初中物理概念

2024-10-02 版权声明 我要投稿

初中物理概念(精选8篇)

初中物理概念 篇1

(一)光、电、热、力

1.一切正在发声的物体都在振动,振动停止,发声停止。

2.声音靠介质传播,声音在15℃空气中的传播速度是340m/s,真空不能传声。

3.声音的三要素是:①音调(是指声音的高低,它是由发声体振动的频率决定的,频率越大,音调越高)。②响度(是指声音的大小,它跟发声体振动的振幅有关,还跟距发声体的远近有关,振幅越大,距发声体越近,响度越大)。③音色(指不同发声体声音特色,不同发声体在音调和响度相同的情况下,音色是不同的。)

4.从物理学角度讲,噪声是指发声体做无规则振动时发出的声音;防止和减小噪音的方法:①声源处;②传播过程;③耳边。

5.光在均匀介质中是沿直线传播的。光在真空的速度是3x108 m/s。影子、日食、月食都可以用光在均匀介质中沿直线传播来解释。应用:影的形成、小孔成像、日食、月食的成因、激光准值等。

6.光的反射定律:反射光线(OB)与入射光线(AO)、法线(ON)在同一平面内,反射光线(OB)与入射光线(AO)分居法线(ON)两侧,反射角(∠γ)等于入射角(∠i)在反射时,光路是可逆的。反射类型:(1)镜面反射:入射光平行时,反射光也平行,是定向反射(如镜面、水面);(2)漫反射:入射光平行时,反射光向着不同方向,这也是我们从各个方向都能看到物体的原因。

7.平面镜的成像规律是:(1)像与物到镜面的距离相等;(2)像与物的大小相等;(3)像与物的连线跟镜面垂直,(4)所成的像是虚像。成像原理:根据光的反射成像。

成像作图法:可以由平面镜成像特点和反射定律作图。平面镜的应用:成像,改变光的传播方向。(要求会画反射光路图)

8.光从一种介质斜射入另一种介质,传播方向一般会发生变化,这种现象叫光的折射。折射定律:折射光线与入射光线、法线在在同一平面内;折射光线和入射光线分居法线两侧,光从空气斜射入水或其他介质中时,折射角小于入射角;入射角增大时,折射角也增大。当光线垂直射向介质表面时,传播方向不变。折射时光路也是可逆的。当光从水或其他介质中斜射入空气中时,折射角大于入射角。

9.凸透镜也叫会聚透镜,如老花镜。凹透镜也叫发散透镜,如近视镜。焦点(F):平行于主光轴的光线经凸透镜折射后会聚在主光轴上一点(经凹透镜折射后要发散,折射光线的反向延长线相交在主轴上一点)这一点叫透镜的焦点,焦点到光心的距离,叫焦距,用f表示。

凸透镜的光学性质:a平行于主光轴的光线经凸透镜折射后过焦点;b、过焦点的光线经凸透镜折射后平行于主光轴;c、过光心的光线方向不变。典型光路图:

凸透镜对光线有会聚作用,又叫会聚透镜。凹透镜对光线有发散作用,又叫发散透镜。

10.凸透镜成像规律

11.凸透镜成像规律:虚像物体同侧;实像物体异侧;成实像时物距越大,像距越小,像越小;成虚像时物距越远,像距越远,像越小。一倍焦距分虚实:F 以内成虚像,F以外成实像。二倍焦距分大小:2F 以内成放大的像,2F以外成缩小的像。12.为了使幕上的像“正立”(朝上),幻灯片要倒着插。照相机的镜头相当于一个凸透镜,暗箱中的胶片相当于光屏,我们调节调焦环,并非调焦距,而是调镜头到胶片的距离,物离镜头越远,胶片就应靠近镜头。

13.物体的冷热程度叫温度,测量温度的仪器叫温度计,它的原理是利用了水银、酒精、煤油等液体的热胀冷缩性质制成的。

14.温度的单位有两种:一种是摄氏温度,另一种是国际单位,采用热力学温度。摄氏温度规定:一个标准大气压下,把冰水混合物的温度规定为0度,把一标准大气压下的沸水温度规定为100度,0度和100度之间分成100等分,每一等分为1摄氏度。15.使用温度计之前应:(1)观察它的量程;(2)认清它的分度值。

16.在温度计测量液体温度时,正确的方法是:(1)温度计的玻璃泡要全部浸入被测液体中;不要碰到容器底或容器壁;(2)温度计玻璃泡浸入被测液体后要稍候一会儿,待温度计的示数稳定后再读数;(3)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱上表面相平。

17.物质从固态变成液态叫熔化(要吸热),从液态变为固态叫凝固(要放热)。

18.固体分为晶体和非晶体,它们的主要区别是晶体有一定的熔点,而非晶体没有。

19.物质由液态变为气态叫汽化(吸热)。汽化有两种方式:蒸发和沸腾。沸腾与蒸发的区别:沸腾是在一定的温度下发生的,在液体表面和内部同时发生的剧烈的汽化现象,而蒸发是在任何温度下发生的,只在液体表面发生的缓慢的汽化现象。

20.增大液体的表面积,提高液体的温度和加快液体表面的空气流动速度,可以加快液体的蒸发。21.液体沸腾时的温度叫沸点。沸点与气压有关,气压大沸点高,气压小沸点低。22.要使气体液化有两种方法: 一是降低温度,二是压缩体积。

23.从气态变为液态叫液化(放热)。液化的例子:云、雨、雾、露的形成;夏天自来水管“冒汗”;冬天在室外说话时的“呵气”;烧开水时的“白气”。

24.物质从固态变为气态叫升华(吸热),升华的例子:卫生球的消失;冻衣服晾干;用久的灯泡,灯丝变细。从气态变为固态叫凝华(放热)。凝化的例子:雪、霜、雾淞的形成;冬天窗玻璃上的“冰花”。

电学部分

25.两种电荷:摩擦过的物体有了吸引轻小物体的性质,就说物体带了电。①两种电荷规定:人们把绸子摩擦过的玻璃棒上带的电荷叫正电荷;把毛皮摩擦过的电荷叫做负电荷。

②电荷间的相互作用规律:同种电荷互相排斥,异种电荷互相吸引。

③提示:摩擦起电并不是创造了电,只是电荷发生了转移。电子带负电。失去电子带正电;得到电子带负电。

26.电荷的多少叫电荷量。电荷的符号是“Q”,单位是库仑,简称库,用符号“C”表示。27.导体和绝缘体:

①定义:容易导电的物体叫导体,不容易导电的物体叫绝缘体。

②提示:导体容易导电是因为导体中有大量的自由电荷。金属靠自由电子导电,酸、碱、盐水溶液靠正、负离子导电。绝缘体不容易导电是因为绝缘体内几乎没有自由电荷。常见的导体有金属、大地、人体、碳(石墨)以及酸、碱、盐的水溶液等。常见的绝缘体有橡胶、玻璃、陶瓷、塑料、油等。28.电流:

①电流定义:电荷的定向移动形成电流。

②电流的方向:规定正电荷定向移动方向为电流方向。③持续电流存在的条件:有电源和闭合电路(通路)。

④电源:能够提供持续供电的装置叫电源。把其它形式能转化为电能的装置。干电池、铅蓄电池都是电源。干电池、蓄电池对外供电时,是化学能转化为电能。⑤提示:电流的方向除了规定以外,还要知道金属导体中的电流方向与自由电子的定向移动方向相反及在电源外部,电流方向是从电源的正极流向负极。常见的电源有干电池、蓄电池等化学电池及发电机。绝对不允许用导线直接把电源两极连接起来,否则会因电流过大而损坏电源。29.电路:

①电路的组成:电源、用电器、开关和导线连接起来组成的电流路径。②电路的基本连接方法:串联电路和并联电路。

③电路状态:通路、开路和短路。接通的电路叫通路;断开的电路叫开路;不经用电器而直接把导线连在电源两端叫短路。用符号表示电路的连接的图叫电路图。把元件逐个顺次连接起来组成的电路叫串联电路。把元件并列地连接起来的电路叫并联电路。

④提示:第一,要求会画各种电路元件规定的符号。画电路图的基本要求:导线是直线,弯折处一般成直角;各元件连接紧密,分布合理,无断离;导线交叉连接处要注意打上黑圆点。第二,按照电路图连接实物图时要求:把导线的两端接在相应的元件的接线柱上,避免导线交叉;认真检查,电路图和实物图表示电路的连接情况要一致,连实物时,可采用“先干路后支路法”或“先通一路后补充法”均可。30.电流: ①定义:1秒钟内通过导体横截面的电荷量。②单位:安培。1A=1C/s。其它单位有毫安和微安。1安(A)=1000毫安(mA);1毫安(mA)=1000微安(μA)。

③I= Q/t“ I”表示电流,“Q”表示电荷量,“t”表示时间。

④测量仪器:电流表。实验室里常用的电流表有两个量程:0-0.6A和0-3A最小刻度分别是0.1A和0.02A。用电流表测电流时,要把电流表串联在被测电路中,必须使电流从“+”接线柱流入,从“-”接线柱线出。被测电流不要超过电流表的量程。绝对不允许不经过用电器而把电流表直接连到电源的两极上。

⑤实验及结论:串联电路中,电流处处相等I=I1=I2;并联电路中,干路电流等于各支路电流之和,I=I1+I2。31.电压:

①作用:电压使电路中产生了电流。电压用符号“ U”表示

②单位:伏特,用“ V”表示。其它单位有千伏、毫伏和微伏。1千伏(kV)=1000伏(V);1伏(V)=1000毫伏(mV);1毫伏(mV)=1000微伏(μV)。

③常见电压:1节干电池1.5V,铅蓄电池每个2V,家庭电路220V,安全电压不高于36 V。④测量仪器:电压表。实验室用的电压表一般有两个量程和三个接线柱,两个量程分别是0~3V和0~15V;接0~3V时最小分度为0.1V;接0~15V时最小分度为0.5V。电压表使用时:①电流压表要并联在电路中;②“+”、“—”接线柱接法要正确;③被测电压不要超过电压表的量程。电压表可以直接接到电源的两极上,测出电源的电压值。⑤实验及结论:串联电路中U=U1+U2,并联电路中U=U1=U2。32.电阻:

①定义:导体对电流的阻碍作用。电阻的符号是“ R”

②单位:欧姆。其它单位有兆欧和千欧。1兆欧(MΩ)=1000千欧(kΩ);1千欧(kΩ)=1000欧(Ω)③大小:电阻是导体本身的一种性质,它的大小决定于导体的长度、横截面积和材料,电阻的大小和温度有关。

④电阻的测量:伏安法测电阻。

⑤滑动变阻器的原理:改变电阻线在电路中的长度来改变电阻,从而改变电流。使用滑动变阻器时要注意阻值范围及最大电流两个重要参数。使用前应将滑片调到电阻最大的位置。变阻器的作用是:改变电阻线在电路中的长度,就可以逐渐改变电阻,从而逐渐改变电流。达到控制电路的目的。

33.电流与电压、电阻关系的实验结论:

在电阻一定的情况下,导体中的电流跟这段导体两端的电压成正比;在电压不变的情况下,导体中的电流跟导体的电阻成反比。⑴ 欧姆定律:

①内容:导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比。

②公式:I=U/R。使用公式时注意公式中的I、U、R必须是同一导体(或同一电路)和同一时间的电流、电压、电阻。⑵串联电路规律:

①I=I1=I2,②U=U1+U2,③R=R1+R2,④几个相同的电阻串联时R串=nR,⑤串联分压分式。

34.并联电路的规律: ①I=I1+I2,②U=U1=U2,③R2并联:,⑥并联分流公式:

,④n个相同电阻并联 ⑤两个电阻R1、。

,要求掌握,电路图,连接实物,实验步骤,故障排除等,它35.伏安法测电阻:原理:是电学中重要实验,必须掌握。36.电功:

①定义:电流通过用电器所做的功。

②单位:除了焦耳外,还有“千瓦时(度)”。1kwh =1 度 =3.6×10 6 J ③计算式:。前二式为普遍适用公式,后二式适用于纯电阻电路。

④测量:电能表。电能表的计数器上前后两次读数之差,就是这段时间内用户消耗电能的度数。

37.电功率:

①定义:电流在单位时内所做的功。电功率表示电流做功快慢。②单位:电功率的单位除了瓦特外,还有“KW”,1KW=1000KW。

③公式:。前二式为普遍适用公式,后二式适用于纯电阻电路。

④测量:用伏安法可测定用电器的电功率,原理P=UI.是电学重要试验,必须掌握。⑤额定功率:铭牌上标出的功率值,是用电器在额定电压下的电功率值。(如果一个灯泡上标有“36V25W”,则该灯泡的额定电压是36伏,额定功率是25瓦)

⑥实际功率:用电器在实际电压下的功率值。一个用电器的额定功率只有一个,而实际功率有无数个。38.焦耳定律:

①电流通过导体产生的热量跟电流的平方成正比,跟导体的电阻成正比,跟通电的时间成正比。

②公式:焦耳定律数学表达式:Q=I2Rt,导出公式有Q=UIt和。前式为普遍适用公式,导出公式适用于纯电阻电路。热量的单位是“J”。

③注意问题:电流所做的功全部产生热量,即电能全部转化为内能,这时有Q=W。电热器属于上述情况。

④在串联电路中,因为通过导体的电流相等。通电时间也相等,根据焦耳定律

,可知导体产生的热量跟电阻成正比,即。⑤在并联电路中,导体两端的电压相等,通电时间也相等,根据,可知电流通过导体产生的热量跟导体的电阻成反比,即。

⑥电热器:利用电流的热效应来加热的设备,电炉、电烙铁、电熨斗、电饭锅、电烤炉等都是常见电热器。电热器的主要组成部分是发热体,发热体是由电阻率大,熔点高的电阻丝绕在绝缘材料上制成。

39.电热器的基本构造和使用注意事项:电热器主要由发热体和绝缘部分组成。发热体是用电阻率大、熔点高的合金丝绕在绝缘材料上做成的。它的主要作用是让电流通过它时发热。绝缘部分的作用是将通电的合金丝和电热器的外壳隔绝起来,防止漏电。使用电热器时,主要应注意工作电压和额定电压是否相同。若工作电压过高,电热器产生的热量过多,电热器可能被烧毁;若工作电压过低,电热器不能正常工作。另一方面,要注意电热器的绝缘部分性能是否良好,要防止使用时发生触电事故。

40.家庭电路的两根电线,一根叫火线,一根叫零线。火线和零线之间有220V的电压,火线与地之间的电压是220V。零线是接地的。测量家庭电路中一定时间内消耗多少电能的仪表叫电能表。它的单位是“度”。

41.保险丝是由电阻率大、熔点低的铅锑合金制成。它的作用是:在电路中的电流达到危险程度以前,自动切断电路。更换保险丝时,应选用额定电流等于或稍大于正常工作时的电流的保险丝。绝不能用铜丝代替保险丝。

42.电路中电流过大的原因是:①发生短路;②用电器的总功率过大。插座分两孔插座和三孔插座。三孔插座顶端那孔一定要接地。

43.测电笔的使用是:用手接触笔尾的金属体,笔尖接触电线,氖管发光的是火线,不发光的是零线。

44.安全用电的原则是:不接触低压带电体;不靠近高压带电体。特别要警惕不带电的物体带了电,应该绝缘的物体导了电。电磁 45.磁场

⑴物体具有吸引铁、钴、镍等物体的性质,该物体就具有了磁性。具有磁性的物体叫做磁体。⑵磁体两端磁性最强的部分叫磁极,磁体中间磁性最弱。当悬挂静止时,指向南方的叫南极(S),指向北方的叫北极(N)。

⑶同名磁极互相排斥,异名磁极互相吸引。

⑷磁体周围存在一种物质,能使磁针偏转,叫做磁场。磁场对放入它里面的磁体会产生力的作用。

⑸在物理学中,为了研究磁场方便,我们引入了磁感线的概念。磁感线总是从磁体的N极出来,回到S极。

⑹地球也是一个磁体,所以小磁针静止时会由于同名磁极互相排斥,异名磁极互相吸引的原理指向南北,由此可知,地磁南极在地理北极附近,地磁北极在地理南极附近。⑺地磁南极与地理北极、地磁北极与地理南极并不完全重合,中间有一个夹角,叫做磁偏角,是由我国宋代学者沈括首先发现的。

⑻一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。有些物体在磁化后磁性能长期保存,叫永磁体(如钢);有些物体在磁化后磁性在短时间内就会消失,叫软磁体(如软铁)。46.电流的磁场

⑴通电导线的周围有磁场,磁场的方向跟电流的方向有关,这种现象叫做电流的磁效应。这一现象是由丹麦物理学家奥斯特在1820年发现的。

⑵把导线绕在圆筒上,做成螺线管,也叫线圈,在通电情况下会产生磁场。通电螺线管的磁场相当于条形磁体的磁场。

⑶通电螺线管的磁场方向与电流方向以及螺线管的绕线方向有关。磁场的强弱与电流强弱、线圈匝数、有无铁芯有关。

⑷在通电螺线管里面加上一根铁芯,就成了一个电磁铁。可以制成电磁起重机、排水阀门等。⑸判断通电螺线管的磁场方向可以使用右手螺旋定则:将右手的四指顺着电流方向抓住螺线管,姆指所指的方向就是该螺线管的北极。47.电磁继电器

⑴继电器是利用低电压、弱电流电路的通断,来间接地控制高电压、强电流电路的装置。实质上它就是利用电磁铁来控制工作电路的一种开关。

⑵电磁继电器由电磁铁、衔铁、弹簧、触点组成;其工作电路由低压控制电路和高压工作电路两部分组成。48.电动机

⑴通电导体在磁场中会受到力的作用,它的受力方向跟电流方向、磁感线方向有关。⑵电动机由两部分组成:能够转动的部分叫转子;固定不动的部分叫定子。

⑶电动机制作原理:通电线圈在磁场中受力转动;电动机能量转化:电能转化为机械能。49.电磁感应

⑴在1831年由英国物理学家法拉第首先发现了利用磁场产生电流的条件和规律。当闭合电路的一部分在磁场中做切割磁感线运动时,电路中就会产生电流。这个现象叫电磁感应现象,产生的电流叫感应电流。

⑵发电机的制作原理:电磁感应。发电机的能量转化:机械能转化为电能。

初中物理概念汇总

(二)力学部分

50.物体中含有物质的多少叫质量。任何物体都有质量,物体的质量不随物体的形状、状态、位置及温度的变化而变化。质量的国际单位是千克(kg),常用单位还有吨(t)、克(g)、毫克(mg)。实验中常用天平来测量物体的质量。(1)天平的使用

天平的调节:把天平放在水平台上,把游码放在标尺左端的零刻线处;调节横梁平衡螺母,使指针指在分度盘的中线处,这时横梁平衡。

a.把被测物体放在左盘,用镊子向右盘里加减砝码并调节游码在标尺上的位置,直到横梁恢复平衡。b.这时盘中砝码的总质量加上游码在标尺上所对应的刻度值,就等于被测物体的质量。

注意:

1、调节平衡螺母按:指针左偏就向右调;右偏向左调。

2、天平调节平衡后,左右盘不能对调,平衡螺母不能再动。

3、取砝码时一定要用镊子。

4、往盘里加砝码应先估计被测物的质量,再从大到小加砝码,当加到最小一个砝码时太重了,则应改用移游码。

5、游码的读数是读游码的左边所对标尺的刻度值。(2)天平使用注意事项: A.不能超过称量(天平的称量=所配砝码总质量+游砝最大读数)。B.取砝码要用镊子,并轻拿轻放。C.保持天平干燥、清洁。

51.某种物质单位体积的质量叫做这种物质的密度。密度的国际主单位是kg/m3 ,通常用字母ρ表示密度,m表示质量,V表示体积,ρ=m/V。密度是物质本身的一种特性,同种物质一般不变,不同种物质一般不同,会查密度表。

要测物体的密度,应首先测出被测物体的质量和体积,然后利用密度公式ρ=m/V求出密度值。对于液体和形状不规则的固体的体积可以用量筒或量杯进行测量。用量筒量杯测体积读数时,视线要与液面相平。1L=1dm3 1ml=1cm3 1g/cm3=1000kg/m3。

52.水的密度是1.0×103kg/m3,它表示的物理意义是:1m3的水的质量是1.0×103kg。53.密度的应用:(1)利用公式ρ=m/V求密度,利用密度鉴别物质。(2)利用公式m =ρV求质量。(3)利用公式V =m/ρ求体积。54.长度的测量工具是刻度尺,国际主单位是m。

55.物体位置的变化叫机械运动,最简单的机械运动是匀速直线运动。

56.速度是表示物体运动快慢的物理量,速度等于运动物体在单位时间内通过的路程。用公式表示: v=s/t,速度的主单位是m/s。

57.力是物体对物体的作用,且物体间的力是相互的。力的作用效果是①改变物体的运动状态,②改变物体的形状。力的单位是牛顿,简称牛。符号是N。测量力的工具是测力计,实验室常用的是弹簧测力器。弹簧测力器的工作原理是:弹簧的伸长跟所受的拉力成正比。(在弹性范围内)

58.力的大小、方向和作用点叫力的三要素。用一根带箭头的线段表示力的三要素的方法叫力的图示法。要会画力的示意图。

59.由于地球的吸引而使物体受到的力叫重力,重力的施力物体是地球。方向:竖直向下,作用点:重心。

60.重力跟质量成正比,它们之间的关系是G=mg,其中g=9.8N/kg。

61.求两个力的合力叫二力合成。若有二力为F1、F2,且方向相同,则合力为F= F1 + F2 方向与两力方向相同。若两力方向相反,则合力为F=∣F1t0);Q放=cm(t0t01)=c2m2(t02-t)。其中t 表示后来温度,t0 表示原来温度。

95.能量既不会消失,也不会创生,它只会从一种形式转化成为其他形式,或者从一个物体转移到另一上物体,而在转化的过程中,能量的总量保持不变。这个规律叫能量守恒定律。内能的利用中,可以利用内能来加热,利用内能来做功。

96.1kg某种燃料完全燃烧放出的热量,叫做这种燃料的热值。热值的单位是:J/Kg。氢的热值(最大)是1.4 x108J/kg,它表示的物理意义是:1kg氢完全燃烧放出的热量是1.4 x108J。

97.分子运动论的内容:物体是由大量分子组成的;一切物质由分子组成;分子在永不停息的做无规则运动;分子之间存在着相互作用的引力和斥力;(分子之间有空隙。)

初中物理概念 篇2

一、引入物理概念的同时, 激发学生的学习愿望

初中学生掌握抽象概念的时候, 最容易掌握的是那些有直观形象作基础的特征。例如:在学习《力的作用是相互的》这节内容时, 最容易接受的是像人拉车那样沿着力的方面运动着的物体受到的力, 但对缺少直观形象作基础知识的, 如车也在拉人这一反作用理解起来就比较困难。因此, 在教学中要尽量选择典型的直观形象, 帮助学生更好地掌握这抽象的概念。例如, 最好利用弹簧吊着物体 (弹簧被拉长、物体不下落) 、手提水桶等实例说明力的作用是相互的。对于“车也拉人”这一不太直观的内容, 教师可以通过形象的语言, 甚至让他们亲身体验人拉车时, 当绳子突然断开, 人会向前倾倒这一事实, 从而知道车的确也在通过绳子向后拉人。所以, 在讲过一个物体概念时, 就应尽可能借助学生常见的生活实例、形象化的语言等形式进行实践。

在概念教学中, 要尽量在回忆旧知识的基础上引入新概念。有些不同的教学内容共同因素很多, 此时在复习旧概念的基础上引入新概念, 就能帮助理解新概念。如功率和速度是两个不同的物理量, 但都是表示快慢, 因而在引入功率概念之前回忆复习速度概念, 功率概念的建立和学习就不会费太大力气了。又如在学习比热概念时可以先复习一下密度概念, 这样既巩固了知识, 又使新概念的引入有一定的基础, 使学生既不感到新概念来得突然, 又掌握了新旧概念间的内在联系, 有利于对新概念的理解。

又如, 在讲到物体的浮沉条件时, 可将体积相同的铁块和木块同时浸没水中。学习观察到铁块下沉, 木块上浮, 却解释不了原因, 产生了探索新知识的强烈愿望。

引入新概念的方法和途径很多, 可以针对不同的教材, 不同程度的学生, 不同环境下学生熟悉的不同事例, 采用不同的途径和方法。要使概念的引入取得良好的效果, 必须注意下列几个问题。 (1) 概念的引入要能激发学生的兴趣, 使他们对探索新的概念产生兴趣, 有了兴趣、思维就能集中, 学习积极性就高。 (2) 提出的问题必须和引入的新概念密切相关, 学生在生活中既熟悉又不能解决, 就能激发学生学习新概念的强烈愿望。 (3) 用实验引入新概念, 既生动又形象, 可以使学生获得与概念有联系的感性认识, 此时又不能解释原因, 学生必然会兴致勃勃地去探索新知识。

二、做好演示实验, 使学生获得形成概念的感性认识

做好演示实验, 使学生获得与物理概念有直接关系的, 具体直观生动的感性材料, 是学生形成概念的基础。通过演示, 引导学生分析推理, 也能发展学生的形象思维能力, 因此在概念教学中, 做好演示实验就显得格外重要。

例如:惯性的演示实验。实验如下:杯子上放着塑料板, 塑料板上放着鸡蛋。当用小棒猛击杯子上的塑料板, 塑料板离杯飞出, 鸡蛋却稳稳地落入杯中。通过此现象, 使学生获得“惯性”的感性知识, 从而为惯性概念的形成打下基础。

演示实验要达到预期的效果, 必须注意以下几点。 (1) 形成观察的习惯, 并具有进行全面观察、重点观察、对比观察和动态观察的能力。 (2) 每个演示实验都必须突出实验所要达到的目的, 抓住主要因素, 使它鲜明、形象, 给学生留下深刻的印象。 (3) 在实验过程中, 教师必须恰当地指导学生观察什么, 思考什么, 使学生通过观察实验获得形成概念的感性知识, 打好建立概念的基础。 (4) 演示实验必须尽可能让全班同学都能看到, 同时演示实验必须达到实验要求达到的目的。

三、学生概念的形成

教学过程从根本上说, 是学生的认识过程。初中学生处于形象思维向抽象思维过渡的阶段, 抽象思维的能力较弱。所以, 在学生获得感性的认识之后, 教师及时引导学生积极思维, 使学生从感性认识逐渐提高到理性认识, 这是学生形成概念的关键一步。

例1:压强概念的形成。

通过演示实验学生已获得以下感性认识: (1) 受力面积相同, 压力作用效果跟压力大小有关, 压力大作用效果明显。 (2) 压力相同时, 压力作用效果跟受力面积有关, 受力面积小, 压力作用效果明显。在此基础上教师引导学生分析:压力的作用效果跟压力成正比, 跟受力面积成反比。由此引入表示压力作用效果的物理量“压强”。最后引导学生抽象概括出压强的定义, 启发学生用语言和数学公式来表示这一概念。

例2:比热概念的形成。

学生从演示实验中已经获得相同质量的不同物质, 吸收相同的热量时升高的温度不同的感性认识。教师在此基础上引导学生分析, 相同质量的不同物质, 要升高相同的温度, 吸热是否相同?再进一步思考, 单位质量的不同物质, 升高1℃时吸热是否相同?单位质量的同种物质、温度升高1℃吸热是否相同?

通过以上比较、分析, 反映出来不同的物质具有不同的热学性质。为了反映这种性质, 引入比热容的概念, 然后再引导学生概括比热容的定义, 用语言和数学公式来反映这个概念。

对初中学生来说, 从感性认识到形成概念是比较抽象, 比较困难的一步, 要收到良好的效果, 必须注意以下几个问题。 (1) 为什么要引入这个物理量, 它是用来说明或解决哪类问题的? (2) 如何定义这个物理量?建立这个物理量的方法怎样? (3) 它的定义公式如何?有何物理意义?它的单位是什么? (4) 在概念形成过程中, 往往存在某些妨碍正确建立概念的因素, 教师必须引导学生加以排除。a.日常生活中的直观错觉:如物体匀速上升时, 向上拉力大于向下的重力, 同一物体浸没在水中越深浮力越大, 物体作变速运动时, 没有惯性等。b.邻近概念容易混淆。如:质量和重量、压力和重力、压力和压强、功和工作、惯性和惯性定律等。

在概念形成后, 教师必须引导学生逐字逐句地研究概念的定义。要训练学生用准确的语言来表示概念的物理意义。

四、通过练习进一步巩固和深化概念

学生在概念形成的初期, 对概念的掌握是不巩固、不完全、不深刻的。一个概念的建立总是要经过从感性到理性, 理性到实践认识过程的多次反复。因此, 在概念建立后作些简单的概念练习, 对学生正确地建立概念是有益的。学生学完一个概念后往往重视记忆而不重视理解, 所以教师切勿以为已讲清了概念, 学生认为已经听懂了便万事大吉。如不及时练习, 过时就忘, 很难收到正确地巩固掌握概念的实效。因此, 引导学生应用概念去解释现象、分析实际问题, 做实验等等, 使概念得到深化是十分必要的。

例如:学完密度要领之后, 引导学生讨论以下问题: (1) 水和冰的密度是否一样? (2) 由ρ=m/v能否说明密度跟质量成正比跟体积成反比?

通过以上练习, 使学生明确同种物质的状态发生变化时, 密度的大小将发生改变;同种物质的密度跟质量和体积无关, 从而使学生对密度概念理解进一步巩固和深化。

五、注意概念教学的阶段性和系统性

人们对客观事物的认识, 总是由简单到复杂, 由浅入深的。初中学生的思维能力较弱, 知识水平较差, 因此在物理概念的教学时, 不能一味追求概念的“严谨性”, 毕其功于一役, 而应从教材和学生的实际出发注意概念教学的阶段性, 逐渐加深加宽, 不能好高骛远, 加重学生负担。如:质量概念在初中只作定性的粗略的解释, 指出“物体所含物质的多少叫做质量”, 显然这不是质量的严格定义。又如:在讲功的概念时, 在初中只能讲到对物体施加一个力, 使物体在力的作用下, 沿力的方向前进一段距离, 在物理学上就说这个力对物体做了功, 从而引入做功的两个必要因素。学生能够判断:做功没有、谁做功、做多少功、什么单位就行了。知道垂直于运动方向的力对物体不做功。如果作用力既不垂直于运动方向, 也不和运动方向一致, 做功没有, 要到高中才讲。如果讲死了, 说明作用力必须和运动方向一致才能算做功, 学生到高中就会认为作用力和位移成角度时, 这个力对物体不做功。所以, 在初中把概念讲到什么程度, 和学生到高中怎样进一步衔接, 教师必须要作深入考虑。

在物理概念教学中, 既要注意其阶段性, 要求每个阶段必须有一个十分明确的目标, 还要注意知识的系统性, 注意各个阶段的相互联系。例如:在学习长度的测量后, 一定要复习面积、体积的单位换算, 以便在解密度、压强等有关练习题时有个良好的基础;又如:在讲到电功时, 可以先复习机械功的定义, 明确做功的过程实质是能量的转化过程, 从而进一步明确电流做功的过程实质是电能转换成其他形式能的过程, 使学生对电功有直观形象的认识。

初中物理概念教学刍议 篇3

物理概念是某类物理现象和物理过程的共同性质和本质特性在人们头脑中的反映,是对物理现象、物理过程抽象化和概括化的思维形式。一方面,物理概念反映着人类对物质世界漫长而艰难的智力活动历程,是人类智慧的结晶;另一方面,它又使人们在纷繁复杂的物质世界中,把握事物的本质特征,成为物理思维的基本单位和有力工具。借助这种概括化的思维形式,人们找到了支配复杂的物质世界的简单规律,建立了物理学理论和方法体系。因此,物理概念是物理学理论的根基。概念教学是物理教学的首要任务。如果学生没有建立起一系列清晰、准确的物理概念,不能理解物理概念的含义,就不能进一步学习物理规律、物理理论。

但是,要使学生牢固地建立起准确的物理概念往往是困难的,原因在于教学系统所固有的各种矛盾在概念教学中表现格外突出,造成了概念教学过程的复杂化。

要搞好概念教学,教师必须了解影响概念教学的原因,特别是学生的原因。“教师心中要有学生”,就是说教师要了解学生的认知结构,了解学生的认知发展水平、思维特点、现有知识状况等,以便有针对性地采取相应的教学对策。

一、影响概念教学的主要原因

1中学生的思维特点

中学生,特别是刚刚开始学习物理的初中学生,由于还未进行过系统的物理思维训练,其物理知识、经验还相当匮乏,因而其逻辑思维能力还比较低,思维品质还比较差。

(1)思维缺乏组织性、条理性

中学生不善于有目的、有计划、有条理地进行思维,遇到问题时,往往靠直觉经验判断,“想当然”地进行推理。例如,学生认为“摩擦力就是阻碍物体运动的力”,“物体浸入液体越深,所受浮力越大”,“功率越大的灯泡,其电阻越大,灯丝越细”等。

(2)思维具有片面性、肤浅性

中学生常常还会像儿童时期那样以自我为中心看事物,因而往往只考虑那些能直接从日常生活经验中所构建的事物的意义,而不能全面分析问题,抓住事物的本质和解决问题的关键。他们往往被个别事物的表面现象所迷惑,形成一些片面、肤浅的概念。例如,“重的物体下落快”,“真空具有吸力”,“力是物体运动的原因”等观念的形成就是这种思维特点的反映。

(3)思维缺乏灵活性、变通性

中学生思维往往具有惰性,习惯于生搬硬套公式,而不是努力弄懂其意义,根据具体问题灵活选择方法。这在运用物理知识解决问题时尤为突出。

(4)思维缺乏逻辑性、严密性

中学生往往对某些特定事物的解释感兴趣,而不关心对各种现象的解释是否一致,这与其认知结构中概念模糊、关系含混、内在一致性差等有关。

2学生的知识准备

(1)缺乏必要的相关知识

有些物理概念十分抽象,而且日常生活中很少直接接触,例如某些表示物质属性的概念——密度、比热容、电阻等,在学生的认知结构中找不到相关的知识予以同化。在缺乏感性知识的情况下进行概念教学,学生将因无法理解其意义而导致机械学习。

(2)存在前概念

学生在正式学习物理以前,就已形成了一些概念,但由于其知识经验、思维水平的局限,这些概念往往是片面的,甚至是错误的。这些前概念,有的已根深蒂固,并形成一定的“理论体系”,学生已习惯用这些概念来解释所遇到的现象,而很难接受与之相抵触的科学概念。

(3)新旧概念界限不清

新概念与学生认知结构中已有的类似概念界限不清时,两者会互相干扰,导致概念混淆。

二、使学生掌握概念,发展认识能力的教学对策

1课堂引入灵活多样

(1)从生活实际中引入概念。例如,力的概念可以从推土机推土、人提水、马拉车、汽车压路面等现象引入。这种引入方式简便易行,学生感到亲切自然,有助于培育学生的兴趣和注意观察、勤于思考的习惯。

(2)从实验现象中引入概念。实验不仅能提供必要的感性知识,还能激发兴趣,培养观察力、注意力,并有助于学生树立物理是一门实验科学的观念。观察实验中的各种物理现象时,学生往往是出于好奇心,而不是有目的地去观察,教师应把学生的好奇心引导到观察物理事实方面,不仅要发现物理现象的个别特征,而且还要发现这些特征间的联系,从而培养学生的观察能力,使学生正确地形成概念。

以沸腾这个概念的学习为例。对于水烧开的过程,学生往往只注意冒气泡这一现象,而忽略了气泡的变化,这就不利于形成完整的沸腾、汽化的概念。教师应引导学生有目的地去观察水烧开的全过程,看加热前有无气泡,加热过程中气泡的位置如何变化,气泡本身怎么变化,变化的剧烈程度如何,水温度是否继续上升等,从而使学生通过观察和思考形成正确的概念。

(3)在复习旧知识的基础上引入概念。在学生已建立了较多的物理概念,感性知识较为丰富时,可在复习有关旧知识的基础上引入概念。例如,教学功率概念时,可先复习速度概念,然后通过对比进行教学,这样有利于形成新概念,强化知识的内在联系。

2引导学生归纳概括

初中学生在物理学习中,往往不能抓住物理现象的本质属性并加以归纳概括,这时就需要教师在教学中加以引导。如在惯性教学中,学生往往能根据紧急刹车等现象列举出各种物体在某种状态下具有惯性的实例,这时教师就应在此基础上引导学生概括出任何物体在任何情况下都具有惯性,由此进一步得出惯性是物体的一种属性的结论,从而使学生了解惯性这一概念的形成和内涵。

3运用比较法进行教学

比较是物理学习中一种常用的思维方法,也是一种最基本的教学方法。初中教材中很多概念,如速度、惯性、比热、密度、压强等,都是用比较法引出的。例如,重力和压力,是学生极易混淆的概念,一些学生常将压力和重力间的某些特殊情况下的关系一般化,认为“压力的大小总等于重力的大小”,甚至认为“压力就是重力”。为此,在教学中,可设置一些能暴露和纠正学生这一错误的比较性问题,让学生在做题中将压力和重力进行比较,从而能正确地区分二者。

又如,密度、比热等概念,它们的表达式都是两个物理量相比,对同一物质来说,比值都是一个常数,反映着物质本身的属性。通过比较,可加深学生对这类概念的理解,有助于消除诸如“一杯水的比热(或密度)比半杯水的比热(或密度)大”等之类的错误,能帮助学生记忆概念、活化概念和深化概念。

4巩固深化概念,训练运用概念

(1)运用物理概念分析问题,解决实际问题,能检验并深化学生对概念的认识。物理概念之所以有用,不仅在于它是具体的物理现象的概括和抽象,而且在于它与其他概念有联系。如果学生不能把相关概念联成一个概念网络,也就不能把它们应用于各种物理场合。另外,由于许多物理概念互相都有联系,只要教师精心设计教学,就可收到一石数鸟之效。如复习“电功电功率”这一章,学生在比较电功(W)和电热(O)的计算公式时,发现这两个公式形式是相同的,这时应引导学生分析电流做功的实质是什么,电功和电热这两个物理量的计算公式形式上是统一的蕴藏着一条什么规律,使学生联想到能的转化和守恒定律,并由此再进一步分析,何时O=W,何时O≠W。这样能使学生的知识系统化。

(2)通过练习培养学生运用概念的技巧。练习选题要典型,解法应灵活多样,能对题目作进一步的探讨。将做练习与概念教学分离,甚至相对立,搞题海战术的做法,不仅浪费时间,浪费精力,还容易使学生形成呆板、机械的思维习惯和生搬硬套的做法,不利于学生深化、活化概念,也不利于学生分析能力的提高。

总之,物理概念抽象、深刻,教学要求较高,而学生的认识能力、知识基础有限,但只要教师树立正确的教学指导思想,了解学生认知结构的特点,根据教学规律和学生心理特点进行教学,就能够完成概念教学的任务。

初中物理知识点概念 篇4

质量 m 千克 kg m=pv ;温度 t 摄氏度 °C ;速度 v 米/秒 m/s v=s/t

密度 p 千克/米3 kg/m3 p=m/v ;力(重力)F 牛顿(牛)N G=mg ;压强 P 帕斯卡(帕)Pa P=F/S 功 W 焦耳(焦)J W=Fs ;功率 P 瓦特(瓦)w P=W/t ;电流 I 安培(安)A I=U/R 电压 U 伏特(伏)V U=IR ;电阻 R 欧姆(欧)R=U/I ;电功 W 焦耳(焦)J W=UIt

电功率 P 瓦特(瓦)w P=W/t=UI ;热量 Q 焦耳(焦)J Q=cm(t-t°);比热 c 焦/(千克°C)J/(kg°C)真空中光速 3×108米/秒 ;g 9.8牛顿/千克 ;15°C空气中声速 340米/秒 ;安全电压 不高于36伏

初中物理基本概念概要

一、测量

⒈长度L:主单位:米;测量工具:刻度尺;测量时要估读到最小刻度的下一位;光年的单位是长度单位。

⒉时间t:主单位:秒;测量工具:钟表;实验室中用停表。1时=3600秒,1秒=1000毫秒。

⒊质量m:物体中所含物质的多少叫质量。主单位:千克; 测量工具:秤;实验室用托盘天平。

二、机械运动

⒈机械运动:物体位置发生变化的运动。

参照物:判断一个物体运动必须选取另一个物体作标准,这个被选作标准的物体叫参照物。

⒉匀速直线运动:

①比较运动快慢的两种方法:a 比较在相等时间里通过的路程。b 比较通过相等路程所需的时间。

②公式: 1米/秒=3.6千米/时。

三、力

⒈力F:力是物体对物体的作用。物体间力的作用总是相互的。

力的单位:牛顿(N)。测量力的仪器:测力器;实验室使用弹簧秤。

力的作用效果:使物体发生形变或使物体的运动状态发生改变。物体运动状态改变指物体的速度大小或运动方向改变。

⒉力的三要素:力的大小、方向、作用点叫做力的三要素。力的图示,要作标度;力的示意图,不作标度。

⒊重力G:由于地球吸引而使物体受到的力。方向:竖直向下。

重力和质量关系:G=mg m=G/g

g=9.8牛/千克。读法:9.8牛每千克,表示质量为1千克物体所受重力为9.8牛。

重心:重力的作用点叫做物体的重心。规则物体的重心在物体的几何中心。

⒋二力平衡条件:作用在同一物体;两力大小相等,方向相反;作用在一直线上。

物体在二力平衡下,可以静止,也可以作匀速直线运动。

物体的平衡状态是指物体处于静止或匀速直线运动状态。处于平衡状态的物体所受外力的合力为零。

⒌同一直线二力合成:方向相同:合力F=F1+F2;合力方向与F1、F2方向相同;

方向相反:合力F=F1-F2,合力方向与大的力方向相同。

⒍相同条件下,滚动摩擦力比滑动摩擦力小得多。

滑动摩擦力与正压力,接触面材料性质和粗糙程度有关。【滑动摩擦、滚动摩擦、静摩擦】

7.牛顿第一定律也称为惯性定律其内容是:一切物体在不受外力作用时,总保持静止或匀速直线运动状态。惯性:物体具有保持原来的静止或匀速直线运动状态的性质叫做惯性。

四、密度

⒈密度ρ:某种物质单位体积的质量,密度是物质的一种特性。

公式: m=ρV 国际单位:千克/米3,常用单位:克/厘米3,关系:1克/厘米3=1×103千克/米3;ρ水=1×103千克/米3;

读法:103千克每立方米,表示1立方米水的质量为103千克。

⒉密度测定:用托盘天平测质量,量筒测固体或液体的体积。

面积单位换算: 1厘米2=1×10-4米2,1毫米2=1×10-6米2。

五、压强

⒈压强P:物体单位面积上受到的压力叫做压强。压力F:垂直作用在物体表面上的力,单位:牛(N)。

压力产生的效果用压强大小表示,跟压力大小、受力面积大小有关。压强单位:牛/米2;专门名称:帕斯卡(Pa)

公式: F=PS 【S:受力面积,两物体接触的公共部分;单位:米2。】

改变压强大小方法:①减小压力或增大受力面积,可以减小压强;②增大压力或减小受力面积,可以增大压强。

⒉液体内部压强:【测量液体内部压强:使用液体压强计(U型管压强计)。】

产生原因:由于液体有重力,对容器底产生压强;由于液体流动性,对器壁产生压强。

规律:①同一深度处,各个方向上压强大小相等②深度越大,压强也越大③不同液体同一深度处,液体密度大的,压强也大。[深度h,液面到液体某点的竖直高度。] 公式:P=ρgh h:单位:米; ρ:千克/米3; g=9.8牛/千克。

⒊大气压强:大气受到重力作用产生压强,证明大气压存在且很大的是马德堡半球实验,测定大气压强数值的是托里拆利(意大利科学家)。托里拆利管倾斜后,水银柱高度不变,长度变长。

1个标准大气压=76厘米水银柱高=1.01×105帕=10.336米水柱高

测定大气压的仪器:气压计(水银气压计、盒式气压计)。

大气压强随高度变化规律:海拔越高,气压越小,即随高度增加而减小,沸点也降低。

六、浮力

1.浮力及产生原因:浸在液体(或气体)中的物体受到液体(或气体)对它向上托的力叫浮力。方向:竖直向上;原因:液体对物体的上、下压力差。

2.阿基米德原理:浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力。

即F浮=G液排=ρ液gV排。(V排表示物体排开液体的体积)

3.浮力计算公式:F浮=G-T=ρ液gV排=F上、下压力差

4.当物体漂浮时:F浮=G物 且 ρ物<ρ液 当物体悬浮时:F浮=G物 且 ρ物=ρ液

当物体上浮时:F浮>G物 且 ρ物<ρ液 当物体下沉时:F浮ρ液

七、简单机械

⒈杠杆平衡条件:F1l1=F2l2。力臂:从支点到力的作用线的垂直距离

通过调节杠杆两端螺母使杠杆处于水位置的目的:便于直接测定动力臂和阻力臂的长度。

定滑轮:相当于等臂杠杆,不能省力,但能改变用力的方向。

动滑轮:相当于动力臂是阻力臂2倍的杠杆,能省一半力,但不能改变用力方向。

⒉功:两个必要因素:①作用在物体上的力;②物体在力方向上通过距离。W=FS 功的单位:焦耳

3.功率:物体在单位时间里所做的功。表示物体做功的快慢的物理量,即功率大的物体做功快。

W=Pt P的单位:瓦特; W的单位:焦耳; t的单位:秒。

八、光

⒈光的直线传播:光在同一种均匀介质中是沿直线传播的。小孔成像、影子、光斑是光的直线传播现象。

光在真空中的速度最大为3×108米/秒=3×105千米/秒

⒉光的反射定律:一面二侧三等大。【入射光线和法线间的夹角是入射角。反射光线和法线间夹角是反射角。】

平面镜成像特点:虚像,等大,等距离,与镜面对称。物体在水中倒影是虚像属光的反射现象。

⒊光的折射现象和规律: 看到水中筷子、鱼的虚像是光的折射现象。

凸透镜对光有会聚光线作用,凹透镜对光有发散光线作用。光的折射定律:一面二侧三随大四空大。

⒋凸透镜成像规律:[U=f时不成像 U=2f时 V=2f成倒立等大的实像]

物距u 像距v 像的性质 光路图 应用 :u>2f f2f 倒放大实 幻灯机

u

⒌凸透镜成像实验:将蜡烛、凸透镜、光屏依次放在光具座上,使烛焰中心、凸透镜中心、光屏中心在同一个高度上。

九、热学:

⒈温度t:表示物体的冷热程度。【是一个状态量。】 常用温度计原理:根据液体热胀冷缩性质。

温度计与体温计的不同点:①量程,②最小刻度,③玻璃泡、弯曲细管,④使用方法。

⒉热传递条件:有温度差。热量:在热传递过程中,物体吸收或放出热的多少。【是过程量】

热传递的方式:传导(热沿着物体传递)、对流(靠液体或气体的流动实现热传递)和辐射(高温物体直接向外发射出热)三种。

⒊汽化:物质从液态变成气态的现象。方式:蒸发和沸腾,汽化要吸热。

影响蒸发快慢因素:①液体温度,②液体表面积,③液体表面空气流动。蒸发有致冷作用。

⒋比热容C:单位质量的某种物质,温度升高1℃时吸收的热量,叫做这种物质的比热容。

比热容是物质的特性之一,单位:焦/(千克℃)常见物质中水的比热容最大。

C水=4.2×103焦/(千克℃)读法:4.2×103焦耳每千克摄氏度。

物理含义:表示质量为1千克水温度升高1℃吸收热量为4.2×103焦。

⒌热量计算:Q放=cm⊿t降 Q吸=cm⊿t升 ;Q与c、m、⊿t成正比,c、m、⊿t之间成反比。⊿t=Q/cm 6.内能:物体内所有分子的动能和分子势能的总和。一切物体都有内能。内能单位:焦耳

物体的内能与物体的温度有关。物体温度升高,内能增大;温度降低内能减小。

改变物体内能的方法:做功和热传递(对改变物体内能是等效的)

7.能的转化和守恒定律:能量即不会凭空产生,也不会凭空消失,它只会从一种形式转化为其它形式,或者从一个物体转移到另一个物体,而能的总量保持不变。

十、电路

⒈电路由电源、电键、用电器、导线等元件组成。要使电路中有持续电流,电路中必须有电源,且电路应闭合的。电路有通路、断路(开路)、电源和用电器短路等现象。

⒉容易导电的物质叫导体。如金属、酸、碱、盐的水溶液。不容易导电的物质叫绝缘体。如木头、玻璃等。

绝缘体在一定条件下可以转化为导体。

⒊串、并联电路的识别:串联:电流不分叉,并联:电流有分叉。

【把非标准电路图转化为标准的电路图的方法:采用电流流径法。】

十一、电流定律

⒈电量Q:电荷的多少叫电量,单位:库仑。电流I:1秒钟内通过导体横截面的电量叫做电流强度。Q=It 电流单位:安培(A)1安培=1000毫安 正电荷定向移动的方向规定为电流方向。

测量电流用电流表,串联在电路中,并考虑量程适合。不允许把电流表直接接在电源两端。

⒉电压U:使电路中的自由电荷作定向移动形成电流的原因。电压单位:伏特(V)。

测量电压用电压表(伏特表),并联在电路(用电器、电源)两端,并考虑量程适合。

⒊电阻R:导电物体对电流的阻碍作用。符号:R,单位:欧姆、千欧、兆欧。

电阻大小跟导线长度成正比,横截面积成反比,还与材料有关。【 】

导体电阻不同,串联在电路中时,电流相同(1∶1)。导体电阻不同,并联在电路中时,电压相同(1:1)

⒋欧姆定律:公式:I=U/R U=IR R=U/I

导体中的电流强度跟导体两端电压成正比,跟导体的电阻成反比。

导体电阻R=U/I。对一确定的导体若电压变化、电流也发生变化,但电阻值不变。

⒌串联电路特点:

① I=I1=I2 ② U=U1+U2 ③ R=R1+R2 ④ U1/R1=U2/R2

电阻不同的两导体串联后,电阻较大的两端电压较大,两端电压较小的导体电阻较小。

例题:一只标有“6V、3W”电灯,接到标有8伏电路中,如何联接一个多大电阻,才能使小灯泡正常发光?

解:由于P=3瓦,U=6伏 ∴I=P/U=3瓦/6伏=0.5安

由于总电压8伏大于电灯额定电压6伏,应串联一只电阻R2 如右图,因此U2=U-U1=8伏-6伏=2伏

∴R2=U2/I=2伏/0.5安=4欧。答:(略)

⒍并联电路特点:

①U=U1=U2 ②I=I1+I2 ③1/R=1/R1+1/R2 或 ④I1R1=I2R2

电阻不同的两导体并联:电阻较大的通过的电流较小,通过电流较大的导体电阻小。

例:如图R2=6欧,K断开时安培表的示数为0.4安,K闭合时,A表示数为1.2安。求:①R1阻值 ②电源电压 ③总电阻

已知:I=1.2安 I1=0.4安 R2=6欧 求:R1;U;R 解:∵R1、R2并联 ∴I2=I-I1=1.2安-0.4安=0.8安

根据欧姆定律U2=I2R2=0.8安×6欧=4.8伏 ;又∵R1、R2并联 ∴U=U1=U2=4.8伏

∴R1=U1/I1=4.8伏/0.4安=12欧 ∴R=U/I=4.8伏/1.2安=4欧(或利用公式 计算总电阻)答:(略)

十二、电能

⒈电功W:电流所做的功叫电功。电流作功过程就是电能转化为其它形式的能。

公式:W=UQ W=UIt=U2t/R=I2Rt W=Pt 单位:W焦 U伏特 I安培 t秒 Q库 P瓦特

⒉电功率P:电流在单位时间内所作的电功,表示电流作功的快慢。【电功率大的用电器电流作功快。】

公式:P=W/t P=UI(P=U2/R P=I2R)单位:W焦 U伏特 I安培 t秒 Q库 P瓦特

⒊电能表(瓦时计):测量用电器消耗电能的仪表。1度电=1千瓦时=1000瓦×3600秒=3.6×106焦耳

例:1度电可使二只“220V、40W”电灯工作几小时?

解 t=W/P=1千瓦时/(2×40瓦)=1000瓦时/80瓦=12.5小时

十三、磁

1.磁体、磁极【同名磁极互相排斥,异名磁极互相吸引】

物体能够吸引铁、钴、镍等物质的性质叫磁性。具有磁性的物质叫磁体。磁体的磁极总是成对出现的。

2.磁场:磁体周围空间存在着一个对其它磁体发生作用的区域。

磁场的基本性质是对放入其中的磁体产生磁力的作用。

磁场方向:小磁针静止时N极所指的方向就是该点的磁场方向。磁体周围磁场用磁感线来表示。

地磁北极在地理南极附近,地磁南极在地理北极附近。

3.电流的磁场:奥斯特实验表明电流周围存在磁场。

通电螺线管对外相当于一个条形磁铁。通电螺线管中电流的方向与螺线管两端极性的关系可以用右手螺旋定则来判定。、匀速直线运动的速度公式: 求速度:v=s/t ;求路程:s=vt ;求时间:t=s/v

2、变速直线运动的速度公式:v=s/t

3、物体的物重与质量的关系:G=mg

(g=9.8N/kg)

4、密度的定义式

求物质的密度:ρ=m/V ;求物质的质量:m=ρV ;求物质的体积:V=m/ρ

4、压强的计算。

定义式:p=F/S(物质处于任何状态下都能适用);液体压强:p=ρgh(h为深度)

求压力:F=pS ;求受力面积:S=F/p

5、浮力的计算

称量法:F浮=G—F ;公式法:F浮=G排=ρ排V排g ;漂浮法:F浮=G物(V排<V物)

悬浮法:F浮=G物(V排=V物)

6、杠杆平衡条件:F1L1=F2L2

7、功的定义式:W=Fs

8、功率定义式:P=W/t ;对于匀速直线运动情况来说:P=Fv

(F为动力)

9、机械效率:η=W有用/W总 ;对于提升物体来说: ;W有用=Gh(h为高度);W总=Fs

10、斜面公式:FL=Gh

11、物体温度变化时的吸热放热情况 Q吸=cmΔt

(Δt=t-t0);Q放=cmΔt

(Δt=t0-t)

12、燃料燃烧放出热量的计算:Q放=qm

13、热平衡方程:Q吸=Q放

14、热机效率:η=W有用/ Q放

(Q放=qm)

15、电流定义式:I=Q/t(Q为电量,单位是库仑)

16、欧姆定律:I=U/R ;变形求电压:U=IR ;变形求电阻:R=U/I

17、串联电路的特点:(以两纯电阻式用电器串联为例)

电压的关系:U=U1+U2 ;电流的关系:I=I1=I2 ;电阻的关系:R=R1+R2

18、并联电路的特点:(以两纯电阻式用电器并联为例)

电压的关系:U=U1=U2 ;电流的关系:I=I1+I2 ;电阻的关系:1/R=1/R1+1/R2

19、电功的计算:W=UIt

20、电功率的定义式:P=W/t ;常用公式:P=UI

21、焦耳定律:Q放=I2Rt

对于纯电阻电路而言:Q放=I2Rt =U2t/R=UIt=Pt=UQ=W

22、照明电路的总功率的计算:P=P1+P1+„„

速度 v 米/秒 m/s v=s/t 电流 I 安培(安)A I=U/R 电压 U 伏特(伏)V U=IR 电阻 R 欧姆(欧)R=U/I 电功 W 焦耳(焦)J W=UIt 真空中光速 3×108米/秒

g 9.8牛顿/千克

15°C空气中声速 340米/秒

浅谈初中物理概念的教学 篇5

一.初中物理概念教学的重要性

物理概念反映了物理事实中最本质的东西,物理规律本身表达了有关的物理概念之间的相互联系与严格的数量依存关系。所以,学生只有掌握好物理概念,才能理解物理事实,掌握物理规律,提高分析问题和解决问题的能力。

物理概念反映物理事实的本质,是进入理性认识的第一步,只有抓住了物理事实的本质才能分析有关物理的内在联系,才能掌握物理教学的基本定律和原理(物理规律)所以,物理概念又是掌握物理规律的基础。

二、对概念的理解

1、概念的内涵和外延

概念的内涵即概念的本质。概念的内涵即反映了物理对象中某种属性的质,又反映了物理现象中某种属性的量,即量度方式和量度单位。概念的外延即概念的适用范围,是指概念所反映的具有某种属性的一个或一类的现象和实物。例如,力的定义是“物体对物体的作用”此即“力”的内涵。一切力,如万有引力、弹力、电磁力、核力等都具有这特有属性,这是“力”的外延。

2、概念的特征

物理概念因其在物理学中的地位和作用不同而各具特征。

(1)固有特征

有些物理概念反映了物质或物体本身固有的属性,这种属性不随外界的某些条件的改变而改变。例如质量是物体本身的固有属性,它不随物体的形状、状态、位置的改变而改变。

(2)方向特性

有些物理概念在量的方面既有大小又有方向,切不可忽略方向这一重要因素,例如磁体周围存在磁场,但磁场的方向总为小磁针静止时北极所指方向。

3、概念的关键词

物理概念的文字表述是人们经过长期的观察,总结概括出来的,所用词语经反复推敲,是很精练、准确、科学的,要正确理解它,就必须咬文嚼字,抓住关键词,比如滑动摩擦力的定义,要抓住“相对运动”、“阻碍”这两个关键词,对它的方向要抓住跟接触面“相切”跟相对运动的方向“相反”这两个关键词。

4、区别日常观念

在学习之前,人们常会根据日常生活现象,在头脑中形成一些观念,而有些观念未经认真研究和推敲,常常是一些错误观念,如马拉车前进,是因为马拉车的里大于车拉马的力,重的物体比轻的物体下落慢……这些错误的日常观念对我们正确接受物理概念有很大干扰,因此我们在学习物理概念时,一定要了解哪些观念是不科学的,并通过多个例子去证明它是错误的。三.初中物理概念教学的方法应用

学生由小学阶段进入初中阶段是学习过程的大转折。事实说明,部分同学在物理学科的学习上不能顺利地完成这个转折,常常是因为他们在学习、掌握物理概念时遇到了困难。因此,研究概念教学的方法和规律是初中物理教师的重要任务。

1.重视从实践中引入概念

从学生熟悉的生活现象引入概念,因为生活实践留在记忆中的形象(表象)容易为学生理解。尤其对于初中学生,从生产生活中感知到的大量的、丰富的物理现象是他们认识物理概念的必要的感性材料。这些感性材料为他们创造了一个良好的物理环境。教师利用好这些生活素材布置学生观察或动手实验往往能起到事半功倍的效果。如如在压强的教学中,课前布置学生完成两个实验:①一个较胖的同学和一个较瘦的同学同时站在沙坑中,观察脚陷入的情况如何?②同一个人穿平底鞋和穿细高跟鞋站入沙坑中,脚陷入的情况又怎样?这样,使学生对压强大小的决定因素先有一个初步的,感性的认识。这样能为压强概念的学习打下较好的基础。

为了激发学生学习物理概念的兴趣,教师必须充分发挥课堂演示实验的作用。对初中学生,尤其要讲究实验形象、鲜明、生动。例如讲磨擦起电这一课,当教师手托一块事先使之带电的泡沫塑料块走进课堂,将它放在一个同学头上磨擦后吸引该同学头发,一定可以很快地吸引住学生,促使他继续了解磨擦起电的原因。

2.通过应用,对物理概念加深认识

学生对物理概念的理解大部分是仅仅停留在表面的认识上,教师的任务就在于从不同方面启发学生的思维活动,使他们深入理解概念的含义。对于物理实验中的各种物理现象,初中学生往往是出于好奇心,而不是有目的地去观察,只停留在物理现象的个别特征上。这样不利于物理概念的形成。因此教师要注意培养学生的观察能力。以沸腾概念的学习为例,对于水烧开的过程,学生往往只注意冒气泡这一现象,而忽略了它的变化,这样不利于形成完整的沸腾、汽化的概念。这时教师应引导学生有目的地观察水开的全过程:加热前有无气泡?加热过程中,气泡的部位如何?气泡怎么变化?剧烈程度如何?温度是否继续上升等,从而培养学生的观察能力。

3.合理运用概念,分析概念间的相互联系

运用物理概念进行分析,解决实际问题,必须对概念规律的内在联系加以挖掘。有些同学对每节课的单个概念予以理解,却不善于把这些概念有机地联系起来。物理概念之所以有用,不仅在于它是具体的物理现象的概括和抽象,而且在于它与其他概念的联系。学生不能把相关概念联系起来构成一个知识网络。事实上,初中物理的许多概念前后都有联系,如 电功、电功率,学生比较电功和电热计算公式时,发现有时公式形式是相同的,这时就应引导学生分析:电流做功的实质是什么?两个物理量形式上达到统一蕴藏着一条什么规律?使学生联想到能的转化和守恒定律,并由此进一步分析,何时Q=W,何时Q≠W。4.在物理概念教学中,注意教法的多样化(1)应用“类比法”帮助理解物理概念

初中物理的许多概念如速度、功率、密度、电阻等等,在定义的时候思路上是完全相同的:通过两个物理量的比值反映物体本身的某种属性。对这些概念,通过类比,使学生能够达到融会贯通。例如把电流比做水流、把电压比做水压从而可使学生把看不见摸不着的电类比成实实在在的水,从而理解了电流和电压的实质。

(2)把相似概念的区别和联系进行对比教学

物理学中有许多概念名称相似,如向下的压力和重力、热量和热能、做功与功率等等对这些概念加以归纳,指出它们的区别与联系,有利于加深对这些概念的理解。

对初中物理概念教学的几点认识 篇6

物理概念是反映事物的物理现象的本质属性的思维形式,是构成物理知识的最基本的单位,由此体现了它在初中物理中的重要性, 通过本次培训,反思自己的教学过程,对于概念教学有一些新的认识,具体叙述如下:

一、创情境,建立概念

物理学是一门以实验为主学科,用实验引入的物理概念是一种常用的方法。学生通过直观观察形成深刻印象,强化了对概念的理解和记忆。例如,在引入压力的概念时,通过演示实验:改变受力面积压力小桌对海绵的作用力效果;再演示:改变压力大小压力小桌对海绵的作用力效果。引导学生观察在这两个实验过程中,海绵发生形变的程度(即压力作用效果是否明显),让学生自己总结压力的概念、物理含义及与哪些物理量有关。

类比法是在科学研究活动中常用的方法。在物理学中有不少的概念是用类比推理方法得出的。例如:在电学部分的教学中,将电流类比水流,建立电流的概念;将电压类比水压,建立电压的概念;在力学部分的教学中,同一直线上的两个力的合成和分解的教学。

物理概念大多数是在已有认知结构的基础上建立起来的,新概念的建立主要依赖于认知结构中相关的概念。例如:引导学生复习初二学过的功的概念,指出物体能够对外做功,则物体具有能量。在此基础上,讨论运动物体能够对外做功,则运动物体就具有能量,这种能量叫动能;进一步用做功的多少来确定动能与哪些量有关系,使学生真正理解影响动能的因素有哪些。

物理概念引入的方法很多,无论采用什么方法一定要注意:使学生明确一个概念的物理意义,知道这个概念到底有什么作用;根据学生认知结构中相应知识状况和新概念的不同特点,引入概念时,要尽量能激发学生学习的兴趣,充分体现学生的主体作用。

二、识内涵,掌握概念

掌握物理概念,就要学会细化概念对应的知识点。一般情况下,从以下几点细化一个概念。

(1)名称:记住物理量的名称是了解一个物理量的第一步,教材上物理概念的名称,是用黑体字印刷的,这正是要引起同学们注意和重视。

(2)定义及物理意义:物理概念的定义是用科学严谨的叙述给出的,教材中常用加点字来表示,定义要熟练准确记忆,不能有半点差错。物理量所表示的物理意义不同于定义,如:速度的物理意义是表示物体运动的快慢,其定义是单位时间内物体所通过的路程。

(3)符号:物理量的符号大多采用英语的第一个字母,每个物理量都有特定的字母,要求学生记准物理量的符号,这样,有利于规范运算过程。

(4)表达式:物理概念的定义用数学语言来描述,就写出了对应的定义式,而有些物理量往往会和其他量建立联系,它们之间的关系又会写出不同的表达式,这时就要弄清哪个是决定式,哪个是定义式。

(5)单位:物理量的定义式,既给出了物理量之间的数量关系,又决定了它们之间的单位关系,要分清国际单位和常用单位,并记准其单位符号及不同单位制之间的换算关系。在做题时要求同学们统一单位。

(6)最后还要提醒学生弄清物理表达式的适用范围。

三、善同化,强化概念

课本中的物理概念,文字叙述严谨、简洁,多数同学能够读懂字面意义,但不能把握准确深刻的含义。如果对物理概念理解不清,运用概念解决问题时就容易出现错误。例如,用功的表达式W=FS计算功时,有的同学把力的作用点上移动的距离与物体的移动的距离混到一块儿,出现了:人走路时摩擦力做了功,上楼梯时楼梯做了功等错误结论。通过各种题型的反复强化,彻底搞清楚物理量的特征,才能避免错误,提高做题准确率。

四、重对比,巩固概念

中学物理上有许多相近的概念,它们既相互联系又有区别,学生学习时容易理不清其关系,混到一块。因此在进行物理概念教学时,要从不同的角度进行比较、辨析,突出概念的差异,明确概念的内涵和外延,加深理解,避免混淆。例如:讲述超重与失重时,个别学生认为超重时物体重力增大,失重时物体重力减少,完全失重时物体重力为零。在学习这一概念时,我指导学生做下列实验:在弹簧秤下挂上钩码,静止时记下示数,然后提着弹簧快速上升,观察指针位置,记下示数,此时发现弹簧秤示数增大了,再观察物体快速下降时弹簧秤指针位置,记下示数减小,此时发现弹簧秤示数减小了。分析实验结果,引导学生总结出超重和失重概念,这样既留下深刻的印象,又可以轻松地突破难点。在学习时,除了要比较相近物理量的不同点,还要找到它们之间的联系,避免死记硬背,做题时乱套公式,使解题效率低下。

五、重反馈,完善概念

学习物理概念是为了能运用概念进行思维,运用概念解决问题。通过练习反馈能巩固概念,提高学生分析问题、解决问题的能力。

例如:讲摩擦力概念时,为了使学生对摩擦力有正确的理解,能对各种情况下物体所受的摩擦力做出准确的分析,我在课堂上提出了几个问题让学生讨论判断:

①静止的物体受摩擦力吗?运动的物体受摩擦力吗? ②摩擦力的方向是否总是与物体运动的方向相反,对吗? ③在粗糙水平面上滑动的物体一定受摩擦力作用,对吗? ④摩擦力的方向总是与物体运动的方向在同一直线上,对吗? ⑤摩擦力总是阻力或者总是阻碍物体运动的吗? ⑥压力越大,摩擦力一定越大吗?

⑦静止的物体只能受静摩擦力,运动的物体只能受滑动摩擦力,对吗? ⑧物体间接触面积越大,滑动摩擦力也越大? ⑨滑动摩擦力与物体运动的速度大小有关吗? ⑩最大静摩擦力与滑动摩擦力有什么关系呢? 每个概念讲完以后,我都引导学生仿照上面列出问题,提出与这个概念相联系的各种问题,在学生讨论解答的过程中进一步巩固概念,加深对物理概念的理解。

浅谈初中物理概念教学 篇7

一、物理概念的重要性

物理学知识系统十分庞大, 但其核心却是物理概念和规律。理解掌握物理概念, 是学好物理基础知识的前提, 然而物理概念的抽象性, 又使学生对物理概念的学习感到力不从心或枯燥乏味。

物理学中, 物理概念集中反映了物理现象和事实的本质, 而物理规律本身又表达了物理概念间的联系和依存, 因此要想让学生掌握物理规律, 理解物理现象和事实, 提高他们分析解决问题的能力, 就必须提高他们对物理概念的理解掌握程度。掌握物理概念是将感性认识上升为理性认识的第一步, 因此想要掌握物理规律, 就要掌握物理概念。

由此可见, 在教学中, 教师只有灵活运用各种教学方法, 设置行之有效的教学环节, 诱导学生理解和掌握物理概念, 这样才能达到提高教学效果的目的。

二、初中物理概念教学

学生由小学进入初中, 是学习过程的一个大转折。大量研究表明, 不少学生在学习物理时, 往往不能很好地通过这一转折, 原因是这些学生没能很好地理解掌握相关的物理概念。因此, 研究概念教学方法和规律是初中物理教师的重要任务。

1. 重视从实践中引入概念

教学中, 可从实际生活选材, 并将物理概念融入这些选材中。对学生来说, 来源于生活的选材, 更容易理解。从另一方面来说, 在学习中有意识地积累生活中的物理素材, 对学生积累感性材料以认识物理概念具有重要的意义。这些感性材料为他们创造了一个良好的物理环境。对教师来说, 把这些材料融入课堂教学或物理实验中, 往往能取得良好的效果。如在“压强”这一节中, 教师可在课前就给学生布置两个实验:一是体重较重的同学和体重较轻的同学, 同时站在沙坑中, 谁的脚陷得比较深?另一个则是穿鞋底较小鞋子的同学和穿鞋底较大鞋子的同学, 同时站在沙坑中, 看谁的脚陷得比较深?通过这样的对比, 学生就会在课前对压强这一知识有一个初步的了解, 有一个较为清晰的感性认识。这样能为压强概念的学习打下较好的基础。

2. 通过应用, 加深对物理概念的认识

在课堂教学中, 学生从课本和教师处得到的对概念的理解, 有不少停留在表面。此时教师的义务就是帮助学生加深对物理概念的理解, 并将之内化。要使学生加深对物理概念的理解, 做物理实验不失为一个好办法。但是要注意, 对于物理实验中出现的各类物理现象, 学生的观察通常只停留在物理现象的表面特征之上。这样不利于物理概念的形成。因此教师要注意培养学生的观察能力。例如, 在学习沸腾时, 学生往往只是注意水烧开的过程, 而忽略了冒水蒸气和气泡这个现象, 也没有注意到其中的变化, 这样学生就很难完全理解沸腾和汽化这两个概念。因此教师在这节课中, 就应该有意识地引导学生带着问题去观察, 让学生观察整个过程中不断变化的物理现象。如加热过程中, 气泡的部位如何?气泡怎么变化?剧烈程度如何?温度是否继续上升……从而培养学生的观察能力。

3. 合理运用概念, 分析概念间的相互联系

深入挖掘物理概念间的内在联系, 这样有利于提高学生在解决问题时, 运用物理概念分析解决问题的效率。教师要指导学生联系课本各章节的物理概念, 分析其异同点, 发现其内在的联系。如果学生不能把相关概念联系起来, 那么就很难构成一个完整的知识网络。其实许多物理概念是相互联系的, 如电功率和电功, 教师可以引导学生思考:“电流做功的实质是什么?”“两个物理量所蕴藏的规律是什么?”让学生展开联想, 使其联系到能量守恒定律和能的转化, 并深入分析, 从而加深学生对物理概念的理解。

初中物理概念 篇8

一、通过实验提高感知效果,顺应学生已有的认知经验

物理概念反映的是一类对象的本质属性,是客观事物的共同属性和本质特征在人们头脑中的反映。物理概念的界定又常常是通过下定义的方式或由它与其它概念间的关系来完成的。因此,初中生在初次学习物理概念时,常常会感觉抽象难懂,对概念捉摸不透。虽然如此,但“物理”顾名思义就是“以物载理”,每一个概念中本来就包含着大量的具体事例,初中物理概念尤其如此,教师如能在实践教学中把与概念相关的物理现象、物理事实和物理事物直观地呈现在学生的认知活动当中,就一定能将抽象的概念有效地转化为直观的表象,使概念与学生的已有认知产生间接的顺应联系。“直观呈现”,最好的手段是物理实验。下面,我以初中物理概念“大气压”这个概念的建构为例,谈谈这个过程如何在实验教学中加以实施。

首先,教师要了解学生已有的认知现状。学生在日常生活中已经接触并应用过相关的大气压知识,但由于没有学科学习经验,对大气压的应用认知便只能停留在自己直观观察到的表象认知层面,而且这个表象认知还有可能是错误的。比如用吸管吸饮料,学生经常可以看到并体验到这样的“事实”:嘴用力吸,饮料就会被吸上来;而饮料上方的“空气作用”,因空气无形无色,学生既不能直观感知到它的存在,更不会联想到它会对饮料产生挤压作用。因此,学生从自己已有的认知经验中便得出了这样的结论:饮料是靠嘴吸上来的。

然后,我们再来分析一下教材对“大气压”这一概念的界定。教材是这样引出“大气压”这个概念的:“液体内部朝各个方向都有压强,这是由于液体能够流动。空气也能流动,空气中是否也存在朝各个方向的压强?”实验证明,大气压强确实是存在的,大气压强简称为“大气压”。显然,“大气压”这一概念是通过类比的方法及“空气”“流动”“压强”等概念间的关系来界定的。初中学生对“压强”“液体压强”“空气的流动”这些概念的“感觉”本来就很模糊,教师如果期望通过“讲述”的方式把概念讲清楚,困难是相当大的,因为多数学生还是会凭着直觉和前经验来分析、判断。如果我们利用物理实验的方式,对概念的形成过程进行“稀释还原”或“追本溯源”,通过实验来简化和纯化事实的“原本”过程,以帮助学生排除非本质因素干扰,这样会不会更容易让学生“发现”概念的本质内涵呢?下面我们便以“大气压”概念的实验设计为例,进行教学过程分析。

(一)运用对比实验,引导学生体验“空气流动”对浸在其中的固体产生的朝向各个方向的“压强”“压力”

实验装置如图1所示,实验物品由一个完全密封的大塑料瓶(图1乙)和一个不完全密闭的大塑料瓶或可乐瓶(图1甲)以及旋片式真空泵组合而成。

师演示实验如图1乙,闭合真空泵电源,真空泵启动10秒左右,问学生“看到了什么现象、听到了什么声音”,生答“塑料瓶被压瘪了,听到‘劈劈卜卜’的压裂声”。学生通过观察老师的实验,真真切切地看到:原来完好的密封大塑料瓶“卜”的一声明显地被压变形,如图1乙所示;而且随着空气不断抽出,大塑料瓶继续被压瘪并且不断发出“劈劈卜卜”的压裂声。师肯定学生观察到的现象。

然后师开始演示实验如图1甲,对未密封的塑料瓶抽气10秒左右,问学生观察到什么现象。生答“没有什么变化”。随着抽气时间的增加,塑料瓶的形状保持不变,如图1甲。师追问学生“开启抽气泵的目的是什么”,生一致回答“抽走塑料瓶内的空气”。师再引导学生分析:在老师对两个塑料瓶进行抽气后,两个塑料瓶内外空气变化的特点是什么?生经过分析可以知道:抽气后,密封塑料瓶内的空气越来越少,瓶内外气体不一样;未密封的塑料瓶内的空气不变,瓶内外空气一样。师再次肯定学生的分析。

该对比实验从视觉与听觉两方面给学生以强烈印象,让学生观察到现象的本质,经历并体验“空气流动”对浸在其中的固体产生的朝向各个方向的“压力”或“压强”,再运用自己的经验加以分析归纳,便可以得出“当固体内外存在‘气压差’时,外界流动的空气可以对浸在其中的固体产生明显的压力”这一新的认知。亲眼目睹这一实验过程后,学生不仅可以“体验”到“空气流动”的作用,还会惊讶于隐形空气压力的“威力”,对空气压力的进一步探究产生浓厚的兴趣。该对比实验的每一步都源于学生的原有认知和经验,对学生看不见的或没有经历过的抽象现象,运用实验适时、间接呈现,为学生认知的顺应发展做好了铺垫。(备注:学校如果没有真空泵,可以选择使用100ml的注射器代替,用易拉罐代替大罐或大瓶进行学生分组实验,装置如图2所示;还可以选择燃烧蜡烛排空空气代替抽气等)

(二)运用对比实验,引导学生“观察”空气流动对液体表面产生的压强

nlc202309082244

实验装置如图3所示。图3甲是“倒扣在已点燃的蜡烛上方的烧杯”实验装置,乙是“倒扣在未点燃的蜡烛上方的烧杯”实验装置。

师演示“水沿烧杯上升实验”,问学生看到了什么现象,引导学生观察两个烧杯中水的上升情况。

生:甲杯中的水上升,盘中的水变浅;乙杯中的水不上升,盘中的水位不变。

师:两个烧杯中空气的质量一样吗?(抓住学生的疑点观察追问,引导学生对比分析)

生:不一样,甲杯中空气的质量小。

师:两杯中空气的体积、密度一样吗?

生:体积一样,但甲杯中的空气密度小。

师:乙杯中,杯内外空气的稀薄程度一样吗?

生:一样。

师:甲杯内外的空气稀薄程度一样吗?为什么?

生:不一样,瓶内空气稀薄,被排出了。(学生根据已有认知进行推理)

师:谁能说说盘子中的水受到了谁的作用而沿着甲杯上升?是谁给盘子中的水面施加了作用?同桌可以讨论2分钟。

生犹豫、思考、联想、讨论。

生:空气!空气由于重力,对液面产生了挤压。(个别学生能联想到)

师:不错,正是空气的作用。空气因重力、流动性对浸在其中的液体产生了挤压作用。

师接着演示“液体受到挤压沿着竖管上升”的实验(强化学生的认知),生观察、思考、联想。

这一实验过程,将隐形的“空气对液面的挤压作用”“杯内外的气压差”具体“显现”出来,使学生可以根据观察到的现象合理想象和分析“水为什么会沿烧杯上升”,进而真实感受和经历看不见的空气的流动对浸在其中的液体的液面产生的“向下”的“压力”和“压强”。学生会自觉将这一经历融入自己的认知结构,丰富和更新原有的认知。

(三)引入“什么力使悬空塑料试管里的水不会流出来”实验,让学生感受逆向思维活动“空气”“流动”对浸在其中的物体可产生“向上”的“压力”和“压强”,以此丰富学生的思维表象,让学生对“空气流动”对浸在其中的物体产生的“压力”“压强”有更全面、深入的认识,并逐渐熟悉“空气的流动”的隐形挤压作用

实验装置如图4所示,在塑料试管(也可以用可乐塑料瓶代替)顶部或侧壁钻一个小孔,以便于对比封住小孔和放开小孔时的不同,避免学生误以为是水粘住了纸片,受到非本质因素的干扰。

(四)对比实验“谁能吸得上饮料”

实验过程:让两个力量不同的学生进行吸饮料比赛,力量大的吸“全封闭饮料盒”中的饮料(全封闭饮料盒是指插入的细管除与大气相连外,其他地方都是密闭的,该饮料盒中的空气稀薄),力量小的吸“上端开口不封闭的饮料盒”中的饮料(该饮料盒内气压与外界气压相同)。让学生找出两个饮料盒中的异同,并就观察到的现象进行分析。然后再用100ml的注射器代替学生“吸饮料”,一个向里充气,一个从里往外抽气(夸大两者的区别,便于学生关注本质因素的影响),让学生观察发现“不吸”时发生的现象,归纳饮料在管中上升的本质力量,彻底排除非本质因素“吸力”的直观影响,正确认识此实验中“吸力”的作用。

通过以上四步实验,我们可以有效地帮助学生稀释还原浓缩的“空气”“流动”“压强”等知识的发生过程,将“气压差”的概念化抽象为直观,使学生新近经历的表象贴近固有表象,使隐形的表象得以“显现”,让学生的直观体验与原有知识概念发生联系,提高了概念建构的感知效果,促进了物理概念的顺利建构。这样的教学,既能顺应教材知识的发生顺序,又能顺应学生认知结构的认知顺序,还能顺应学生思维发展的逻辑顺序。

本概念中,学生认知的直观表象抓手是“流动的空气对浸在其中的物体产生的压力压强”,学生认知的隐形思维抓手是“气压差”。而该概念认知中的隐形思维抓手是关键,有了这个抓手,学生才可以根据前经验积累升华形成新认知。因此教学中,需要提供“气压差”的直观过程,补足学生的感性表象积累。

二、通过实验引发认知冲突,扭转前经验认知的偏差

不少学生对“摩擦力”的概念有片面认知,认为摩擦力总是阻碍物体的运动,它的方向总是与物体运动的方向相反。为了验证学生的这一认知,2015年桂林市在适应性考试中对这一概念进行了考察,结果显示,这道题对全市考生来说难度值为0.23,学生形成这样的认知结构跟学生的经验积累有很大关系。要纠正学生这种认知上的偏差或错误,单靠重复讲述作用不大,最好的办法是提供摩擦力发生的原始过程,让学生自己联想、抽象,归纳概念的本质因素,排除非本质因素干扰,走出认知偏差。

可以先列举一些非本质联系的实验,顺应学生的已有经验,强化学生的原认知。如图5所示实验。在该实验中,物体受到的摩擦力的方向与物体运动的方向相反,并阻碍物体的运动。也许正是由于这个原因,学生才把阻碍相对运动和阻碍运动相混淆。接着补充图6、图7所示实验,进一步关联学生对摩擦力产生和阻碍物体运动的经验和表象。

然后通过实验引发认知冲突,帮助学生走出认知偏差。可呈现如图8所示传送皮带传送物体实验(视频)。引导学生思考:物体是否有向下运动的趋势?判断物体相对于皮带,处于怎样的运动状态?让学生经历与自己之前的经验相反的实验,利用问题激发学生的想象、激活学生的思维,引发学生联想,努力寻求其间的本质联系,初步思考去除非本质因素的干扰。

nlc202309082244

最后将问题引向深入,拓展学生思维、联想。呈现如图9所示的实验。分析a物体所受摩擦力的方向,让学生进一步了解自己没有在意的,摩擦力方向与物体运动方向相同的生活案例,强化学生头脑中的新表象。

如此系列实验,可以让学生充分体会到知识发生的原始过程,由认知矛盾引发主动思考,逐步学会舍弃概念中的非本质联系,进而寻求概念的本质属性。学生在解决这些矛盾的过程中,头脑中的片面认识会自觉地发展成为全面认识,错误的认识会初步转化为正确的认识,表面的认识会逐步得到深化。

又如,要使学生形成“惯性”的概念,其关键在于使学生认识“物体具有保持运动状态不变”这一本质属性。但是,在物体真实的运动中,这一本质属性却为许多非本质的联系掩盖着。如要维持物体的运动,一定要“外力”的作用,“外力”停止作用时,原来运动的物体便归于静止;恒定的“外力”作用,是维持匀速运动的原因;“外力”大,速度就大;“外力”小,速度就小;等等。在教学中怎样使学生摒除这些非本质联系而较顺利地揭示本质属性形成“惯性”概念呢?

笔者认为可以这样做:首先列举一些非本质联系的实例,顺应学生的已有经验。桌子不推就不动;树枝无风就不摇动;已经推动的桌子,一松手就停住了;踢出去的足球会慢慢停下来。故意说:“这些事实说明了力是产生运动的原因。”(预习了的学生此时有些耐不住,但一时不懂怎么组织语言反驳老师的观点)然后将问题引向深入,引发矛盾冲突,激活学生的思维、联想。实验模拟百米赛跑运动员到达终点时,想收脚也收不住;行驶的汽车不踩油门后,仍能继续前行;动车进站时,若不减速刹车,很难停在车站;飞机降落地面后,必须要强力刹车且还要运动很长一段距离后才能慢慢停下来;从枪膛射出的子弹飞行很长一段时间都停不下来;运动的洪水若不受阻碍根本停不下来;火山爆发的冲击波很难停下来;等等。(到此时,未预习的学生的认知与原有经验已经有矛盾冲突,开始寻求讨论了)

实验模拟过程与学生的已有认知发生矛盾冲突,学生不能用自己的知识来解释老师提出的现象。(学生犹豫了,开始沉默思考,主动寻求新的思路)

在学生认知发生矛盾冲突,寻求新的解释思路时,教师可顺势强化问题的本质属性刺激,启发学生思考的方向。静止的物体不受外力会怎么样?运动的物体所受外力非常小时会如何运动?(将层层分解的问题提出来,学生的思路会逐渐清晰起来)

最后教师引导归纳:运动的物体所受外力很小时,会如何运动?运动的物体假如不受外力时会如何运动?

教师用实验再现学生难以感知的运动的物体所受外力较小时的过程,为学生的联想和思维加工提供台阶,安装抓手。学生对感性材料通过联想和思维加工“去粗取精、去伪存真、由表及里”。

三、通过实验将复杂现象简单化,降低学生学习概念的难度

物理知识体系之间是相互联系的,物理概念之间也是相互关联的,在物理教学的过程中,教师通过新课、练习、复习等环节不断加深学生对概念间的联系与区别的理解,增长和丰富学生的知识体系。在物理教学的过程中,将物理实验和物理概念的讲解有效结合,能将复杂现象简单化,将概念间的联系明朗化。原因是物理实验具有将复杂的条件简化和纯化,突出研究对象的主要因素,排除次要的非本质因素,使需要认识的某种性质或关系以比较纯粹的形态表现出来的特点。如在练习题中关联到压力和重力的相关概念时,单一用讲授的办法,学生始终难理解压力与重力的区别。如果此时巧借下面这个小小的实验,学生会比较容易将两者的联系与区别彻底弄清楚:选用一个长的塑料尺(约60cm长的软塑料尺)组成斜面(初坡度约为60度),将稍重的铅块圆柱体放在斜面上,提示学生观察并记录塑料尺的形变程度;然后不断减小坡度,引导学生观察并记录塑料尺的形变程度;最后让学生在经历体验后分析重力的变化情况、塑料尺所受压力的变化、塑料尺的形变程度的变化等,引导学生根据观察和记录,归纳压力与重力的联系与区别。

总之,物理实验对初中物理概念的建构是多层次、多角度、多侧面的,笔者抛砖引玉,希望能够引起同行的重视,并对其中的不尽、不全、不足之处多多指教。

(责编 白聪敏)

上一篇:农村信用社合规文化建设浅议下一篇:研究生学术部工作计划