数学教学中学生数学应用能力的培养论文(共8篇)
一、初中数学教学培养学生数学应用能力对教师的要求
在初中数学的教学中,为了能够确保对学生的数学应用能力进行有效培养,要求教师应该拥有先进的教学理念,并以新颖、先进的教学方式进行教学。在初中数学的教学过程中,教师应该营造活跃的课堂气氛,进而提高学生的学习积极性,提升学生的学习效率。同样,在对学生数学应用能力进行培养的过程中,教师也应该拥有先进、高效的教学理念,以此来确保教师能够拥有科学、合理和高效的教学方法,进而确保其在初中数学过程中能够有针对性的对学生的数学应用能力进行培养。
二、培养学生数学应用能力的实践研究
1.改变教学观念,改革教学方法
在新一轮课改中,在初中数学教学过程中,除了要求教师应该改变传统的教学理念,对学生的基本知识和基本能力进行全面培养之外,还要求教师对自身的教学方式进行改革,以新颖、高效、活跃的教学方式进行教学,并在教学中不断对学生的数学应用能力进行培养。在我国传统数学教学中,都是以老师为主体进行主动传授,学生被动接受来完成数学教学,并且在教学过程中教师只重视对理论知识的传授,而不重视对学生数学应用能力的培养。该种教学方式教学成果只体现在学生成绩上,而无法体现在学生的能力上,会在一定程度上对学生的`成长造成限制[2]。因此,为了能够促进学生的全面发展,提升学生的数学能力,在新一轮课改之后,在初中数学教学中,不仅要求教师改变传统教学理念,还要求教师要主动对自身教学方式进行改变,在教学中主动对学生的数学应用能力进行培养。
2.联合实践对初中数学进行教学
1. 数学课堂的应用性
众所周知, 数学课堂的教学流程对学生学习的兴趣和动机有极大的作用. 在数学教学课堂上, 教师要着手于数学知识在生活中的应用. 让学生能够真正的体会到“学以致用”乐趣. 数学的讲授内容要贴近生活, 还要尽量避免讲解枯燥乏味, 学生不感兴趣的内容, 尽力给学生提供更多实际锻炼的机会, 加强训练学生的数学应用意识, 课堂上要抓好学生的数学实际动手能力. 可以通过以下手段提高数学课堂的应用性. 第一, 教师设计一些与生活有关的内容, 让学生轻松学会数学知识; 第二, 对抽象的概念建立模型, 加深学生对新知识的感性认知.
2. 数学活动的应用性
学生除了数学课堂的学习, 还有许多数学活动. 在数学教学时, 要遵循以学生为主体, 鼓动学生积极参与到数学教学中来, 培养他们自主学习和研究的能力. 而合理安排一些数学实践活动能够很好地培养学生学习的积极主动性. 例如, 让学生自己加入到社会的计算活动中去, 可以让他们去市场购买东西. 在估算价钱, 计算买卖的价钱和斤两以及最终的账目汇总这一连串的过程中, 让学生自己解决问题. 这样的活动能够向他们灌输一种应用数学的理念. 这样不但能够使学生体会到数学的乐趣, 而且还能激发他们对知识的渴望.
3. 数学应用与其他学科
数学应用也在其他学科中有所体现. 我们要了解, 数学不只是一门工具学科, 还是一种拥有悠久历史的文化. 因此, 数学与其他方面的科学文化知识是紧密联系、不可分割的. 因而在新课程改革的引导下, 增加数学在其他课程中的运用, 将数学与其他学科有机的结合起来, 使学生能在学习其他课程的同时深入了解对数学的应用. 例如, 在进行英语、语文等一些其他学科学习的时候, 教师可以融入一些数学知识, 设计一些可以将各科知识连结起来的教学环节. 中学生可以通过对其他课程的学习训练数学应用, 使知识可以融会贯通.
二、培养中学生数学应用能力的策略
1. 培养学生的数学应用意识, 增强对数学应用的重视
具有应用意识的学生, 善于将问题与已学的数学知识联系起来, 积极思考, 主动解决问题. 因而, 培养学生的应用能力具有非常重要的现实意义. 若想培养学生的应用意识, 最重要的是要提高学生的学习兴趣. 第一, 利用直观教学激发学生的学习兴趣, 将数学与生活联系在一起, 增强学生对数学概念的领会和兴趣. 第二, 要关注生活, 从生活中提取数学应用价值. 因为数学教学内容比较严密、抽象, 使得学生对数学应用意识比较淡薄. 教师要充分分析教材与生活的联系, 来提高学生的数学应用意识.
2. 培养学生的数学建模能力, 引导学生体验数学应用
数学教学内容比较抽象, 逻辑严密, 结论确定性强. 而数学建模不但能使学生运用数学思想来解决问题, 还能提高学生的数学应用能力. 在数学建模教学过程中要把学生摆在第一位, 运用分层次推进, 全方位深入的方法, 按部就班, 把教材和日常教学相融合, 注重研究建模的数学思维过程. 在教学“打包问题”中, 可以让学生自己动手制作模型, 自己记录数据并排列模型, 让学生能够深入思考问题的实质, 教师在教学时, 要不断讲授一些数学建模的思想方法, 例如, 换元法、配方法、解析法等方法, 增强学生的数学建模能力.
3. 加强学生创新能力和实践能力的培养, 提高学生的数学应用能力
首先, 加强教学方法的创新. 教师要从学生的实际情况出发, 依据教材内容与教育目标的具体要求选择教学方法, 运用创新的现代教学方法, 通过创设一些数学问题, 增加学生的求知欲望. 例如, 教师可以先提出一个问题, 给学生一个模型, 学生通过模型找出生活中类似的例子, 找出共同点, 然后提出问题, 学生相互讨论做出判断, 最后经教师评讲得出正确答案. 这样可以使学生掌握获取知识的方法, 培养学生的创新能力. 其次, 教学内容和手段的创新. 在初中教学过程中, 教师要看透教材的内涵和外延, 充分挖掘与人们生活相关的问题, 来拓展学生的视野, 进而提升学生数学知识应用水平. 现代科技正在不断发展, 在教学时, 可以通过多媒体技术, 利用数学应用软件, 提高学生的学习兴趣, 提升教学效果, 培养学生创新实践能力.
参考文献
[1]涂永林.初中数学教学中如何提高学生数学应用能力[J].理科爱好者 (教育教学版) , 2010, 2 (2) :111-112.
[2]王英霞.高校学生数学应用能力的培养与探索[J].沈阳师范大学学报:自然科学版, 2010, 28 (2) :23-24.
一、拓宽对数学的认识,提高学生学习数学的兴趣
学生能否对数学产生兴趣,主要依赖于我们的教学实践,与我们的教学内容和教学方法的选择和应用密切相关。首先,教师必须在教法和(学生的)学法上多下功夫,狠下功夫,注重用数学解决学生身边的问题,注重用学生容易接受的方式展开数学教学,注重学生的亲身实践,重视在应用数学中传授数学思想和方法,把培养学生解决实际问题的能力作为教学内容的主线,更有效地激发学生的学习兴趣;其次,课堂教学中应充分发挥学生的主体作用和教师的主导功能。当学生应用数学知识去解决了一个一个的实际问题时,他们的学习兴趣必将被更进一步地激发起来,成为进一步学习的内驱力。
二、通过“数学建模”的活动和教学,把培养学生用数学的能力落到实处
用数学的能力是一种综合能力,它离不开数学运算、数学推理、空间想象等基本的数学能力,注重双基和四大能力的培养是解决学生应用意识不可缺少的武器。在双基和四大能力的基础上培养学生分析问题和解决问题的能力,把应用问题的渗透和平时教学有机的结合起来,循序渐进。在数学应用意识和能力的培养中,尤其应重视学生探索精神和创新能力的培养,把数学应用问题设计成探索和开放性试题,让学生积极参与,在解题过程中充分体现学生的主体地位。
三、实施“问题解决”形式教学,培养学生解决应用问题的能力
(一)按“问题解决”的形式设计教学过程.在“提出问题”阶段,教师的作用是创设问题的情境,而“问题”的设计是关键,它要符合学生可接受、有障碍、易产生探索欲望的原则,激发起学生的探索兴趣,接受问题的挑战。在“分析问题”阶段,教师要从观念和方法的层次上去启发学生,鼓励学生探求思路,进行独立的探究,展开必要的讨论和交流,在探索的过程中培养毅力和坚忍不拔的精神。在“解决问题”的阶段,教师要引导学生落实解答过程,把能力培养和基础知识、基本技能的学习结合起来,使学生感到成功的喜悦并树立学习的自信心。在“理性归纳”阶段,教师要引导学生对问题的解答过程进行检验、评价、反馈、归纳、小结,并结合问题解决的过程进行学法指导,而学生要通过理性归纳形成新的认知结构,学会学习,并不断提出新的问题,培养进取心和创造精神。
可改造课本上的例题、习题为“问题解决”的形式.我们可以改造课本上一些常规性题目,打破模式化,使学生不仅仅是简单的模仿。比如:把条件、结论完整的题目改造成只给出条件,先猜结论,再进行证明;或给出多个条件,首先需要收集、整理、筛选以后才能求解或证明,打破条件规范的框框;也可以给出结论,让学生探求条件等等。
四、在学习过程中培养运用能力
(一)以直观形式中进行概念教学培养应用能力。学习数学善于在实践中寻找,“原型”获得生动直观的体验模式,要掌握丰富的事实及本质属性。在几何学习中,从太阳和弯弯的月亮中可获得圆与弯的印象,从光线,笔直的树木得到直的概念。从静止的湖面可获得平的概念等。现实生活中这些东西对我们学习数学概念影响很大。因此在学习数学概念时要善于联想,从具体的实例中获得抽象的概念,反过来再解决具体的问题。
创设情景,培养应用能力,数学教学如果和学生熟悉的情境紧密联系,情境结构将会牢牢地印在他们的记忆之中。如学习公理“在所有连结两点的线中。线段最短”时可创设走路怎样最近等问题。在讲“相似三角形”时,可创设不用测量求楼高等情境;在解直角三角形时,可启发学生不过河怎样求河宽,不上山怎样求山高等。这些问题对学生十分新颖,学生乐学愿学。课堂气氛十分活跃这样的数学问题,不仅让学生倍感亲切、自然、有趣,而且更能激发学生饱满的学习热情,促使他们以旺盛的精力,积极的态度主动探索,在情境中沉思,在情境中领悟。在实践中实用,在实践中升华。
五、在应用中培养应用能力
(一)加强问题解决,促进能力培养。问题解决是直接应用数学知识解决实际问题和应用能力训练。下面几例足以说明这个问题。
(二)利用教材培养应用能力。数学教材中的数学题,特别是应用题的教学对培养学生应用知识解决问题起了很好的示范作用。如有关数字问题、利润问题、效力问题等,学生掌握了这些问题,可以作类似的实际问题。
(三)扩大应用范围,培养应用能力。数学教材中有关实际问题,不管从“量”上讲,还是从“质”上讲,远远不能满足学生学习的需要。教师要多设计与课本内容有较多联系的数学问题,将实际问题抽象为我们熟知的数学问题,从而架起一条通往实际应用的桥梁。还可以对教材内容进行加工、改造、使之延伸、演变成一些非常规范化的数学问题。这些问题不是教材中内容的简单模仿,而是带有创造性,具有探索性。
总之,知识应用素质的教育是全面素质教育中一个必不可少的部份,应用型问题有着丰富的社会信息,多视角的横向联系,多层次的能力要求,其多功能的教育价值早已是众所公认的事实,它已成为学生观察了解社会、认识评价社会的一个窗口。
关于培养学生解答应用题能力,《九年义务教育全日制小学数学教学大纲(试用)》中没有明确提出,但是在教学目的中讲到了使学生“能够运用所学的知识解决简单的实际问题”,这实质上包含了培养学生解答应用题的能力,当然在小学还是初步的。可以说,培养学生解答应用题的能力是使学生能够运用所学数学知识解决简单的实际问题的基本内容和重要途径。因为应用题反映了周围环境中常见的数量关系和各种各样的实际问题,需要用到不同的数学知识来解决。通过解答应用题,促使学生把所学的数学知识同实际生活和一些简单的科学技术知识联系起来,从而使学生既了解数学的实际应用,又初步培养了运用所学的数学知识解决实际问题的能力。另外数学作为一门工具学科,也应该把它用于解决实际问题作为教学的一个重点。这一点越来越多地被各国数学教育工作者所认识。例如,美国在80年代初就提出“解问题是80年代学校数学的重点;”在为90年代拟订的中小学数学课程标准中,再一次强调数学教育的目标之一是使学生成为“具有解数学问题能力的人”,“有效地应用数学方法解问题的人”。当然,培养学生解应用题能力的重要意义远不止于此,还可以发展学生的逻辑思维能力,培养学生良好的思维品质(如思维的灵活性、创造性)和道德品质等。而这些都是作为现代社会中具有较高的文化素养的公民所必须具备的能力和品质。
长期以来,我国的小学数学,无论从教材或从教学来说,对应用题教学是重视的,但是也存在不少问题,主要是偏重内容的教学,轻视能力的培养,加之教材的选择和编排不尽合理,教学的方法不尽适当,以致花的力量很大,收的效果较小。因此,如何提高学生解应用题能力,又使学生负担较轻,是一个值得认真研究探讨的问题。
二 解答应用题教学的改革趋势
近年来,国内外一些数学教育工作者和有经验的教师对解答应用题的教学,特别是如何培养能力进行了一些改革的尝试,取得了一些有益的经验。主要有以下几个发展趋势。
(一)应用题的内容趋于扩大
首先是加强联系实际的问题。不仅限于课本中编好的现成应用题,而是从实际生活中收集材料和数据,进行一些计算。例如,美国在进行加减计算时,让学生分类收集一些数字材料,然后进行统计和计算。英国在教学时给学生一张火车时刻表,不仅让学生能看懂某次车始发和到达的时刻,而且进行各种计算。通过一些实际作业使学生知道数学的概念和思想就存在于人们的活动当中,并且能够运用数学知识解决生活中的实际问题。我国有些教师也很注意实际生活中的数学问题。例如,一位教师出了这样一个题目:“某车间用一块长90分米、宽60分米的铁皮剪成半径是10分米的圆形铁片,该怎样下料才能使铁皮的利用率最高?”结果多数学生列成下式:90×60÷(3.14×10)≈17个;部分学生通过画图(左下
2图)得到答案是12个;还有一部分学生通过操作(如右下图)
得到答案是13个。通过讨论,使学生认识到最后一种下料方法利用率高,而第一种计算方法是脱离了这块铁皮的实际的。通过这样的问题使学生初步体会到在解决实际问题时绝不能生搬硬套所学的计算知识,还要注意对实际问题进行具体分析。
其次,运用数学知识所解的问题不限于实际生活中遇到的,还包括一些有助于培养学生运用数学知识进行探究能力的问题。例如,在下面的○里填上合适的数,使每相邻两个○里的数的和等于它们中间□里的数。让学生不仅写出不同的答案,而且找出填写的规律,并回答出能不能使开头和末尾的○里的数相同。由于解题的范围较广,很多国家不用“应用题”这个名称,直接叫做“问题”,日本原来叫做“应用题”,现改称“文章题”,以体现其范围的扩展。
(二)应用题的难度趋于降低
这个问题在多数国家已经得到解决。如日、美、英等国,解问题的面较广,较联系实际,但是难度较小。如日本课本中的文章题大多是两步计算的。有少数国家,如俄罗斯,原来应用题的难度较大,步数较多,后来难度已有所降低或适当后移。特别是在把小学三年制改为四年制以后,随着算术内容教学时间的延长,相应地应用题的教学时间也拉长了,应用题的难度也进一步降低。香港地区编订的《数学科学习目标》中规定整数四则应用题,“每题运算次数不超过两次”,分数、小数限解简易应用题。许多国家或地区采取这些措施,使应用题教学更适合小学生的年龄特点,无疑会有利于减轻学生的学习负担,更好地激发学生对解应用题的兴趣和积极性。我国在解应用题方面一直存在着偏难偏多的问题,特别是升学考试为了便于择优录取,往往出现超过大纲、课本范围的题目,给教学带来很大的压力和负担。近年来实施义务教育以后,强调全面提高民族素质,应用题教学开始注意适当降低难度,是一个可喜的现象。
(三)重视培养学生掌握解题的一般策略
这是培养学生解应用题能力的重要条件之一。它与应用题的教学目的和作用是紧密联系着的。长期以来,无论在国内或国外,都或多或少地把在小学数学课中要教会学生解答某些类型的应用题作为教学的最终目的。从这一看法出发,把教给学生应用题类型,记结语或公式作为基础知识。结果形成学生套公式的习惯,没有真正培养起解题能力。近些年来,越来越多的数学教育工作者认识到,应用题教学的最终目的,应是通过一些有代表性的问题的解答,使学生掌握解问题的一般策略或方法,从而达到真正培养学生解决简单的实际问题的能力。例如,日本伊藤武说过,过去解应用题,安于形式地机械地进行,把应用题分成若干类型,每一个类型都有一种确定的解法,结果容易使学生对确定的一些问题会解,而没学过的应用题就不会解了。前苏联弗利德曼著《中小学数学教学心理学原理》中说:“形成和发展学生解任何数学题(包括实用题)的一般技能,这是数学教学的基本职能之一”。1988年第六届国际数学教育会议也强调教学生学会使用解题的一般策略。有的代表指出,传统的教学解问题的方法往往是由教师给出一个范例,让学生模仿;教师不仅没有给学生准备真实的问题情境,也没有教给学生一般的解题策略,这样既不能提高学生解问题的能力,也不能提高他们解问题的积极性。有代表提出解数学问题的一般策略有:联系、分析、分类、想象、选择、作计划、预测、推论、检验、评价等。美国新拟订的《中小学数学课程和评价标准》中,每个学段的第一条标准就是学习和应用解问题的策略,只是要求的水平不同,体现逐步提高。目前美国的小学数学课本大都编入解题的一般策略,作为正式的教学内容。例如,一本五年级课本中出现以下一些内容:用图解,检验,有多余条件或缺少条件的,编题,多步题的解题步骤,估算得数,用表解。
近年来,我国一些数学教研人员和教师也开始注意研究如何教给学生一般的解题思路和方法,特别重视分析题里的数量关系。有的实验教材中也加强理解题意,摘录应用题条件,补充应用题的条件,检验应用题的解答等的训练。这对于提高学生解答应用题能力有很大的帮助。
(四)加强方程解法使之与算术解法相辅相成
从60~70年代的数学教育现代化运动开始,许多国家的小学数学增加了简易方程和列方程解应用题。但是列方程解应用题教学的起始期以及深度、广度,差异很大。例如,前苏联教学方程解法从小学二年级就开始了,而且有两步的应用题要求用方程解。这就涉及算术解法与方程解法之间的关系问题。近年来逐渐趋于一致。一方面,较多的国家或地区,如日本、俄罗斯、香港等,小学教学列方程解应用题限两、三步计算的,另一方面是在用算术方法解应用题有了一定基础再逐步出现列方程解应用题,这样可以使两种解法起到相辅相成的作用。
在我国,自80年代初小学开始增加列方程解应用题,一直有不同的看法。十多年的实践表明,增加简易方程和列方程解应用题,的确有助于发展学生的抽象思维,减少解应用题的难度,培养学生灵活解题的能力,并有利于中小学数学的衔接。但是在实际教学时还存在着不同的处理方法。特别是涉及分数除法应用题的教学,很多教师把用方程解作为向算术解法的过渡,最后还是强调算术解法,忽视方程解法。这样仍不能达到降低难度减轻学生负担的目的。近年来有些改革实验,强调算术解法与方程解法并重,相辅相成,取得较好的效果。例如,据《小学数学教师》1989年第3期载上海虹口区教育学院等按上述方法试验情况,第一次测试,试验班与控制班差异不明显,第二年秋追踪到中学进行测试,结果试验班成绩明显优于控制班,只学算术解法的学生到了中学产生了负迁移。另据《小学数学教师》1992年第2期载无锡市教委教研室等使用课程教材研究所编的实验教材,也取得类似的结果。两个实验班采取加强算术解法与方程解法的联系,并且两者并重,而两个对照班仍教给解题模式。结果单元教学完了,测试实验班和对照班成绩没有显著差异,但是寒假后再测试差异明显,实验班和对照班的成绩分别为87.3分和78.7分。但是根据北京一所小学的实验,单元教学完了在测试3步题和灵活解应用题时,实验班和普通班的成绩就出现明显差异。
三 义务教育《小学数学教学大纲(试用)》对提高解应用题能力采取的措施
《九年义务教育小学数学教学大纲(试用)》为了适应义务教育的性质和需要,切实提高小学生解答应用题的能力,根据国内外应用题教学改革的趋势,结合我国的实际情况,采取以下一些具体的改革措施。
(一)降低应用题的难度
《大纲(试用)》明确规定:整数、小数应用题最多不超过三步;分数、百分数应用题以
一、两步计算的为主,最多不超过三步(只限比较容易的)。删去了原大纲中的稍复杂的应用题以及综合性的不太繁难的应用题。由于全国各地的条件不平衡,作为义务教育,提出的统一要求不能太高,这样修改就使全国大多数学校大多数学生经过努力都能达到规定的要求,而且有利于学生的全面发展,为升入初中打下更好的基础。考虑到各地的条件不平衡,《大纲(试用)》中也注意有些弹性,规定四步应用题(比较容易的)作为选学内容,以便使少数条件较好的学校能充分发挥学生的积极性,更好地提高解题能力。
(二)加强联系实际
这比原大纲有明显加强。一方面增加了联系实际的内容,如百分数的应用中明确提出利息的计算,把求平均数问题与统计紧密结合起来等。另一方面在说明中强调“要引导学生了解数学知识的实际应用,从当地实际出发,进行调查,收集数据,在教师的帮助和指导下,编成数学问题,进行计算、解答,或作一些简单的统计,逐步培养学生这方面的兴趣、意识和解决实际问题的能力”。这对于培养学生具有自觉地把数学应用于实际的意识和态度,使数学真正成为学生手中的有用的工具,起着重要的作用。
(三)注意体现教给学生解题的一般策略
在《大纲(试用)》的说明中提出:“要引导学生分析数量关系,掌握解题思路。”这实际体现了培养学生掌握解题的一般策略。为了使之更加落实,在各年级的教学要求中还明确提出分阶段要求。例如,在五年制一年级要求学生知道题目中的条件和问题,二年级要求初步学会口述应用题的条件和问题,三年级把常见的数量关系作为知识点列入大纲,要求初步学会口述解题思路,进一步培养检查和验算的习惯,四年级要求掌握解应用题的一般步骤,五年级要求会有条理地说明解题思路。这样安排要求,有利于循序渐进地培养学生掌握解题的一般策略,逐步提高学生解应用题的能力。与此同时,《大纲(试用)》中还注意适当让学生掌握解题的特殊策略或方法。例如,说明和教学要求中都提到会按照题目的具体情况选用简便的解答方法。这样有利于培养学生思维的敏捷性和灵活性。
(四)适当加强方程解应用题及其与算术解法的联系
首先,在教学简易方程时增加了ax±bx=c这一类型,相应地扩展了用方程解应用题的范围。这不仅可以用来解答较多的整数、小数应用题,而且可以用来解答一些分数、百分数应用题(需用逆思考的)。这样还降低了所解的分数、百分数应用题的难度。例如,“饲养小组养白兔和黑兔共18只,学生接受,而且符合代数列方程解应用题的一般思路,从而为初中的学习做更好的准备。其次,《大纲(试用)》中强调五年级进一步提高用算术方法和用方程解应用题的能力,体现了加强两者间的联系以及灵活合理地运用两
知道方程解法和算术解法是密切联系着的,不是各自孤立的。也只有这样教学才能提高学生用两种方法解应用题的能力,从而进步发展学生在解题中的思维的灵活性和创造性。
四 对培养学生解答应用题能力的几点教学建议
下面根据近年来国内外改革的经验以及个人参加实验工作中的体会,对培养学生解答应用题能力提几点教学建议。
(一)抓好简单应用题的教学
大家都知道,解简单应用题是解复合应用题的基础,无论整数应用题或分数应用题都是一样,它们有共同的教学规律。打好整数、分数简单应用题的基础就为解复合应用题做好了准备。
怎么叫做打好解答简单应用题的基础?个人体会主要是使学生初步理解和掌握四则运算的意义,会分析简单应用题里的数量关系,然后能根据题里的数量关系正确选择运算方法,并养成检验的良好习惯。下面做一些具体的分析。
1.初步理解和掌握四则运算的意义。这是学习解答一切应用题的重要基础。正像有的教师所讲的,虽然应用题的内容是千变万化的,但都是四则运算在实际中的应用。往往有些学生不理解四则运算的意义,解答简单应用题时乱猜算法,或者根据题里的某个词语选定运算方法,这样是不能真正培养起解答应用题的能力的。关于四则运算的意义,要根据儿童不同年龄的认知特点分成不同的层次来教学。低年级要通过操作直观使学生理解每种运算的含义。例如减法,只要通过摆物品和图画等使学生懂得是从一个数里去掉一部分求剩下的部分是多少;高年级再进一步抽象,使学生懂得减法是已知两数和与其中一个加数求另一个加数是多少。高年级教学分数除法也是从乘法的逆运算的角度来理解的,这样就便于在解应用题时实际应用。
2.使学生学会分析数量关系。这是解答应用题的一项基本功。即使是简单应用题也存在着一定的数量关系,绝不能因为应用题简单而忽视对数量关系的分析。分析清楚题里已知条件和问题之间存在着什么样的数量关系,才好确定解决问题的方法。有些简单应用题的数量关系是明显的,学生容易弄清的。例如,“有5只黑兔,又跑来3只白兔,一共有几只兔?”学生很容易弄清,把原有的5只和跑来的3只合并起来,就可以知道一共有几只兔。但是有些简单应用题,学生分析数量关系就困难一些。例如,“有5只黑兔,白兔比黑兔多3只,白兔有多少只?”有些学生往往不清楚题里的数量关系,简单地看到“多3只”就判断用加法,结果与遇到求白兔比黑兔多几只的题发生混淆。因此,教学时最好通过操作、直观使学生弄清题里的数量关系。如下图,引导学生根据题里的条件分析出:白兔的只数多,可以分成两部分,一部分是和黑兔同样多的5只,另一部分是比黑兔多的3只,要求白兔的只数就要把这两部分合并起来,从而要用加法计算。由于通过操作和直观,在学生的头脑中对所学的应用题的数量关系形成了表象,经过多次练习,就能初步形成概括性的规律性的认识。这样教学,学生对每种应用题的数量关系都有一定的分析思路,就不容易发生混淆,也就不需要再教什么计算公式。
还可以举一道分数应用题。例如,“果园里有梨树480棵,占
还有一个判断哪个量是单位1的问题。通过线段图,学生容易理解,梨树的要把总棵数看作单位1。进一步再分析,题里没有告诉总棵数是多少,知道
用题的数量关系,并且可以防止学生根据一些关键词来机械地判断单位1和套用数量关系式。
3.紧密联系运算的意义来选择运算方法。在分析数量关系的基础上紧密联系运算的意义(或含义),把对运算的意义(或含义)的理解与应用直接联系起来,很容易确定运算方法。例如,当学生分析出要把两个数合并(结合应用题内容具体分析,如上面求白兔的只数的应用题),就联想到用加法;当分析出要从一个数里去掉一部分,就联想到用减法;当分析出要求几个几是多少,就联想到用乘法;当分析出要把一个数平均分成几份求一份是多少或者求一个数里有几个另一个数,就联想到用除法。对于分数应用题也是一样,当分析出要求一个数的几分之几是多少,联想到一个数乘以分数的意义,可以确定用乘法;反过来当分析出一个数(未知数)的几分之几等于多少(已知),要求未知的数(如上面求果树的总棵数的应用题),联想到可直接列方程解,或联想到分数除法的意义,可确定用除法。由于运算的意义(或含义)与分析应用题的数量关系建立起直接联系,学生在解答应用题的过程中一方面加深对运算意义(或含义)的理解,一方面学会应用运算的意义(或含义)来解题,从而提高学生自觉地应用所学的数学知识正确地解决实际问题的能力。
4.培养检验的良好习惯。解答简单应用题同进行四则计算一样,也要注意培养检验的习惯,这样一方面可以提高解题的正确率,另一方面可以为培养检验复合应用题的能力打下初步基础。检验应用题要比检验四则计算复杂一些,首先要重新读题,分析已知条件和所求的问题之间的关系是否正确,然后再看列式、计算、答案是否正确。较高年级还可以通过改编应用题并解答来进行检验。通过检验还可培养学生思维的深刻性,对解答结果的负责态度和自信心。
实践表明,很多城乡的教师按照上述原则和方法教学,收到良好的效果,学生容易接受,解题的正确率高,灵活应用知识的能力较强。但是也有一些教师采用另一种教学方法,即教给学生区分应用题类型,运用解题公式,结果给学生增加了学习难度,出现死记硬套的现象。目前对这个问题还有争论,下面谈谈个人的一点看法:
(1)从数学本身看,把简单应用题划分的类型以及概括的解题公式是否科学,还值得研究。简单应用题的内容范围很广,从科学的角度说,研究它的分类是完全可以的,实际上美、日等国也有些数学教育工作者对简单应用题进行分类。但是如何分类差异较大,目前国内流行的分类也不完全一致,因此这还是一个有待深入研究的问题。例如现代数学用笛卡尔积定义乘法,有些实际问题就不好区分被乘数和乘数。而这类问题就没有包括在目前流行的分类之中。把求一个数的几分之几是多少作为一个类型题也欠妥当,因为一个数乘以分数的意义就是求一个数的几分之几是多少,这样的应用题不过是分数乘法的意义的直接应用,根本没有什么分类型的问题。至于有些解题公式是否正确地全面地反映实际也值得研究。例如,所谓“标准量×分率=部分量”,容易使学生误解“部分量”都是小于“标准量”的,从而导致判断哪个量是“标准量”的错误。而且遇到这样的问题只要应用一个数乘以分数的意义就能解决,因此这种公式是多余的。
(2)从唯物辩证观点来看,应用题的数量关系是有内在联系的,分类型、套公式,往往把本来有联系的问题人为地割裂开来,不利于学生掌握。例如,有这样两道应用题:“食堂每天吃20千克面粉,3天吃多少千克面粉?”“食堂每天吃20千克面粉,吃的大米是面粉的3倍,每天吃大米多少千克?”如果分析两题的数量关系,都是求3个20千克是多少,因此要用乘法算。如果要把它们划分为两种不同类型的题,就割断了它们在数量关系上的内在联系,从而不利于学生以简驭繁地掌握应用题的分析和解答方法。
(3)从学生的认知特点来看,也值得研究。低年级学生的认知特点是以具体形象思维为主,教学解应用题同教学其它数学知识一样,也应结合操作、直观,使学生掌握应用题的分析和解答方法,而不宜教给抽象类型、公式,否则学生不理解,就容易死记硬套。在教学实践中常常看到,学生会解答一道应用题,却说不出是“部分数+部分数=总数”,还是“总数-部分数=部分数”。遇到两步应用题就更加困难。例如,“同学们做了30件玩具,自己留下6件,剩下的平均送给幼儿园的3个班,每班分得几件?”第一步是“总数-部分数=部分数”,有些好学生还能说出,而第二步就很难说出“求出的部分数变成了总数”。这些违反儿童认知规律的做法给学生增加了不必要的学习负担。
(4)从现代数学论的原则看,要教学生理解基本概念、基本原理,才能实现最大迁移;强调思维过程,要从以记忆为主的教学方法转到以思维为主的教学方法;注意发挥学生的主体作用,培养学生探究能力。而以教分类型、记公式为主的教学方法正好与上述的原则相违背,妨碍学生对数学基本概念、基本原理的理解和掌握,束缚学生的思维。
当然,提出简单应用题教学不宜分类型记公式的问题,并不意味着在任何情况下都不能教给学生公式。对某些内容在适当的时候教给学生必要的公式,如面积、体积计算公式等,还是可以的,但教学时也要注意使学生理解公式的来源,防止机械的记忆。
总之,简单应用题教学生分类型记公式,涉及培养什么人的问题以及如何提高民族素质的问题,从理论和实践上进行一些深入的探讨,是十分必要的。
关于抓好简单应用题教学还有其它一些问题,将在下面论述。
(二)加强应用题之间的联系
从实质上说,这是应用题的组织结构问题。应用题的组织是否合理,结构是否恰当,对于培养学生的解题能力具有十分重要的意义。过去的数学课本,由于对这个问题处理得不够好,给应用题教学造成一定的困难,直接妨碍学生解题能力的提高。经过近年来的实验研究,比较深刻地认识到,应用题的内容和解法虽然千变万化,但其内在联系十分紧密。只要根据应用题的内在联系,合理地组织教学,可以使学生较好地理解应用题的结构,较快地掌握应用题的分析和解答方法。
1.简单应用题的内在联系。即使简单应用题之间,也有着紧密的联系。下面以两组加减法简单应用题为例加以分析。
①有5只黑兔,8 ②黑兔和白兔一共有 ③黑兔和白兔一共有
只白兔,一共有
13只,有5只黑兔,13只,有8只白兔,多少只兔?
有多少只白兔?
有多少只黑兔?
④有5只黑兔,白兔 ⑤有5只黑兔,8
⑥有8只白兔,黑兔
比黑兔多3只,有
只白兔,白兔比
比白兔少3只,有
多少只白兔?
黑兔多几只?
多少只黑兔?
从上面6道题中,很容易看出①②③为一组,①是原型题,②③是①的逆思考;④⑤⑥为一组,⑤是原型题,④⑥是⑤的逆思考。同时第一组题与第二组题也有联系。例如,①④的条件和问题虽不相同,但分析数量关系时却要把两个已知数合并,从而要用加法解答。①⑤的条件都相同,但问题不同,数量关系不同,解答方法也不同。编写教材和教学时,不宜把重点放在分类型上,而要逐步地揭示它们的内在联系和区别,使学生更好地掌握题里的数量关系和解答方法。
分数应用题之间、分数应用题与整数应用题之间也有其内在联系。例如,教学分数乘、除法应用题之后,可与整数应用题进行联系。
通过联系对比,可以看出①②③是一组整数应用题,①是原型题;④⑤⑥是一组分数应用题,⑤是原型题。分数应用题分别与整数应用题相对应,数量关系相反,但解答方法是一致的,因为分数乘法的意义扩展了。教学时如能引导学生发现和总结规律,就会加深对两组应用题的理解。
2.复合应用题与简单应用题之间的联系。一般地说,复合应用题都是由几个简单应用题组合而成的,或者说是在简单应用题的基础上扩展起来的。因此它们之间有着密切的联系。但从简单应用题扩展到复合应用题又是个质的飞跃。以两步应用题为例,它们同简单应用题比较,不仅是已知条件增多,而且数量关系也复杂了。一般地说,简单应用题的问题是和两个已知条件直接联系和相对应着的,从两个已知条件可以判断所求的问题就是题里的问题;反过来,问题所需要的条件就是题里所给的条件。而在两步应用题中,问题是和题里所有的已知条件联系着的,是对所有的条件提出来的。这样就形成了问题和所需要的直接条件之间的“分离”现象,也可以说一个直接条件被隐藏起来,而需要根据问题和已知条件的关系把这个所需的条件找出来。从解答的角度说就是要提出一个中间问题。而要解答这个中间问题还要正确地选择已知条件。因此这比解答简单应用题需要较为复杂的分析和综合,需要进行间接的推理(即从两个判断推出一个新的判断)。
例如,两步应用题,“小明画5张画,小华比小明多画3张,他们一共画多少张?”要求两人一共画多少张,必须先知道小明和小华各画多少张,而题里没有直接告诉小华画多少张,所以要先求小华画多少张。这样的分析、推理显然比简单应用题复杂。
至于三步或更多步数的应用题,已知条件就更多,数量关系更复杂,分析推理的步骤也就更多。但分析推理的方法与两步应用题的基本相同。下面着重谈教学两步应用题如何加强与简单应用题的联系。主要有以下两点:
(1)解答一些连续两问的应用题。为了给学习两步应用题做好准备,除了打好简单应用题的基础(包括提问题、填条件)外,适当出现一些连续两问的应用题很有好处。这种应用题在向两步应用题过渡方面起着桥梁的作用。在这样的应用题中,关键在第二问,有时缺少一个已知条件,需要到前面的简单应用题里去找,往往正好是前面一题的计算结果;有时第二问中一个已知条件也没有,都要到前面一题里去找。例如,“学校里有8棵杨树,柳树比杨树多3棵,有多少棵柳树?两种树一共有多少棵?”第二问所需的两个已知条件,一个是前面一题的一个已知条件,另一个是前面一题的计算结果。由于适当进行这样的练习,就为两步应用题的分析和解答做了一定准备。
(2)教学两步应用题时由简单应用题引入,然后把它扩展成两步应用题。例如,“①学校买来20张颜色纸,用去14张,还剩多少张?②学校买来12张红色纸和8张黄色纸,用去14张,还剩多少张?”通过比较,使学生看出两步应用题与简单应用题的联系和区别,从而初步体会到两步应用题的结构,明确解答两步应用题必须分两步计算,先提出一个问题,进行计算,再解答原题里的问题。这样学生不仅容易掌握,还有利于激发学生的思考,培养学生分析问题的能力。以后还要经常做一些对比练习。
3.复合应用题之间的联系。这一点更为重要。通过复合应用题间的联系对比,可以加深学生对新学的应用题的结构、分析推理方法等的理解,从而较快地掌握复合应用题的解答方法,产生迁移的效果。复合应用题间的联系是多种多样的,需要进行认真的分析,选取适当的联系的途径,才能收到良好的效果。下面举出加强联系的几个方面的例子。
(1)纵向联系的:有些应用题是由已学的步数较少的应用题扩展而成的。教学时由已学的应用题引入,通过联系比较,很容易看出新的应用题的条件或问题有哪些变化,如何在已学的基础上进一步分析推理,获得新的应用题的解答方法。例如,“①汽车从甲地开往乙地,3小时行135千米。照这样计算,一共行了5小时,甲乙两地相距多少千米?②汽车从甲地开往乙地,3小时行135千米,照这样计算,还要行2小时才能到达乙地,甲乙两地相距多少千米?”
(2)横向联系的:有些应用题基本数量关系相同,只是已知条件有些变化,学生容易在已学的基础上类推出来,不需要作为新内容来讲,这样既调动学生思维的积极性,又可减少教学时间,收到举一反三的效果。例如,“①学校先买10瓶墨水,又买来8瓶。用去14瓶,还剩多少瓶?②学校买来3盒墨水,每盒6瓶。用去14瓶,还剩多少瓶?”
(3)联系对比的:有些应用题的条件问题相似,解法容易混淆,可以通过联系对比使学生区分它们的异同,从而提高解题的正确率。例如,“①
(三)重视教学解题的一般策略
这是培养学生解题能力的关键性问题。正如前边所讲的,会解答所学的应用题并不是最终的教学目的,而是通过所学的有代表性的应用题达到使学生掌握解题的一般策略。这在现今的信息社会尤为重要,要使学生成为能够处理信息的人,通过解答应用题培养学生解题的一般策略是一个重要途径。关于解题的一般策略,主要有以下几个方面:
1.条件和问题的收集。
为了解一道题首先要弄清楚题里给了哪些已知条件,要求解决什么问题。识别或收集条件和问题的过程也就是收集信息的过程,也是理解信息的过程。在低年级往往要求学生口述已知条件和问题,到高年级也可以教给学生用图(如线段图)或表解来表示已知条件和问题。学生清楚地表述和表示一道题的已知条件和问题是解题的重要前提。一般地说,题里的问题和所需的已知条件都已直接给出。但是为了更好地培养学生正确收集必要的信息的能力,在适当年级也可适当出现信息不完全的题目。例如有的题目可以缺少问题或一两个已知条件,让学生从实际中收集,加以补充;也可以适当出现一些有多余信息的题目,使学生能在较多的已知条件中,正确选择有用的和必需的来进行计算。实验表明,有能力的学生看到题很快指出不需要的数据,而能力较差的学生则需要教师的帮助,有的甚至在教师的帮助下也很难找到多余的数据。经常练习对于培养学生这方面的能力很有好处。
2.分析数量关系。
这是对所收集的信息进行加工的开始,也是解题的一个重要步骤。无论解简单应用题或复合应用题,都要认真分析题里的已知条件和已知条件之间,已知条件和问题之间的数量关系,才好确定解答的方法。分析数量关系一般有两种方法:一种是从条件入手,通称综合法;另一种是从问话入手,通称分析法。综合法比较容易掌握,但其缺点是学生往往看到前面相邻的两个已知条件就进行计算,而忽略后面的已知条件,未从整体考虑。提出的中间问题不一定是解这道题所需要的。从问话入手稍难一些,但能使学生从整体出发,根据所解的问题提出所需的条件,从而较正确地确定中间问题。实验表明,开始教学解两步应用题,宜于从条件入手,即使采取了这种分析的方法,也还会有部分中、差生难以提出中间问题,需要经过一段训练逐步掌握。但是逐步要转到训练学生从问话入手,这对提高学生解多步应用题的分析能力很有帮助。至于学生自己解题时用哪种方法分析,不必加以限制。考虑到进行分析需要一定的训练时间,课堂上解应用题时要给学生口头分析的机会,除了教师指定某个学生分析外,要让同桌的学生互相练习分析。不宜过早地让学生书面分析,这样费时间,会减少解答应用题的数量。学生有了口头分析的基础,可在课外安排少量的书面分析作业。此外,订正时也要重视让学生进行口头分析。
3.拟订解答计划。
这是对信息进行加工的继续。就解决一般的问题来说,它是必不可少的步骤。但在小学数学中,解答简单应用题时则没有必要,只在解答复合应用题时才有必要,而且有时边分析边拟订解答计划边解答,往往与上一步的分析数量关系或下一步的解答合并起来。从掌握解题的一般策略来说,还是单把它划为一个阶段为好。拟订解答计划是在理解题意、分析数量关系的基础上确定解答需要分成几步,每步要解答什么问题。这是分析、推理的直接成果。正确地拟订解答计划,表明学生对所解的题目有了整体上的理解,同时又对解决问题的具体步骤做出了合乎逻辑的规划。能否在解答之前正确地拟订解答计划也是考察学生能力的重要的标志之一。实验表明,好的学生一般能在解答之前订好解答计划,而较差的学生往往能正确解答,却不一定能正确地提出每一步所要解决问题。因此,教学时在这方面适当加以训练,对培养学生的逻辑思维有一定的好处。
4.解答。
这是对信息进行加工的最后阶段。如果说前面各阶段主要是思维的过程,那么这个阶段要产生思维的结果。当然这个阶段也是有思维过程的。例如解答每一步要选择哪两个已知数,进行哪种运算,如何使计算正确等,都要深思熟虑,这样才能达到最终的正确结果。教学的任务就是要引导学生既重视思维的过程,也重视思维的结果,达到正确解答应用题的目的。这里需要提出的是,往往学生把算法选对了,但把得数算错了;或者竖式里的得数算对了,最后抄错了数。因此这个阶段特别要注意培养细心认真的良好习惯。
5.检验与评价。
对应用题的解答的检验与评价实质上是对信息的检验与评价。这一步教学不仅对提高应用题解答的正确率有帮助,而且有助于培养学生良好的检验习惯,对信息的正确评价的能力。有经验的教师对这方面的教学比较重视,收到较好的效果。但是也常常遇到教师虽然重视了,但有少数学生仍没有养成良好的检验习惯,甚至有少数好的学生做得很快,但是检查不出错误。因此在培养检验习惯的同时,还要适当教以检验的方法。检验方法有多种,通常低年级只要教学生从审题到解答逐一检查。中、高年级有些题可以逐步教给学生用不同解法来检验。例如,原来应用题是用连减计算的,检验时可以把两个减数相加,再从被减数里减,去,看两次算得的结果是否相同。以后还可以适当教学生把求得的结果作为已知条件,把另一个已知的量作为未知的,然后倒推求出结果看是否与已知的相符。这只作为一种检验方法教给学生在解答中练习应用,不宜作为考试要求。通过检验要培养学生对自己的解答具有负责态度和自信心。检验之后还要能对自己的解答进行评价。为了培养学生评价能力,可以开展相互评价,或教师给学生一些案例让学生练习评价。有条件的话,还可以教给学生估算得数。
解题的一般策略除上述几方面外,还有预测、解释等。这里从略。总之,今后应用题教学要真正做到培养学生的解题能力,不是在加深应用题的难度上下功夫,而是要通过有代表性的又为学生容易接受的题目,着重培养学生解题的一般策略,使学生能够产生迁移,这样即使遇到一些未解过的题目,学生经过自己的分析、推理也能找出解答的方法。
(四)重视变式练习
练习在培养解答应用题能力中起着重要的作用。但是练习要合理地组织,才能收到良好的效果。其中特别是适当安排一些变式练习,对于克服简单的机械重复,提高解题效率,培养灵活的解题能力,具有十分重要的意义。实验表明,通过变式练习,很多学生能够排除应用题中非本质特征的干扰,正确地分析题里的数量关系和选择运算方法,求得正确的答案。应用题的变式练习从低年级起就要做一些安排。主要有以下几个方面:
1.改变叙述的顺序。例如,乘法应用题,第一个已知条件不仅有需做被乘数的,还要有需做乘数的。复合应用题,有些相邻的两个已知条件可以进行计算的,也要有些不可以进行计算的,使学生能在真正理解题里的数量关系的基础上正确地选配已知数进行计算。
2.改变叙述的方式。例如,加法应用题,不宜每题的问题都出现“一共”,已知条件中也可以出“飞走”“跑掉”等词语,以防学生简单地根据个别词语错误地判断运算方法。在高年级教学分数应用题更要注意适当变化叙述方
这样可以防止学生死记“相当于”后面就是“单位1”,而加强分析数量关系。
3.有多余的条件。在解题的一般策略中已经谈过。也可以把它看作是一种变式练习。由于有多余的条件,对原来所解的正常的题目来说,在内容和形式上都有了一些非本质的变化,这就促使学生更认真地分析数量关系,正确地选择已知数和运算方法,而不受这些非本质特点的干扰,从而有利于发展学生的思维。例如,教学两步应用题后出现这样的应用题:“同学们做了8朵红花,7朵黄花。送给幼儿园3个班,一共送了10朵,还剩多少朵?”实验表明,如果去掉“3个班”,绝大多数学生都能做对;加上“3个班”后,出现了各种各样的错误,其中按三步计算的达30%。
4.改变个别已知条件或问题,使其具有不同的或特殊的解法。例如,教学正比例之后出现这样的应用题,“果园里有梨树100棵,桃树与梨树的棵数比是4∶5,有桃树多少棵?”学生很容易用比例解答出来。如果把第二
棵数的比才能用比例解答。又例如,“玩具厂原计划每天生产玩具42件,8天完成。实际只用6天。实际每天比原计划多生产多少件?”学生一般都能列成算式:42×8÷6—42。如果把“6天”改为“7天”,虽然仍可照上面方法列式解答,但是还有特殊解法,有的学生会列成简便算式:42÷7。因此它有利于发展学生的直觉思维。
解答应用题的变式练习是多种多样的,这里只选常见的有代表性的几个方面举例说明。由此也能看出它们在提高学生灵活的解题能力,发展学生思维方面的作用。
(五)适当增加探究性的题目
如前所述,国外应用题教学改革的一个趋势是扩展应用题的范围,其中增加探究性的题目又是重点。我国应用题教学要进行改革,也应突破传统的应用题的范围,适当增加探究性的题目,以利于提高学生的解题能力,发展学生思维的创造性。初步考虑,可以注意以下几个方面:
1.适当出一些开放性的题目。
所谓开放性的题目就是题目的答案可以有多个。长期以来我们教学应用题的答案都是唯一的,这样把学生的思维束缚得很死,不利于培养学生的探究能力,如前面第二部分所举在○里填数的题目就是一个开放性的题目。第一个○里可以填不同的数,但是也有一定的范围限制。即最小是3,最大是13。又例如,周长是12厘米的长方形,长和宽都是整数,它的长、宽可能各是多少厘米?
2.适当出一些探索规律性的题目。
通过探索规律可以培养学生抽象概括的能力,发展思维的创造性。出题目时要注意具有多层次,以便于区分学生的不同思维水平。例如,下面的题有3个层次,第1小题是通过直观进行计算,第2小题离开直观进行计算,第3小题脱离具体计算概括公式。
(l)照下图的样子用小棒连着摆正方形。
□□ 摆2个用()根
□□□ 摆3个用()根
□□□□ 摆4个用()根
(2)连着摆6个正方形,要用()根小棒。写出算式。
(3)如果不数小棒,你能找出一般的计算公式吗?
实验表明,学生的答案呈现不同的思维水平。例如,有的学生第2小题就做错了,有的学生第2题虽然做对,但不会在此基础上概括出一般计算公式。
3.适当出一些非常规的题目。
上面举的一些例子有开放性、探索规律等特点,但是还与常规计算有较密切的联系。这里则指的是不一定用到常规计算的题目。例如,“有甲、乙、丙、丁4个学生赛跑,结果可能排出不同的名次。算一算一共可以排成多少种不同的名次。”这道题就不能利用常规计算而要借助图表找出正确答案。
以上探究性题目可都不作为教学要求,也不作为考试内容。
小学数学是随着社会、科学技术、生产和生活的发展需要不断变化的,其中的应用题教学必然也要随着发生变革。目前,无论从教材或教学来看,对应用题进行了一些改革,但是还很不够,需要进一步实验、探索,使其更加完善,以适应社会发展的需要,为培养人才打下更好基础做出贡献。
结合数学教学,浅谈培养学生良好的学习习惯
当今教育,正在进行新一轮课改。以培养创新精神和实践能力为重点,促进每个学生身心健康发展,培养良好的品德,强调基础教育要满足每个学生终身发展的需要,培养学生终身学习的愿望和能力。笔者结合常年数学教学实践认为,培养学生良好的学习习惯仍是一个很重要的环节。
学习习惯是指学习活动中形成的固定态度和行为。学习习惯对学生的学习有直接的影响,良好学习习惯是促进学生取得较好学习成绩的重要因素。良好的学习习惯养成了,学生将受用终生,而良好习惯要从小培养,“从娃娃抓起”。不良习惯一旦形成再纠正,那将是件很困难的事情。
结合数学教学,培养良好的习惯,包括那些内容呢?《小学数学教学义务大纲》指出“在教学过程中,要注意培养学生认真、严格、刻苦砖研的学习态度,独立思考,克服困难的精神,认真仔细、书写整洁,自觉检查的习惯”。以及学生乐于课前准备、活于课堂探究、勇于课后延伸;及时复习和独立完成作业等习惯。新课标还要求转变学生的学习方式,`培养学生合作学习、探究学习等综合学习方法,转变学生的学习态度,变“要我学”为“我要学”养成良好的学习习惯,培养学生对学习的责任心和终身学习的能力。
那么怎样结合数学教学培养学生良好的学习习惯呢?笔者认为应从以下六点做起:
第一、贯彻新理念、实施新教法,改进学生学习方式,改善学生学习状态。倡导发现学习,探究性学习及研究性学习,使学生积极参与到学习过程中来。变“要我学”为“我要学”,培养良好的学习习惯。教师在课堂教学中一方面要创设教学情境,激发学生的学习兴趣,使学生养成认真听讲的习惯;另一方面要根据数学课堂教学的特点,采用适当方法,培养学生自主探究、合作交流、自信学习、不断反思的学习习惯。
第二、让学生懂得为什么要培养这种学习习惯,使学生明确要这样做的意义。让学生明白怎样做才算好,怎样做才能做得好;让学生明白要这样做的意义。例如,要求学生计算四则混合运算式题时,必须要先认真审题。这样做不但能从整体上把握好运算顺序,寻找简便计算方法,而且还能避免因看错抄错数据、运算符号而产生错误。学生明白了,就会认真审题,逐渐形成认真审题的学习习惯。再如学生写字时老师要经常告诉学生正确的写字姿势,即头要端正,不要歪斜甚至伏在手臂上,眼睛离笔尖一尺左右;腰要正直稍有前倾,不要俯向桌面;双臂要撑开些,保持一定距离,如果两臂缩拢,会书写不灵便;双足放平,脚踏实地,不要一前一后,或交叠一起。对于写字姿势不好的学生随时纠正,同时讲一些危害性。学生就会逐渐形成良好的写字姿势习惯。
第三、紧密结合教学过程,严格要求,认真检查。培养良好的学习习惯是一个长期的细致的过程,必须结合教学过程进行。从小抓起,长抓不放。例如,独立完成作业的习惯,教师要提出具体要求。学生做作业时,老师不仅要注意学生做得是否正确,还要检查学生是否按老师提出的要求来做,是否独立完成作业,按要求做的,及时表扬。做得好的,再加奖励一个“笑脸”或是一朵“小花”,示范给其他同学看。让做得好的学生体验成就感,从而激励其向更好的方面发展。同时牵引写的不好学生向好的方面发展。对有抄袭作业等有坏毛病的学生,应以鼓励性语言教育为主。如:“你如果独立完成,思路肯定是最独到的,相信自己!”、“如果你用心去写,肯定会把字写的最漂亮!”,随时反馈学生信息,对于学生点滴的进步以及时表扬,耐心帮助他们,使其逐渐养成良好的作业习惯。
第四、赞赏学生独特性和富有个性化的理解与表达,培养学生勇于创新的良好习惯。课堂上或是作业中,对于同一道题,不同学生思路不同,方法不同却“殊途同归”,自然包含着学生各自不同的独创因素,即创新意识,对于学生敢于另辟蹊径的做法、想法教师应该及时给予肯定、表扬。甚至是不成熟的、或是错误的见解。教师都应从不同侧面赞赏学生独特性和富有个性化的理解与表达。让情感在这里交融,知识在这里增值。切忌抹杀学生的独到思维。另外课后练习适当增加拓展创新性的题目。引导学生勇于探索钻研一题多解,以题简意深的题目激发学生的学习兴趣,求得新颖、独到、变通的回答。从而培养学生勇于创新的良好学习习惯。
第五、教师以身作则,起表率作用。如教师工整合理的板书,就会直接影响学生,学生也会像老师那样字迹工整地认真书写。即教育无小事,事事皆教育,教师无小节,节节皆楷模。因此,教师要在培养学生良好的学习习惯上,言传身教,起楷模作用。
第六、良好的学习习惯的形成决非一朝一夕能够形成,我们每个老师都应对学生以高度负责的精神,主动、努力地耐心培养。同时要与学生家长保持经常性的联系。了解学生在家学习情况,和家长一起研究、探讨、合作,寻找最佳方法,帮助学生养成良好的学习习惯。
对新数学课程教学的探讨
本学期我们使用了北师大出版的《数学》(七年级上册),感觉新的教学理念下,教学内容、教学方法都有很大的变化。我们对教材、教学方式、教学效果进行了一些初步的探讨。
几乎每一节的引入都创设了一个实际生活情景,如第一节的用火柴摆正方形,分析正方形的个数与火柴根数关系;第四节的矩形娱乐场的面积问题。这些能较好的体现出数学来源于生活,又运用于生活的哲理。
在习题中设置了以人体体重估计人体血液质量的问题,说明人体健康指数是人体质量(千克)与人体身高(米)平方的商。这些习题特别贴近生活,学生回家后都饶有兴趣地测量爸爸妈妈的身高体重,计算双亲的健康指数和血液质量,学生们反映:父母普遍对此感兴趣,并纷纷夸奖自己的孩子。显然,这是一次激发学生学习兴趣,并让学生尝试成功的良好机遇,也在老师与家长之间架起了一座沟通的桥梁。在接下来的一次家长会上,我第一句话就说:“虽然我们没见过面,但你们的身高、体重、健康指数我都知道”,这一句话使会场的气氛顿时活跃起来,后面的话就好谈多了。
在新教材中,多项式、单项式的概念;多项式按降幂或升幂排列已经没有了踪影;添括号法则也不见了。而这恰是旧教材细、繁、难的地方,去的干净利落,不免人人欢喜。新增的代数式与实际意义的转化问题,可培养学生的创新精神,如有同学在解释8a3的意义时写到:有八个房间,每个间房有a个大箱子,每个大箱子中有a个小箱子,每个小箱子中有a瓶水,八个房间共有8a3瓶水。这种想法非常有新意。新一轮课程改革就是要改革教学过程中过分注重接受、记忆、模仿学习的倾向,倡导学生主动参与,交流、合作、探究等多种学习活动,改进学习方式,使学生真正成为学习的主人;成为具有发现、分析和解决实际问题能力的人。要使学生形成科学态度,学会科学方法;具有独立思考、自主探究的精神与求实创新的意识。
在初一数学教学第三章《字母能表示什么》中,我们要学生自主去探索、去发现用火柴棍摆成的各种图案与用火柴的总数的规律;用桌子椅子摆成的图案与用椅子的总数的规律;还鼓励学生去探索简单数列的通项公式。由此激发了学生自主探究的热情,促进了学生主体意识的觉醒。从而他们主动去寻找各种规律。其中一个典型的事例就是初一(8)班的孔秋强同学一天他来到老师办公室,兴匆匆地对我说:“老师我发现了一个规律:2的质数次方减去1是一个质数。”我进行了一些计算和验证,结论的确如此。
当时我不能证明结论的正确,也不能否定结论。这下可把我难住了。但我心里依然是高兴的。如果这结论真的成立,我的学生就发现了一个重要的定理,如果不成立,他也是进行了积极的探究。对质数的知识他掌握的比我还多了,他教给了我检验一个质数的方法。但是这个规律能否成立呢?这可真成了一个难题!我说你:“你再上网查一查,我也再想一想,不行的话,过两天珠海有个全国数学课程试验研讨会,我参加时,再请教有关专家。”在珠海的会议上一位来自山东的专家解开了我的谜团,他说:“早在17世纪,巴黎的僧侣马林?梅森(Marin Mersenne)曾断言267-1是质数,这就是著名的梅森猜想,在其后的250年内未曾引起过异议。时间到了1903年,在美国数学会的一次会议上,哥伦比亚大学的弗兰克?纳尔逊?科尔(Frank Nelson Cole)以"论大数的因式分解"为题作了一场报告,只用计算的方法就推翻了这个猜想,搞垮了这座250年的数学大厦。”这说明孔秋强也有与梅森类似的猜想。著名的梅森猜想历经250年才被否定,虽然孔秋强的发现如同梅森猜想一样最终被否定,但是他在数学学习中主动探索的精神是多么可贵!他能自主经历一场与数学大家一样的思维探索过程又是多么令人惊喜!
在这个问题的探索中,不但孔秋强同学增长了质数的知识,也促进了我的学习,我发现学生主体在推动我前进。不学习、不探究、不创新我将落后于学生,落后于时代,我感到活动教学的巨大威力。
在代数式与实际意义转化部分,有些题配的太难,如解释(a+b)(a-b)的实际意义,在没学平方差公式的前提下,学生很难想到它是两个正方形的面积差。
建议将第90页摆火柴的例子归到第111页探索规律中,而用116页的第4题引入“字母能表示什么”,效果会更好。建议增加合并同类项、代数式求值、去括号的课时量。代数式的意义的要求要明确,说明意义包括指实际意义和算法意义两个方面,强调实际意义的代数式形式不应过难,否则学生很难找规律。
建议老师在小结时可按数列和图形分类研究。关于数列找规律主要观察三种关系:前项、后项关系;相隔项(奇、偶项)的关系;找到的规律是否与各项内容相符。关于图形,无论是摆火柴,还是摆桌子都可分头、身、尾等部分观察发现规律。给学生一个观察研究的方法,找规律就不难了。
第111页随堂练习折纸求几条折痕问题,学生很难发现规律。按教参上建议折痕数与分裂后细胞数比较,学生越听越糊涂。后来我把这个题重新编排了一下:将一张长方形的纸对折,如图(用书上原图)可得到一条折痕。继续对折,对折时每次折痕与上次折痕保持平行,问:
(1)对折1次后折痕可将原长方形分成多少个小长方形?对折2次后呢?对折3次后呢?对折n次后呢?
(2)折痕数与小正方形数有关吗?
(3)对折n次后折痕是多少条?
设置问题的层次后,大部分学生能听懂了。我讲起来也轻松了!
第133页习题4.4中的第2题最好加问这些角中哪个是锐角、那些是钝角、那些是直角?可一题多用。
《小学数学练习活动中学生数学思维能力的培养研究》
2009 年春学期课题研究计划 执笔:房小科 【指导思想】 以总课题2009 年春学期研究工作计划为指导,以本课题实施方案为依据,深刻反思总结前一阶段课题研究中出现的问题、取得的经验,结合本校数学教研活动,把在“数与代数”领域的研究方法、研究思路迁移到“空间与图形”领域。【重点工作】 1.在研究内容上,拓宽到“几何与图形”“统计与概率”领域。把在 “数与代数”领域的研究方法、研究思路,以及取得的成果迁移到其他领域。继续立足课堂教学,以专题研讨的形式,探讨在“几何与图形”“统计与概率”领域的练习活动中“数学思维材料的组织策略”“数学思维方法的培养策略”“数学思维方式的运用策略”。初步把握其一般模式和一般方法,积累一批典型案例。2.在研究思路上,重点探讨练习活动中如何处理数学思维方法的培养系列化问题。在已经进行的课题研究中大多是依靠对现有练习材料进行加工、重组、整合,进而让学生经历过程,体验方法,达到培养思维的目的。但,这种对练习的加工往往是零散的,自由的,缺乏科学的规划,缺乏对学生认知心理的深入研究。这种不成系列的点状练习活动,可能会制约甚至阻碍学生的思维发展。要通过一段时间的研究,较系统的梳理各年段练习活动中涉及的数学思维方法(如可逆性思想、量不变思想、整体与部分的思想、转化的思想、集合的思想、消去的思想、扩缩的思想、代数的思想),各种思维方法的培养在广度与深度上提出明确的年段目标,同一种思维方法在各个年级怎么上,上到什么程度提出明确的要求,使之既遵循儿童的一般认知特点,又自成较完善系统的知识体系。3.着手收集整理资料,思考结题事宜。重点考虑我能为总课题组,其他课题组奉献些什么?能从其他课题组借鉴些什么?怎样组织、阐述、表达本课题的一些研究成果? 【常规工作】 1.拓展理论学习的形式,丰厚研究底蕴 本学期结合教科室安排的读书活动,要求课题组成员在自主阅读时有选择、有目的的阅读跟本课题有关的书籍、文章,并做好读书笔记,定期交流、传阅,并对学习中收获的思想自觉在教学实践中进行践行反思,通过一段时间的积累,丰厚理论素养,提升课题研究的针对性,并为课题组积累了一部分资料。本学期推荐阅读《好课是这样炼成的》。作为一线教师,最需要也是最有效的学习应该是鲜活的课堂。只有在课堂中才能发现问题,只有在课堂中才能促进主动思考。本学期,在学习理论的基础上,将更加注重真实案例的学习,并组织两次录像课观摩。继续加强队伍建设,鼓励教师间同伴互助,充分发挥群体优势,提高研究效率。提倡教师自由的交流自己的研究经验、心得,并积极争取在全校教研活动中展示我课题的研究成果,研究经验。进一步完善课题研究网站,利用网络平台汲取信息、分享经验、推广成果。2.抓实课堂研究的过程,夯实研究基础 数学课堂是师生彰显生命活力的场所,课题研究只有植根于课堂才是有意义的,才能真正体现其引领的价值。本学期继续坚持“问题+专题”的课堂目标:(1)理论学习摘录至少16 张。(期末检查)(2)观摩两节录像课。(3 月19 日,5 月15 日)(3)两次讲座。(曹粉华 4 月9 日 武留华 6 月18 日)目标:(1)系统整理各年级教材练习部分涉及的数学思维方法。(截止4.30)(2)对各种数学思维方法提出明确的年段目标。(截止6.20)(3)整理课题各项资料。(7 月份)研讨模式,采取同年级几人连续执教的方法,从整体上把握某一类型课的一般特征,掌握其一般上法。要重点做好备课和评课环节。强调集体备课,提倡多次磨课。在备课时要清楚地知道课题研讨课是为课题研究服务的,要着重把握研究目标,体现研究的重点内容,力图探讨并解决某一个问题。要做到每课必评。提高评课的针对性、有效性。在听课后,详细分配每位听课者的评课重点,或围绕教学目标、教学重难点,或围绕教材处理、教学资源整合,或围绕教师的教学方式,学生的学习方式……促进听课教师的思考,也力争从不同的侧重点对执教者的课堂进行解剖,从而使每一位参与者都能够把握某一类型课的一般模式和一般方法,为以后的教学提供一个可以借鉴的样式。活动后,执教者要在反思自我,总结他人建议的基础上,完善自己的教学设计,并写上评析,积极向各类期刊投稿。具体安排: 年级 执教者 研究内容 时间 一年级 陆
粉红 朱瑶瑶 杨月凤 《认识长方形、正方形》 2.26 四年级 曹粉华 王罗忠 《三角形》 3.5 五年级 倪 霞 武留华 《圆的认识》 4.2 二年级 田丽华 李建华 《认识方向》 4.16 三年级 姚 京 蒋爱萍 《轴对称图形》 4.30 六年级 耿巍忠 房小科 《图形的认识-复习》 5.21
教师作为“人类灵魂的工程师”,教师的“教”很大程度决定着教育的成败。作为新时代的数学教师,我们重要的任务就是培养学生的创造性能力。假如教师有个正确的“育人观”,就会在数学的教学中更好地培养学生创造性能力。因此,在教学中,我们应培养学生树立正确的“育人观”。教师自身也应有一个积极向上的心态,鼓励学生发挥自己的的想象力、创造力。当在课堂教学中,学生违反课堂纪律的时候,我们应带着一种宽容、豁达的态度对待学生,以便培养学生发散思维的能力。宽松、愉快的学习氛围,容易产生创造性思维。心理学家曾经说到:处于压力下的思维是带有强迫性的,这种思维很难产生创造灵感。创造性能力的产生需要一个宽松、愉快的环境。在教学过程中,由于老师和学生分别扮演着不同的角色,学生对教师存有一种天然的“敬畏感”。因此,教师应该主动去引导学生,使学生持有一种愉快的心情,这将会使“教与学”更加和谐。所以,教师要营造一种“和谐融洽”的师生关系,这有助有调适学生心理,善于与学生沟通,了解学生心理发展规律。做到对学生一视同仁,这有助于提升学生个人能力和创造能力的发展。
二、培养学生的主动观察能力
首先,我们要从习惯入手,在观察中我们要做到,乐于观察、勤于观察和精于观察。乐于观察是指学生在学习的过程中存在着强力的好奇心,这需要我们教师在教学过程中积极地去引导学生对好奇的事物进行细致入微的观察。例如,学生在学习“图形的认知”,教师应引导学生认真观察找出事物的形态和特征,找出事物间的区别和联系,并让学生找出生活中的事例,在不知不觉中培养学生观察的好习惯。其次,学生的观察要有目的性。所谓目的性就是要有目的地去体检、去观察,对自己的观察提出自己的见解,这样才能获得认可。反之,如果是漫无目的的体验、观察,将会无法锻炼学生的观察能力。因此,有目的性的观察,也就是最有效的观察,教师在教学的过程中要让学生养成带着问题去思考、去观察。最后,学生要养成仔细、认真的观察。学生认真的态度有利于仔细、认真的观察。如果回圈吞枣,匆匆一览,就很难发现事物内部一些细微的东西。因此,教师要通过各种方式仔细而认真地观察,培养学生捕捉那些稍纵即逝、不为一般人所知的细微现象,我们通过以上的观察,着重培养学生的观察能力。
三、加强学生动手实践能力
费赖登塔尔提出了这样的观点:“数学教师要在教学中培养学生动手实践能力和自主探索精神”。由于中小学学生的年龄偏小,学生的抽象思维能力普遍较弱。因此,教学过程中应引导学生利用己有图形或物体,充分调动学生参与到实践中,把操作方法教给学生,让学生通过观察、实验等操作实践,激发学生的发散思维能力,让学生主动思考,激发学生学习数学的动手实践能力。
四、注重培养学生迁移能力
迁移能力是培养学生对己有知识和技能掌握后,如何对新知学习的影响。教师在教学过程中,应充分发挥己有知识的“例子”作用,引导学生对类似学习内容、类似学习方法以及类似解题技能的知识进行分析,凭借知识方法的共同点,可让学生举一反三进行迁移,于同中见异,刻意求新。
五、倡导学生的求异能力
教学中求异是创新的基础,教学中倡导求异,有利于开阔学生的眼界,拓展学生的思维空间。因此,教师要培养学生用不同方法解答一题的思维习惯,在教学中,应鼓励学生面对教材权威敢于“班门弄斧”,提出自己的新观点、新见解。例如,解答梯形面积公式,教材提示推导三角形面积公式的时候,旋转平移两个完全一致的梯形,得出面积公式。在教学时,有的学生提出自己的见解,认为这样做麻烦,提出只要连接梯形上底任一顶点与对角的顶点,将梯形转化为两个三角形,运用己学到的三角形面积公式,就可以得出梯形面积公式。在学生求异时,教师对学生提出的新见解,应及时给予表扬和鼓励,从而培养学生在数学科目的创新能力和思维能力。由此可见,我们在数学教学中,应通过多种形式激发学生学习主动性。在主动、迁移、求异的过程中,让学生感受到“数学”的乐趣,从而树立学好数学的信心。
六、结语
对农村中学而言, 我认为可以农村生活事例, 即身边数学为背景, 让学生在自己独特的生活圈子里经历知识的形成与应用过程, 让学生乐于用掌握的数学知识解决实际问题, 进而培养农村初中学生的数学应用能力.
一、注重在生活中培养初中生的数学应用意识
生活中充满数学, 人们的吃、穿、住、行都与数学有关.初中阶段的学生, 具有强烈的好奇心和求知欲, 数学教师要积极引导学生从自己的生活中, 抽象出数学问题, 让学生明白数学就在生活中, 和自己密切相关, 从而主动学习并应用数学.
比如, 教师可以询问:如何估计鱼塘里有多少条鱼?同时教学生用频率作出判断.又如针对农村流行的地下非法彩票——六合彩, 可以教学生如何计算买彩票中奖的概率, 从而回家后, 说服自己的亲人、朋友, 不要再买六合彩, 执迷不悟, 将会是血本无归.
二、立足实际问题, 激发学生的兴趣
心理学家认为, 兴趣是最好的老师.兴趣在学习过程中可起到“助推器”的作用.如果学习内容与学生的生活背景相近, 就更能引发学生的兴趣, 学生会更主动地接纳这方面的知识.因此在教学中, 教师就要做好充分准备, 尤其是对于那些理论性较强的知识点, 要注重从具体实在的事物中去提炼出数学问题, 引导学生联系生活实际学习数学.
首先, 在课堂教学中, 教师要在引入新课上下工夫, 善于从贴近学生生活的实际问题导入新课, 激发学生学习的积极性和主动性.如在教学九年级《二次函数图像性质》时, 可从下面的问题引入:同学们, 最近我们学校饭堂的管理员遇到了难题, 一些同学反映饭堂盈利太大, 让我们学生吃得不怎么样, 再不调整好学生的伙食就……通过这节课的学习你就清楚我们学校饭堂盈利的情况了, 也可以帮助饭堂的管理员向同学们解释一下, 避免误解.又如, 做一单 (比如服装) 生意, 如何定价才能在某个时间段内获得最大利润?学习了《二次函数》就可以让你清楚地计算出这个最大利润.一个非常现实的问题, 可使学生的思想处于急于解决问题的亢奋状态, 让学生急于掌握解决问题的方法, 认识到数学来源于生活实际, 服务于生活、生产实际, 从而激起旺盛的求知欲.
第二, 学习数学知识, 就是为了应用数学知识解决实际问题.对于新学习的知识点, 教师要多方挖掘、收集相关背景, 从学生的生活内容出发, 巧妙创设问题情境, 让学生在学习中经历“问题——建立模型——实践——解释、应用与拓展”的过程.比如, 七年级列一元一次方程解实际问题, 可这样创设问题情境:“有一天, 一个教师想跟我换100块零钱, 我没有直接告诉他我口袋里的零钱是多少, 而是这么说的:我现有的零钱再加上与我现在的零钱一样多的零钱, 然后再加上现有零钱的一半, 再加上现有零钱的四分之一, 再加上一块钱就正好是100块钱了”.请你猜猜我口袋里有多少块零钱?学生想了很久都没有猜出来.这时候, 教师恰到好处地把学生引入列一元一次方程解决这个实际问题中来.接着又用方程解决实际生活中的很多学生熟悉的问题.学生在自主探索、亲身实践、合作交流氛围中, 解除困惑, 了解数学、认识数学、掌握了相关数学知识及解题的方法与技巧.应该强调的是, 在从现实背景导入新知识上, 教师要善于引导学生发现问题、从数学角度分析问题.
关键词:初中数学;应用意识和能力;重要意义;培养途径
初中阶段的教育应当以学生的全面发展为出发点,尤其是数学这一学科,其教学目标不仅包括传授给学生必须的基础知识,还应当包括让学生学会思考、懂得应用知识解决实际问题,从而形成并发展他们清晰的逻辑思维。长期以来,初中数学只注重知识技能的传授以及逻辑思维的培养,而忽略了培养学生用数学的能力。大部分学生具备扎实的理论知识以及解题的逻辑能力,却在面对现实生活中的数学问题时无从下手,即高分低能。在课改开展以及新课标出台后,教师应当对学生的综合素质提升加以重视,使学生在今后走向社会时能够跟上新时代的要求以及飞快的经济发展速度,真正做到学以致用,成为具备综合素质以及创新意识的新时代人才。
一、重视“数学建模”,认识数学的“工具性”
数学这门学科的工具性非常强,数学知识在人们的工作、生活以及很多研究领域都有所应用。在初中数学教学过程中注重培养学生应用数学的能力,就应当从数学在各个领域中建模的角度出发,让学生懂得在碰到实际问题时用数学的眼光去思考、去表达、去解决。具体来说,在初中阶段进行“数学建模”的教学,应当让学生对数学模型有初步认识,进而懂得进行数学模型的应用以及灵活的变换。像在进行不等式的教学时,教师可以将生产产品、销售产品环节以及物价的变动等问题引入课堂,让学生尝试建立相应的数学模型,真正体会到数学在生产生活中的应用,感悟到数学的价值与意义。总而言之,在初中数学中注重培养学生建立数学模型的能力,能让学生明白数学其实就在生活中随处可见,让学生在学习时更有兴趣与动力,从而在现实中发现更多的数学问题,懂得自主地运用所学知识解决这些问题,提高用数学的意识。
二、紧扣生活,渗透数学应用意识
要提高数学教学的效率以及质量,以课堂作为最直接与有效的时机渗透应用数学的意识,提高学生应用数学的能力。每个数学老师都应当认真钻研数学教材,把握好其主要特点和基本编写规律,善于从其中发现生活元素,让教学内容紧密地和学生的实际生活结合在一起。老师应当多从例题与课后练习入手,加入一些当下的热点话题或是学生感兴趣的问题,在提高学生学习兴趣的同时,丰富了学生的课外知识,并从中受到启发,将相关知识引用到生活的各方个面。例如,苏科版初二数学教材中,可以对一次函数这部分的练习设计如下:某一旅行团成员为3个大人、4个小孩,安排住宿时遇到了问题,如果选择甲酒店,要买4张全票、3张半票,如果选择乙酒店,则7个人都要买票,但票价打七五折。假设两家酒店的全票价格相同,那么作为此团导游,你要安排客人入住哪个酒店?学生在解决这个问题后,老师还可以对此题做很多变式,让学生进一步思考随着小孩人数的变化,酒店的选择应该怎么做出调整。这样的题目可以说在现实生活中经常碰到,在思考与探究的过程中自然就提高了学生应用数学的能力。
三、加强课外实践,深化数学应用意识与应用能力
著名的数学家华罗庚先生曾说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”这句话可谓精辟地概括了数学在各个领域的广泛功用。实践出真知,在教学中多创造实践机会,让学生在实践中领悟与掌握相关知识,则更能加深学生的印象,更能帮助他们轻松理解一些教学重难点,从而提高他们用数学的意识、锻炼他们用数学的能力。比如通过开展义卖活动,让学生在义卖过程中进行数据收集、统计,了解商品价格走动以及真实的市场行情,懂得如何定位自己的义卖品,学生在学习了数学知识的同时,更发挥出了自己的聪明才智,了解了策划、管理以及营销等多方面的知识,真正体会到数学可谓是无处不在,数学的应用也是无止尽的。
四、精编习题,提升用数学的能力
教师应当以新课标为指导,多编写一些贴近现实、紧跟经济发展的习题,让学生在练习的过程中树立应用数学 实践、帮助自己进一步提升的意识,培养他们的探究能力以及创新思维。如对于方程这一数学知识,其在金融行业的应用是非常广泛的。教学时,教师就可以多让学生做一些这类的练习:张老板以两种形式分别储蓄20万元和10万元,一年后全部取出,扣除利息税后实得利息4392元。已知这两种储蓄的年利率之和为3.24%,那么这两种储蓄的年利率各是百分之几?(利息税=利息金额×20%)。又如,对于不等式部分的教学,教师可以编写一些和产品生产或是物价相关的习题:大纵湖国际生态集团,计划选用A、B两类原料来生产甲、乙两种环保产品共500件。每生产一件甲产品要用到9gA原料、3gB原料,而生产一件乙产品则要用到4gA原料、10gB原料。集团有3600gA原料、2900gB原料,请你根据现有的原料,设计出生产甲、乙产品的几种组合方案。
综上所述,学习的目的是为了在生活中应用知识,学以致用。因而在数学教学中对培养学生的数学应用意识、应用能力具有非常重要的意义。教师要注意收集、整理一些有实际应用性的问题,以便在教学实践中组织学生去解决。从而让学生看到数学的應用价值,在潜移默化中培养了学生的应用能力,贯彻落实素质教育的要求。
参考文献:
[1]周国梁.浅析在数学教学中如何培养学生的数学应用能力[J]。成才之路。 2011(05) .
[2]林鲁哲.试论数学应用能力培养[J]。华章。 2011(05) .
[3]黄楣端.初中学生的数学应用意识和能力的培养[J]。福建中学数学。 2002(07) .
【数学教学中学生数学应用能力的培养论文】推荐阅读:
数学教学论文:在数学教学中如何培养学生提出问题的能力05-29
小学数学教学如何培养学生创造思维能力论文07-24
浅谈小学数学教学中学生创新思维能力的培养10-30
浅淡数学课堂教学中学生创新能力培养07-03
小学数学教学中如何培养小学生数学应用意识10-18
小学数学教学中学生健康心理因素的培养论文10-21
在小学数学教学中培养儿童的观察能力11-13
小学数学教学中初步逻辑思维能力的培养09-21
刍议中学数学教育中创新能力的培养与实践07-22