五下数学分数计算题(推荐10篇)
(50分钟)
×
×
718
×
914
1021
×
1539
×
1325
1745
×
2534
413
×
3916
6364
×
3642
1154
×
2744
×
351
1825
914
215
5572
811
1635
1314
1314
413
3916
813
3972
310
×27×21××××××××
+
+
411
+
+
711
+
×
+
+
310
-
720
-
512
+
1-
-
910
×
720
×
1928
-
+
114
910
+
-
1516
-
-
+
-
-
-
16)
1113
-(710
-
12)
715
+
512
-
215
1325
-
-
825
-
-
311
+
+
811
+
+
817
-
+
917
+
+
+
1528
-
-
128
-
514
+
1119
718
819
118
1315
++-+++×992.5×39+2.5×60+2.512.5×2.5×32337.5×2.5+25×66.35-250×0.01
165
×3×
259
×
×
60×
×
×
×
1415
320
×5×
×
×
310
24×
×
518
×12×
914
415
718
2533
1112
910
455
544
325
925
524
××35×××12××××121×××3640××
43.75×9835.42×10.1215
-
+
419
×
516
×57
98145
×
1549
×
×
5361
×0
415
×
×
127
×15×
516
×8
×
910
×
315
215
+
315
715
-
415
×
2716
×
6364
×
827
2651
×
3439
2518
×
×
1154
×
2722
419
×
516
×57
657
1948
821
1115
522
2039
1325
536
1745
2534
718
935
×××14××××24××+-+××
1325
×
526
+
+
118
+
-
1413
-
-
138
×
7239
-(78
-
19)
2425
×24
1154
×
2722
×0
-
一、与蛋白质有关的计算
蛋白质是构成生物体的重要化合物,又是生命活动的体现者。因此,蛋白质是高中生物的重点和难点,也是高考中的热点。现将与蛋白质相关的计算题及解法做如下的小结和归纳。
1. 解决关于缩合反应过程中氨基酸的个数、肽链数、形成的肽键数和脱去的水分之间的数量关系。
规律1:水分子数、肽键数、氨基酸数和肽链条数满足失水数=肽键数=氨基酸总数-肽链条数。
规律2:氨基酸脱水缩合形成多肽时,游离的—NH2和—COOH分别位于肽链的两端,考虑到可变的R基上有可能含有两种基团,所以游离的—NH2和—COOH数·至·少等于肽链条数。
例1.某一多肽链内共有肽键109个,则此分子中含有—NH2和—COOH的数目至少为( )
A.110, 110 B.109, 109 C.9, 9 D.1, 1
解析:仔细审题,根据氨基酸、多肽的定义,抓住题干中“至少”两字,一条肽链中至少含的氨基或羧基数目分别为1,与该肽链肽键数目的多少无关。
2. 解决关于缩合反应过程中肽化合物分子量大小的数量关系。
规律3:肽化合物分子量的计算:蛋白质相对分子量=氨基酸相对分子量总和-失水分子数×18,如还有其他基团也能缩合则视情况而定,比如二硫键(-S-S-)。
规律4:结合基因控制蛋白质合成时,基因的碱基数∶mR-NA上的碱基数氨∶基酸数=6∶3∶1。
例2.牛胰岛素由51个氨基酸组成,则决定改蛋白质的基因中至少有多少个碱基?
答案:基因中的碱基数=51×6=306。
二、与光合作用和呼吸作用有关的计算
在计算这类题时学生感觉难度较大,尤其是两者结合的综合题,学生容易混淆或是不知如何下手。因为两个过程分别发生在不同的细胞器中,关系复杂,有光照时既发生光合作用又发生呼吸作用,黑暗时只发生呼吸作用,所以在计算时要全面考虑,正确分析、综合推理,方可得出正确答案。
实际(真正)光合速率=净(表观)光合速率+呼吸速率(黑暗测定):
(1) 实际光合作用CO2吸收量=实测CO2吸收量+呼吸作用CO2释放量;
(2) 光合作用实际O2释放量=实测(表观)O2释放量+呼吸作用O2吸收量;
(3) 光合作用葡萄糖净量=光合作用实际葡萄糖量-呼吸作用葡萄糖消耗量;
(4) 净有机物量=实际有机物生产量(光合作用)-有机物消耗量(呼吸作用)。
例3.某植株在黑暗处每小时释放0.02mol CO2,而光照强度为a的光照下(其他条件不变),每小时吸收0.06mol CO2,若在光照强度为的光照下光合速度减半,则每小时吸收CO2的量为(%%)
A.0 mol B.0.02 mol C.0.03 mol D.0.04mol
解析:植株在黑暗处释放0.02mol CO2表明呼吸作用释放CO2量为0.02mol,在a光照下每小时吸收CO20.06mol意味着光合作用实际量0.06+0.02=0.08molCO2,若光照强度为时光合速度减半,即减为0.04mol,此时呼吸释放CO2仍为0.02mol故需从外界吸收0.02mol CO2。答案:B。
三、有氧呼吸和无氧呼吸的混合计算
在氧气充足条件下,完全进行有氧呼吸,吸收O2和释放CO2量是相等。在绝对无氧条件下,只能进行无氧呼吸。但若在低氧条件下,既进行有氧呼吸又进行无氧呼吸;吸收O2和释放CO2就不一定相等。解题时,首先要正确书写和配平反应式,其次要分清CO2的来源再行计算(有氧呼吸和无氧呼吸各产生多少CO2)。
例4.(2006上海)一密闭容器中加入葡萄糖溶液和酵母菌,1小时后测得该容器中O2减少24ml, CO2增加48ml,则在1小时内酒精发酵所消耗的葡萄糖量是有氧呼吸的(%%)。
A.1/3倍 B.1/2倍 C.2倍 D.3倍
解析:根据有氧呼吸反应式可知:
根据无氧呼吸反应式可知:
氧气减少了24ml,可知有氧呼吸产生了24mlCO2,又因CO2共增加48ml,可知无氧呼吸产生了24mlCO2。在有氧呼吸和无氧呼吸产生CO2量相同的情况下,根据公式可计算出其消耗葡萄糖的比为1∶3。答案:D。
四、与DNA和RNA有关的计算
这一类的题目在高中生物计算中还是比较普遍的,如果抓不住一定的规律性,有关“遗传的物质基础”的这一类题目对学生来说难度还是较大。我结合教学实践,总结了以下规律。
规律1:利用碱基互补配对原则,在DNA双链分子中四种碱基存在下列关系:A=T, C=G, A+G=C+T=A+C=G+T=总碱基数的一半;互补碱基之和的比值(A+T)∶(C+T)或(A+T)∶(A+T+C+G)在已知链、互补链和整个DNA分子中相等;非互补碱基之和的比值如(A+C)∶(T+G)在已知链和互补链间互为倒数,在整个DNA分子中该比值为1。
例5.一条双链DNA分子,G+C占全部碱基的44%,其中一条链的碱基中,26%是C,那么其互补链中的A和C分别占该链总碱基的百分比是多少?
解析:在DNA双链中,碱基遵循互补配对原则,即G=C、A=T,则:(C1+G1)%=(C2+G2)%=(C总+G总)%,各参数的意义:数字1代表其中一条链、数字2代表其互补链、AGCT分别代表相应的碱基。
规律2:利用公式a×(2n-1),可以求出DNA分子复制n次后需要游离的含某种碱基的脱氧核苷酸数量,其中a表示DNA分子中某种碱基的数量,n表示复制次数。
例6.一个DNA分子中有100个碱基对,其中有40个腺嘌呤。如果连续复制3次,参与到复制过程中的游离的胞嘧啶脱氧核苷酸的数目是多少?
解析:只要求出一个DNA分子有多少个胞嘧啶。然后根据碱基互补配对原则:A=T、G=C,利用公式m=(2n-1)×a,答案:
420。
规律3:利用同位素示踪法,可以得出DNA分子复制n次后,标记的DNA分子占总DNA分子2/2n,标记的单链占所有单链的1/2n。
五、与遗传概率有关的计算
基因对性状的控制历来是学生难以理解和把握的内容,尤其是在遗传概率的计算方面更是令学生头疼,常规的计算方法如棋盘法、十字相乘法、图表法等,这些方法在解决一些常规、简单的计算题方面还是非常实用而且有效的。但是一旦遇到一些较复杂的计算题,用常规方法计算起来不但复杂而且往往无从下手。这里试图通过构建数学思想,使我们能够从容地去应对一些较复杂的遗传概率计算题。
规律1:常染色体遗传病概率,男孩患病概率=女孩患病概率=子代患病概率;患病男孩概率=患病女孩概率=子代患病概率×1/2。
规律2:伴染色体遗传病概率,男(女)孩患病概率=男(女)孩患病的个体数/男(女)孩总数;患病男(女)孩概率=男(女)孩患病的个体数/孩子总数。
规律3:对两种遗传病结合的问题,可以先分别求出每种病的患病概率,然后根据具体问题具体解决。
六、与能量流动有关的计算
1. 计算能量传递效率:
生态系统的总能量=生产者固定的太阳能;能量传递效率=某一营养级的同化量/上一营养级的同化量。
2. 计算某一营养级生物获得能量最多(最少)规律:
(1)已知较低营养级求较高营养级,“最多传递”按传递效率20%计算,“最少传递”按传递效率10%计算;(2)已知较高营养级求较低营养级,“最多消耗”按10%计算,“最少消耗”按20%计算。
3. 在多条食物链中计算某一生物获得能量或需要某一生物提供的能量:
某一生物从不同食物链中获得能量的比例或某一生物给不同生物提供能量的比例,然后结合一条食物链中能量传递效率进行计算。
例7.在如图所示的食物网中,假如猫头鹰的食物有2/5来自于兔子,2/5来自于鼠,1/5来自于蛇,那么猫头鹰增加20g体重,最少需要消费植物(%%)。
A.600g B.900g C.1600g D.5600g
解析:通过食物链(植物→兔子→猫头鹰),猫头鹰增重20g×2/5=8g,最少需要消费植物的量为8g÷20%÷20%=200g;通过食物链(植物→鼠→猫头鹰),猫头鹰增重20g×2/5=8g,最少需要消费植物的量为8g÷20%÷20%=200g;通过食物链(植物→鼠→蛇→猫头鹰),猫头鹰增重20g×1/5=4g,最少需要消费植物的量为4g÷20%÷20%÷20%=500g。所以合计需要消费植物200g+200g+500g=900g。
高中生物学科中所涉及的数学思想远不止这些,限于篇幅,本文在此只做简要归纳。实际问题是复杂多变的,数学思想需要学生具有一定的探索性和创造性。在生物学科教学过程中进行数学思想的渗透,不仅可以使学生体会到生物学并非是一门记忆型的自然学科,而且可以使学生感受到利用数学思想结合生物学理论知识能很好地解决一些生物学实际问题,进而使其对生物产生更大的兴趣。
摘要:历年高考, 计算题在生物学科中已成为一种常考、必考的题型, 且深受命题者的青睐, 此类试题的解题关键是有扎实的基本功, 能巧妙地运用数学思想对题干进行合理分析、综合推理、准确计算, 得出正确答案。
关键词:小学数学;计算题;准确性
在小学数学学习过程中计算能力是每个小学生必须掌握的基础知识和基本技能。在数学学习的过程中只有计算能力过硬,才能进一步学好如何解应用题和其他的学科知识。计算是各年级数学学习的重要内容,笔者在长期的教学过程中发现:造成小学生数学成绩不理想的主要原因就是学生计算能力太差,在计算的时候准确率不高。在对于造成这种现象的原因进行分析的过程中,笔者发现了多方面的因素:首先是低年级学生在学习的过程中忽略了口算训练,其次是在各年级数学学习的过程中轻视了对于计算题方法的教学,所以导致学生误以为计算题在计算的过程中只要弄清楚计算的顺序就能算出来,这种想法造成学生在计算的过程中非常不细心,最终导致数学计算的准确率相当低,从而导致学生缺乏攻克复杂计算题的兴趣和信心。那么在教学过程中,小学数学教师应该怎样提升学生计算题的准确性呢?笔者认为应该从以下几步入手:
一、精心设计课堂内容
在教学的过程中要想进一步提升学生对于数学计算题的准确性,教师首先要精心设计课堂教学过程,在教学的过程中耐心细致教学,将学生作为学习的主体,通过教学设计引导学生积极参与到数学学习的情景中来,再结合学生的需求采用适当的方法引起学生对于学习数学的兴趣,从而推动学生对于数学学习的思考,进而推进学生数学计算能力的提升。
二、提升学生多重能力
在教学过程中要想使学生的计算更加准确,首先要从低年级的娃娃抓起,在教学过程中,教师不仅要教学生计算题的算法,更要重视学生口算能力的训练。因为口算是笔算以及估算的基础,在教学过程中只有让学生熟练掌握口算的方法,并在应用的过程中坚持长期练习,才能在做题的时候达到熟练程度,最终才能进一步在计算过程中加以应用,提升每一次计算的准确性。同样,在小学的中高年级也不能忽视口算等计算能力的训练。
例如,在给小学生讲授“一百以内的加减法”这一部分知识的过程中,笔者就设计了“口算大赛”这样一个环节,在学生基本掌握了计算一百以内的加减法计算方法的基础上,笔者将班级同学分成若干小组,然后每一组选出5名学生组成一支队伍,采取PK赛的形式让每一个小组一一派出队员进行口算题目的PK,看哪一组最后累计的口算题目多而且用时最短,哪一组就是优胜小组。这样就能充分调动起每一个学生学习的积极性,使学生在比赛的过程中口算能力也得到大幅度的提升,从而促进了学生整体能力的上升,更重要的是这种上课模式学生非常喜欢,大幅度提升了学生计算的准确性。
三、培养学生的解题能力
在对于学生的基本功进行一定的培训以后,就要着重培养学生的数学解决能力。对于计算题准确性的提升,首先还要从读题做起,在做题的过程中要求学生正确规范地解读题目,这样才能列出正确的算式。其次,弄清计算顺序是计算的前提,弄清运算顺序才能使计算过程不出差错。例如,有括号的题:(a+b)c,可读作a与b的和乘以c,而不能读成a+b乘以c。这两种读法的不同对于计算结果的影响也是不同的,在教学的过程中教师一定要严格要求学生,从而使学生掌握正确的运算顺序。不这样训练,学生在学习的過程中就非常容易忽略和弄错计算顺序,对于计算题的“准确”也没有很好的把握,长期这样下去,学生很容易陷入学习的误区,对于数学学习的积极性也会大幅度下降。在教学的过程中教师一定要加强运算定律以及运算性质的教学,多通过实际的计算发现学生的问题并及时纠正,这样才能让学生充分理解所学内容,从而拥有基本的计算能力。当学生对于计算有了一定的基础以后,教师应该鼓励学生运用简便算法。除题目要求的简算以外,教师还要有意识地要求学生自觉地思考题目是否可以简算,提高学生的简算兴趣,从而锻炼学生的自主学习能力。
对于小学生而言,数学计算题目较为简单,但也是其接触数学的起始阶段,教师应该在了解学生需求的基础上进行教学课程的设计,改变传统的教学模式,提升学生的多重能力,并着重增强学生的实践能力,通过层层递进的训练逐步提升小学数学计算的准确性。
参考文献:
魏晋河.提高小学中低年级学生计算能力的策略[J].教育革新,2013(6).
(二)》教案
学习目标
1、体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。
2、培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。重点难点 教学重点:整数除以分数的计算法则推导过程。
教学难点:理解一个数除以分数的计算法则的推导过程。主 要 导 学 过 程 教 学 环 节 时间分配
一、预习导入 5 唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说: 活动内容
导学策略与方法 备注
“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗? 以学习小组为主,采取组织组员讨论的方法。然后由组长组织验算,最后得出预习问题的结论。
二、探究新知: 20
一、分组讨论:
1)出示教材27页“分一分”的第(1)、(2)题 学生拿出准备好的圆片代表饼,动手分一分。每2张一份,可以分成多少份? 每1张一份,可以分成多少份? 每1/2张一份,可以分成多少份? 学生动手操作,组内交流,把每个圆都平均分成2份,一共可以分成8份。每1/4张一份,可以分成多少份? 学生对那个手操作,把每个圆片都平均分成4份,一共可以分成16份。
二、自主学习:
(1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。(2)学生独立完成教材28页“填一填”“想一想”
三、巩固应用:
1、算一算 6÷ 12÷ 5÷ 5÷
2、假分数除整数:
9÷1 6÷3
让学生可以先用分一分、涂一涂等方法解决这个问题,4÷2=2(份)。4÷1=4(份)因此,学生可能会得到“分母不变,被除数的分子除以除数得到商的分子”。4÷ =8(份)4÷ =16(份)本内容的主要任务就是让学生通过上一内容的学习加深对认识整数除以分数的计算方法的认识。可以在练习进行提示:将带分数先化成假分数后再计算。
三,当堂检测
12分
反馈练习
①完成课本28页试一试。
通过本练习可检测学生课堂知识掌握程度,达到查漏补缺的作用。四.小结与评价 一个数除以一个数(零除外)等于乘这个数的倒数。(学生总结)五.完成课本28页练一练
布置作业
板书设 计 分数除法
(一)整数除以分数 一个数除以一个数(零除外)等于乘这个数的倒数。
一、直接写得数。
1/3×0=
1/4×2/5=/()
5/6×12=
7/12×3/14=()/()
45×3/5=
9×7/18=()/()
2/3×9/10=()/()
4/25×100=
18×1/6 =
4/11×11/4=
8/15×5=()/()
24×3/8=
1/7×2/3=()/()
7/18×9/14=()/()
2/39×13/1=()/()
二、能简算的要简算。
5×4/7×3/5=()/()
(3/4+5/8)×32=
5/9×3/4+5/9×1/4=()/()
5/4×1/8×16=()/()
1/5+2/9×3/10=()/()
44-72×5/12=
6×(2/18×7/30)=()/()
6/13×7/5-6/13×2/5=()/()
6/77×78=()/()
三、想一想,填一填。
1、3/8+3/8+3/8+3/8 =3/8×()=()/()。
2、12个5/6是();24的2/3是()。
3、在()里填上>、<或=。
5/6×4( ><= )5/6
9×2/3( ><= )2/3×9
3/8×1/2( ><= )3/8
4、边长1/2分米的正方形的周长是()分米。
5、六(1)班有50人,女生占全班人数的2/5,女生有()人,男生有()人。
6、看一本书,每天看全书的1/9,3天看了全书的()/()。
7、一袋大米25kg,已经吃了它的2/5,吃了()kg,还剩()kg。
8、比30多1/6的数是();比36少3/4的数是()。
四、对号入座。
1、“小羊只数是大羊只数的3/8”,( )是单位“1”。
A、小羊
B、大羊
C、无法确定
2、今年的产量比去年多1/10,今年的.产量就相当于去年的( )。
A、1/10
B、9/10
C、11/10
3、12×(1/4+1/3)=3+4=7,这是根据( )计算的。
A、乘法交换律
B、乘法分配律
C、乘法结合律
4、一块长方形菜地,长20米,宽是长的3/4,求面积的算式是( )。
A、20×3/4
B、20×3/4+20
C、20×(20×3/4)
5、比35的2/7多9的数是( )。
A、19
B、14
C、1
五、火眼金睛辨对错。
1、分数乘分数,分子乘分子,分母不变。( √× )
2、1吨的4/5和4吨的1/5一样重。( √× )
3、一根电线长3米,用去2/5米后,还剩下3/5米。( √× )
4、60的2/5相当于80的3/10 。( √× )
5、冰箱的数量相当于电视机的7/8,冰箱的数量比电视机少1/8。( √× )
六、看图列式计算。
1、
列式:-×()/();
答:还有米没修;
2、
列式:÷(-()/());
答:土豆有吨。
七、解决问题。
1、一个果园占地20公顷,其中的2/5种苹果树,1/4种梨树,苹果树和梨树各种了多少公顷?
列式:
答:苹果树种了公顷,梨树种了公顷。
2、某鞋店进皮鞋600双。第一周卖出总数的1/5,第二周卖出总数的3/8。
(1)两周一共卖出多少双?
列式:
答:两周一共卖出双。
(2)还剩多少双?
列式:
答:还剩下双。
3、六年级同学给灾区的小朋友捐款。六一班捐了500元,六二班捐的是六一班的4/5,六三班捐的是六二班的9/8。六三班捐款多少元?
列式:
答:六三班捐款元。
4、一件西服原价180元,现在的价格比原来降低了1/5,现在的价格是多少元?
列式:
答:现在的价格是元。
5、甲乙两个仓库,甲仓存粮30吨,如果从甲仓中取出1/10放入乙仓,则两仓存粮数相等。两仓一共存粮多少千克?
列式:
1、一袋面,第一次用去,正好是4千克,第二次又用去这袋面的1/4,还剩多少千克?
2、某工厂计划生产一批零件,第一次完成计划的1/2,第二次完成计划的3/7,第三次完成450个,结果超过计划的1/4,计划生产零件多少个?
3、张师傅四天做完一批零件,第一天和第二天共做了54个,第二、第三、第四天共做了90个,已知第二天做的个数占这批零件的1/5。这批零件一共多少个?
4、六(2)班男生的一半和女生的1/4共16人,女生的一半和男生的1/4共14人。六(2)班共有学生多少人?
5、甲、乙、丙、丁四人共植树600棵。甲植树的棵数是其余三人的1/2,乙植树的棵数是其余三人的1/3,丙植树的棵数是其余三人的1/4,丁植树多少棵?
6、五(2)班原计划抽调1/5的人参加文娱汇演,临时又有2人参加,使实际参加的人数是余下人数的1/3,原计划抽调多少人参加文娱汇演?
7、玩具厂三个车间共同做一批玩具。第一车间做了总数的2/7,第二车间做了1600个,第三车间做的个数是一、二车间总和的一半,这批玩具共有多少个?(两种方法解)
8、有五个连续偶数,已知第三个数比第一个数与第五个数的和的1/4多18,这五个偶数的和是多少?
9、甲、乙两组共有54人,甲组人数的1/4与乙组人数的1/5相等,甲组比乙组少多少人?
10、一个长方形的周长是130厘米。如果长增加2/7,宽减少1/3,得到新的长方形的周长不变。求原来长方形的长、宽各是多少?
11、学校图书馆原有文艺书和科技书共5400本,其中科技书比文艺书少1/5,最近又买来一批科技书,这时科技书和文艺书本数的比是9︰10。图书馆买来科技书多少本?
12、甲、乙两人原来的钱数的比是3︰4,后来甲给乙50元,这时甲的钱数是乙的1/2。甲、乙各有多少元钱?
13、甲、乙两种商品的价格比是7︰3,如果它们的价格分别上涨70元,那么它们的价格之比是7︰4。甲商品原来的价格多少元?
14、一个最简分数的分子、分母之和为49人,分子加上4,分母减去4后,得到新的分数可以约简为3/4,求原来的分数?
15、甲、乙各存款若干元,甲拿了存款的1/5给乙后,乙拿出现有存款的1/4给甲,这时他们都有180元。他们原来各存款多少元?
16、山上有株桃子树,一只猴子去偷吃桃子,第一天偷吃了1/10,以后八天,分别偷了当天现有桃子的1/9,1/8,1/7,……,1/
3、1/2,偷了9天,树上只剩下10个桃子。树上原有桃子多少个?
17、一堆西瓜,第一次卖出总数的1/4又4个,第二次卖出余下的1/2又2个,第三次卖出余下的1/2又2个,还剩2个,这堆西瓜共有多少个?
18、小明看一本书,第一天看了全书的1/8还多16页,第二天看了全书的1/6少2页,还剩下88页。这本书共有多少页?
19、一实验五年级共有学生152人,选出男同学的1/11和5名女同学参加科技小组,剩下的男、女人数正好相等。五年级男、女同学各有多少人?
关键词:新课标;小学数学;计算题;策略
《义务教育数学课程标准》在计算教学方面强调要达到“熟练”“比较”“会”这三个层次,即要求小学生不但会计算,还能够熟练、灵活地运用到学习和日常生活中。其实,计算贯穿于整个数学学习的方方面面,是奠定学生数学学习的基础工程。
一、小学数学计算题教学存在的不良现状
1.缺乏重视,教学观念落后
有些小学数学教师认为计算题的教学不过就是简单地让学生学会运算即可,这样枯燥的教学无需过多的重视,只要学生能够算对了,那就是完成了教学任务。在这种对计算题教学缺乏重视的观念下,教师往往也会忽视学生在课堂中的主体性,盲目地发挥自己的主导性,单纯地为了完成教学任务而教学,没有认识到到学生是否真的对算法和算理有正确的理解。由于教师的忽视和教学过程中的简单化,容易导致小学生学计算时感到很吃力,
虽然能够算得了简单的计算题,但对算理却不能够理解,长此以往,便会导致学生的计算能力不但没有根本性的提高,反而计算能力普遍下降,口算的速度也逐步变慢,甚至在计算的过程中错漏百出。这样长期落下来的“病根”,没有得到及时的纠正和重视后,随着年级的增加便会不断地加固,这也是很多学生在后来的数学学习中发现自己在计算方面总是容易出错,却又不知道错在何处的原因。
2.小学生的心理因素影响
由于小学生年龄小,心理因素的动态性强,情感不够稳定,注意力容易分散,难以较长时间地集中在同一个目标上,这些因素都是容易影响学生在数学课堂上学习的质量和效果的。有的小学生因为情感和情绪的变化大,还不懂得如何去调节自己的情绪,导
致在计算时,只是单纯地希望可以更快地算到结果,却缺乏耐心和细心,遇到一些较难的题目时就会感到很烦躁,缺乏对完成计算的耐心,也不愿意去认真思考,使得完成的质量很不理想。有的小学生则是在注意力方面难以集中,总是在读题、审题、计算、检查的这些过程中没有将自己的注意力保持一致,而导致在某一环节中出现小错误,然而,无论是简单地把题目的数字、式子还是符号弄错了,都会使整个计算的过程发生很大的变化。还有的小学生因为厌倦教师要求多做多练,而从心里排斥计算,不愿意接受教师的指导和任务,使得他们在完成计算题目时总是抱着得过且过的心态,只要时间一长就不愿意认真去做,导致教学的质量和学习的效果都得不到保证。
二、小学数学计算题的教学策略
1.规范教师的教育教学观念,与时俱进
要有效地促进小学数学计算题的教学效果和质量,教师要加强在教学教学观念上的学习,掌握新课程标准所强调的理念,更新自己的教育观念和教学手段,提高自己的业务能力和知识水
平,促进小学数学教师的自我成长,提高他们的思想道德教育和专业素质,与时俱进。这样让小学数学教师可以从观念上走出传统守旧的教育观念,与学生建立平等友爱的师生关系,关注学生的自我价值,给予小学生更多自主探索问题的时间和空间,增强课堂中师生的互动,让教师可以保持一种开放的心态,树立终身学习的观念,在教学实践中找出真正合适自己和学生的教学之路。
2.重视直观演示,吸引学生注意力
要有效地促进小学数学计算题的教学效果和质量,教师要重视直观演示,加强操作,吸引学生注意力,培养他们的逻辑思维能力。以直观的演示来将抽象的计算过程呈现在学生的面前,让他们可以明白整个算理的操作,明白计算的分析、推理的认识过程,突出计算的规律和运算原则。在教师的操作和语言引导下,学生就容易在头脑中形成清晰的运算思维。例如,在教学“凑十”时,教师可以直接通过算盘道具,向学生演示整个计算的过程,并且强调这是运用了让简单的数字凑成十的规律来运算的。同时也可以再给出一些题目让学生到讲台上给同学们演示,使学生在这样活泼生动的氛围中感受整个计算的过程,在动手的过程中思考,在思考的过程中发展思维能力。
3.引导思路,培养计算思维
要有效地促进小学数学计算题的教学效果和质量,教师要引导学生计算的思路,培养他们的计算思维,使他们可以在运算时形成一系列有条理的思维顺序和思考方向,克服他们的计算思维障碍,养成层次鲜明、清晰简明的思路,懂得如何去灵活地运用所学习的计算方法和运算思路。这就需要小学数学教师在教学时,要结合不同类型的计算题目的特征,巧妙地引导他们计算的思
路。例如,题目是“222222×999999”时,这样类型的题目有很多,而学生往往看到数字偏大就会束手无策,不知从哪里下手。这时,教师就要教导学生运用简便运算的原则,将“222222×999999”转化为“222222×(1000000-1)”,这样一来复杂的式子就变成了简单明了的运算式子,这时候就可以轻易地进行计算,从而得出“222222×(1000000-1)=222222000000-222222=222221777778”。
参考文献:
[1]朱瑛.提高小学数学计算教学有效性初探[J].数学学习与研究:教研版,2009(2).
教学目标
(1)使学生认识到整数加减法中的运算定律和性质在分数加减法中同样适用。
(2)使学生能应用运算定律和性质进行一些简便计算。
(3)通过练习培养学生认真细致的审题意识和良好的学习习惯。
教学重点、难点
重点、难点:
教具、学具准备
教学过程
一、基本训练
1、口算。(指名回答)
5+8又3/43又1/2+92又4/15+84又4/11―411又1/5―2
1又19/20+410+6又1/711-2又1/53又1/2+4又1/53又1/3-2又1/2
2、说说分数加减法的计算方法。
3、谈话比较。
(1)在上面的口算题中,你们感到哪些算式计算起来比较容易,为什么?
(2)在实际的运算中,只要我们认真观察,注意数据特征,然后再应用一些运算定律,就可以使计算简便。
(3)揭题:分数加减法的简便计算。
二、尝试计算,引导探究
1、谈话出示例题,学生探究。
3又3/8+2又4/15+4又5/84又4/11-2又8/13-1又5/13
(1)学生尝试计算,互说算理。
(2)教师巡视,发现典型算法指名板演。
(3)反馈说说如此计算的依据是什么?
(4)比较哪种算法比较简便,并说说理由。
2、引导学生小结:整数加法中的交换律、结合律在分数运算中同样适用。
3、第二次尝试练习。
1又19/36+2又7/12+1又5/12
3又1/4+2又3/5+1又2/5+4又3/4
18又2/17-5又3/8-2又2/17
(1)学生尝试计算,并把想法与同桌交流。
(2)反馈比较各种算法。
4、小结:能进行简便计算的分数加减法有一些什么特点?
三、巩固练习
1、下列各题怎样简便就怎样算。
30-5又5/6-4又3/1010又1/3-3又8/9-2又5/9
4又11/12+2又5/9+3又1/125/6+3又7/54+8/9
(1)学生独立计算,教师巡视补差。
(2)反馈结果。
(3)说说能用简便方法计算与不能用简便方法计算的`理由。
2、判断下列计算是否正确,错误的请改正。
1又1/6+7/15+2又5/6+7又8/158又3/7-(4又3/7+1又2/3)
=1又1/6+2又5/6+7/15+7又8/15=8又3/7-4又3/7+1又2/3
=4+8=4+1又2/3
=12=5又2/3
(1)学生判断,指名反馈。
(2)注意对减法性质的应用,进一步理解算理。
3、选择正确的答案,填在括号里。
(1)4又1/4-3又1/7+5又3/4=4又1/4+5又3/4-3又1/7,这样算的依据是()。
A、加法交换律B、加法结合律
(2)6又7/8+2又11/18+1又5/18+又1/8的正确结果是()。
A、11B、10C、11又8/9
(3)对于算式4又3/11-2又5/9+2又8/11-1又4/9,下列算法中正确的是()。
A、(4又3/11+2又8/11)-(2又5/9-1又4/9)
B、(4又3/11+2又8/11)-(2又5/9+1又4/9)
四、课堂小结
师生谈话:通过这节课的学习你们学会了什么本领?
(强调方法与计算习惯的培养)
五、课堂作业1、看谁算得既对又快。
4/9+3又5/7+2又5/914/15+13/24+1/15+11/24
5又3/16+2又13/32+1又7/168又2/13-2又1/9-3又8/9
1又2/3+7/10+1/3+3/205又5/12+4又3/7-2又5/12
2、应用题。
一只货船第一小时航行7又3/10千米,第二小时比第一小时多行1又7/8千米,第三小时又比第二小时多行7/10千米。这只货船第三小时航行多少千米?
学生认识到了整数加减法中的运算定律和性质在分数加减法中同样适用。大部分学生能应用运算定律和性质进行一些简便计算。但是学生的审题能力还是很差,错误较多。
★ 四年级数学乘法运算律及简便运算教案
★ 分数混合运算教学方案
★ 4年级乘加中的简便运算数学教案
★ 做小学数学作业的简便运算方法
★ 运算定律与简便算法优秀教学设计
★ 分数混合运算人教版教学设计
★ 六年级数学分数混合运算教案
★ 《分数加减混合运算》数学教案设计
★ 六年级上册分数混合运算优秀教案
班别:_________姓名:___________成绩:____________
1、12-9=13-6=50+30=90-50=100-60=52+6=26+13=
45+8=52-8=86-24=81-30-7=93-70+60=24+8-12=
2、在O里填上>、<或=。
32+20O22+305+63O7020+60O60+2072O8+243、把下面的数按从小到大排列。1、56、13、27、76、3、36<<<<<<
4、找规律填空数。80、76、72、68、____、____、_____、_____、_____1、3、5、7、9、1、3、5、7、9、____、____、_____、____、____50、45、40、____、____、_____、_____、_____
5、一个数个位上的数比十位上的数多3,这个数是()。
6、最小两位数比最大的两位数少()。
7、写出十位上是6的数____、____、_____。
8、48里面有()个一,()个十,一个数十位上是7,个位上是5,这个数是(9、在括号里填上适当的数。
()-8=1656-()=625-()<1357+()>62
()+73=7576+()=80()-50=4010、100里面有()个十,减数是30,被减数是84,差是()。
11、两个加数的和是43,其中一个加数是20,另一个加数是()。
12、两个加数都是30,和是()。79比19多(),比12多5的数是()。
125+25×6
(135+75)÷(14×5)
120-60÷5×5
1024÷16×3
(135+415)÷5+16
1200-20×720-720÷15
(360-144)÷24×3
240+480÷30×(6+13)
(120×2+120)÷9
164-13×5+85
330÷(65-50)
128-6×8÷16
64×(12+65÷13)
19×96-962÷74
10000-(59+66)×64
5940÷45×(798-616)
(315×40-364)÷7
12520÷8×(121÷11)
(2010-906)×(65+15)
(20+120÷24)×8
106×9-76×9
÷13+37×(65+35)
540-(148+47)÷13(308—308÷28)×11
(238+7560÷90)÷14
21×(230-192÷4)
19×96-962÷74 117
10000-(59+66)×64
5940÷45×(798-616)
(315×40-364)÷7
735×(700-400÷25)
1520-(1070+28×2)
9405-2940÷28×21 920-1680÷40÷7 360×24÷32+730
4215+(4361-716)÷81 1080÷(63-54)×80 2800÷ 100+789
(93+25×21)×9
690+47×52-398
2100-94+48×54
(247+18)×27÷25
(528+912)×5-6178
(947-599)+7×64
723-(521+504)÷25
148+3328÷64-75
51+(2304-2042)×23
36-720÷(360÷18)(10+120÷24)×5
36×(15-276÷23)
(39-21)×(396÷6)
507÷13×63+498
384÷12+3×31
37—(7+6)×30
16×(17-8)÷3
28×(5+96÷32)
81÷(72-69)×9
57×12-560÷35
848-640÷16×12
960÷(1500-32×45)
192-(54+38)×1
(12+24+80)×50
32×(25+125)
123×18-123×3+85×123
25×(24+16)
178×99+178
(140-70)×54
63+84×2÷42
490÷7+24×5
45+240÷12
15×7+85×7
(46-20)×30-90
25×27×4
(40-4)×25
2400÷80-14×2
-(83+360÷60)
(420+48)÷(375-345)
290-(34×3+99)108
142-54÷9+14
75×4×25
16×76-76×6
720÷36÷2
99×53+53
450-2×(16+9)
245-(45+39)
125×(8×4)×5
41×25-25
420÷(205-198)×4
460÷(29-18÷3)
(960-400)÷70
(140-70)×54
63+84×2÷42
490÷7+24×5
26×6-110
15×7+85×7
(46-20)×30-90
40-4)×25
2400÷80-14×2
108-(83+360÷60)
(420+48)÷(375-345)
290-(34×3+99)
142-54÷9+14
16×76-76×6
99×53+53
450-2×(16+9)(245-(45+39)
125×(8×4)×5
41×25-25
420÷(205-198)×4
460÷(29-18÷3)
(960-400)÷70
45+240÷12
124+78+22
100-35-25
(140-70)×54
63+84×2÷42
490÷7+24×5
26×6-110
(46-20)×30-90
15×7+85×7
(40-4)×25
2400÷80-14×2
108-(83+360÷60)
(420+48)÷(375-345)
290-(34×3+99)
142-54÷9+14
16×76-76×6
99×53+53
450-2×(16+9)
245-(45+39)
41×25-25
420÷(205-198)×4
460÷(29-18÷3)
(960-400)÷70
43+315÷5
426-279÷3
98-19×4+62
51+121×7
84×3-136÷8
(32+28)×6
325÷13×(266-250)
55+720÷(40-35)
(220-180)÷8
36×(28÷7+23)
(38+42)×(525÷35)
(135-72)÷7 147、721÷7×5
28×(246÷6-32)
340-240÷20×5
(58+12)×(96÷8)
106×6÷3
24÷8×302
52÷4×30
36×4+27×3
(135-25)+40×6
18×(79-58)÷27
(338+89-19)÷34
(640+750÷15)×15
(72-57)×38
892-(90+56×2)
69×(800-700)÷5
25×4+320
82÷2+59
32÷8+125
8×5+32÷4
81÷3+3×11
135÷15+26
107-35×3
206×3-128÷4
(482-42)÷22-17
57÷3-12
168÷12-48÷12
182÷13+208÷13
525÷21-378÷21
32×5×6-6
48+42÷6-12
60-(30÷3+3)
31×13-228÷19
(156+224÷32)×80
345÷(128-531÷9)
776-(73×6+152)
80÷2+100÷5
45-20×3÷4
140-20×5+25
20×30+20×40
25×(30+10)
800÷40-400÷40
600÷(120÷60)
(26+14)×70
(26+14)×(70-40)
90÷(30×15÷50)
(35+45)÷(90-10)
6×10-(21+29)
25×(22+26×3)
80÷(32+8)×300
36÷(3+6)×0
180÷(36÷12)+6
450÷15+10×3
(40+180÷30)×2
(240+180)÷(30×2)
800-800÷80×30
800-(70×6+180)
65×(40+20×3)
36+360÷12
5×121+79×5
45×6+35×6
67×5-37×5
39×8-6×39
326×78-326×68
120×90-110×90
125×(8+4)
12×(40-5)
5×27+63×5
64×9-14×9
23×134-34×23
68×48+68×52 48×101-48
(75+25÷5)-40 65×50+35×50
125×47-47×25
2800÷ 100+789
(93+25×21)×9
65×5+35×5
2800÷25×4+80
2×70+38×70
340×(120-40÷8)
947-599)+7×64
723-(521+504)÷25
49×25×8
(380-80×4)÷60
4×(25×65+25×28)
45×(720-1957÷19)
36×(15-276÷23)
(39-21)×(396÷6)
(507÷13×63+498
384÷12+3×31
[37—(7+6)] ×30
16×[(17-8)÷3]
28×(5+96÷32)
81÷[(72-54)×9]
57×12-560÷35
848-640÷16×12
[192-(54+38)]×6
(12+24+80)×50
123×18-123×3+85×123
25×(24+16)
(140-70)×54
63+84×2÷42
45+240÷12
15×7+85×7
25×27×4
(40-4)×25
960÷(1500-32×45)
32×(25+125)
178×99+178
490÷7+24×5
(46-20)×30-90
2400÷80-14×2
108-(83+360÷60)
(420+48)÷(375-345)
290-(34×3+99)
142-54÷9+14
75×4×25
16×76-76×6 720÷36÷2
245-(45+39)
420÷(205-198)×4
(140-70)×54
26×6-110
(40-4)×25
99×53+53
125×(8×4)×5
460÷(29-18÷3)
63+84×2÷42
15×7+85×7
2400÷80-14×2
450-2×(16+9)
41×25-25
(960-400)÷70
490÷7+24×5
(46-20)×30-90
108-(83+360÷60)
(420+48)÷(375-345)
290-(34×3+99)
142-54÷9+14
16×76-76×6
99×53+53
450-2×(16+9)
245-(45+39)
125×(8×4)×5
420÷(205-198)×4
460÷(29-18÷3)
45+240÷12
124+78+22
(140-70)×54
63+84×2÷42
26×6-110
(46-20)×30-90
40-4)×25
2400÷80-14×2
41×25-25
(960-400)÷70
100-35-25
490÷7+24×5
15×7+85×7
108-(83+360÷60)12
((420+48)÷(375-345)
290-(34×3+99)
142-54÷9+14
16×76-76×6
99×53+53
450-2×(16+9)
245-(45+39)
41×25-25
460÷(29-18÷3)
(960-400)÷70
426-279÷3
98-19×4+62
84×3-136÷8
(32+28)×6
55+720÷(40-35)
(220-180)÷8
(38+42)×(525÷35)
(135-72)÷7
420÷(205-198)X4
43+315÷5
51+121×7
325÷13×(266-250)
36×(28÷7+23)
721÷7×5
28×(246÷6-32)
340-240÷20×5
(58+12)×(96÷8)
106×6÷3
24÷8×302
52÷4×30 36×4+27×3
(338+89-19)÷34 892-(90+56×2)82÷2+59
81÷3+3×11
206×3-128÷4
135-25)+40×6
(640+750÷15)×15
69×(800-700)÷5
32÷8+125
135÷15+26
(482-42)÷22-17
×(79-58)÷27
(72-57)×38
25×4+320
8×5+32÷4
107-35×3
57÷3-12
(18
168÷12-48÷12
182÷13+208÷13
525÷21-378÷21
32×5×6-6
48+42÷6-12
60-(30÷3+3)
31×13-228÷19
776-(73×6+152)
140-20×5+25
800÷40-400÷40(26+14)×(70-40)
6×10-(21+29)
156+224÷32)×80
80÷2+100÷5
20×30+20×40
600÷(120÷60)
90÷(30×15÷50)(35+45)
25×(22+26×3)
345÷(128-531÷9)
45-20×3÷4
×(30+10)
(26+14)×70
÷(90-10)
80÷(32+8)×300
(25
3000-[(32+8)×30]
30×[169-(60+9)]
320-(120+25×4)
36÷[(3+6)×2] 180÷(36÷12)+6
450÷15+10×3(40+180÷30)×2(240+180)800-(70×6+180)5×121+79×5 39×8-6×39 125×(8+4)64×9-14×9
÷(30×2)
65×(40+20×3)
45×6+35×6
×78-326×68
12×(40-5)
23×134-34×23
800-800÷80×30
36+360÷12
67×5-37×5
×90-110×90
5×27+63×5
68×48+68×52
326 120
48×101-48
65×5+35×5
49×25×8
79×32+79×68 67×101-67
256×7-56×7(75+25÷5)-40
65×50+35×50 2125×47-47×25
86+[4500+(2088÷36)÷2]
.(80÷20+80)÷4
(80-25)X2
2800÷25×4+80
×70+38×70
340×(120-40÷8)
×4÷18+35
360÷40+10
(350-80)÷9
(380-80×4)÷60
4×(25×65+25×28)
45×(720-1957÷19)
58+37)÷(64-9×5)
40×20-200
360÷[(12+6)×5]
120-36(288÷[(26-14)×8]
500×6-(50×2-80)
(105×12-635)÷25
864÷[(27-23)×12]
(45+38-16)×24
500-(240+38×6)
[64-(87-42)] ×15
(845-15×3)÷16
450÷[(84-48])÷12
(58+37)÷(64-9×5)
178-145÷5×6+42
812-700÷(9+31×11)
(284+16)×(512-8208÷18)
120-36×4÷18+35
50+160÷40 120-144÷18+35 347+45
(58+37)÷(64-9×5)95÷(64-45)
12×[(49-28)÷7]
95÷(64-45)
85+14×(14+208÷26)
58+37)÷(64-9×5)
×2-4160÷52
178-145÷5×6+42
(85+14×(14+208÷26)(284+16)×(512-8208÷18)(58+37)÷(64-9×5)
21+(327-23)÷19 539-513÷(378÷14)34-3094÷17÷13
19+(253-22)÷21 50+20×28-42(23+23)×24-597(110-10)÷10-10 45-24+14120÷12×18-54 69(10-100÷10)×11(53-58822+(374-10)÷26(245-11)(252-14)÷17-10 35-13+10215-198÷(121÷11)572÷22×23-158 19+56-122414+(21-19)×14 18-(13+15)
×14 304-275
-(85+35)÷12 44+16
÷21)×36
÷18-11
×15(346-10)
(45-651÷21)×33 19+192
÷34(714-12)
÷262 736÷(275÷25)
×15-32
424-475÷19×16
22-(10+100÷10)
÷16-12
÷12-10
÷27-19
÷(43-20)×23
(227+11)÷(31-14)36+19×14-23 828÷23×12-48
18-15+10×18(31-154÷11)×12(1369-37)÷37-32
160÷(22-12)×22 357÷21×13-213 985-728
(438-39)÷21-12(20+18)×11-239(639
12520÷8×(121÷11)(2010-906)×(65+15)
100÷25×(100÷25)54÷18+41×3
640+360÷60+40 5×(825-115÷23)21
(143+429÷13)×24 396+126÷18-19
(7225-104×15)÷55 78×50-1440÷12
÷26×35
-71×9)÷167
-800×4)÷4
×5-80÷16
×(376-376÷8)-240÷15×4
÷16+85×16
(10800 16
240 3856(7236÷18-228)×28(4275-24×75)÷25 78×50-1440÷12
3856÷16+85×16 4000÷(16+832÷13)(326+95×25)÷37
(7236÷18-228)×28(4275-24×75)÷25(15+20)×3 240÷(20-5)19224×36÷24 12597-12×6+43 128118+153÷17×6 72928+(32÷4-3)18(72-4)×(6÷3)75125×5÷15 150
+28-17 145
-24×5 400
+320÷4-60 72
÷9-26×3(124
×(400-120×2)(280
+360÷(20-5)980
+42×37 960
÷5×6
+612÷12
-4×6÷3
-85)×12÷26
+80÷4)×12
-436+75
+360÷90 80×50-35÷5 105+360÷20÷3 800-700÷25×4
72-4×6÷3 42+6×(12-4)(270-180)÷30
56-(25+17)(75+360)÷(20-5)75+360÷(20-5)812÷(532-36×14)1875+360÷40-5 15000÷32+32÷4 200-0÷80+(46-0)×0 175+5(37-15)×(8+14)42+6(420-42×7)÷63 530(630÷18-23)×250 168
×(420+360÷90)(124-85)×12÷26
÷25-(18+8)360÷(60-54)
(76+40×3)2×80-60÷5
×5-(37+63)1800-400÷25×100
×12-489×99+89 630÷(21-12)×16
+54×4÷24 186-900÷(100-25)
【五下数学分数计算题】推荐阅读:
五下数学计划07-23
五下《分数乘法》09-30
五年级下册数学分数题09-16
四年级数学计算题竞赛06-14
二年级数学上册计算题11-08
五年级数学混合计算题11-09
五年级数学上册计算题12-01
小学三年级数学计算题混合06-21
五下教案11-15
五下英语复习计划10-03