银行大数据精准营销

2024-12-21 版权声明 我要投稿

银行大数据精准营销(精选8篇)

银行大数据精准营销 篇1

现代科技的发展给人们的生活带来了许多新变化,消费者越来越强调自我,追求个性,企业在捕捉消费者越来越多样化的需求上面临更多挑战。以IT应用技术、智能通信技术为基础的精准营销应运而生。正如现代营销之父菲利普科特勒所认为,市场营销是企业需要更精确的有效通信和市场营销策略的实施过程,同时交流通信的结果是必须能够计算出来,并且市场营销可利用高效的通讯得到较大利润。在智能数据挖掘分析时代,我们可以通过对数据的AI+挖掘的管理、准确程度与精密程度、选择客户与市场定位等多方位来展现精准营销的价值。

一、引言

大数据应用于精准营销就是在大数据的支撑下,尽可能多地获取消费者的信息,从中分析挖掘他们的潜在需求,并利用数据技术进行精准的广告投放,使营销更具针对性。首先,大数据为精准营销提供了海量的数据信息[1]。在互联网中,用户的信息行为都能转化为数据,企业通过分析这些数据,挖掘消费者的潜在需求,运用信息技术进行精确的、个性化的广告投放,实现精准的营销。同时,在营销过程中,每一个用户的Cookies数据是可记录和查询的,即与目标用户的每一次接触都会留下痕迹,利用这些“痕迹”可以建立一个消费者数据库,实现客户的信息管理。大数据使更高效的精准营销得以实现,精准营销又为大数据提供更多信息积累。

二、大数据下的`精准营销模式

1.受众精准。大数据技术为营销找到更能满足业务需求的受众。通过对数据的整合分析,我们可以得出清晰的用户画像,了解用户的个性与需求,从而实现一对一的精准投放和服务。如拥有强大的数据管理平台(DMP)的TalkingData,能对超过20亿移动受众人群的数据进行汇聚、清洗、萃取,结合一系列算法模型,输出人群分类标签数据体系和目标受众分析工具。由此,企业可以更加精准地找出目标受众,进行针对性的广告投放。2.成本精准。大数据技术使广告投放更加精准,提升了广告的转化率和回报率,大大节约了成本。在大数据的支持下,我们能挖掘大量与消费者相关的数据信息,从中分析出消费者的基本属性、兴趣爱好、消费习惯、消费需求等,更加准确地定位目标受众并进行细分。再运用人群定向技术,精准地向受众投放针对性的广告。这样的精准投放,改变了以往大范围无目的的广泛投放模式,大大节约广告投放成本,避免浪费。同时,精准的广告信息往往能主动迎合消费者的需求,更容易使其对产品和服务产生好感,从而大大提高了广告的转化率和回报率。企业通过大数据进行精准营销,可最大程度降低营销成本,提升品牌价值。3.效果精准。运用大数据对消费者的需求进行筛选跟聚合,使精准营销的层次得到进一步提高。在大数据技术的支撑下,我们可以得到清晰的目标受众定位,有效细分人群,提供针对性较强的个性化聚合服务。改变了以往精准营销提供综合化服务的局面,大大提高了营销的效果。如,网舟科技通过对用户线上线下的数据进行只能筛选,为不同的使用情境建构了不同的推荐机制,使推荐引擎从以往的综合化服务转向个性化聚合服务。由此,商品导购更加智能化,消费者好感度增强,有效提高产品和服务的销量,增强了营销的效果。

三、大数据在精准营销中的应用

1.用户数据的挖掘。互联网时代下,用户的任何行为都会留下痕迹,利用系统日志数据、访问社交网络信息等,我们通过用户反馈信息,识别分析出用户的基本属性、兴趣爱好、消费行为、潜在需求等。以Facebook为例,超过12亿的用户量为其提供了海量数据。Facebook可以从Cookies追踪它的用户,如用户在使用Face-book的同时浏览网页,便可以追踪到用户所访问页面的网址。用户在Facebook里添加的标签,点过的赞等等也都可以成为Facebook识别和分析用户的基本属性、个性取向、情感状态、消费水平、政治倾向等各方面信息的数据依据。企业可以通过访问Facebook主题数据对消费者进行研究,进一步了解消费者,绘制品牌受众地图,进行品牌内容评估,从而准确地投放广告、开发客户,实现精准营销。2.定向广告的推送。精准营销成功的一个重要条件是精准的营销信息推送,即将相关的产品广告、促销活动等信息向目标受众推送,引发其关注并产生点击、阅读等行为,从而进一步吸引其购买产品。它包含两方面,一是目标受众,即营销信息应该推给谁;二是信息内容,即向其推送怎样的信息。以前,企业难以获取足够的用户信息,因此无法采取有针对性的传播内容,造成大量的广告资源浪费。在大数据时代,我们可以搜集大量的用户信息并进行分析,从而判断出我们的目标受众,进行个性化的定向广告推送,大大提升了广告效率,节约广告成本。3.主题数据的开发。主题数据的开发,将数据信息预处理,通过预处理后进行识别,根据不同的管理需求及其相应的信息,将工作定义为不同的分类,再针对各个主题数据库进行主题定义。它可以为营销者带来一个清晰的用户视图,从而实现更精准的营销。如企业可以访问Facebook主题数据,识别提取用户信息,再从信息的不同利用角度出发进行分类,整理形成各个主题的数据库。根据这些主题数据选择性地改变他们在平台和其他渠道的营销方式,使广告投放更加精准。

四、精准营销的大数据技术应用

1.大数据分布式存储管理技术。大数据是涉及整个软硬件系统的各个层面上诸多计算技术的融合。当大数据处理平台搭建后,将要考虑数据存储问题。在集群环境下,需要大数据的储存并发访问,主要采用分布存储系统[2]。分布式存储对大数据才存储通过可扩展的方式高效可靠的管理,但无法对结构化、半结构化数据进行访问和管理[3]。因此,面向结构化和半结构化数据存储管理和查询分析系统营运而生:例如HBase和Hive等系统[4]。2.大数据并行计算及系统平台。大数据并行计算系统平台框架主要是Hadoop、MapRe-duce。近年来人们研究实现了更多种大数据并行计算模型与框架,以提高大数据的处理效率。其中,集多种计算模式为一体的Apache、Spark发展迅猛,成为新一代主流大数据并行计算系统,受到了工业界和学术界的广泛关注和使用。3.数据分析。金融征信、互联网舆情、商业用户画像、电信精准营销及智能交通管理等领域的大数据分析应用层出不穷。大数据以应用系统需要有相关专业及知识结构的应用行业专家对领域应用的具体案例和问题构建行业具体应用的逻辑业务模型,并采用分析软件进行分析归纳数据,计算机专业人员通过以上分析,再进行设计和开发相关大数据应用系统。通过其存储、计算、分析等技术层面的运用,能够构建针对不同行业领域的大数据分析或解决方案[4]。

五、结论

大数据时代下,我们可以在不同媒介不同领域中挖掘、提取各种数据资源,通过对这些数据的整合与分析,我们可以得到用户的基本属性、兴趣爱好、消费需求等,绘制出精准的用户画像,明确他们的潜在需求,并针对这些差异化需求进行精准的个性的广告传播。这大大提高了广告主寻找目标消费者的效率和精准性,极大地节约了广告投放成本,提高了广告投放效率。我们要时刻关注技术的发展,抓住大数据带来的机遇,同时也不能盲目迷信大数据,要积极应对它对广告业的挑战与冲击。

参考文献:

[1]李洁,应昌成.大数据发展趋势[J].电子技术与软件工程,(22).

银行大数据精准营销 篇2

目前,大数据还没有普遍认可的定义。一般认为大数据是一种通过信息处理观察世界的新方法,数据量已进入到ZB( 1TB = 1024GB,1PB = 1024TB,1EB = 1024PB,1ZB = 1024EB) 时代,海量的数据将对各个产业产生巨大的影响。大数据中的“大”是其标志,是对总体进行分析,并不是抽样调查,通过海量数据的追踪分析,从宏观的环境去观察微小的个体,正是这种精确定位,提高了企业的生产效率,为人类创造更高价值。

Netapp公司指出大数据应该包括三个方面,即分析( Analytic) 、内容( Content) 和带宽( Bandwidth) 。大分析是指通过对大数据的宏观分析带来新的商业视角,为企业提供新的客户信息,从而提高生产效率; 大内容一方面指总体海量的数据,另一方面指处理数据的信息技术高,能轻松实现数据的使用和安全管理; 高带宽指能准确高效地追踪处理海量的数据。

Google公司指出大数据具备四个特征,简称“4V”,即数据体量大( volume) 、类型复杂( variety) 、价值密度低( value) 、速度快且时效高( velocity) 。数据体量大是指数据量达到10TB以上,互联网的普及,智能工具的推广,通讯工具的使用,通过数据把人们的行为记录下来,海量数据中含有大量的信息,企业可以从中提取有用信息。类型复杂: 海量数据只包括结构化和半结构化数据,而大数据还包括非结构化和交互数据。价值密度低: 庞大的数据量中,隐藏的有用信息却不多,需要提高分析数据的能力。速度快及时效高: 人的行为在变,数据也是动态变化的,这是大数据的一个重要特征。

二、大数据时代的营销变革

处在信息爆炸的时代,流式数据呈指数增长,庞大的数据可以分析消费者的行为,提供了一种新的营销思维,带来了营销的变革。

( 一) 营销理念的变革

大数据是一个镜像世界,它与现实世界相连,不仅记录人们的行为轨迹,还包括人们的情感与生活习惯。以前的营销理念是根据顾客的基本属性,如顾客的性别、年龄、职业和收入等来判断顾客的购买力和产品需求,从而进行市场细分,制定相应的产品营销策略,是一种静态的营销方式。大数据时代的到来,企业通过数据挖掘消费者的兴趣爱好和行为习惯,能够精准预测顾客的需求,从而实现以客户生命周期为基准的精准化营销,这是一个动态的营销过程。这种营销理念的转变为企业创造巨大利益的同时也方便了消费者。如,在以有线数字电视互动双向网络为支撑、以数字电视终端为介质的家庭信息平台建设中,记录用户行为和反馈信息的数据通过数字电视终端传达给企业,企业可以深入分析数据得出有价值的信息,针对性地进行广告投放、媒体宣传,实现精准化营销,结合物联网以及物流配送体系,形成一个高效、方便和完整的营销过程。

( 二) 营销方式的变革

大数据是营销活动中的“显微镜”和“导航仪”,帮助企业筛选重点客户,开发新领域,挖掘用户的潜在需求。大数据带来营销方法的变革,主要表现为: 1. 以客户生命周期为依据对顾客进行动态细分,确定重点客户。如酒店行业存在“二八定律”,即80% 的企业利润由20% 的客户创造,20% 的利润由剩下的大多数客户创造。大数据可以帮助企业在众多用户群中筛选出重点客户,利用某种规则关联,确定企业的目标客户。2. 开发新领域,挖掘需求潜力。大数据的一个巨大创新就是可以通过对海量数据的处理,了解客户的消费习惯,发现关联规则,开发新市场,进行产品创新甚至是定制化营销。3. 动态的数据追踪可以改善用户体验。企业可以追踪了解用户使用产品的状况,做出适时的提醒,比如食品是否快到保质期; 汽车使用磨损情况,是否需要保养维护。流式数据使产品“活”起来,企业可以随时根据反馈的数据做出方案,精准预测顾客的需求,提高顾客生活质量。4. 检测营销环境。企业可以通过本行业数据确定自身在行业中的竞争力,监测竞争对手的行为,提前预测行业走向。对大数据分析可以监测品牌传播效率,找准营销方向。如《小时代》电影预告片投放后,通过大数据分析得知其主要观众群为“90后”女性,因此后续的营销活动主要针对这些人群展开。分析大数据还可以预知品牌危机,找准传播途径,遏制危机源头和关键节点,及时高效解决问题。

三、大数据时代下的精准营销

( 一) 精准营销的涵义及特点

精准营销理论最初由菲利普·科特勒提出,是营销理论发展的必然产物。在4Cs理论、市场细分理论和顾客让渡价值理论的基础之上,提出精准营销就是利用信息技术和数据处理技术对客户进行精准的细分,实行一对一的准确营销,提高顾客让渡价值,充分满足客户的个性需求。著名学者徐海亮提出精准营销包括五个体系的内容: 精准的市场定位体系、适合一对一的集成销售组织、与顾客建立个性传播沟通体系、顾客增殖服务体系和提供更适合顾客的产品。只有这五个体系相辅相成,企业才会实现个性化精准营销,利于企业低成本扩张,实现可持续发展。

精准营销最大的优点在于“精准”,在市场细分的基础上,对不同消费者进行细致分析,确定目标对象。第一,精准的客户定位是营销策略的基础; 第二,高效、投资高回报的个性化沟通是精准营销的又一大特点,过去营销活动面对的是大众,目标不够明确,沟通效果不明显,精准营销是在确定目标对象后,划分客户生命周期的各个阶段,抓住消费者的心理,进行细致、有效的沟通; 第三,精准营销为客户提供增值服务,为客户细致分析,量身定做,不必进行商品的挑选,节约了客户的时间成本和精力,同时满足客户的个性化需求,增加了顾客让渡价值; 第四,发达的信息技术有益于企业实现精准化营销,“大数据”和“互联网 + ”时代的到来,意味着人们可以利用数字中镜像世界映射出现实世界的个性特征。这些技术的提高降低了企业进行目标定位的成本,同时也提高了对目标分析的准确度。

( 二) 大数据下的精准营销

1. 互联网广告颠覆性创新———实时竞价( RTB)

在淘宝上搜索过连衣裙,无论在哪里登陆都会看到连衣裙广告,这种精准的广告投放大大提高了市场接受率。RTB智能投放系统的操作过程简单地说就是用户浏览网页时会发出访问请求,该请求信息会在数据库进行比对,推测出来访者的身份和偏好,然后发送到后方需求平台,有广告商竞价,出价最高的企业可以把自己的广告瞬间投放到用户的页面上。整个过程只需0. 1秒就可以完成。RTB运用Cookie技术能够记录用户的网络浏览痕迹和IP,运用大数据技术对海量数据进行甄别分析,得出用户需求信息,向用户展现相应的推广内容。这种智能广告投放能精准地确定目标客户,显著提高广告接受率。在美国接近90% 的广告投放采用RTB,其具有巨大的商业价值和广阔的应用前景。

2. 利用大数据挖掘的新方向———交叉销售

“啤酒与尿布”是数据挖掘的经典案例,在海量数据中含有大量的信息,企业建立一个完善的信息管理系统,通过对数据的有效分析,可以发现客户的其他需求,制定套餐服务,可以通过互补型产品的促销,为客户提供更多更好的服务。如银行和保险公司的业务合作、通信行业制定手机上网和短信包月的套餐等。

3. 运用大数据分析的成功案例———视觉雅虎

进入雅虎网站,映入眼帘的是最上方目前正在浏览的用户数量,从跳动的数字感受到雅虎实时动态监测,左侧栏是性别和年龄的选择,右侧栏是新闻、娱乐、时尚和金融等分类。选择不同的年龄和性别,都会出现这个群体普遍感兴趣的内容,雅虎利用了大数据处理技术,为每个用户量身打造“首页推荐”,提高了用户忠诚度。雅虎透露它的核心业务大多数与大数据分析相关,从搜索、购物到广告投放。雅虎找出隐藏在海量数据中的用户的兴趣和需求,进行精准定位,实行智慧化服务,达到事半功倍的效果。

“大数据”和“互联网 + ”时代的到来,给企业开辟了一个新天地,激发企业的创新能力,可以让企业更准确地了解客户兴趣,更有效地挖掘客户需求,提高企业价值。同时,企业面临着新的挑战,还需要解决提高数据处理技术和辨别数据真伪等难题,企业既要努力创新,跟随时代潮流,又要不断加强协作,增强挖掘数据的能力。

摘要:随着“大数据”和“互联网+”时代的到来,为企业营销提供了一种全新的思维方式,大数据具有体量大、类型复杂、价值密度低、速度快和时效高等特点,促进了营销理念和方式的变革,企业通过现代信息技术挖掘隐藏在海量数据中的消费者信息,更准确地了解客户兴趣,有效地挖掘客户需求,实现了实时竞价(RTB)、交叉销售等精准营销。

关键词:大数据,精准营销,数据价值

参考文献

[1]万红玲.大数据时代下的精准营销[J].新闻传播,2014(1).

[2]徐云.大数据时代烟草精准营销方法研究[J].企业研究,2014(2).

[3]李巍,席小涛.大数据时代营销创新研究的价值、基础与方向[J].科技管理研究,2014(6).

银行大数据精准营销 篇3

本论文的研究方法为定性研究,通过深度访谈的方法,以京东商城为具体研究对象进行研究。通过对京东商场的具体研究分析,理清B2C电子商务企业收集、整理、存储和分析大数据的流程;分析用户多次的购物记录形成关系网,知悉更多用户的购买习惯和喜好;将客户分为不同的类型,将个性化的信息推荐给客户,以客户为中心,进行实时营销和精准营销。但本文仍存在诸多不足之处,希望在后续研究中能使研究对象进一步细化,并且将案例研究进一步地深入。

关键词:大数据;电子商务;精准营销;京东商城

1 绪论

从20世纪互联网出现至今,互联网已经越来越融入人们的生活,不得不说,网购已经成为了一种潮流和趋势,已经成为了相当一部分人生活中不可或缺的部分,同时,也带动了中国电子商务的发展进程。

网络交易规模的不断扩大和增长,对于电子商務行业来说是一个难得的发展机会,但机遇与挑战永远是并存的。过去传统的粗放式营销方式开始逐渐转变为精准式营销,精准营销就是在精准定位的基础上,依托现代信息技术手段建立个性化的顾客沟通服务体系。这种精准式营销方式主要特征就是以客户为核心,营销的目的就是实现与客户之间的交易,只有制造出令客户满意的产品,充分满足客户的个性化需求,才能够实现交易,与客户保持良好的合作关系,充分实现收益,获得较高的投资回报。

随着网络的发展和技术的进步,从2009年开始大数据这个词语越来越多地被人们所提及。不可否认,“大数据”一词在整个世界范围内也越来越热, “大数据”时代已经来临。2013年也被中国媒体广泛称之为 “大数据元年”。不得不说,大数据的时代已经来临了。京东(JD.com)是中国最大的自营式电商企业, 2014年5月,京东在美国纳斯达克证券交易所正式挂牌上市,是中国第一个成功赴美上市的大型综合型电商平台,与腾讯、百度等中国互联网巨头共同跻身全球前十大互联网公司排行榜。2014年,京东市场交易额达到2602亿元人民币,净收入达到1150亿元人民币。

最近两年,大数据在电信、医疗和公共交通方面已有应用,但在B2C的电子商务网站方面还未得到广泛的运用,所以本论文的研究问题可以归纳为两个方面:

①如何通过大数据技术获得有利于对B2C电子商务企业的顾客信息挖掘?

②如何将大数据技术分析处理后的数据运用于B2C电子商务企业的精准营销中?

本文的研究目的总体可以分为以下三个方面:

①对于B2C类型的电子商务企业而言,收集的大数据主要包括消费者的购买行为,对其进行整理和分析,可以预测消费者的下次购买行为,可以为企业在精准营销过程中节省大量的人力、财力和物力,减少成本扩大收益。此外,通过精准营销能够很好地维护企业和客户之间的关系,提高客户满意度,真正做到以客户为中心。京东商城就是通过大数据的分析,来维护与网购客户的关系,提高客户在京东商城购买产品的频率和次数,最终提高客户对京东商城的忠诚度。

②对于消费者而言,B2C企业推送的产品信息更具有针对性,更符合自己所需购买产品的期望,减少搜索和寻找相关产品的时间,能及时快速地了解B2C企业的产品信息,帮助消费者做出购买决策,指导其消费行为。消费者收到京东商城发送的产品信息之后,直接就去京东商城的网站上面进行挑选和选购,节省许多时间和精力。

③精准营销研究的侧重点大多在于客户关系管理方面的营销策划研究,基于行业的精准营销也大多集中于银行、图书、消费品等相关领域,但是随着大数据时代的来临,电子商务网站的精准营销研究相对来说就比较匮乏,这就使得本论文的研究更加具有创新性和实用性。

本论文主要以在B2C电子商务企业中非常有代表性的京东商城为研究对象,探索大数据在电子商务精准营销中的应用。

2013年可以称为中国的“大数据元年”,以此计算,中国在大数据领域内的研究还处于最初的起步阶段,且处于宏观研究的层面,对于应用涉及的更加少。而且大数据的显著4V特征:(规模(Volume)、快速(Velocity)、多样(Variety)和价值(Value)由于数据的海量化,规模巨大化和多样化,单个数据的价值密度就显得较低,如何将大数据的海量化、多样性的特点与精准营销的精准性看似矛盾对立的两个方面在营销过程中充分完美地结合起来,最终成功实现营销,这将是本文的研究创新点。

2 文献综述

本章节通过对电子商务、大数据、精准营销等概念进行文献研究,然后通过大数据在电信行业和公共交通行业的应用提供借鉴意义,为大数据能够更好地服务于电子商务行业的后续应用研究奠定基础。

2.1 电子商务

电子商务这一提法最初是由欧洲、美国等西方发达国家提出的,但是经过多年的发展和推广,电子商务已经在全世界的范围内遍地开户,占领了相当大的市场份额,基于这种情况,世界上的众多学者都开始针对电子商务进行了大量而细致的研究工作。

联合国经济合作组织(2007)把电子商务定义为:“电子商务是用开放式的网络作为交易的基础,并且依靠这一基础开展企业与企业之间、消费者与消费者之间、企业与消费者之间的商业上的往来”。

Daniel Amor (2012) 在《电子商务:变革与演进》一书中提出的看法是:立足于电子商务带来的机遇和挑战,对电子商务涵盖的技术进行了评论,同时全是电子商务的核心理念,对于电子商务未来的发展前景进行了展望和评估。该书在对于电子商务的发展给予一定肯定的同时,也毫不避讳的提出了电子商务在发展过程中出现的诸多问题。

中国的电子商务企业相对于国外企业来说起步较晚,但是发展速度却不慢,而且劲头十足,但是,由于受到种种条件的制约,现阶段中国电子商务企业的研究大多还只是停留在理论层面。

张婷,朱邦毅(2014)针对中国当前B2C电子商务市场进行研究的同时,总结了B2C电子商务的三种模式:垂直型、平台型和综合型。并在此基础上,深入解析了各种模式的优缺点和利弊后,得出以下结论:传统的大中型企业开拓销售渠道时比较适用于垂直型的模式;大中型企业在获得企业长远经营利益方面比较实用综合型模式;而平台型的模式则是中小企业最初进入网络交易市场的不二选择。

截至目前为止,针对电子商务企业在理论与实践方面的研究还非常少,这一领域还非常地薄弱,这就更加迫切地需要针对电子商务在B2C企业领域的实践进行更加系统的研究。

2.2 大数据

20世纪互联网出现,特别是进入21世纪以来,互联网的发展势头锐不可挡,无处不在的移动设备每时每刻都在产生着大量的数据,信息的交互更是时时刻刻都在处理大量的数据。此时,对于数据处理的实时性和实效性都提出了更高的要求,传统的处理手段已经不能胜任。因此,大数据技術当之无愧地成为了一个最新的技术热点,并引起了世界单位内的广泛关注。

维基百科对于大数据的定义是“大数据是一个常规软件无法在一定时间内对其内容进行获取、整理和分析的数据集合”。大数据与海量数据相比,在数据体量、复杂性和产生速度这三个方面相较于传统数据的形态有了很大的超越,此外,也超越了传统技术处理手段的范围,还能够带来巨大的经济效益。

IBM公司将大数据的特征总结成为三个“V”:规模(Volume)、快速(Velocity)和多样(Variety),但是更多的人则将其概括为四个“V”,即规模(volume)、快速(Velocity)、多样(Variety)和价值(value)。

依据一般的信息处理流程,大数据的处理过程可以划分为以下六个环节,分别是数据收集、数据整理、数据存储及管理、数据分析、数据显化及产业应用:

①数据收集。数据收集是大数据处理过程首要的一环,也是基础。

②数据整理。每年数据的产生量是非常大的,完成大量数据的收集工作之后,如何才能筛选出有用的数据,并使有用的数据顺利传递到下一环节,是大数据处理过程中必要的并且非常重要的环节。

③数据存储及管理。数据存储和数据管理是环环相扣的,采用何种方式进行数据管理直接决定了数据存储的方式,同时数据存储的方式又决定了数据管理的深度和广度。

④数据分析。开始比较早的传统数据处理公司具有明显的竞争优势,但是,以Cloudera为代表的基于开源软件基础构架的数据分析公司由于能够较好地满足客户的数据分析需求,在这几年间取得了快速的发展。

⑤数据解读。数据分析这一环节,起步比较早的传统数据处理公司同样具有一定的竞争优势,通过在传统业务之上融入新的知识,很快就成为该领域中的领头羊。

⑥数据展示。这一环节中在一定程度上也可以称之为数据应用,大数据开始帮助管理实践。

2.3 精准营销

20世纪90年代,美国的莱斯特·伟门第一次提出了精准营销的概念。Zabin和Brebach (2004)提出了精准营销的4R法则,亦即正确的顾客(right customer),正确的信息(right message),正确的渠道(right channel)以及正确的时间(Right time),通过把正确的信息在正确的时间通过正确的渠道顺利传递到正确的客户手中,借此真正实现对目标客户的购买决策形成有力影响,并促成营销目标的顺利达成。

刘征宇(2013)在《精准营销方法研究》中提出精准营销的方法应该分为三大类,分别是基于数据库营销的方法、基于Internet的方法和借助其他渠道的方法三大类。姜何(2014)用精细化营销来形容精准营销,指出所谓的精细化管理是相较于粗放式管理而言的,实施精细化管理,就意味着要开展客户细分,针对不同类型的客户实施不同的营销策略,充分了解客户的个性化需求,为客户提供所需的服务,实现营销目标。曹彩杰(2014)提出,精准营销体系应该以网络和信息技术手段为核心,未来也许会替代传统的营销模式,并逐步发展成为现代企业管理营销发展的新态势。

中国三大电信运营商经过多年的经营,累积了大量的数据。目前大数据在电信行业中的应用主要体现在网络管理和优化、市场与精准营销和企业运营管理。目前面临的问题是,电信行业发展好应用大数据技术面临的最大障碍不是技术能不能实现的问题,而是数据孤岛无法充分共享的问题。所以,对于电信运营商来说,要真正的利用大数据并使其更好地服务于运营商,数据的统一和整合是第一步,也时最为重要的一步。

应用大数据手段可以将海量的数据进行一个集合,通过把离散的数据需求集合成交通管理的体系,来满足以往不能实现的需求。利用大数据技术可以收集来自各方面的信息,这一点同样也可以应用于交通管理方面,可以应用大数据技术提升城市交通管理的水平,有效改善交通状况。在利用大数据技术治理交通方面,美国等西方发达国家最具代表性,在国内而言,深圳可以说是做得比较好的。

在B2C电子商务的精准营销中,首先利用大数据对客户进行“画像”,通过在网上的交易记录和购买情况,可以对客户情况有一个大概的了解,可以算是“素描画”。然后结合之前多次的交易情况,对客户信息进一步的补充和完善,形成关系网或关系链,这样客户的“画像”更加全面和形象,客户的消费行为和消费喜好也有一定的预测和判断。第三步就是制定销售策略,将客户分为不同的类型,通过邮件或短信,将个性化的信息推荐给客户。最后就是评估大数据在精准营销中的效果和作用,通过实施精准营销前后的销售额的变化对比,来进行验证和证实。

3 研究方法

本论文采用深度访谈法作为研究方法,主要是基于以下两个方面的考虑:

一是大数据的研究总体来说还是处于探索和研究阶段,尽管很多个行业领域都在提及大数据,但并未得到普及,大数据更多的对人们来说只是一个概念而已。

二是企业出于商业保密的原因,很多企业内部的资料无从查找,为了能够获取更多详实的内部资料和数据,需要对京东企业的内部人员进行访谈。同时为了保证企业的正常利益,访谈内容中关于京东企业的内部资料和信息仅用于论文研究使用,不可用于商业用途。

内容分析法(Content Analysis)是指来源于新闻传播领域的一种分析方法,

通过定性分析与定量分析相结合的方式,针对传播内容进行系统化的客观分析,并且描述传播内容特征和检验传播研究假设的一种研究方法。

本论文主要通过对访谈的形式,对相关人员进行访问,并对访谈的内容进行分析,将其运用于大数据在B2C电子商务精准营销中的应用研究。

本论文选取京东商城为研究对象,针对京东商城使用大数据在电子商务精准营销中的应用情况进行深入研究。之所以选择京东商城为例,有三方面的原因:

①京东商城是中国目前最大的自营式电子商务企业,已经积累了大量的数据信息。京东商城無论从规模还是盈利能力,在B2C电商市场中都是很具有代表性和影响力的,具有研究的价值和意义。

②京东商城经过多年的发展,在中国自营式B2C电商中的市场占有率高达一半,具有良好的消费者群众基础,便于进行调查问卷的发放和收取工作,方便进行数据的收集,为后期进行数据分析奠定了基础。

③京东商城尽管在行业中处于领先地位,但并非处于龙头老大的地位,希望可以通过借助于大数据的契机来缩小与天猫商城的差距,更加巩固京东商城在B2C电商市场中的地位。

鉴于以上三点,本文特意选择京东商城作为研究对象,重点研究和分析其如何使用大数据在B2C电子商务精准营销中进行应用。

4 研究过程

本章节将针对大数据在B2C电子商务中进行精准营销的具体过程进行研究,这部分内容可以划分为两个阶段和三个过程。第一个阶段是数据的收集和处理阶段,第二个阶段是数据的应用阶段。在数据的应用阶段可以划分为三个过程:第一是运用大数据为客户进行画像,第二是补充完善客户信息,形成关系网或者关系链,第三是制定营销策略,首先将客户分为不同的类型,针对不同类型的客户采取不同的营销策划,确定营销策划后通过邮件或者短信的方式将个性化的信息推荐给客户,真正做到以客户为中心进行实时营销和精准营销。

4.1 大数据收集和处理阶段

结合第二章节中已经提及的数据收集和处理过程,将B2C电子商务中的数据收集和处理过程划分为数据采集、数据清理、数据存储及管理和数据分析四个部分。

对于B2C电子商务公司而言,在决定采集数据之前,必须明确哪些数据有用需要采集,哪些数据没用不需要采集,这些数据必须区分开来,避免进行不必要的数据采集。经过第一阶段的数据收集工作,进入到数据整理的环节。数据整理,顾名思义,就是对收集到的数据进行处理,也可以成为数据预处理。在这个阶段的主要工作就是做好数据处理前的所有准备工作,做好预备工作。

京东商城的用户量每年都在快速递增,大量用户产生了大量的数据信息,所有这些用户数据信息的存储和管理也是至关重要的。现在京东商城主要采用的是并行数据库的方式来存储和管理客户的大数据。并行数据库是高性能和高可用性的数据库系统,高性能体现在进行数据整理过程中,所需用的时间越来越短,处理的数据量也越来越大;高可用性指的就是并行数据库的健壮性,换句话说,也就是并行数据库在进行数据处理过冲的一个节点或多个节点部分失效或完全失效时,整个系统对外持续响应的能力。

然而并行数据库系统的最大缺点就是灵活性不好,弹性差,这种特点对于刚成立的公司企业、对于中小型企业来说运用起来是十分有利的。京东商城通过使用并行数据库的方法,将客户的详细信息进行整理分类,便于后续的存储及管理,同时也为下一步的数据分析奠定了基础。

通过多种多样的渠道收集的各种数据,需要进行后续的整理和分析才能充分体现其价值,通过一定的分析得出的结果才能显示出什么内容是企业发展所需要的,并且使其产生一定的经济效益。对于京东商城而言,不同渠道收集到的数据,数据分析方法也略有不同。京东商城通过多渠道和多种途径来分析数据,分析出用户的特征、地域、教育程度、浏览器、网络接入商、操作系统、终端类型等属性,为大数据的运用做好准备。

4.2 大数据运用阶段

在大数据运用阶段主要包含三个过程,分别为:第一,运用大数据技术为客户进行画像;第二,对客户信息进行完善补充,形成关系网或关系链;第三,制定销售策略,将客户分为不同的类型,通过邮件或短信,将个性化的信息推荐给客户,更多地以客户为中心,进行实时营销和精准营销。

用户画像可以很全面地展示一个用户的全部信息,是B2C电子商务企业运用大数据的基础。通过用户画像,京东商城无论是在精准营销领域、搜索引擎领域,还是在广告投放等其他各种应用领域,都在原有的基础上进一步提升精准度,提高了信息获取的效率。京东商城通过一次购物记录描绘出用户的360画像,但这个画像相对来说是模糊的,不清晰的,需要通过更多的信息来核对,来弥补和完胜。大数据的关系网或关系链正好提供了这些数据和信息。

通过大数据的360度画像和关系网,京东商城对自己的客户有了更详细的了解和认识,为下一步大数据的销售策略提供了极大的帮助和支持。通过大数据的分析,京东商城的营销策略一方面以客户为中心,另一方面借助于互联网的优势进行实时营销和精准营销。

以客户为中心,企业能更好地为客户提供服务,满足客户的合理需求,完成企业自身产品的销售,并逐步在客户中塑造出良好的企业信誉和口碑,为企业自身的长远发展有很好的帮助和影响。京东商城对于用户的网络行为数据和用户所发布的内容数据非常重视,因为京东商城认为使用这些数据可以对客户进行更加深入的了解并判断客户的潜在需求。因此京东商城每次推出新的产品或服务的时候,都可以快速的推向市场。而当产品和服务推出之后,京东商城会利用大数据技术对消费者在网站上留下的点击、购买、评论和推荐等数据进行分析,对该款新产品或服务的受欢迎程度进行打分,还可以预测出消费者是否会为该产品或服务买单,根据预测的结果来决定是应该继续推广这款产品或者服务,或者是停止推向市场。

大数据时代用户的多场景、多渠道、多样化的需求已经给传统营销产业带来了影响和冲击,也为营销实时化带来了新的机遇。面对这种机遇,京东商城应该根据自身条件尽快制定有效的实时营销策略,建立高效的实时营销系统,从而提高企业的服务水平,培育客户的品牌忠诚度。

在大数据时代,随着大数据技术的日趋成熟、数据量的日益增长、数据类型的丰富多样使得更加深入的精准营销成为一种可能和必然的发展趋势,因此京东商城在进行营销活动时需要依托大数据,加大精准营销在营销活动中的比重,这样能够大幅降低营销成本,显著提高营销效率。仅仅掌握大量的数据和信息并不具有太大的价值,只有对数据进行专业处理,挖掘出数据中间所隐藏的巨大价值才能体现大数据的战略价值。而对大数据进行专业化处理和分析的最重要的方面就是进行数据挖掘。

通过本章的研究分析,可以看出京东商城在大数据时代下精准营销的具体过程,归纳总结为两个阶段和三个过程。第一个阶段就是京东商城进行数据收集和处理阶段;第二个阶段是京东商城运用大数据进行分析的阶段。在京东商城运用大数据阶段又分为三个过程:第一,京东商城利用大数据为客户进行360度的客户画像;第二,京东商城对客户信息进行完善补充,形成关系网或关系链。第三,京东商城制定销售策略,将客户分为不同的类型,通过邮件或短信,将个性化的信息推荐给客户,更多地以客户为中心,进行实时营销和精准营销。

5 研究总结

本论文主要研究大数据在中国B2C电子商务精准营销中的应用研究,通过第四章的研究分析,本章节主要是从三个方面做出研究总结,分别是研究结论、研究建议、研究局限与展望。

结合本论文第一章节中提出的两个研究问题(如何通过大数据处理技术,得到B2C电子商务企业所需的信息,以及如何将分析处理后的数据运用在B2C电子商务企业的精准营销中),通过本论文的研究总结,得出结论:京东商城主要采用的是并行数据库的方式来对存储和管理客户的大数据;京东商城受到QQ圈子的启发,将在京东商城网购用户的所有购物记录整合起来,形成京东商城网购用户自己的购物圈子;将客户分为不同的类型,将个性化的信息推荐给客户,以客户为中心,进行实时营销和精准营销。

在大数据时代,越来越多的用户行为都会被记录,这些都是数据,而电商企业所拥有的用户数据也会越来越多,面临技术手段的漏洞,这些数据也同样面临泄露或被滥用的可能,将会对企业的形象、品牌和口碑等带来重大的影响,营销数据的安全和隐私权的保护已经成为一个重要的课题和电商企业必须关注的问题。

随着大数据时代的进一步到来,电商行业的不断发展,新的大数据技术的涌现,营销理念的不断变革,电商企业在大数据时代还会有新的营销理念、营销模式的不断涌现,需要进行更加客观、更加全面的研究。本文的研究还有很多方面有必要做深入研究,可进一步细化研究对象,进一步深入案例研究,这也为笔者下一步进行研究指明了方向。

参考文献:

[1]Author, Central C., & Ambiga, Dhiraj D. (2013). Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses.

[2]Frank, J. (2012). Ohlhorst.Big Data Analytics: Turning Big Data into Big Money (Wiley and SAS Business Series).

[3]Bill Franks, B. (2012). Taming The Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics.

[4]Kotler, P. (2003). Marketing Management (11th ed.). Pearson Education, Inc.

[5]Lapis (2012). Understanding Big Data . USA: The McGraw Hill Companies Viktor, MayerM.-Sch?nberger S. (2012). Big Data: A Revolution That Will Transform How We Live, Work, and Think.

[6]万后芬.市场营销教程(第2版)[M].北京:高等教育出版社,2008.

[7]王方华.市场营销学[M].上海:上海人民出版社,2007.

[8]王成文.电子商务环境下市场营销的变化[J].法制与社会,2007,5.

[9]王森林,吴志玮.电子商务与企业成本竞争力[J].商场现代化,2007,6.

[10]甘晓,李国杰.大数据成为信息科技新关注点[J].中国科学报,2012,3.

[11]白云川.迎接大数据时代[J].中国制造业信息化,2011,12.

[12]边凌雁.4P营销组合和7P营销组合的比较研究[J].商场现代化,2007,2.

[13]苏兰君.现代市场营销能力培养与训练[M].北京:北京邮电大学出版社,2005.

[14]李鲤.数据挖掘在电子商务网络营销中的应用研究[J].广西大学报,2011,2.

[15]楊涌斌.论精准营销的实现[J].河南社会科学报,2012,4.

[16]张玉祥.对市场营销发展的新趋势的研究[J].企业家天地,2007,4.

[17]陈刚,李丛杉.关键时刻战略:激活大数据营销,2014.

[18]陈娟.我国电子商务发展趋势[J].创新科技,2006(8).

[19]青虹宏.电子商务营销[M].北京:中国铁道出版社,2012.

[20]高虹.浅谈电子商务对传统市场营销的影响[J].电子商务,2007,50.

[21]涂子沛.大数据[M].广西:广西大学出版社,2012.

[22]陶雪娇,胡晓峰,刘洋.大数据研究综述[J].系统仿真学报,2013,8.

[23]舒尔茨.SIVA范式:搜索引擎触发的营销革命[M].北京:中信出版社,2014.

精准营销下的大数据分析利用 篇4

于大部份营销者来说,网站再定向(onsite retargeting)是其中一个最重要的营销手段,所谓网站再定向的意思是对曾访问您网站的用户进行宣传,在他们浏览网络时向其展示广告。此手段之所以重要是因为在第一次接触中真正转化为购买的只占2%,而没有产生购买就离开网站的人群体高达98%。网站再定向的威力在于它能够帮助你吸引很多的潜在客户,由于这些用户之前已经访问了您的网站一次,这意味着他们确实对您的产品和服务感兴趣。当你不断向这些用户显示相关的广告,将能够吸引他们回访并完成购买。理论上,网站再定向技术听起来完美,但执行起来,却可能让很多广告主走入死胡同,因为它只能够覆盖到旧有的访客,而无法接触新访客。对于广告主来说,网站再定向是一把双刃刀,它虽然能带来绝佳的ROI,却由于覆盖度不足,会在无形中扼杀销售机会。

其实无论是广告数据或购买行为数据,网络都能记录下来,而网络的实时记录特性,让它成为当下广告主实现定位营销的不二之选。随着技术不断革新,广告主精细化定位的需求也不断得到满足。在随后的篇幅中,我们会简单地对比几大定位技术,并通过电商案例分析来讨论如何让这些数据技术协同起来,促成客户从浏览广告到掏钱购买的转化,实现广告主的收益最大化。

网络营销的精细化定位潜力只有在大数据的支持下才能完全发挥出来。图中的数据金字塔划分出了数据的四个层级。最底层是广告表现数据,是关于广告位置和其表现的信息。具体而言,就是广告位的尺寸、在网页的位置、以往的点击率、可见曝光(viewable impression)等指标。

再上一层就是受众分类数据。如今,市场上的数据提供商可以通过用户的线上和线下的行为,来收集到广告受众的兴趣、需求等数据。这些不会涉及个人真实身份的信息会被分析,并划分为不同的群組,例如性价比追求者、网购达人等。有了受众分类数据,广告主可以在互联网上按自己的需求和品牌的特性来投放。受众分类数据的针对性更强,也能带来比单纯依赖广告表现数据更好的点击率与转换率,因为它提供了消费者行为和偏好等宝贵信息。

第三层是搜索动机数据。搜索再定向是个用于发掘新客户的技术。它的出现让我们能够发掘出那些很可能会购物的用户,因为他们已经开始搜索与广告主产品相关的信息了。那些具有高商业价值的数据可以进一步被筛选出来,广告主可以将具有高购买意愿的人们再定向到自己的产品信息上来。

而位居数据金字塔顶端的是站内客户数据,这指的是用户在广告主网站上的用户行为数据,包括了用户浏览的页面,下载的信息,以及加入购物车的商品等数据。网站用户通常是那些已经了解过品牌并且对公司也熟悉的一群人。

对于广告主来说,金字塔四层的数据都独具价值。举例而言,广告表现数据是每个广告主都首先会关注的信息,因为这些信息在大多数广告管理平台和广告交易平台都能轻易获得的。同时,那些与用户需求和偏好相关的数据,能够助力广告主更好地实现精细化营销。因此,要想针对性地影响消费者购买路径的每个过程,我们就需要把这四层的数据分析整合,才能制定一个更全面的营销方案。

以下,我们将分享一个真实的案例,让广告主明白应当如何打通各层数据,制定覆盖消费者购买路径的精准定位的营销方案。

案例分享

背景:爱点击的客户,国内最知名的电子商务网站之一,希望能提高ROI(投资回报率)和线上交易数量

挑战:客户已经使用了网站再定向技术来实现一个较好的ROI,但是,从再站内定向所带动的交易数量开始有下降的趋势。

优化策略︰利用多重数据的整合,提升转化漏斗每一阶段的人群数目,以提升总转化量

第一步:网站再定向

广告主会发现网站内再定向带来的购买转化量有限,这是因为大部份广告主只会再定向曾经将商品加入购物车的访客。要想提升网站再定向的效果,最优的方法是根据用户浏览过的页面进行属性分类,并呈现具有针对性的内容。具体参考下图:

有了全面的追踪和分类,再定向受众数量的基数大幅增加。在短短两个星期内,交易数量显着提升,尤其是来自老访客的成交量更是大幅提升44%。

第二步:搜索再定向(search retargeting)及购买第三方受众分类数据

一方面,再定向可以有效地召回老访客,增大重复进入网站及购买的可能性。但同时,广告主还应该考虑怎么能增加新访客,以保证转化漏斗有足够的新增流量。

首先,我们利用搜索关键词捕捉有兴趣的用户,然后储存有关的用户数据,最后,在交易平台上将合适的广告呈现给该用户。此外,我们还会关注第三方受众分类数据中那些有着同样行为特征的用户信息,整合在一起进行精准投放。

在进行搜索再定向及购买受众数据后,新客户所带来的成交大幅度上升254%,广告效果花费CPA下降29%,同时增加该网站整体的浏览量。

第三步:利用机器学习(Machine Learning)进一步扩大客户的数量

用户来进行定位广告投放。XMO的算法可以对比客户的CRM消费者数据与第三方受众数据,并预测出哪些网络用户会有特定的购买倾向。在这个案例中,XMO能通过机器学习来不断产生新的受众,平均每周能够细分出一个有着230万样本的人群。通过将广告投放到我们已有的目标受众群和由机器学习锁定的新目标受众,我们可以看到非常喜人的广告效果,虽然CPA轻微上升14%,但新客户成交量大幅增长26%说明了机器学习能有效地为广告主发掘新客户。

什么是机器学习(Machine Learning)?(摘自维基百科Wikipedia)机器学习是人工智能的核心,根据数据或以往的经验,通过设计算法来模拟背后机制和预测行为,并获取新的数据。这是一个重新组织已有的知识结构使之不断改善自身性能的过程。研究者可以

通过机器学习来抓取现有数据的特征来预测未知的概率分布,找到新的具有相同特征的数据并加入库中。机器学习中最关键的就是开发出能智能识别复杂模式并能智能化决策的算法。

观点总结

多渠道数据的整合可以在两方面帮助广告主提高广告表现。

银行大数据精准营销 篇5

近几年,大数据精准营销这个概念充斥着我们生活的方方面面,可以这么说,无论是公司的发展,还是产品的营销,大数据都起着不可比拟的作用,尤其是它发挥的指导性的作用成为很多企业发展的参考依据。

但对于很多人来说,虽然置身大数据之中,但对于这个概念还是一知半解,今天小编就带大家来了解一下是什么大数据以及大数据精准营销的概念。

大数据精准营销起源于互联网行业,它依托多平台的大数据采集和大数据技术的分析与预测能力,使广告更加精准有效,给品牌和企业带来更高的投资回报率。其核心在于让网络广告在合适的时间,通过合适的载体,以合适的方式,投给合适的人。

为了让更多的大学生感受到什么是大数据精准营销,近日,来自西安某高校的学子来到陕西华信智原,倾听大数据精准营销项目总监刘晓宇的体验课程。在体验课现场,刘老师以提问和回答的互动模式让大家明白了“互联网+”在各个领域的应用,同时也进一步明白了大数据精准营销在企业发展和产品营销中的关键作用,同时还向大家展示了专业的概念及魅力。这一堂精彩的体验课下来,大家都收获满满。

“在大学我们学习的是电子商务专业,但感觉内容过于陈旧,跟不上现在时代的发展,虽然明知是这样,但要去改变,却无从下手。”一位学习电子商务专业的学生表示说。

“大数据精准营销这个概念被越来越多的人知晓,同时对于学习电子商务的学生来说,进一步了解并掌握营销方法的使用,是很多高校需要解决的问题。”陕西华信智原项目总监胡老师表示说。

银行大数据精准营销 篇6

讲师 吴艳雯

一、课程背景

随着金融互联网的迅速发展,传统的业务模式逐渐被高科技设备所取代,用互联网思维推广金融业务是大势所趋。行业的变革势必会影响柜员岗位的定位和要求,柜员是银行对外的窗口,是面对客户的第一责任人,如何在适应大环境趋势变化下进一步提高效能是柜员岗位面临的挑战。

二、课程目标

1.了解金融互联网的发展趋势,进一步认知岗位要求,发展柜面营销能力 2.针对不同的客户类型,持续提升柜面客户识别能力,精准推荐产品 3.掌握柜面产品营销技能,灵活运用一句话营销和三句半话术

三、课程时间 2天,6小时/天

四、课程方式

案例分析,讲授分享,小组讨论

五、课程对象

柜员 参训人数:60人以内

六、培训所需工具和设备

有靠背的椅子,无线手持话筒、投影仪、音频线、白板、白板笔、大白纸(15张)、训练场地(发言及各种演练互动等,桌椅摆放不能太密集);

七、课程大纲

第一章 金融互联网发展对柜员的影响 1.2.3.金融互联网发展趋势解读 各大商业银行战略转型背后的思考 金融互联网发展现状对柜员岗位的影响

第二章 柜员服务提升和客户识别技巧 第一节 银行服务是立身之本

1、为什么要提供优质服务 1)银行生态环境的改变 2)银行竞争的多元化 3)以客户为中心的客户需求

2、什么是优质服务?——优质服务三纬模型 1)主动服务——服务意识 2)用心服务——服务技巧 3)细节服务——服务礼仪

3、柜员服务营销七步曲 引入案例:招商银行刘娟流程 1)站相迎 2)笑相问 3)礼貌接 4)及时办 5)巧推荐 6)提醒递 7)目相送

演练:现场分组演练柜员服务七步曲

第二节 柜面客户识别和视觉营销设计 1.临柜客户的三大心理需求与满足方法 1)安全心理:增加客户安全感的方法 2)求快心理:快速办理的方法 3)尊重心理:满足客户自尊心的方法 2.网点现场柜面客户识别 1)客户分层分群分级管理 2)银行客群区隔与经营模式 3)剖析富人:高端人群的思维变迁 案例分享:陈经理成功秘籍——关键动作

4)客户识别:高净值客户商机识别的“望闻问切” 3.如何通过视觉营销引起客户好奇心? 1)柜面视觉营销打造工具设计

2)柜面视觉工具运用要点——

三、简、艳、用、便 3)柜面视觉营销工具一句话设计要点

第三章 柜面精准化营销实战技巧 1.柜面产品知识学习 1)柜面营销产品类别

2)柜面产品知识学习——“学”、“习”、“思”三个过程 3)柜面产品营销话术——保险、基金定投、理财产品等 2.柜面营销技巧

1)柜员在哪个最佳时空点开口营销 2)柜面一句话营销技巧和话术 3)如何把握营销单张递送的最佳时点 4)柜面营销三句半营销技巧和话术 5)FAB营销话术设计 3.柜面营销典型情景学习1)问:

遇到转账汇款给别人的客户„„ 遇到转到自己他行卡上的客户„„ 遇到取现金的客户„„ 2)留

遇到转去他行“凑整”的客户 „„ 遇到转账到其他银行投资理财的客户 „„ 遇到取现去消费的客户„„ 3)少:

遇到确有“刚需”的客户„„ 遇到大额取现的客户„„ 4)回:

遇到生意人或临时取用或、借出资金的客户„„ 遇到信息不全的客户„„ 4.柜面异议处理

1)客户异议处理产生的原因 2)客户异议处理的原则 3)客户异议处理的步骤 5.网点现场交叉营销流程

1)交叉营销提高客户粘性

2)交叉营销三板斧——组合营销、联动营销模式、圈子营销 5.柜面联动营销模式 1)联动营销流程和职责 2)联动营销话术和工具 6.柜面产品知识学习 1)柜面营销产品类别

银行大数据精准营销 篇7

一、精准营销相关理论研究

(一)精准营销概念梳理

精准营销自其提出以来就被奉为顺应时代发展的产物,它不是对传统营销的颠覆和否定,而是对其的继承和进一步发展。较为公认的说法是世界级营销大师菲利普·科特勒在2005年首次明确提出精准营销。并将其描述为公司需要更精准、可衡量和高投资回报的营销沟通,需要更注重结果和行动的营销传播计划,还有更注重对直接销售沟通的投资。国内较为权威的说法是著名精准营销学者徐海亮提出的精准营销就是在精准定位的基础上,依托现代信息技术手段,建立个性化的顾客沟通体系,实现企业可度量的低成本扩张。当然也有学者对精准营销做了更为详细的说明。刘征宇认为“精准营销”是通过定量和定性相结合的方法对目标市场的不同消费者进行细致分析,根据他们不同的消费心理和行为特征,企业采用有针对性的现代技术、方法和指向明确的策略,实现对目标市场不同消费者群体强有效性、高投资回报的营销沟通。尽管目前为止,还没有对精准营销的绝对定义,但是从学者们的理解中可以基本归纳出精准营销的3个关键点;精确定位、可衡量、高投资回报。本文用4W和1H来形象阐述精准营销。即在合适的时间(when)、合适的地点(where)以恰当的方式(how)向恰当的人(who)销售恰当的产品(what),恰到好处称为“精准”。

(二)基于大数据的精准营销

随着云技术的进一步发展,大数据也揭开了其神秘面纱。何为大数据?顾名思义就是大量的数据,至于到底达到何种程度才可谓之大数据呢?较为权威的说法是大数据是指那些大小已经超出了传统意义上的尺度,一般的软件工具难以捕捉、存储、管理和分析的数据。但是大数据的特征并不只限于量大,其特征还包括数据类型多、数据价值高密度低以及实时处理四个方面。例如移动公司存储的客户个人信息以及各种消费记录、银行存储的账户信息以及所办理的各项银行业务的记录都可称之为大数据。

有了对大数据的初步了解,易于理解基于大数据的精准营销就是依托现有的大数据,利用现代信息技术进行分析与预测,帮助企业向特定客户应用特定策略投放特定产品的营销方式。当前较为普遍的精准营销方法中基于数据库的精准营销以及基于互联网的精准营销都是基于大数据的精准营销。

所谓基于数据库的精准营销就是事先建立一个有一定规模、相关信息较为完善的消费者数据库,在此基础上利用数据挖掘技术对顾客偏好与购物习惯进行探索,从而实现精准营销。许多学者对基于数据库的精准营销方法做了详细介绍。伍青生等在精准营销的思想和方法详细介绍了基于数据库营销的方法:邮件直附营销、呼叫中心、手机短信。而基于互联网的精准营销就是通过互联网来识别网民的消费心理和行为特征。也就是通过记录网民的上网记录来了解网民的潜在需求与偏好,从而实现精准营销,其实质是基于网民上网所留下记录的大数据来进行精准营销。常见的有窄告、点告以及搜索引擎等。

(三)国内外研究现状

1. 国内研究现状

笔者对国内有关精准营销的文献搜集主要来源于中国知网(CNKI)。通过以精准营销为关键词或标题或摘要筛选出近年来发表在中文核心期刊或有一定影响力期刊上的文献,并通过阅读大量相关文献总结出精准营销的国内研究现状。

精准营销自其提出以来,受到了学者们的广泛关注。国内学者纷纷开展对精准营销的理论和方法研究。如刘征宇在《精准营销方法研究》中分析了精准营销的概念并介绍其体系和方法以及未来发展的趋势。伍青生等在《精准营销的思想和方法》一文中详细介绍了精准营销的运营体系和方法。王俊等在《精准营销理论浅探》一文中对精准营销的产生原因进行了分析,并从产品和价格的精准,营销渠道的精准和广告的精准等方面探讨了精准营销的具体实施。并且国内学者的研究重点在于将精准营销视为一种营销策略,探索其在各行各业的应用。本文第二部分详细介绍了国内学者对精准营销应用研究此处暂不赘述。

2. 国外研究现状

笔者通过以precision marketing(精准营销)为关键词或标题或摘要在收录文献较为全备的外文文献数据库elsevier science direct、Springer link、nature等进行了搜索。发现相对与国内来说,国外有关精准营销的研究文献相对较少,且对一些精准营销的理论性研究相对较少,偏向于研究以实践为主的基于特定技术的精准营销实施方法。Zhen Y等提出了一个精准营销决策决策框架,旨在帮助管理者识别不同的客户类别的潜在特征,并提出了相应的精准营销策略,通过实例验证了其决策框架是有效的。Bert D R和Zeger D等为一家总部位于伦敦,专门从事手机位置敏感精准营销的公司开发了一个基于微软excel链接术语和建模语言等的自动调度和优化广播广告手机短信的精准营销决策支持系统。该系统显著减少了所需的时间安排的广播,并导致在增加客户的响应和收入。并且国外对精准营销的应用研究较少,下文涉及处再进行介绍。

二、精准营销应用研究

(一)基于大数据的精准营销在传统行业应用研究

本文所指的传统行业是一个相对的概念,是相对于互联网、电子商务等而言的传统等,包括但不仅限传统意义上的第一、二、三产业。近年,学者们纷纷开展精准营销在传统行业的应用研究。如乔丽探讨了精准营销在出版社图书发行工作中的具体实施,提出要做好读者和市场的调研、采用现代化信息技术进行基础建设、有针对性地采用一系列精准营销措施,才能达到良好的图书营销效果及预期的销售目的。宋磊将大数据营销与出版业相结合,提出出版全产业链的大数据营销以及在应用过程需注意的包括思维方式变革、大数据的保鲜及优质等几个问题,旨在对新形势下的图书行业营销工作有所启示。胡文静从传统农业营销现状分析入手,联系大数据时代给传统农业营销带来的机遇和挑战,提出立足精准营销,拓展订单农业;聚焦口碑营销,打造绿色农业;借力体验营销,发展休闲农业是传统农业走出营销困境,实现营销模式创新的有效途径。王克富基于大数据思维和大数据处理,提出精准营销新模式,即精准营销=精准数据+精准分析+精准推送。然后通过一个零售业数据实例,详细地说明了该模式的应用过程和实现方法。

(二)基于大数据的精准营销在新兴行业的应用研究

互联网、信息技术以及通讯技术的发展涌现出的新兴行业也得到了精准营销研究者的关注。如林桂珠和范鹏飞在明晰电信企业精准营销的概念和内涵的基础上,分析了我国电信企业进行精准营销的必要性,并对电信企业的3G市场进行了科学的分析,研究并提出了电信企业在3G时代进行精准营销的举措。王威针对江苏卫视和中国教育电视台联合打造的电视求职类节目《职来职往》,分析其运用精准营销的理论,通过差异化精准营销手段,锁定大学生求职群体,通过真人秀的节目形式,满足受众的求职信息服务需求,以整合营销的方式传播节目,形成电视节目的独特领先优势。孙玉玲在简要阐述了大数据的定义和特点的基础上,着重分析了大数据时代数字出版产业的发展趋势,指出基于大数据技术的精准营销日益受到重视,如果能充分挖掘大数据的深层次价值,就可以开发出更能满足消费者需求的新产品和新服务,也能实现精确而个性化的广告推送。

(三)基于大数据的精准营销在电子商务领域的应用

步入21世纪,电子商务的飞速发展颠覆了传统的购物模式,开展适销对路的电子商务成为企业在激烈市场竞争中的制胜法宝,这也使得学者们加大对电子商务营销的研究意义重大。如柴海燕从比较传统营销与精准营销的差异入手,分析了旅游电子商务网络营销的发展困境,并提出应利用w eb2.0强大的信息集聚和互动功能开展旅游精准营销。王步芳和刘凤针对阿里模式即阿里巴巴电子商务平台(包括阿里巴巴B2B、淘宝网C2C和淘宝商城即天猫B2C三大平台)主导的精准营销模式进行说明介绍,指出阿里模式带来企业管理革命并开创“产消合一的无缝经济”。

(四)基于大数据的精准营销在新媒体领域的应用

新媒体是一个相对而言的概念,智能手机、平板电脑都可称之为新媒体。新媒体的普及带来人们生活方式和消费习惯的改变,基于新媒体的精准营销正逐步广泛应用开来。冯智敏和李丽娜指明QQ广告和富媒体广告分别代表了用户精准和内容精准的两种网络精准广告形式,QQ上线弹出广告、对话框网幅广告、鼠标响应广告、QQ邮件广告、QQ社区广告等,是QQ针对用户的主要精准广告形式。刘丽彬认为“以客户为中心的精准营销和主动式服务营销,在正确的时间把正确的信息传递给正确的人”的微博营销理念,引领着微博精准化营销的发展。邱月指出微信庞大的清晰用户及强大的应用功能如微信公众号等为企业精准营销提供了目标准备和技术支持,但目前微信营销的实施途径还呈现单一化的特征,方式也日渐趋同,受众新鲜感不断消失,因此,企业依然需要不断思考如何利用微信的精准性更好地服务于营销这一命题。

三、评述

精准营销自其于2005年明确提出以来,吸引了国内外许多学者密切关注。学者们在研究精准营销相关理论与方法的基础上开展了其在各行各业的应用研究。笔者通过对国内外精准营销相关文献进行梳理得到以下评述。

(一)精准营销近年来广泛应用于各行各业中

在传统行业如农产品销售、图书出版业、零售业以及旅游业都可以见到精准营销的身影;新兴领域如电信行业、传媒广播业也都通过精准营销得到了进一步发展;精准营销在电子商务领域的应用将电子商务的发展推广到了一个新的高度;而当前较为热门的新媒体也纷纷通过微博、微信、QQ开展了精准营销。未来精准营销可进一步应用于与人们生活息息相关的各行各业中。

(二)现阶段的精准营销对数据的依赖性较高

无论是基于数据库和基于互联网的精准营销还是基于第三方平台的精准营销,其实质都是基于数据的精准营销。精准营销实施的关键点:市场细分、目标客户的选取、适合的营销策略以及营销渠道的选择,而这些都需要对顾客的购买记录、浏览足迹、上网行为等大量数据进行分析和预测而获得,数据是精准营销的生命线。然而随着社会生活的变化,人们的防范意识逐步加强,对个人信息的保护意识也愈加强烈。如何在获取消费者信息与保证消费者的满意度之间谋求平衡成了企业急需解决的问题。

(三)国内学者对精准营销的研究更多的是集中在理论研究阶段且缺乏创新性

学者们对精准营销的定义、方法与其实施策略进行了深层次、多方面的研究,通过相应的理论基础对精准营销的应用进行说明,为精准营销的应用打下了坚实的理论基础。但是尽管少数学者会结合具体实例来说明精准营销的应用,但也只能说是针对于特定现象的精准营销理论套用,未对精准营销的创新应用进行深入研究。这不适合变化迅速的市场环境与竞争激烈的国际环境。未来学者们的努力方向应该是基于实践的精准营销创新方法研究,帮助企业走独特且高效的精准营销之路。

(四)国外学者对精准营销的研究偏向于建立相应的模型或机制来实现某一特定领域或生产环节中的精准营销

精准营销理念的提出起源于国外,然而笔者在文献搜集过程中发现鲜有学者对精准营销理论进行进一步探讨和研究,也有学者会在书的某一章节进行简要介绍,但很少以精准营销理论研究为重点进行专门研究。而国外学者们对精准营销的实践应用研究却是可圈可点的。希望中外学者能各取所长,完善对精准营销的全面研究。

摘要:随着信息技术的高速发展,各类数据实现了爆炸式增长,人们进入数据大爆炸时代。基于大数据的精准营销俨然成了信息时代各行各业竞相追逐的香饽饽,学者们纷纷展开了对精准营销的各类研究。文章在对精准营销相关概念与理论基础进行简要梳理的基础上,初步归纳出精准营销在传统行业、新兴领域、电子商务领域以及新媒体方面的应用情况,并对国内外精准营销的研究现状进行简要评述。

当精准广告平台遇上大数据 篇8

随着数据规模越来越大,如何将数据资源转化为有效生产力是一个重要的课题。《互联网周刊》特别采访到聚效广告董事长兼CEO杨炯纬,和我们分享对大数据的看法,以及在大数据之路上的探索历程。

大数据从哪里来?

谈起大数据的前世今生,已在数字广告业耕耘多年的杨炯纬深有体会:“整个大数据营销的发展都是围绕着数据资源基础以及广告主的需求而展开的,可以说聚效本身就是一个为满足客户对效果的要求,而去不断寻找和获得数据以及提高数据使用能力的过程。”

目前在精准营销中已经普遍被认同的企业第一方数据应用,也就是访客找回或者说“再营销”、“重定向”等手段,杨炯纬认为这是公认最有价值的数据来源之一。针对曾经访问过广告主网站人群的定向投放,一直是DSP们最重要的精准投放手段。而聚效广告在这一块的运用尤其出色。众所周知,聚效广告和诸多电商网站有着深入合作,基于电商网站每个访客对于每件商品的访问行为数据进行商品级别的个性化智能广告推荐,每天利用第一方数据组装展示的广告达到千万级别。正是基于对海量数据的实时收集和计算能力,实现了海量访客行为和海量商品之间的精准推荐匹配,产生了惊人的广告效果。

但是,第一方数据的应用存在着瓶颈:“有几个问题不能解决。首先如果是一个全新的、从来没有访客的网站,就是所谓的冷启动状态,无法用重定向。其次,一些用户需求特别细分、需求频次很低,一旦被满足,很长时间内都不会重新有需求,比如汽车、教育、机械等行业,这些用户做重定向展示广告的效果就不佳,但这些行业如果用搜索词来定向,效果就会很好。”

聚效也寻找过第三方数据供应商以获取数据,但实际检验下来效果差强人意。杨炯纬表示,主要还是这些数据的商业价值过于稀疏。市场上最好的数据是购物数据和搜索数据,社交数据的价值次之。这类最有价值的数据均掌控在百度、阿里、腾讯等大型企业手中,且并不开放,即使能拿到,数据粒度也很粗,用于效果营销还很不够。第三方广告平台商拿到的數据,一般靠安插网页代码或者从广告交易平台获得,大多为用户的媒体浏览行为,价值相对较低。

“为了拿数据我连控股权都卖了”

“我们服务了几千家的电商,电商的数据量非常足够,也很精细化。几乎可以说,中国对于用户购物行为的拥有量阿里第一、京东第二、聚效第三。但是,除此之外,在很长时间一段里,我们依旧是在沙里挖金子。”杨炯纬在肯定聚效实力的同时,也表现对数据的制约的苦恼,这也是聚效选择将控股权交给360的深层次原因。

在原本的购物数据优势之下,聚效获得了中国第二大搜索引擎360非常多的数据。杨炯纬笑言:“我是一个特例,为了拿数据我连控股权都卖了。我们拿到的是360最细粒度的数据,包括最有价值的搜索数据。我们这几月一直在研究360的数据,360的人群有很特殊的特征,有的用户从浏览器到导航、搜索引擎到安全软件再到手机卫士全部都用360的。我们对这部分人群的认知和画像就非常丰满和精确。”

交谈中,杨炯纬提出了一个很有意思的词——厚数据。在他看来,大家都在讲大数据,百度有搜索数据,淘宝有购物数据,别人都是“摊大饼”,比拼的是在一个维度上的数据优势,而聚效更像在一摞饼上切了一个角,讲究抓住特定人群多个维度的数据。

目前,在聚效上投放广告的广告主已经超过三、四万家,其中数万家来自于360点睛平台,所以聚效已经不仅仅是一个原有意义上的DSP,从广告主规模上已经是跟百度网盟,谷歌网盟类似360的全网营销平台。

聚效目前也在跟那些注重效果的品牌广告主共同搭建一些针对目标用户的营销模型,推出了消费者洞察模块。只要获得曾在网站里深度访问过的用户样本,聚效就能够运算出这些访客样本的Cookie在整个平台的人群画像是什么样,继而以这几万个人的人群画像特征为基础,在全网以更大的规模把最相似的消费者挑出来。

聚效与360合作之后,甚至可以不需要样本,只抓住搜索过品牌词和关键词的人的行为特征,再去寻找全网跟这些行为特征最相似的人群,就解决了受众是谁的问题。

效果导向的精准广告平台

在记者看来,聚效广告平台有三个关键词:自助、效果营销、中小广告主,这让聚效在各种广告平台中显得有一些特别。

聚效广告平台是全自助式的。对于海量的中小广告主而言,由于预算有限、对效果要求又高,加之没有庞大的专业服务团队来进行广告投放,因此一个平台的透明、简洁、以及智能化,对于广告主而言就尤为重要。在什么样的广告位上挑选什么样的受众?给他们看什么信息?出价多少是合适的?这对广告主而言并不全都能投放正确。而聚效对于一些特定行业的广告主,比如电商,广告主只需要将商品库上传,在后台选择营销目标是流量、注册还是订单,聚效就能够实现智能地挑媒体、智能出价以及实时生成个性化动态广告创意,这展示了聚效极强的技术能力。

为什么选择做效果营销,而不是品牌广告?杨炯纬表示,并非不愿意做品牌广告主,其实在聚效平台上,也不乏像耐克、西门子、洲际酒店等等知名广告主。但从聚效的立场和定位出发,聚效还是会坚持自己的效果导向定位,而目前的品牌广告并不完全适合他们进入。

在现在的市场环境下,大量的品牌广告主本质上对过程是没法控制的,程序化购买市场上对品牌广告主存在的作弊现象严重到令人发指。在不少做品牌广告主业务的DSP的收入模型中,有很多钱都花在了市场费用、销售费用、渠道成本上,真正的投放花费则少之又少。这时候,当广告主向广告公司要效果的时候,一部分公司就只能通过做假数据或者到其他渠道购买效果来蒙混过关。而正是由于这种主要依赖于关系和包装的商业模式,也使得实际的技术产品显得根本没那么重要。

对于中小企业主来说,这股风气从来没有刮起过。因为这个群体对效果很敏感:“这也是聚效选择从中小广告主入手的原因,越小的客户越重视效果,我做的越得心应手。尽管毛利低很多,但是客户获取成本和客户维护成本也是极低的。聚效对作弊零容忍、电信拦截和电信弹窗坚决不做。”自助的使用方式也使得这个平台完全透明,投放记录不可更改,只要登录后台就一目了然。

“我们相信品牌广告主不会永远被忽悠,欢迎品牌广告主到我的系统来玩,哪怕通过代理公司,只要广告主自己有聚效的账号,能登录平台看到真实的投放效果就行。我们目前只是专注做自己的事情,以后慢慢市场会发现有这么一家公司从没有作弊丑闻,会建立起信任。”事实上,当聚效的市场品牌慢慢建立起来之后,客户中已经不乏年投入过千万的品牌客户。

做效果广告需要极大的底气。杨炯纬透露,目前聚效广告的模式是,广告主按CPC出价,聚效的系统再转换成CPM到广告交易平台出价,这种模式下广告主的利益得到了最大的保证,如果没有实力,是绝对不可能用这样的模式,因为控制不好就会亏损。

记者从聚效的玩法中看到了互联网的思维,作为第三方的平台,不是仅仅服务大客户,而是解决长尾的这部分人群,用双赢的的办法服务好每个领域里中小型客户,而当产品越来越成熟之时,大中型客户也会接踵而至。

让大数据流动起来

杨炯纬表示,数据的采集是数字广告业最大的壁垒。目前还看不出来数据的流动性,也不知道什么时候才能让没有数据的公司买到足够有价值的数据。从数据壁垒上已经形成了一些拥有优势的公司,百度、腾讯、阿里都在其中,360和聚效也算是一家。

上一篇:人员培训及考核计划下一篇:工地工伤事故处理流程