等式的其它性质: 对称性:如果a>b,那么bb,b>c,那么a>c 如果ab>0,那么a,b同号;如果ab<0,那么a,b异号 如果a-b>0,那么a>b,反之若a>b,则a-b>0 如果a-b<0,那么a

1、将下列不等式化成“xa”或“xa”的形式:

(1)x5(2)2x3 巩固练习

1、将下列不等式化成“xa”或“xa”的形式:

(1)x1

2(2)x1

5(3)x3

262、已知xy,下列不等式一定成立吗?

(1)x6y6

(2)3x3y

(3)2x2y

(4)2x12y1 例

2、同桌的甲、乙两名同学,争论着一个问题:

甲同学说:“5a>4a。”乙同学说:“这不可能。”请你评说一下两名同学的观点究竟哪个正确?为什么?举例说明。

3、比较下列各式的大小:

(1)a与a2;(2)2与2a;(3)a与2a.第四环节:课堂小结

学生自己总结今天这节课有什么收获,思考后对全班说出,与全班同学讨论交流。

不等式基本性质练习 篇9

《分数的基本性质练习课》教学反思

练习课是教学工作的一个有机组成部分,它能使学生掌握知识,形成技能,是发展智力的重要手段。一节好的练习课不仅能给学生提供数学实践活动和交流的机会,而且要使他们在学习过程中体验到学习的乐趣。

《分数的基本性质》在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一,所以一节巩固分数的基本性质练习课有着重要的作用。我在设计这节练习课时,着重设计了一系列与之相关、形式多样的练习,目的在于帮助学生在应用中巩固分数的基本性质。课堂上,我大胆放手让学生独立完成并交流,留给学生足够的探索时间和广阔的思维空间,引导他们自主练习,在合作、交流中解决问题,这样既提高了学生练习的效率,又促进学生各方面能力的发展,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。

不等式的性质 篇10

庆阳市西峰区彭原乡彭原初级中学

[教材分析]

《不等式的性质》的内容属于初中数学“数与代数”部分。数量之间除有相等关系外,还有大小不等的关系。正如方程和方程组是讨论等量关系的有利数学工具一样,不等式与不等式组是讨论不等关系的有利数学工具。不等式是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习,有着重要的实际意义。研究不等式在整个初中数学学习中有着承上启下的作用。解决不等式问题对不等关系的研究起着画龙点睛的作用。掌握不等式的性质是顺利解决不等式的重要依据。不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容作理论基础,起到重要的奠基作用。

[学情分析]

1.授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学;充分调动学生的积极性,注重课堂教学的有效性,在练习设计上要针对学生差异采取分层设计的方法。

2.本节课主要研究不等式的性质和简单应用。他与前面学过的等式的性质有联系也有区别,为渗透类比、分类讨论的数学思想提供了很好的素材。由于学生的认知结构是建立在等式的知识基础上对不等式进行学习,所以,在学习的过程中学生容易延续的等式性质的理解,产生惯性的思维定势,尤其体现在对不等式性质3的理解与应用。

[教学目标]

1.经历不等式基本性质的探索过程,掌握不等式的基本性质。

2.经历通过类比、猜测、验证发现不等式性质的探索过程,初步体会不等式与等式的异同。

3.通过创设问题情境和实验探究活动,积极引导学生参与解决数学问题,提高学生学习数学的兴趣,增强学习数学的信心,发展学生的符号表达能力、代数变形能力,在自主探索、合作交流中让学生感受学习的乐趣。[教学重难点]

重点:理解并掌握不等式的性质。

难点:不等式性质的理解应用(特别是性质3的理解应用)。[教学过程]

一、回顾旧知,类比新知

[问题1]我们学习过等式的相关性质,你能说出等式的性质吗?(性质1„„,性质2„„。)

学生回答问题,教师演示天平实验。(等式)

[问题2]我们学习了不等式,它是否也有类似的性质呢? 教师继续演示天平实验。学生观察老师的操作后思考:①.天平被调整到什么状况;②.给不平衡的天平两边同时加入(拿掉)相 同质量的砝码,天平会有什么变化?③.如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢?

本环节中,教师应重点关注:

(1).学生能否准确表达等式的性质;(2).学生是否积极参与类比的思考之中。

(通过回顾等式的性质,演示等式性质的产生过程,为不等式性质的研究以及不等式的性质的归纳作好铺垫。培养学生善于运用类比、迁移学习方法的良好习惯。)

二、探索新知,归纳结论

[问题3] 用“>”或“<”填空,并总结其中的规律: ①

5>3, 5+2——3+2,5-2——3-2; ②

-1<3,-1+2____3+2,-1-3——3-3;

6<2,6*5——2*5,6*(-5)——2*(-5);④

-2<3,(-2)*6___3*6,(-2)*(-6)____3*(-6).学生填空,师生展示正确结果。

(通过对一组练习的延伸探究,培养学生发现、归纳问题的能力)

[问题4]从以上一组练习种你发现了什么?请你把你的发现与合作小组的同学交流。

通过学生小组合作交流,学生把自己的“发现”进行充分讨论,探究不等式的性质。

[问题5]请用你发现的规律填空: 当不等式两边加上或减去同一个数(正数或负数)时,不等号的方向——。当不等式两边乘同一个数正数时,不等号的方向——;而乘同一个数负数时,不等号的方向——。

[问题6]请大家换一些其他数,验证这个发现。

教师掌握各小组情况,适当引导,尤其(3)(4)是不等式两边同乘以正数、负数,所得结果截然不同,因此要有针对的区别开。

(通过类比等式性质,引导学生探究不等式的性质,培养学生用类比的方法学习知识。)

[问题7]你能用自己的语言概括不等式有哪些性质吗?请小组讨论。

性质1::不等式两边加上或减去同一个数(式子)时,不等号的方向不变;性质2:不等式两边乘(或除以)同一个正数时,不等号的方向不变;性质3:: 不等式两边乘(或除以)同一个负数时,不等号的方向改变;(学生观察对比、探索发现,清晰地掌握性质2和性质3的区别,有利于正确理解和应用;培养学生的概括能力和数学语言表达能力。)

[问题8]你能用字母表示不等式的性质吗?请小组讨论交流。(1).若a>b, 则 : a±c>b±c;

(2).若a>b,c>0 则 : ac>bc或a/c>b/c;(3).若a>b,c<0 则 : ac

等式的性质有2条,进行加减乘除运算时相等关系不变;不等式的性质有3条,加减不等关系不变,乘除要分正、负分别讨论,两个结果不同。

学生合作交流,教师深入指导。本环节中,教师应重点关注:

(1).交流合作中,学生是否积极参与类比的思考;(2).学生能否全面地考虑不等式性质2和性质3的区别;(3).学生能否准确表达不等式的性质;

(4).学生能否用数学符号语言表达不等式的性质。(培养学生使用符号语言表达数学现象,培养数学文字与符号语言的相互转化能力,提升数学表达能力。)

三、基础训练,巩固应用

1.如果a>b,判断下列不等式是否正确:

-4+a>-4+b;()a-3b.b ;()-5a>-5b()2.如果a>b,用用“>”或“<”填空:

a+2__b+2; 3a__3b;-2a__-2b; a-3__b-3; a/2__b/2; a-8__b-8; 2a-5__2b-5;-3.5a__-3.5b;-8.5a+2__-8.5b+2; 若a>0,b<0,c<0 则(a-b)c___0; 若a 0 则ac+c___bc+c.3.① a>0 x>y则:ax____ay; ② a<0 x

ax___ay.(加深学生对新知识的理解,建立对不等式性质的正确的认识)

四、应用拓展,解决问题

例1:利用不等式的性质解下列不等式:

① x-7>26;② 3x<2x+1;

③ 2/3x>50;

④-4x>3.(学生分组讨论,研究上述不等式的解法,并总结其中的规律,要求学生类比解方程,用准确的数学语言表达。特别是移项表述,类比解方程,用准确的数学语言表达。)

教师深入小组,适当点拨指导,帮助学生总结不等式结构特点,有针对性的总结规律。

师生共同展示讨论结果。

教师板书其中一题,统一要求对不等式解题过程的规范书写,解集在数轴上的正确表示,展示数形结合的整体美感。

本环节中,教师应重点关注:

(1).学生能否抓住不等式的结构特点,合理使用不等式性质解不等式;

(2).学生能否准确地在数轴上表示不等式的解集;(强调“<”与“≤”在意义上和数轴表示上的区别。)

(3).学生能否认真参与小组讨论;是否通过讨论掌握不等式解法;

(4).学生能否通过对比解方程的方法,发现解方程与解不等式的方法的区别与联系。练习:教材第119页练习第1题。

(培养学生积极思考,参与交流合作的习惯,建立良好的合作意识,提高学生运用所学知识解决问题的能力。类比解方程的方法解不等式注意性质3,并类比解法的异同,帮助严谨规范的书写习惯。)

五、归纳小结,收获感悟 谈一谈本节课你有什么收获?

学生归纳总结(1)不等式性质1、2、3;(2)简单不等式的解法 本环节中,教师应重点关注:

(1).学生是否积极参与总结归纳,是否养成对知识进行及时归纳整理的习惯;

(2).学生对本节课所研究的问题的理解程度。(积累数学经验,加强记忆和应用能力。)

六、作业

习题9.1第4、5题。[教学反思]

为创设宽松民主的学习氛围,激发学生思维的主动性,顺利完成教学目标,本节课坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,给学生充分的自主探索时间,引导学生联系已有知识学习新知识,减少学生获取新知识的难度,通过教师的引导,调动学生的积极性,组织学生参与“探究—讨论—交流—总结”的学习过程,让学生在课堂上多活动、多观察,主动参与到了整个教学活动中来,从本节课的设计上看,我自认为知识全面,讲解透彻,条例清晰,系统性强,讲练结合,训练到位,但一节课下来后没有为学生“减负”,忽略了实效性。在今后的教学中我要多问多听、多思多想,真正为学生减轻课业负担,增强教学的实效性。

另外,在今后的教学中要注重学生学习习惯的培养。

者:马

甘肃省庆阳市西峰区彭原乡彭原初级中学教师 通讯地址:甘肃省庆阳市西峰区彭原乡彭原初级中学 邮

不等式的性质说课 篇11

大家好!

我今天说课的课题是《不等式的基本性质》,它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:

知识与技能:

1.感受生活中存在的不等关系,了解不等式的意义。2.掌握不等式的基本性质。

过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。教学重难点:

重点:不等式概念及其基本性质 难点:不等式基本性质3 ►教法与学法:

1.教学理念: “ 人人学有用的数学”

2.教学方法:观察法、引导发现法、讨论法. 3.教学手段:多媒体应用教学

4.学法指导:尝试,猜想,归纳,总结

根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。

下面我将具体的教学过程阐述一下:

一、创设情境,导入新课

上课伊始,我将用一个公园买门票如何才划算的例子导入课题。

世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?

(此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式〉

紧接着进一步提问:若人数是x时,又当如何买票划算?

二、探求新知,讲授新课

引例列出了数与数之间的不等关系和含有未知量120<5x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。

接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。

(1)a是负数;(2)a是非负数;(3)a与b的和小于5;(4)x与2的差大于-1;(5)x的4倍不大于7;(6)y的一半不小于3 关键词:非负数,非正数,不大于,不小于,不超过,至少

回到引入课题时的门票问题120<5x,我们希望知道X的取植范围,则须学习不等式的性质,通过性质的学习解决X的取植

难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。►反馈练习:用一个小练习巩固三条性质。

如果a>b,那么

(1)a-3 b-3(2)2a 2b(3)-3a-3b 提出疑问,我们讨论性质2,3是好象遗忘了一个数0。►引出让学生归纳,等式与不等式的区别与联系

三、拓展训练:

根据不等式基本性质,将下列不等式化为“<”或“>”的形式(1)x-1<3(2)6x<5x-2(3)x/3<5(4)-4x>3 再次回到开头的门票问题,让学生解出相应的x的取值范围 .小结 1.新知识

一个数学概念;两种数学思想;三条基本性质 2.与旧知识的联系

等式性质与不等式性质的异同

五、作业的布置

以上是我对这节课的教学的看法,希望各位专家指正。谢谢!

上一篇:加强教育管理情况下一篇:大学生宿舍介绍范文