解方程教学设计苏教版(精选10篇)
教学内容:教材第7页练习一第8~13题。教学目标:
1.进一步理解并熟练应用等式的性质解简单的方程。
2.能列方程解决简单的实际问题,在学习活动中初步感受方程思想,丰富解题策略,发展数学思考,培养分析问题、解决问题的能力。
3.培养良好的作业习惯,养成自觉检验的习惯。教学重点:
熟练地解含有加或减的简单方程。教学难点:
掌握正确的书写格式,养成自觉检验的习惯。教学准备:
多媒体课件 教学过程:
一、基本练习
1.不解答,说一说怎样做就可以使下列方程左边只剩下“x”。X+1.5=3 6+X=23 X-1.5=3 X-6=23 学生口答后提问:你这样想的依据是什么? 2.在○里填上运算符号,在□里填数。
x―20=30 3.6+x=5.7 解:x―20○□=30○□ 解: 3.6+x○□=5.7○□ x=□ x=□ 想一想:上面解方程的过程中,是怎么运用等式的性质的? 3.完成练习一第8题。⑴ 学生独立完成。⑵ 全班交流:
解方程时,先要在脑子里想好方程两边应同时加上(减去)或乘(除以)一个什么数,再根据等式的性质去完成。
4.完成练习一第9题。⑴ 课件出示,学生独立填写。⑵ 全班交流:你填写时是怎么想的?
(先把x 的值代入“○”左边的式子,计算出结果后,再与“○”右边的数比较大小。)⑶ 学生订正。
二、提高练习
1.完成练习一第10题。(1)学生独立列方程解答。
(2)组织交流:你从各图中得出什么数量关系?(3)展示学生的不同解法,说一说每种解法分别运用了什么等量关系式?可以怎样检验?
(4)组织订正。2.完成练习一第11题。(1)学生看图,明确题意。
(2)全班交流:你从表格中知道哪些信息?表中三种量之间有什么关系?(板书:单价×数量=总价)(3)列方程解答。(4)全班交流讲评:
① 墨水的单价是多少?你列方程时是怎么想的?
② 钢笔的数量是多少?你列方程时怎么想的?解方程时是怎么想的?(5)组织订正。3.完成练习一第12题。(1)学生独立列方程并解答。(2)全班交流:
①红彩带与绿彩带之间是什么关系?
②电子秤上显示的质量是多少?你从图中得出什么数量关系?
(3)全班交流:展示部分学生的方程及解方程过程,评议不同的解法。4.完成练习一第13题。
(1)学生独立思考,用画图或列表的方法表示出题目的条件和问题。(2)小组交流想法。(3)全班交流:
① 题中有怎样的等量关系?
② 要让等式左边只剩下一本练习本,等式两边怎么变化? ⑷ 交流小结:可以从等式的两边同时减去3枝铅笔的钱数。板书:1本练习本的钱数+3枝铅笔的钱数=7枝铅笔的钱数,1本练习本的钱数 =4枝铅笔的价钱。
三、全课总结
通过本节课的练习,你有什么收获?还有什么疑问?
教学目标
1.使学生在解决实际问题的过程中, 理解并掌握形如ax±b=c方程的解法, 会列上述方程解决两步计算的实际问题。
2.使学生在观察、分析、抽象、概括和交流的过程中, 经历将现实问题抽象为方程的过程, 进一步体会方程的思想方法及价值。
3.使学生在积极参与数学活动的过程中, 养成独立思考、主动与他人合作交流、自觉检验等习惯。
教学重点:理解并掌握形如ax±b=c方程的解法, 会列方程解决两步计算的实际问题。
教学难点:如何指导学生在观察、分析、抽象、概括和交流的过程中, 将现实问题抽象为方程。
教学过程
课前谈话导入:同学们, 经调查, 我们班大部分同学的年龄是12岁 (虚岁) , 也可以通过推理推算出来, 7岁入学, 在学校学了五年, 正好是12岁。老师今年是39岁, 师在黑板上板书39和12。下面请同学比较一下老师和你的年龄, 并用一句话把比较的结果说出来, 注意启发引导学生说出:“老师的年龄比我年龄的3倍还多3岁”, “老师的年龄比我年龄的4倍少9岁”。两种说法都可以。接着问, 明年呢?“老师的年龄比我年龄的3倍还多1岁”。
【设计意图】通过学生熟悉的年龄话题引入, 并训练学生对两数大小比较, 为新课分析数量关系作理解铺垫。把抽象的数量关系分析生活化, 利于学生进入学习情境。
一、在现实问题情境中分析数量关系, 列出方程, 探索解方程的方法——教学例1
(一) 在情境中分析数量关系, 提出问题
1.师谈话进入情境:孙悟空跟随师父历尽千辛万苦从西天取来大量经书, 藏在古城西安的大雁塔中。大雁塔和小雁塔是著名的古代建筑。 (出示大雁塔和小雁塔的图片) 这节课, 我们先来研究一个与这两处建筑高度有关的数学问题。 (出示例1的一部分“西安大雁塔的高度比小雁塔高度的2倍少22米”, 暂不出示所求的问题)
2.师让生读出这段文字并提问:谁比谁少22米?让学生明白“大雁塔高度和小雁塔高度的2倍比, 少22米, 可以把小雁塔高度的2倍看做一个整体。”
师进一步启发:这句话清楚地说明了大雁塔和小雁塔高度之间的关系, 请同学们用数量关系式表示出大雁塔和小雁塔高度之间的相等关系。
出示学生可能想到的等量关系式: (1) 小雁塔的高度×2-22=大雁塔的高度; (2) 小雁塔的高度×2=大雁塔的高度+22; (3) 小雁塔的高度×2-大雁塔的高度=22。
3.引导学生观察第一个等量关系式。师:经测量小雁塔高度是43米, 你能利用这个关系式口答出大雁塔的高度吗?学生口答, 师板书:2×43-22=64 (米) 。
【设计意图】运用数量关系直接求出高度, 体会顺向思维。既感受数量关系的价值, 又为下面的逆向思维作出对比准备, 更重要的是让学生在下面列方程时也要像这样顺向思维进行思考。
4.师:如果知道大雁塔的高度是64米, 你能提出什么问题?
生:小雁塔的高度是多少米? (出示“大雁塔高度是64米”和“小雁塔高度是多少米?”把例1补充完整。)
【设计意图】在清楚数量关系的基础上, 学生已经把问题迁移到需要用逆向思维考虑解决的问题上。让学生自己提出问题, 突出解决问题是学生自己的学习需求, 也为他们探索解答作出心理准备。
(二) 根据等量关系布列方程, 同时唤起有关方程的旧知
1.生观察第一个等量关系式, 师提问:在这个等量关系式中, 这时哪个数量是已知的?哪个数量是我们去求的?
追问:让你求小雁塔的高度怎么办呢?我们可以用什么方法来解决这个问题?
生:可以列方程解答。如果学生列出正确的算式进行解答, 师给予肯定, 再引导学生用方程的方法解决问题。
师明确方法, 并提示课题:这样的问题可以列方程来解答。今天我们继续学习列方程解决实际问题。 (板书课题:列方程解决实际问题)
2.师谈话:我们在五年级已经学过列方程解决简单的实际问题, 结合今天我们学习的内容, 谁来说一说列方程解决实际问题一般要经过哪几个步骤?
生能大概说出“写设句、列方程、解方程和检验等即可。
3.让学生先自主尝试设未知数, 并根据第一个等量关系式列出方程。
解:设小雁塔高x米。
2x-22=64
【设计意图】经历由现实问题抽象为方程的过程。在建构数学模型的过程中, 先由情境抽象成数量关系式, 再根据数量关系式列出方程, 实现了学生在逐步抽象的过程中学习数学的方法, 体现了数学的简洁性和学习数学的必要性。
(三) 自主探索解方程的方法, 体会转化的思想
提问:这样的方程, 你以前解过没有?运用以前学过的知识, 你能解出这个方程吗?
交流中明确:首先要应用等式的性质将方程两边同时加上22, 使方程变形为2x=?, 即把用两步计算的方程转化为一步计算, 变新知为旧知, 再用以前学过的方法继续求解。
要求学生接着例题呈现的第一步继续解出这个方程。学生完成后, 组织交流解方程的完整过程, 核对求出的解, 并提示学生进行检验, 最后让学生写出答句。
【设计意图】让学生在自主探索方程解法的过程中, 体会运用转化策略, 把两步转化成一步、复杂转化成简单、新知转化成旧知。
(四) 思考其他方法, 感受解法的多样化
1.提问:还可以怎样列方程?
学生列出方程后, 要求他们在小组内交流各自列出的方程, 并说说列方程的根据, 以及可以怎样解列出的方程。如果学生不能列出其他方程, 师不能作硬性要求。
2.引导小结:刚才我们通过列方程解决了一个实际问题。你能说说列方程解决问题的大致步骤吗?其中哪些环节很重要?
引导学生关注:⑴要根据题目中的信息寻找等量关系, 而且一般要找出最容易发现的等量关系;⑵分清等量关系中的已知量和未知量, 用字母表示未知量并列方程;⑶解出方程后要及时进行检验。 (师板书:找等量关系;用字母表示未知数并列方程;解方程, 检验。)
【设计意图】通过解法的多样化, 使学生明白可以根据自己学习实际和思维习惯分析数量关系, 列方程解决问题, 同时训练学生思维, 拓展学生解决问题的思路。
二、自主尝试列方程解决实际问题, 注意比较例题, 进一步形成解决问题模式——自主合作学习“练一练”
“杭州湾大桥是目前世界上最长的跨海大桥, 全长大约36千米, 比香港青马大桥的16倍还长0.8千米。香港青马大桥全长大约多少千米?”
谈话:我们已经初步掌握列方程解决稍复杂的实际问题的方法和步骤, 下面就请同学们试着解决一个实际问题。做“练一练”。
1.先让学生读题, 并设想解决这一问题的方法和步骤, 然后让学生独立完成。
2.小组合作交流。交流前要出示交流顺序提示:⑴说说找出了怎样的等量关系;⑵根据等量关系列出了怎样的方程;⑶是怎样解列出的方程的;⑷对求出的解有没有检验。
3.最后让学生核对自己的答案, 检查自己的解题过程。
针对学生不同的思路和方法 (包括用算术方法) , 教师在提出主导意见的基础上要予以肯定。
4.启发思考:这个问题与例1有什么相同的地方?有什么不同的地方?提炼出列方程解决稍复杂的实际问题的基本思路和解形如ax±b=c方程的一般方法。
【设计意图】让学生在独自解决问题的过程中学会解决问题, 在探究中学会合作。
三、运用方程策略独立解决实际问题, 牢固形成解决问题模式 (建构牢固的数学模型) ——做“练习一”的第1~5题
谈话:在列方程解决问题的过程中, 有两个方面要引起我们重视, 一个是寻找等量关系, 能用含有字母的式子表示具体数量;另一个就是解方程。下面我们就对这两个方面进行进一步的学习和训练。
1.做“练习一”第1题
“解方程。4x+20=56 1.8+7x=3.9 5x-8.3=10.7”
先让学生说说解这些方程时, 第一步要怎样做, 依据是什么, 然后让学生独立完成。交流反馈时, 要在关注结果是否正确的同时, 了解学生是否进行了检验。 (三个同学到黑板上板演, 其他同学选做一题。)
2.做“练习一”第2题
“在括号里填上含有字母的式子。
(1) 张村果园有桃树x棵, 梨树比桃树的3倍多15棵。梨树有 () 棵。
(2) 王叔叔在鱼池里放养鲫鱼x尾, 放养的鳊鱼比鲫鱼的4倍少80尾。放养鳊鱼 () 尾。
学生独立完成后, 再要求学生说说写出的每个含有字母的式子分别表示哪个数量, 是怎样想到写这样的式子的? (把题目中的多、少改成少、多让学生再表示)
3.做“练习一”第3题
“猎豹是世界上跑得最快的动物, 时速能达到110千米, 比猫最快时速的2倍还多20千米。猫的最快时速是多少千米?”
谈话:同学们, 我们既能准确地找到等量关系, 又能正确解方程, 那么我们就具备了解决实际问题的能力了。就请同学们独立解决一个问题。
学生独立完成后, 指名说说自己的思考过程, 进一步突出要根据题中数量之间的相等关系列方程。
4.课堂作业:做“练习一”的第4题和第5题。
“北京故宫占地大约72公顷, 比天安门广场的2倍少8公顷。天安门广场大约占地多少公顷?”
“世界上最小的鸟是蜂鸟, 最大的鸟是鸵鸟。一个鸵鸟蛋长17.8厘米, 比一只蜂鸟体长的3倍还多1厘米。这只蜂鸟体长多少厘米?”
【设计意图】在巩固训练和应用策略阶段采用先部分后整体的练习步骤, 进一步深化认识, 并在体验中达到知识和技能的内化。
四、总结列方程解决问题的思路、方法, 体会方程的思想和价值——学生拓展设计
1.学生拓展设计
师:请同学们回到课前, 我们师生关于年龄的对话中, 看39岁和12岁, 你能设计一个用今天所学的策略和方法解答的实际问题吗?
师要多听学生的发言, 考虑学生所说数量之间的关系以及提出问题的贴切性并作出评价和概括。
2.今天这节课我们学习了什么内容?你有哪些收获?还有没有疑惑的地方?教师同时总结, 方程是我们解决问题很重要的一个策略, 正确地运用方程, 能帮助我们解决很多实际问题, 尤其是用算术方法不容易解决的一些问题。我相信同学们经过今天的学习, 对方程会有更深的认识, 并在以后的学习和运用中进一步学好和用好方程。
教学目标:.知道什么叫做解比例。
2.进一步理解和掌握比例基本性质,会根据比例的基本性质正确解比例。3.能综合运用比例知识解决有关实际问题。
教学重点:
利用比例的基本性质来解比例。
教学难点:
运用比例知识解决有关实际问题
【教学过程】 一.旧知铺垫
1.什么叫做比例? 2.什么叫做比例的基本性质?
3.根据比例的基本性质,将下列各比例改写成乘法等式。
二.教学新课
1.出示情境图
李明在电脑上把这张照片按比例放大,放大后照片的长是13.5厘米,宽是多少厘米? 2.理解题目的意思
理解“按比例放大”的意思,思考数量间的相等关系 放大前的长:宽=放大后的长:宽
3.尝试解答
学生尝试解答,教师巡视 4.组织交流
对学生试做的作业进行展示,并修正格式。6:4=13.5:x 6x=4×13.5 6x=54 X=9
5.小结
师指出:求比例中的未知项,叫做解比例。
6.教学“试一试”
先让学生说说这个比例的前项和后项,然后由学生独立解答,指名板演。
三.巩固练习 1.完成“练一练”。
对格式进行强调 2.完成练习十5、7题
3.神探福尔摩斯在一次断案中,从罪犯留下的脚印发现这个罪犯的脚长是25厘米,他马上推断出这个罪犯的身高。你能推算出来吗?
四.课堂总结。
1、教材所处的地位和作用:
本课是在解一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出一元一次方程。
本课是一元一次方程的应用题,为学生初中阶段学好必备的代数、几何的基础知识与基本技能,解决实际问题起到启蒙作用。在学会用字母表示数基础上,以及熟练解一元一次方程的基础上,用方程解决实际问题,体现生活中处处有数学,数学与生活密切相关。在提高学生的能力,培养他们对数学的兴趣以及对他们进行思想教育方面有独特的意义。同时,对后续教学内容起到奠基作用。
2、教育教学目标
(1)知识目标:
(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。
(B)通过量与量之间的分析,用一个字母表示未知数,其余字母表示已知数,列出一元一次方程,解简单的应用题。
(2)能力目标:
通过教学初步培养学生分析问题,解决实际问题的能力,综合归纳整理的能力,以及理论联系实际的能力。
(3)思想目标:
通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想。
3、重点难点
根据题意寻找相等关系是本节课的重点。
根据题意列出一元一次方程是本节课的难点。关键让学生找出相等关系克服列出一元一次方程解应用题这一难点。
二、说学法
学生初学列方程解应用题时,往往弄不清解题步骤,抓不准相等关系,习惯于用小学算术解法,用代数方法分析应用题不适应。所以要组织学生有次序、有重点地观察问题,分析数量关系,找准等量关系。
三、说教法
教学过程中坚持启发式教学的原则
①在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例题可以让学生大致了解列出一元一次方程解应用题的方法。
②在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上。在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案。在例题教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例题中的相等关系比较简单明显,可通过启发式让学生自己找出来。
③针对学生在列方程解应用题中可能存在的困难,在教学过程中有意识加以解决,特别是学生抓不准相等关系这方面,可以通过表格,图表等形式帮助学生找出相等关系表示成方程。
④通过图表对比使学生更直观,理解更深刻,同时,降低了理论教学的难度和分量,提高课堂教学效益(教学手段)。
一、只列式不解答
1. 小胖上学时忘了带文具盒,爸爸发现时,小胖刚好离家512米,正以72米/分的速度走向学校,爸爸骑车以200米/分的速度追赶,那么爸爸几分钟后在途中追上小胖?
2.小丁和小明跑步锻炼身体,小明跑出200米后,小丁从起点出发,小丁平均每分钟跑170米,5分钟后在途中追上小明,那么小明平均每分钟跑多少米?
3.甲乙两轮船,先后从同一个码头出发,向同一港口行驶,甲船先行4.5千米后,乙船出发,甲船平均每小时行24.5千米,乙船平均每小时行27.5千米,那么几小时后乙船在途中追上甲船?
只列方程不求解:
4.兄弟两人的年龄之和是59,弟弟比哥哥小5岁,兄弟各几岁?
5.师徒两人一起加工430个零件,完成任务时,师傅比徒弟多加工70个,师徒两人各加工零件多少个?
二、列方程解应用题
(1)长方形游泳池占地600平方米,长30米,游泳池宽多少米?
(2)面积为15平方厘米的三角形纸片的底边长6厘米,这条底边上的高是多少厘米?
(3)一块梯形草坪的面积是30平方米,量得上底长4米,高6米,它的下底长多少米?
(4)小胖将174张邮票放在大、小两本集邮册中,大集邮册中的`邮票张数正好是小集邮册的2倍,这两本集邮册中分别有多少张邮票?
(5)小胖有大、小两本集邮册,大集邮册中的邮票张数比小集邮册多58张,正好是小集邮册中的邮票张数的2倍,这两本集邮册中分别有多少张邮票?
(6)商店里出售精装、平装两种集邮册。精装集邮册的售价比平装集邮册贵9.6元,是平装集邮册售价的1.8倍,这两种集邮册的售价分别是多少元?
三、提高练习
1.小丁丁和小巧先后从学校出发去电影院观看电影,小明先行50米后,小丁丁再出发,小明平均每分钟走67米,小丁出发10分钟后在途中追上小明,那么小丁平均每分钟走多少米?
问题一:例如3x-7+7化简为3x如何教学?
我们先看一个解方程的实例:
在这个实例中, 第 (2) 步3x-7+7化简为3x。类似这样的化简有x+4-4化简为x、2x÷2化简为x……只要是运用等式的基本性质解方程就一定会用到这样的化简。而这样的化简在教材中没有作任何说明和铺垫, 似乎“地球人都知道”。绝大部分教师在教学中只是强调这是“抵销”了, 学生也只是糊里糊涂地照着做。
当然, 在第三学段即初中教学中, 这不是个问题。因为学生在学习解方程之前已经学习了“互为相反数的两个数的和是0”“互为倒数的两个数的积是1”等知识。而这恰恰是上面所说“抵销”的知识基础。可是小学生学习解方程是在五年级, 并没有以上的知识基础。所以这是小学生学习用等式的基本性质解方程的一个障碍。
解决办法:添加“抵销规律”的教学。
笔者认为, 解决的办法是在教学解方程之前, 教材中或至少在教师的教学中应添加“抵销规律”的教学, 即引导学生通过对一系列的算式 (例如, 计算下面各题, 请仔细观察, 看你发现了什么?的观察让学生发现并总结“抵销规律”:一个数先加上a再减去a或者先减去a再加上a, 还得原数;一个数先乘以a再除以a或者先除以a再乘以a, 还得原数 (a不为0) 。还可以让学生想一想为什么会有这样的规律, 以加深对此规律的理解。
有了这样的认知基础后, 再教学利用等式的基本性质解方程, 在进行类似于“3x-7+7化简为3x”的化简过程时就没有认知障碍了。
问题二:形如a-x=b、a÷x=b方程的解法如何教学?
运用等式的基本性质解a-x=b、a÷x=b的方程, 过程会较为复杂。而按老教材教法, 运用四则运算各部分的关系来解, 过程会很简洁。正因为运用等式的基本性质解过程复杂, 课程标准教材回避了这类方程。但实际上这样的方程是没法回避的, 学生在做练习、测验或解决生活中的实际问题时常会碰到。
目前大部分教师实际教学中用“两条腿走路”, 既教学利用等式的基本性质解方程, 又教学利用四则运算各部分的关系解方程。笔者认为这样教学, 一方面是加重了学生学习的负担, 对于学困生更会产生思维上的混淆;另一方面是没能深入领会课程标准及教材的精神。五年级数学《教师教学用书》上指出:“长期以来, 在小学教学简易方程, 方程变形的依据总是加减运算的关系或乘除运算之间的关系。”这实际上是用算术的思路求未知数。到了中学重新学习依据等式的基本性质或方程的同解原理解方程, 而且小学的思路及其算法掌握得越牢固, 对中学代数起步教学的负迁移就越明显。现在, 根据课程标准的要求, 从小学起就引入等式的基本性质, 并以此为基础导出解决方程的方法, 这就较为彻底地避免了同一内容两种思路、两种算理解释的现象, 有利于加强中小学数学教学的衔接。
解决办法:不回避, 坚持运用等式基本性质。
笔者认为, 解决的办法是教材中不回避形如a-x=b、a÷x=b的方程。再说了, 初中也没有教学这样方程的解法, 小学不学, 什么时候学?教学中教师仍引导学生运用等式的基本性质解, 先把方程两边同时加上x或同时乘以x (这时应引导学生弄清这里的x不可能是0) , 然后将方程两边进行交换, 再把方程两边同时减去b或同时除以b。
问题三:形如4x+2 (8-x) =26 (人教版教材六年级上册第114页) 的方程解法如何教学?
《义务教育数学课程标准》 (2011年版) 在第二学段目标中指出要让学生“会 (能) 解简单的方程”。这里所说的“简单的方程”简单到什么程度没有明确说明, 以前所实行的教学大纲中明确说明了方程只讲到ax±b=c及ax±bx=c的方程。
由于难易程度没有明确, 人教版小学数学六年级上册教材第114页在教学鸡兔同笼问题 (笼子里有若干只鸡和兔。从上面数, 有8个头, 从下面数, 有26只脚。鸡和兔各有几只?) 时, 出现了4x+2 (8-x) =26的方程。从原教学大纲中ax±bx=c的方程到现在4x+2 (8-x) =26的方程, 这中间的跨度太大。我们先看看它的解答过程。
从初中所学的有理数的角度看, 其中第 (3) 步实质上是运用了加法结合律, 第 (4) 步实质上是运用了加法交换律。这些对于初中学生来说很容易理解, 但对于小学生来说, 由于没有学习有理数的加减法, 无法理解“减去一个数, 就是加上这个数的相反数”的道理, 因此也无法理解上面的第 (3) 、第 (4) 步是运用了加法结合律和加法交换律。
解决办法:提早认识两条规律。
(1) 让学生认识“同一级运算, 可以带着符号搬家”的规律。
在教学人教版四年级下册第三单元“运算定律与简便运算”中的第39页“简便计算”的例1时, 当学生用到课本中的第三种方法时, 可以向学生介绍:这里234-66-34=234-34-66实际上是将34带着它前面的符号“-”搬家了, 将“-34”搬家到了234的后面。这个方法可以叫做“带着符号搬家”。那么在哪种情况下可以“带着符号搬家”?让学生举例说明。学生若举例不成, 教师可以举例, 根据所举例子让学生归纳规律:“在只有加减法的算式里, 可以带着符号搬家。”
同样地, 在教学第43页例题时, 当学生用到这种算法“1250÷25÷5=1250÷5÷25”时, 也向学生说明这实际上是运用了“带着符号搬家”的规律, 这又是在什么情况下运用这个规律的?在只有乘除法的情况下可以用吗?让学生举例验证后小结:“在只有乘除法的算式里, 可以带着符号搬家。”进而让学生将本条规律与上一条规律合在一起归纳为“同一级运算, 可以带着符号搬家”。
学生认识了“同一级运算, 可以带着符号搬家”的规律后, 问题三解方程中的第 (4) 步就可以解释为“同一级运算, 可以带着符号搬家”。
(2) 补充教学“去括号”的规律。
在四年级下册第三单元“运算定律与简便运算”中, 当学生已学习了加法结合律和减法性质后, 可补充教学“去括号”的规律。可以先引导学生观察加法结合律和减法性质的字母式子:a+ (b+c) =a+b+c和a- (b+c) =a-b-c, 想一想a+ (b-c) =____, a- (b-c) =____。并让学生举例验证, 最后让学生小结加减法中去括号的规律。
问题三解方程中的第 (3) 步就可以解释为运用了“去括号”的规律。
事实上这两条规律, 不仅在解复杂的方程中用到, 而且在四年级开始学习的简便计算中常常被用到, 非常实用, 应让学生提前认识。
问题四:形如2x+4 (8-x) =26 (人教版教材六年级上册第114页) 的方程解法如何教学?
刚才解决了鸡兔同笼问题中的一类方程的解法, 当时是设兔有x只的。如果是设鸡有x只, 那么就会列出2x+4 (8-x) =26的方程。对于小学生来说, 解这个方程更难。我们还是先看看它的解答过程。
可以看出即使学生认识了“同一级运算, 可以带着符号搬家”“去括号”的规律, 要想正确解上面的方程仍会有困难, 难就难在第 (4) 步。
实际教学中教师常常采用回避的办法, 告诉学生设脚多的动物为x只, 解方程容易些。
如果不回避, 那么怎样帮助学生突破这个难点呢?
解决办法:让学生掌握“有加有减, 抵销一部分”的方法。
让学生化简下面式子, 并观察, 看能否找出快速化简的好办法。
如果学生化简有困难, 可以a+5-8为例讲解化简方法。
a+5-8=a+5- (5+3) ……将加数5和减数8中较大的一个数进行拆分=a+5-5-3……运用减法的性质=a-3……运用“抵销的规律”
再让学生想一想如果省略第一步、第二步, 可以怎么化简?完成以上化简后, 引导学生小结“有加有减, 抵销一部分”的方法:“加上一个数又减去另一个数, 或是减去一个数又加上另一个数, 要看是加得多, 还是减得多。如果是加得多, 最后结果仍是加上几, 如果是减得多, 最后结果仍是减去几;最后加上或减去的数是原算式中加数与减数的差。”这个方法实际上是初中数学中正数与负数相加加法法则的小学化。
学生掌握了“有加有减, 抵销一部分”的方法后, 再遇到类似于2x+32-4x=26这样的方程, 可以先运用加法交换律, 变形为32+2x-4x=26, 再运用“有加有减, 抵销一部分”的方法进行化简变形, 得到32-2x=26, 进而解得结果。
教学内容
列方程解决简单的问题。(教材第8~12页)
教学目标
1.使学生初步了解列方程解应用题的特点和解题的基本步骤,掌握列方程解答简单应用题的分析方法,能正确地用列方程的方法解题。
2.使学生初步建立未知数和已知数可以相互转换的思想。3.培养学生分析题意、认真审题的解题习惯。
重点难点
重点:掌握列方程解应用题的方法。难点:准确迅速地找出等量关系。
教具学具
课件。
教学过程
一、导入
师:我们已经认识了方程,学会了解只含有加、减或乘、除法一步计算的方程。那学习方程有什么用呢?用处可大了!在你今后的学习中,特别是到了中学、大学阶段,会经常用到方程。在实际生活中,用列方程、解方程的方法也能把一些数量关系复杂的问题,很容易地解决。这节课我们来学习列方程解决简单的实际问题。
【设计意图:初学列方程解决简单的实际问题,数量关系即使隐蔽一些,但对于五年级的学生来说用算术方法解决也不太困难。相反地,学生会认为列方程解决实际问题写的字太多,太麻烦,会以为这是多此一举,这是学生学习本课内容时一般都会存在的心理障碍。鉴于此,教师进行这样的学习动员,从今后的数学学习和解决生活问题两个方面阐述学习新知识的必要性,对于克服上述心理障碍会起到作用】
二、探究过程
1.教学例7。
师:请同学们先看下面的问题,说说题中的条件和问题,再找出数量之间的相等关系。(课件出示:教材第8页例7题)
生1:小红去年的体重加上2.5千克等于今年的体重,也就是36千克。生2:今年的体重减去年的体重等于2.5千克。师:你能用方程解决问题吗?试一试。学生尝试独立解答;教师巡视了解情况。师:把你的想法跟大家分享一下吧!学生可能会说:
·可以根据“去年的体重+2.5=今年的体重”列出方程。去年的体重不知道,可以设去年体重为x千克。
解:设小红去年的体重是x千克。x+2.5=36 x=36-2.5 x=33.5 答:小红去年的体重是33.5千克。
·可以根据“今年的体重-去年的体重=2.5”列出方程。去年的体重不知道,可以设去年的体重为x千克。
解:设小红去年的体重是x千克。
36-x=2.5 36-x+x=2.5+x
36=2.5+x 2.5+x=36 x=33.5 答:小红去年的体重是33.5千克。
师:这个答案对吗?你打算怎样检验?与同学们说一说。生1:先检查方程列得是否正确,再检验方程的解。生2:看两种方程的解答结果是否相同。
师:回想列方程解决实际问题的过程,想一想列方程解决实际问题时要注意什么? 学生可能会说:
·先弄清题意,找出未知量,并用字母表示。·要根据题中数量之间的相等关系列方程。·求出答案后,还要检验结果是否正确。2.教学例8。
师:你能找出题中的等量关系吗?(课件出示:教材第9页例8题)
生1:题中大雁塔与小雁塔的高度之间的相等关系是“小雁塔的高度×2-22=大雁塔的高度”。
生2:题中大雁塔与小雁塔的高度之间的相等关系是“小雁塔的高度×2-大雁塔的高度=22”。
师:尝试自己解答。
学生尝试独立解答;教师巡视了解情况,个别指导学习有困难的学生。组织学生交流订正,重点说说想法;给予解答正确的学生以表扬鼓励。
【设计意图:由以前算术法解决实际问题到列方程解决实际问题,是学生认知和技能的一次跨越。鼓励学生相互交流,彼此启发,其目的是为了帮助学生准确地找出数量间的相等关系。同时,通过对比归纳明确列方程解决实际问题的关键和步骤】
三、课末总结
师:通过本节课的学习,你有什么收获?你认为本节课有什么要提醒大家注意的?列方程解决问题和用算术方法解决问题有什么不同? 【设计意图:让学生谈收获,是对本课知识的梳理和深化,可以很好地将所学知识纳入到学生原有的认知结构中】
板书设计
列方程解决简单的问题
1.先弄清题意,找出未知量,并用字母表示。2.要根据题中数量之间的相等关系列方程。3.求出答案后,还要检验结果是否正确。
教学反思
1.在明确题中数量间的相等关系的基础上,引导学生体验列方程解决实际问题要把已知量与未知量结合起来进行列式,体验列方程解决问题和算式解决问题的不同。
2.列方程解决简单的实际问题是用方程解决问题的起始阶段,让学生明晰“整理信息——找相等关系——列方程”的思维框架,有着重要的意义,学生们可以用这样的思维框架列方程解决简单的、复杂的实际问题。通过模仿、练习巩固,使学生熟悉“写设句——列方程——解方程——检验写答语”是列方程解决实际问题的一般步骤。
3.重视积累找数量间相等关系的方法,如根据公式、常见的数量关系式等去寻找。长此以往,随着解决问题经验的不断丰富,数学学科的质量也会同步提高。课堂作业设计
A类
小明将一根长72厘米的铁丝,围成了一个正方形,围成的正方形的边长是多少厘米?(考查知识点:列方程解决简单的实际问题;能力要求:找出等量关系能列方程解决简单的实际问题)
B类
李明和王强结伴旅游,李明带了3000元。两人用去同样多的钱后,李明剩下的钱比王强剩下的多500元。王强带了多少元?
(考查知识点:列方程解决简单的实际问题;能力要求:找出等量关系能列方程解决简单的实际问题)
参考答案
课堂作业新设计
A类:
解:设围成的正方形的边长是x厘米。4x=72 x=18 答:围成的正方形的边长是18厘米。B类:
解:设王强带了x元。3000-x=500 x=2500 答:王强带了2500元。教材习题
教材第9页“练一练” 一头非洲象 一头蓝鲸 解:设这头非洲象大约重x吨。33x=165 x=5 教材第10页“练一练” 香港青马 杭州湾跨海
解:设香港青马大桥全长大约x千米。
教材p67~68例
1、例
2、例3及练习十五第1、2、7题。
教学目标:
知识与技能:使学生初步理解方程的解与解方程的含义以及方程的解和解方程之间的联系和区别。
过程与方法:利用等式的性质解简易方程。
情感、态度与价值观:关注由具体到一般的抽象概括过程,培养学生的代数思想。
教学重点:
理解方程的解和解方程之间的联系和区别。
教学难点:
理解形如a±x =b的方程原理,掌握正确的解方程格式及检验方法。
教学方法:
创设情境;观察、猜想、验证.教学准备:
多媒体。
教学过程
一、情境导入
谈话:同学们,咱们玩一个猜一猜的游戏好吗?出示一个盒子,让学生猜一猜里面可能有几个球呢?(学生思考后会说,可以是任意数。)
教师继续通过多媒体补充条件,并出示教材第67页例1情境图。
问:从图上你知道了哪些信息?
引导学生看图回答:盒子里的球和外面的3个球,一共是9个。
并用等式表示:x +3=9(教师板书)
二、互动新授
1.先让学生回忆等式的性质,再思考用等式的性质来求出x 的值。
学生思考、交流,并尝试说一说自己的想法。
2.教师通过天平帮助学生理解。
出示教材第67页第一个天平图,让学生观察并说一说。
长方体盒子代表未知的x 个球,每个小正方体代表一个球。则天平左边是x +3个球,右边是9个球,天平平衡,也就是列式:x +3=9。
观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办?
(右边也要拿掉3个球。)
追问:怎样用算式表示?学生交流,汇报:x +3-3=9-3
x =6
质疑:为什么两边都要减3呢?你是根据什么来求的?
(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。)
你们的想法对吗?出示第3个天平图,证实学生的想法是对的。
3.师小结:刚才我们计算出的x =6,这就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解 解方程)4.引导:谁来说一说,方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解;求解的过程就是解方程。
师引导学生小结:方程的解中的解的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而解方程中的解的意思,是指求方程的解的过程,是一个计算过程。
5.验算:x =6是不是正确答案呢?我们怎么来检验一下?
引导学生自主思考,并在小组内交流自己的想法。
通过学生的回答小结:可以把x =6的值代入方程的左边算一算,看看是不是等于方程的右边。
即:方程左边=x +3
=6+3
=9
=方程右边
让学生尝试验算,并注意指导书写。
6.出示教材第68页例2情境图。
让学生观察图,理解图意并用等式表示出来:3x =18
引导学生:通过刚才解方程的经验尝试解决这个题。
学生自主尝试解决,教师巡视指导。
汇报解题过程:等式的两边同时除以3,解得x =6。
根据学生的回答,师板书:3x =18
3x ÷3=18÷3
x =6
质疑:你是根据什么来解答的?
引导小结:根据等式的性质:等式两边同时乘或除以一个不为o的数,左右两边仍然相等。
让学生尝试检验计算结果是否正确。
7.出示教材第68页例3,并让学生尝试解答。
由于此题是a-x 类型,有些学生在做题时可能会出现困难,不知道怎么做。有些学生可能会在等号两边同时加上x,但x 在等号的右边,不会继续做了。
教师可以引导学生思考,根据等式的性质,只要等式的两边同时加或减相等的数或式子,左右两边仍然相等,那么我们可以同时加上x。
通过计算让学生发现,等号左边只剩下20,而右边是9+x。
继续引导学生思考:20和9+x 相等,可以把它们的位置交换,继续解题。学生继续完成答题,汇报。根据汇报板书:
20-x =9 请学生自主尝试检验:方程左边=20-x20-x +x =9+x =20-11
20=9+x =9
9+x =20 =方程右边
9+x-9=20-9
x =ll
8.讨论:解方程需要注意什么?让学生自主说一说,再汇报。
小结:根据等式的性质来解方程,解方程时要先写解,等号要对齐,解出结果后要检验。
三、巩固拓展
1.完成教材第67页做一做第1、2题。
2.完成教材第68页做一做第1、2题。学生自主计算解答,并集体订正答案。
四、课堂小结。师:这节课你学会了什么知识?有哪些收获?
引导总结:1.解方程时是根据等式的性质来解。2.使方程左右两边相等的未知数的值,叫做方程的解。3.求方程解的过程叫做解方程。
作业:教材第70~71页练习十五第1、2、7题。
板书设计:
解方程(1)
例1: 例2: 例3:
x-3=9 方程左边=x +3 3x =18 20-x =9
x +3-3=9-3 =6+3 3x ÷3=18÷3 20-x + x =9+x
x =6 =9 x=6 20=9+x
=方程右边 9+x =20
所以,x =6是方程的解 9+x-9=20-9
x =ll
使方程左右两边相等的未知数的值,叫做方程的解。求方程解的过程叫做解方程。
教学反思:
在这节课的教学中,我从以下几个方面入手:
一、感受天平的平衡现象,悟出等式的性质变化。
在学习中,我以多媒体中天平的平衡来呈现等式的性质,学生能直观形象的理解性质,平衡的条件是两边同时加上、或减少相同的重量,才能保持平衡。但具体到方程中应用起来学生感觉活动是获取真知的有效途径,通过以上的活动,学生可以很顺利地得出结果:天平的两侧都加上相同的质量,天平仍平衡。
二、等式性质解方程初步感悟它的妙用
列分式方程解应用题是初中数学教学的难点之一. 部分学生的困难是:看不清题意;不明确问题中的基本量;不会运用未知数表示与之相关的未知量;不善于抓住关键语句和关键词, 寻找问题中的等量关系, 列出方程等. 为此笔者在教学实践中, 首先引导学生明确题意, 在此前提下, 着力引领学生进行分析:一是确定应用题的基本类型;二是明确这类应用题中的基本量及它们之间的数量关系;三是在设出未知数之后, 辅以表格, 寻找关键语句和关键词, 用未知数x表示其他相关量, 列出等量关系, 建立分式方程. 特别是第三步分析, 是突破难点的关键给力之处, 也是列方程解应用题的教学智慧所在. 下面列举几例分析:
【问题1】A、B两地的距离是80公里 , 一辆公共汽车从A地驶出3小时后, 一辆小汽车也从A地出发, 它的速度是公共汽车的3倍, 已知小汽车比公共汽车迟20分钟到达B地, 求两车的速度.
分析:1. 问题的类型———行程问题;
2. 行程问题中的基本量是 :路程、速度、时间;
3. 基本量的确定及等量关系 , 以表格的形式列出.
解分式方程、检验、作答的过程这里不作赘述.
【问题2】为加快西部大开发 , 某自治区决定新修一条公路, 甲、乙两工程队承包此项工程. 如果甲工程队单独施工, 则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成. 现在甲、乙两队先共同施工4个月, 剩下的由乙队单独施工, 则刚好如期完成. 问原来规定修好这条公路需多长时间?
分析:1. 问题的类型———工程问题;
2. 工程问题中的基本量是:工作总量、工作效率、工作时间;
3. 基本量的确定及等量关系 , 以表格的形式列出.
一般经常设所问量为未知数. 这里, 设“原来规定修好这条公路需x个月”, 用未知数表示其他未知量也是一个难点, 由题意可得:甲独做需要x个月, 乙独做需要 (x + 6) 个月, 则接下来可以列出以下表格帮助分析:
【问题3】北京奥运会开幕前 , 某体育用品商场预测某品牌运动服能够畅销, 就用32000元购进了一批这种运动服, 上市后很快脱销, 商场又用68000元购进第二批这种运动服, 所购数量是第一批购进数量的2倍, 但每套进价多了10元.
(1) 该商场两次共购进这种运动服多少套 ?
(2) 如果这两批运动服每套的售价相同 , 且全部售完后总利润率不低于20%, 那么每套售价至少是多少元? (利润率 =利润×100%) 成本
分析1. 问题的类型———销售问题;
2. 销售问题中的基本量及基本关系较多 , 有 : 进价、售价、数量、利润等, 主要的等量关系有:利润 = 售价 - 进价, 总价 = 单价×数量, 等;
3. 题中基本量的确定及等量关系 , 以表格的形式列出 :
考虑到问题 (1) 中问“两次共购进这种运动服多少套? ”可以设第一批进的数量为未知数:
当然, 这里若不设数量为未知数, 也可以就“进价”来设未知数.
两种不同的设未知数的方法, 源于题中的两个等量关系:“所购数量是第一批购进数量的2倍, 但每套进价多了10元”, 其中的一个等量关系用来用未知数表示其他与之相关的未知量, 另一个等量关系用来列方程.
五年级下册第3~5页例3、例4,“试一试”和“练一练”,练习一第4~6题。
[教材简析]
这部分内容主要引导学生通过观察、思考和交流,初步理解“等式两边同时加上或减去同一个数,所得结果仍然是等式”这一等式的两条基本性质之一,初步学会运用这一性质解只含有加、减关系的一步方程。在此之前,学生已经初步认识了等式与方程;在此之后,学生还将学习等式的另一条基本性质。学好这部分内容,有利于学生加深对方程特点的认识,体会初步的方程思想。教材在安排这部分内容时,主要有两个特点,一是借助直观帮助学生理解等式的性质;二是对解方程的步骤及规范做了较为细致的处理。设计教学时,教材一方面注意通过天平两边物体质量的变化以及变化前后天平两边的状态,引导学生理解相关的等式性质;另一方面则注意充分利用学生已有的知识和经验,引导他们在用不同方法求未知数的过程中初步体会用等式性质解方程的便捷,并掌握相应的方法。
[教学目标]
1.使学生在具体情境中初步理解“等式两边同时加上或减去同一个数,所得结果仍然是等式”,会用这一性质解相关的方程。
2.使学生联系具体的例子初步理解“方程的解”和“解方程”的含义,知道“方程的解”是一个结果,“解方程”是一个过程。
3.使学生在观察、分析、抽象、概括等式的基本性质和交流的过程中,积累活动经验,感受方程思想,培养自觉检验的意识,发展初步的抽象思维能力。
[教学重点]
引导学生探索等式的性质,利用等式性质解相关的方程。
[教学难点]
结合具体情境,抽象归纳出“等式两边同时加上或减去同一个数,所得结果仍然是等式”这一等式的性质。
[教学过程]
一、先扶后放,探究等式性质
1.谈话:我们已经认识了等式和方程。这节课,我们进一步学习与等式和方程有关的知识。
2.出示例3第一幅天平图,提问:你能根据图意写出一个等式吗?
根据学生的回答,板书:20=20。
引导:现在的天平是平衡的。如果在天平的一边添上一个10克的砝码,这时天平会怎样?(失去平衡)要使天平恢复平衡,可以怎么办?(在天平的另一边也添上一个10克的砝码)
根据学生的回答,出示第二幅天平图。
提出要求:现在天平平衡吗?你能再用一个等式表示现在天平两边物体质量的关系吗?同桌同学先互相说一说。
学生活动后,板书:20+10=20+10。
启发:请同学们比较这里的两幅天平图和相应的两个等式,想一想,第二个等式和第一个等式相比,发生了怎样的变化?从这样的变化中你能想到什么?
3.出示例3第二组天平图,提出要求:请同学们仔细观察这里的两幅天平图,说一说天平两边物体的质量各是怎样变化的。
学生回答后,进一步要求:你能根据天平两边物体质量的变化情况,分别列出一个等式吗?
学生交流后板书:x=50,x+20=50+20。
启发:比较这里的两个等式,它们有什么联系和区别?你又发现了什么?
学生讨论后明确:等式两边同时加上同一个数,所得结果仍然是等式。
【设计说明:第一组天平图分步出示,第二组天平图整体出示,有利于学生了解观察活动的意图,把握观察和比较的重点,也有利于他们在此过程中逐步发现规律,并进行必要的抽象概括。】
4.启发猜想:如果等式两边同时减去一个相同的数,结果会怎样呢?你能想办法验证自己的猜想吗?分小组讨论讨论。
出示例3第三组和第四组天平图,启发学生观察比较,分别说一说这两组天平中物体的质量各是怎样变化的。在此基础上,引导他们用等式分别表示每个天平两边物体变化前与变化后的关系。
学生活动后组织交流,并板书相应的等式:
70=70,70-20=70-20
x+20=70,x+20-20=70-20。
启发:请同学们比较这里的两组天平图和相应的两组等式,它们的变化有什么共同特点?
明确:等式两边同时减去同一个数,所得结果仍然是等式。
5.提出要求:刚才我们通过观察天平图,得到了两个结论。你能把这两个结论用一句话合起来说一说吗?
学生交流后揭示:等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。
6.做教科书第4页“练一练”第1题。
先让学生独立完成,再指名说说填空的依据。
【设计说明:有了“等式两边同时加上同一个数,结果仍然是等式”这一结论,通常不难联想到“等式两边同时减去同一个数,结果仍然是等式”。先放手让学生去猜想,再引导他们想办法验证猜想,既留出了充分探索的空间,又体现了探索性学习的基本方法。学生探索后的观察、比较,以及相应的抽象、概括,既是对此前猜想的进一步验证,又是对相关等式性质的进一步感知,能为学生建立正确的理解提供坚实的基础。让学生及时应用等式性质进行填空练习,一方面是为了巩固知识,另一方面也为接下来学习解方程做些铺垫。】
二、师生合作,学习解方程
1.出示例4的天平图,提出要求:你能根据天平两边物体质量的相等关系列出方程吗?
根据学生的回答,板书:x+10=50。
启发:怎样才能求出方程中未知数x的值呢?你打算怎么做?把你的想法和小组里的同学商量商量。
学生活动后,组织交流,重点突出把方程两边都减去10,使方程左边只剩下x。
2.介绍并示范解方程的过程:求方程中未知数x的值 时,要先写“解:”,表示下面的过程是求未知数x的值的过程。再根据等式的性质在方程两边都减去10,求出方程中未知数x的值。书写这一过程时,要注意把等号上下对齐。
引导:x=40是不是正确的答案呢?我们可以通过检验来判断,把x=40代入原方程,看看左右两边是不是相等。
提问:如果等式的左右两边相等,说明什么?(答案是正确的)如果不相等呢?(说明答案是错误的)请同学们用这样的方法试着检验一下。(随学生的回答扼要板书检验过程)
3.引导小结:像x=40这样,能使方程左右两边相等的未知数的值叫做方程的解。而求方程的解的过程,叫做解方程。进一步要求:请同学们回忆刚才解方程的过程,你认为解方程时要注意什么?强调三点:正确应用等式性质、注意书写规范、主动进行检验。
4.指导完成“试一试”:解方程x-30=80。
揭示:要使方程的左边只剩下x,可以怎么做?这样做的依据是什么?
组织反馈时,注意提醒学生规范地书写解方程的过程。
5.做教科书第4页“练一练”第2题。
提问:解这里的方程时,分别怎样做就可以使方程左边只剩下x?
要求:请同学们用这样的方法求出每道方程的解,并进行检验。
交流时让学生再说一说解每道方程时第一步分别是怎样做的,又是怎样检验的。要求他们今后解方程时,都要进行检验,但检验的过程可以写下来,也可以不写。
【设计说明:学生看图列出方程后,先鼓励他们充分利用已有的知识经验自主探索求未知数x值的方法,再通过师生对话、示范板书,重点介绍用等式性质解方程的步骤和方法,既有利于保持学生主动学习的热情,体现解决问题策略的多样化,又有利于突出等式性质的应用。】
三、巩固练习,内化新知
1.出示选择题:
(1)x+22=78(x=100,x=56)
(2)x-2.5=2.5(x=0,x=5)
说明:在每题的括号中有两个备选答案,其中一个是左边方程的解,另一个不是。
提出要求:你能在方程的解下面画上横线吗?学生完成后组织交流,并相机明确:做出选择时,可以先把左边的方程解出来,也可以把两个备选答案分别代入原方程从而确定哪个答案是方程的解。
2.做练习一第4题。
先让学生说说每道方程中,要使左边只剩下x,应该怎样做?
3.做练习一第5题。
先让学生独立完成,再指名说说解方程时分别应用了等式的什么性质。
4.做练习一第6题。
先指名说说图意,再组织学生交流推理过程。提醒学生:可以先在天平两边去掉相同个数的梨或橘子。
【设计说明:通过有层次、有针对性的练习,既使学生加深了对等式性质的理解,又使他们进一步体会“方程的解”和“解方程”等概念的实际意义,同时也突出解方程这一重点。】
四、全课总结,体验收获
通过今天这节课的学习,你知道了什么,学会了什么?有哪些收获,还有什么不懂的问题?
【解方程教学设计苏教版】推荐阅读:
解方程五教学反思10-01
解方程过程的教学反思07-16
解方程练习课教学反思11-20
数学解简易方程教学反思01-12
解一元一次方程--移项教学设计专题07-05
《方程解应用题复习课》的教学反思06-12
列方程解稍复杂应用题教学反思12-04
初一数学上册解方程10-11
数学四年级下册解方程11-02
七年级上册数学解方程11-24