圆柱的体积教学反思(精选8篇)
身为一名人民教师,课堂教学是我们的工作之一,借助教学反思我们可以快速提升自己的教学能力,教学反思我们应该怎么写呢?以下是小编为大家收集的《圆柱的体积》教学反思,希望能够帮助到大家。
《圆柱的体积》教学反思1一、让操作更详实,留下思考的痕迹
动手实践、自主探索、合作交流是学生学习数学的重要方式。组织学生在实践操作中探究发现规律,从感性到理性,从实践到认识,从具体到抽象,引导学生积极动手动脑、概括分析、抽象推理等,这不仅有利于学生思维的发展,而且也可以加深学生对数学知识的理解和掌握。尤其是对于几何知识的学习,课堂教学中的动手操作就显得更加重要。究竟自己在教学的时候是否用好了学生的操作,让学生对操作的过程有深刻的体会与认识,在操作中是否激起了学生的思考。留下自己思考的痕迹,为进一步探索知识做好准备。
二、让观察更细致,寻找知识的联系
数学观察力,是新课标中对提出学生应必备的一种重要数学能力。学生在操作的基础上要学会观察,挖掘知识之间的联系,真正体现操作的价值。通过学生直观的观察,让学生去挖掘数学本质上的一些联系,让学生在知识的探索过程中有一个完成的体验过程,也对所学的知识有一个更好的理解。
三、让探索更深入,渴求方法的掌握
如果我们在教学的过程中能够很好地重视学生的操作经验积累,并形成一定的方法,相信学生在沟通新知和旧知之间的联系时会更加的自然而然,也能顺利的实现知识的正迁移。因此,在数学学习的过程中,应该让学生的探索过程更加的深入,形成一定的学习方法,为今后的学习积累知识经验的同时
《圆柱的体积》教学反思2在教学圆柱的体积时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。通过这节
课的教学,我觉得有以下几个方面值得探讨:
一、联系旧知,导入新知。
圆柱的体积的导入,在回忆了长方体、正方体体积计算方法,并强调长方体、正方体的体积都可以用底面积乘高,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想:“圆柱体是否可以转化成我们学过的图形呢?”激发学生好奇心,独立思考问题,探索问题的愿望。这样联系旧知,导入新知,思维过度自然,易接受新知。
二、动手操作,探索新知。
学生在探究新知时,教师要给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,学生亲身参与操作,先用小刀把一块月饼切成一个圆柱体把圆柱的底面分成若干份(例如,分成12等份),然后把圆柱切开,再拼起来,圆柱体就转化成一个近似的长方体。找一找:这个长方体的长相当于圆柱的什么,宽是圆柱的什么,高是圆柱的什么。圆柱的体积就是长方体的体积,从而推导出圆柱体积的计算公式。
三、课件展示,加深理解。
为了直观、形象,让学生观看课件:圆转化成近似长方形的过程,使学生很容易猜想出圆柱体也可以转化成近似的长方体来得出体积公式。在推导圆柱体积公式的过程中,要求学生想象:“如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?”学生虽然能说出“拼成的物体越来越接近长方体。” 但是,到底拼成的图形怎样更接近长方体?演示动画后,学生不仅对这个切拼过程一目了然,同时又加深理解了圆柱体转化成近似长方体的转化方法。
四、分层练习,发散思维。
为了培养学生解题的灵活性,进行分层练习,拓展知识,发散思维。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面直径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积;已知圆柱侧面积和高,怎样求圆柱体积;已知圆柱底面积和体积,怎样求高;已知圆柱体积和高,怎样求底面积等。
但是不成功的地方也有,如学生在操作时有些学生拼的不是长方体,而是其他的形状,这里由于是上公开课的原因就没有有针对性的讲解,只做到了多数学生的指导而没有做到面向全体学生,这点我觉得在课堂上很难做到。
总之,通过这次的国培学习,使我的思想认识和课堂技能都有了新的认识,感谢国培!
教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。
《圆柱的体积》教学反思3在新课程不断向纵深推进的今天,我们的课堂既要继承传统,把课上杂实。同时,也要把课上厚实。在教《圆柱的体积》一课时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识,并利用新知去解决实际问题。对此,我作如下反思:
(一)在学习情境中体验数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、猜测、操作、验证、归纳等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的价值,同时掌握必要的基础知识与基本技能。
在这节课中,我承接了上节课的内容,提问引出给水杯做布套是在求圆柱的表面积,求圆柱能装多少水是在求圆柱的容积,也就是体积,然后顺势提出你能计算圆柱体的体积吗?这一全课的核心问题,从而引发学生的猜测、讨论、交流等数学活动,引导学生可以用以前学过的知识将圆柱转化成近似的长方体,然后让学生在小组内利用手中的学具进行操作实验将其插拼成一个近似长方体;通过让学生观察比较,发现联系:二者之间什么变了,什么不变?接着我使用了课件-----把圆柱体沿着它的直径切成了32和64等份,拼成一个近似的长方体 ,展示切拼后的长方体,让学生更加直观的观察,从而证实自己的推测。并总结出圆柱体的体积计算公式。
由此至终让学生经历了做数学的过程,并伴随着问题的圆满解决,又使学生体验到了成功的喜悦与满足。与此同时,使学生理解与感受到了数学的魅力。
(二)在观察操作中探索新知
数学学习过程充满着观察、验证、推理等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。观察是课程实施中经常让学生进行的一种活动,观察的效果取决于观察者是否能够关注被观察的对象。操作是让学生进行感知的另一种活动,是一种内部思维的外在具体化。交流是在观察操作基础上的一种由动作上升到语言概括的过程。
在本节课的动手操作中,让全班学生以小组为单位围坐在一起,为他们提供自主探究的空间,同时尽量延长小组交流的时间,试图把学习的时间、空间还给学生,让其进行自主探究、合作交流。你有什么发现?你是怎样想的?等这样一些指向探索的话语鼓励学生独立思考、动手操作、合作探究,让学生根据已有的知识经验创造性地建构自己的数学,而不是去模仿复制别人的数学。
(三)在练习中巩固新知,提升能力
《数学课程标准》要求以人为本,以学生发展为本。因此,教师应根据不同的教学内容精心设计练习,促进学生全面发展。我充分考虑到本班学生的实际水平及年龄特征,选择了贴近学生生活的练习题,有坡度,由易到难,循序渐进,激发了学生的学习兴趣,使各个层次的学生都能得到不同的锻炼,能力都有所提升。
(四)在本节课中的不足之处
由于学生的学具有限,在很大程度上阻碍了学生主动探究的欲望和动手操作的能力,加上本人能力有限,语言组织能力不是很好,使课堂气氛不是那么活跃,课堂显得有些压抑,在今后的教学中还有待于提高。
《圆柱的体积》教学反思4在本节课的教学中,教师根据教学的需要,充分利用现实生活中的素材,把教材中有关圆柱的提积的应用所呈现的内容变为现实生活中的问题,变书本知识为生活中的知识。
本节课中教师没有过多地教学生,而让学生回归到生活原形中去,应用所学的知识解决了生活中的实际问题,使本来很枯燥的圆柱的体积应用的题材生活化,增加了学生的信息量,提高了学生体会数学奥秘的积极性。学生体会到了生活中处处有数学,数学就在我们身边,知识才是我们解决实际问题的“金钥匙”。通过寻找这些信息背后的信息,学生掌握了知识、形成了技能。同时也感受到了数学应用的广泛性以及数学与生活的紧密联系。
但在本节课中也有不足的地方,如①由于中心问题空间较大,具有挑战性,中下等学生自主探索有一定的难度;②实践中,学生独立思考和小组讨论花时间太多,影响了后面的教学,这都是以后在教学中应注意的问题。
总之,随着数学的发展,数学的应用也越来越广泛。作为教师的我们,应该提供给学生充分的机会,让学生运用已学过的数学知识解决问题,在问题的解决过程中,发展学生的思维能力,用数学的眼光去感知、去观察、去应用。
《圆柱的体积》教学反思5上周三我在六年级2班进行了本学期的公开课,内容是苏教版数学六年级下册第二单元《圆柱的体积》,这一单元是六年级下册的重点也是难点。结合我的教学我想谈一谈上这节课的感想。
一、课堂导入
让学生回忆学习过的立体图形,学生很容易说出长方体和中正方体,再一起说一说长方体和正方体的体积计算公式,出示长方体和正方体,引导学生理解长方体的体积计算长乘宽乘高和正方体体积的棱长乘棱长乘棱长就是底面积乘高,接着引导学生猜一猜圆柱体的体积怎样计算?
二、教学过程
有了猜想就要验证猜想的正确与否,在探究圆柱的体积公式推导过程中,我先带着孩子们复习圆的面积推导公式,是把圆形转化成长方形,从而得出圆的面积公式,接着引导孩子们把圆柱转化成长方体,对比转化成的长方体与原来的圆柱体有什么变化。让孩子们观察哪些变了,哪些没有变,这个环节我设计了小组合作,通过讨论孩子们特别的聪明,有些同学甚至说出了胖瘦和颜色的改变,这是我意想不到的。通过对比孩子们很快发现圆柱体的体积公式也可以用底面积成高来计算。得到公式后我们又通过写一写,读一读,背一背,演一演,算一算的方式把公式掌握熟练。
三、评课
评课环节,老师们给了我许多合理化的建议。
1.在讲圆的面积推导过程时,一些学生还不能一下就明白将圆转化成长方形后,长方形的长就是圆周长的一半,这里的小细节是我课堂上没有捕捉到的,以后一定要注意。
2.在算体积或表面积的时候最好是先写公式再计算,这样可以减少错误率。
3.在计算过程中可以将π保留到结果再代入3.14来计算,可以减少计算量。
通过本次的公开课,有收获也有存在的问题,希望在以后的教学中能够不断学习,提高自己的业务能力,争取下一次讲课取得更大的进步!
《圆柱的体积》教学反思6“圆柱体积计算公式的推导”是在学生已经学习了“圆的面积计算”、“长方体的体积”、“圆柱的认识”等相关的形体知识的基础上教学的。同时又是为学生今后进一步学习其他形体知识做好充分准备的一堂课。
课始,教师创设问题情境,不断地引导学生运用已有的生活经验和旧知,探索和解决实际问题,并制造认知冲突,形成了“任务驱动”的探究氛围。
展开部分,教师为学生提供了动手操作、观察以及交流讨论的平台,让学生在体验和探索空间与图形的过程中不断积累几何知识,以帮助学生理解现实的三维世界,逐步发展其空间观念。
练习安排注重密切联系生活实际,让学生运用自己刚推导的圆柱体积计算公式解决引入环节中的两个问题,使其认识数学的价值,切实体验到数学存在于自己的身边,数学对于了解周围世界和解决实际问题是非常有作用的。
教师无论是导入环节,还是新课部分都恰当地引导学生进行知识迁移,充分地让学生感受和体验“转化”这一解决数学问题重要的思想方法。同时,还合理地运用了多媒体技术,形象生动地展示了“分成的扇形越多,拼成的立体图形就越接近于长方体”,有机地渗透了极限的初步思想。
《圆柱的体积》教学反思7“圆柱体积计算公式的推导”是在同学已经学习了“圆的面积计算”、“长方体的体积”、“圆柱的认识”等相关的形体知识的基础上教学的。同时又是为同学今后进一步学习其他形体知识做好充沛准备的一堂课。
课始,教师创设问题情境,不时地引导同学运用已有的生活经验和旧知,探索和解决实际问题,并制造认知抵触,形成了“任务驱动”的探究氛围。
展开局部,教师为同学提供了动手操作、观察以和交流讨论的平台,让同学在体验和探索空间与图形的过程中不时积累几何知识,以协助同学理解实际的三维世界,逐步发展其空间观念。
练习布置注重密切联系生活实际,让同学运用自身刚推导的圆柱体积计算公式解决引入环节中的两个问题,使其认识数学的价值,切实体验到数学存在于自身的身边,数学对于了解周围世界和解决实际问题是非常有作用的。
教师无论是导入环节,还是新课局部都恰当地引导同学进行知识迁移,充沛地让同学感受和体验“转化”这一解决数学问题重要的思想方法。同时,还合理地运用了多媒体技术,形象生动地展示了“分成的扇形越多,拼成的立体图形就越接近于长方体”,有机地渗透了极限的初步思想。
《圆柱的体积》教学反思8[头疼问题]
近期六年级的任课教师都会头疼我们也不例外
年级组集体备课时会叹气
在走廊里碰头时会感慨
叹气、感慨地主要原因就是:近期作业的错误率很高(特别是学困生)
这使我不免停下“匆匆的步伐”凝望着这些作业叉叉多的孩子
什么地方出问题了?
[细细掂量]
一轮本子改下来错误有以下几类
1、优等生:列出一个长长的算式,直接得出错误的结果(看不出是哪一步出错,反正计算错)
2、中等生:求表面积时,大概知道侧面积+两个底面积;但真正列式的时候底面积没乘2;而到了只需要加一个底面积的时候(无盖水桶等实际问题的时候)却乘2;
3、学困生:列出的算式都有问题。一查,圆面积计算公式都不会(够厉害),最基本的都不会,圆柱的表面积和体积又如何能正确求出;个别的20多分钟头都不抬,就在计算一个图形题,仔细一看列式出错,后面的脱式计算过程中的结果有的有6、7位小数;依然不知疲倦的算啊算,看着都累
4、不知灵活变通,一般来讲3.14最好是最后再乘,这样可以降低计算的复杂程度,减轻计算的强度;但部分学困生勇气可嘉,不管那一套,列式中3.14在前面就先算;放在后头就最后算,老实得可爱;当你在讲计算技巧的时候可爱的孩子们还在埋头苦算,结果错误百出。
[标本兼治]
1、学优生:提出要求:不能一步得出结果,要脱式:关注做作业、打草稿的态度、习惯,养成草稿本清晰、数字清楚,可以避免匆忙之中抄错数字导致整题出错。
2、中等生、学困生:
(1)重视公式的熟练程度:通过演示、推导、同桌互说、单独抽问、上黑板默写等方法帮助夯实基础。
(2)重点分析典型习题,帮助学生找到审题、列式、解题的方法和策略,并针对性练习,提高技能
(3)重点强记:3.14*1=…………………3.14*9= 常用计算结果,达到熟练程度,提高练习时的计算速度和正确率,也可以用于检验计算过程中的结果正确与否。
(4)抓听讲习惯:要求要严格,教师针对问题进行分析、讲评的时候,应要求所有学生抬头关注,集中精力听讲(往往这样的时候学困生是不睬你的,要适当的喊他起来站个1分多钟,点一点他。),有了这个保证,讲评的效果就有了,出错的几率就就会降低了。再结合以上措施,效果就会更好。
[写在结尾]
有了措施,就需要有行动——老师的行动、学生的行动都要跟上,希望一段日子后会有好效果。
也欢迎大家说说自己的好的做法,共同提高第二单元的质量
《圆柱的体积》教学反思9圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。
一、让学生在现实情境中体验和理解数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?圆柱形橡皮泥的体积你会求吗?)学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,或是求压路机滚筒的.体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。
二、鼓励学生独立思考,引导学生自主探索、合作交流
数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?采用小组讨论交流的形式。有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。让学生根据已有的知识经验创造性地建构自己的数学。通过实验、操作、自主探究,实现学生主体地位、学习方式的转变,有效地培养学生的创新意识。教学中通过等分、切、拼将圆柱体拼成一个近似的长方体,再运用多媒体显示由圆柱体到近似的长方体的变换过程,让学生观察、比较近似长方
体与圆柱的关系,使圆柱体体积的计算公式推导过程完全展示在学生面前。使学生感悟到转化的思想在几何学习中的妙用。从而产生一种自我尝试、主动探究、乐于发现的需要、动机和能力。
三、建立切拼表象,渗透极限思想
学生进行数学探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,很遗憾。
《圆柱的体积》教学反思10今天上了《圆柱的体积》一课,觉得比以前上得轻松,回到办公室细细品味上课的过程,颇有几分感受:
在本课中,当学生面对新的问题情境—“圆柱的体积该怎么求?”时,能从圆的面积公式的推导,根据已有的知识作出 “转化”的判断。当然,由于知识经验的不足,表达得不是很清晰。但学生的这些都是有价值的。这些“猜想”闪烁着学生智慧的火花,折射出学生的创造精神。在此基础上,让学生以小组合作方式,利用已切开的圆柱体教具进行验证,在讨论声中,学生获得了真知。可见,教师要保护学生的创造热情并给以科学探究方法的引导,以发展学生的创造性。在这点上,我对学生的探究精神给予了充分的肯定。这节课再次让我知道了,相信学生的创造力是我们设计教法的前提。
在引导学生解决“粉笔的体积”等这个问题时,课堂上有学生把它当作圆柱体积来求,提出:“误差这么小,是可行的。”而且那位学生要求的仅是一个大约的数值,所以用这种方法可以。但这种计算粉笔体积的方法可行吗?如果我不提出疑义,也不加以说明,就会给学生造成“圆台的体积可以用这两种方法来计算”的错误认识,对学生的后续学习会造成一些不利的影响。我就这个问题引导学生进一步探索,使学生发现平面图形中的一些规律照搬到立体图形中有时会行不通,懂得知识并非一成不变的,有其发展性,初步理解三维空间物体与二维平面图形的联系与区别,为进一步学习积累经验。学生在探索过程中,虽不能很快获得结论性的知识,但却尝试了科学探究的方法,形成良好的思维品质,增进了情感体验。这样,既保护了学生的创造性,又保证了教学内容的科学性,就学生的发展而言,谁能说让学生经历这样探究的过程,不也比获得现成的结论更富有积极的意义?
《圆柱的体积》教学反思11本节课主要是引导学生探索并掌握圆柱的体积公式,主要重视了以下几方面:
1、重视先猜想、再验证的思路来引入教学。
新课伊始,课件出示三个几何体的底面和高,引导学生来观察这三个几何体,发现它们的底面积都相等,高也都相等。进一步引导思考:想一想,长方体和正方体的体积相等吗?为什么?猜一猜,圆柱的体积与长方体和正方体的体积相等吗?学生认同,并提出等于底面积乘高。教师再次抛出问题:这仅仅是猜想,那用什么办法验证呢?今天这节课就来研究这个问题。
2、重视利用知识、方法的迁移来展开教学。
本课的例题探索,有一个目标就是使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。因此,笔者在执教时,根据陈星月的回答顺势复习了圆面积的推导:把一个圆平均分成16份、32份、64份或更多,剪开后可以拼成近似的长方形,圆的面积就可以转化成长方形的面积进行计算。接着提问:那么,受这个启发,那我们能不能将圆柱转化成长方体来计算体积呢?首先实物演示圆柱切拼的过程。把圆柱的底面平均分成16份,切开后可以拼成一个近似的长方体。然后进行课件演示,发现:把圆柱的底面平均分的份数越多,拼成的几何体会越来越接近长方体。这样有利于激活学生已有的知识和经验,使学生充分体会圆柱体积公式推导过程的合理性,并不断丰富对图形转化方法的感受。
3、重视通过核心问题的讨论和板书的精当设计来突出重点、突破难点。
核心问题即指中心问题,是诸多问题中相对最具思维价值、最利于学生思考及最能揭示事物本质的问题。它是在教学过程中,为学生更好地理解和掌握新知、更好地积累学习经验和方法,针对具体教学内容,提炼而成的教学中心问题。就如圆柱体积的计算而言,在这节课的教学过程中,教师抓住“圆柱的体积可能跟圆柱的哪些条件有关呢?”“拼成的长方体与原来的圆柱有什么关系?”“要计算圆柱的体积一般要知道哪些条件?”这三个问题,使学生在获取圆柱体积公式的同时又了解了体积公式的由来,并及时总结了思考问题的方法。核心问题也可以指为了探究知识的来龙去脉而在关键环节提出的指向性问题。
当然,需要注意和改进的地方是:书写格式的规范。
《圆柱的体积》教学反思12本节课我注重知识的形成过程,使学生能主动学习新知,突破难点、疑点,能解决实际问题。
1、在教学过程中,让学生自主合作、探究,经历猜想、操作、验证、讨论、归纳等数学活动。比如,我从圆柱模型拼成长方体入手,强调它们是等底等高长方体。由长方体体积公式V=Sh,猜想圆柱的体积公式。再通过学生的具体实际操作、小组合作探究,从而探索出圆柱体积公式,并掌握圆柱体积的计算方法,能解决与圆柱体积计算相关的一些简单的实际问题。
2、在活动中进一步使学生体会“转化”方法的价值,比如,回顾上学期所学的圆的面积推导公式,从而理解圆柱的底面积与长方体底面积相等。这样有利于培养学生应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
3、本节课中,我最大的遗憾就是没有采用多媒体课件。但我认为一节好课就非要使用多媒体课件吗?其实不然。当然,今天我在教学中,确实有许多的不足。比如,将圆柱体切割成若干等份,等份越多,分得越细,就越接近于长方体。倘若使用了多媒体课件演示,或许效果更明显。
总之,今天教学中的不足,我会不断改进。既面向全体学生,又注重不同学生的不同发展,设计更精、更符合学生发展的梯度问题,让他们在有限的时空内愉快学习、成长!
《圆柱的体积》教学反思13本节课为练习课,目的在于巩固学生前面几个课时的学习内容和发现学生存在的一些问题,然后及时调整或补充教学方案。本节课在教学过程中,发现学生存在的问题主要有:学生对圆柱的侧面展开图的相关知识理解不深入;在计算的过程中,单位名称用错,如体积单位写成面积单位;对于某些实际问题不能正确分辨圆柱直径、半径以及圆柱的高,导致做题出错。对于这些问题,我们可以通过以下方法来突破:
第一,我们在集中讲解时可穿插一些单位换算的练习等,从而避免学生误用单位名称;
第二,在计算以长方形的一边为轴旋转得到的圆柱体积和计算直接将长方形卷成的圆柱体积之前,我们可先组织学生自己动手操作、观察比较,让学生们自己发现圆柱与长方体各部分之间的关系。
总而言之,我们在引导学生参与到探索知识的发生、发展过程中,应注重突破以往单一、被动的学习方式。
《圆柱的体积》教学反思14圆柱的体积这局部知识是同学在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓住新旧知识的联系,通过想象、实际操作,从经历和体验中考虑,培养同学科学的思维方法;贴近同学生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发同学的学习兴趣和对科学知识的求知欲,使同学乐于探索,善于探究。
在圆的体积公式推导过程中,给予同学足够的时间和空间,激发同学的探究的欲望,培养同学的空间想象力。我把圆柱体拼成一个长方体,就是把一个新图形转换成一个我们学习过的图形,通过讨论,争鸣从而得出比较深层的数学知识,这种思维的火花,我们老师应和时捕获,让它开得绚丽多彩,从而让同学的个性能得到充沛的培养。让同学在学习的过程中体会到数学给自身带来了巨大的胜利感和喜悦感,我们老师这样才干寓教于乐,从而达到了事半功倍了。
《圆柱的体积》课后反思
本节可的教学内容是九年义务教育六年制小学教学第十二册﹙人教版﹚《圆柱的体积》,以前教学此内容时,直接告诉同学:圆柱的体积=底面积×高,用字母表示公式:V=S和,让同学套公式练习;我教此内容时,不按保守的教学方法,而是采用新的教学理念,让同学自身动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:
一、同学学到了有价值的知识。
同学通过实践、探索、发现,得到的知识是“活”的,这样的知识对同学自身智力和发明力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、同学在自身艰苦的学习中发现并从同学的口里说出来的这样的知识具有个人意义,理解更深刻。
二、培养了同学的科学精神和方法。
新课程改革明确提出要“强调让同学通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。同学动手实践、观察得出结论的过程,就是科学研究的过程。
三、促进了同学的思维发展。
保守的教学只关注教给同学多少知识,把同学当成知识的“容器”。同学的学习只是被动地接受、记忆、模仿,往往同学只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,同学在兴趣盎然中经历了自主探究、独立考虑、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识发生的过程,理解和掌握了数学基本知识,从而促进了同学的思维发展。
本节课采用新的教学方法,取得了较好的教学效果,缺乏之处是:由于同学自由讨论、实践和考虑的时间较多,练习的时间较少。
新课程观强调:教材是一种重要的课程资源,对于学校和教师来说,课程实施更多地应该是如何更好地“用教材”,而不是简单地“教教材”。在实际教学中,如何落实这一理念?自己结合“圆柱的体积”一课谈谈自身的实践与考虑。
[片段一]
师生一起探究出圆柱的体积计算公式后对公式加以应用。师出示教材例4(12册P8):一根圆柱形钢材,底面积是20平方厘米,高是1.5米,它的体积是多少?
由于课前同学已进行了预习,多数同学是依照教材介绍的解法来解答:
1.5米=150厘米 20×1150=3000(立方厘米)
师:这道题还有其他结果吗?(同学又沉入了深思)不一会儿,另外两种结果纷纷展现:
①20平方厘米=0.002平方米 0.002×11.5=0.003(立方米)
②20平方厘米=0.2平方分米 1.5米=15分米 0.2×115=3(立方分米)
师:为什么会出现三种结果?
经讨论,同学才明白:从不同的角度去考虑问题,将得到不同的结果。
[片断二]
巩固与应用阶段,我将教材练习二中的一个填表题(表1)进行了加工组合出现给同学这样一个表格(表2)。
同学填表后,师:观察前两组数据,你想说什么?
同学独立考虑后再小组交流,最后汇报。
生1:两个圆柱的高相等,底面积是几倍的关系,体积也是几倍的关系。
生2:两个圆柱的高相等,底面积越大,体积就越大。
师:观察后两组数据,你想说什么?
有了前面的基础,同学很容易说出了后两组的关系。
同学的表述尽管不是很准确完美,但已说出了其中的规律,而这个规律正是解答练习二第17、18题的基础,又为下一单元的教学作了提前孕伏。
[片段三]
教材的练习中有这样一题:量一个圆柱形茶杯的高和底面直径,算出它可装水多少克?
同学动手丈量自备的圆柱形茶杯的有关数据并计算它的体积。
师:水的生命之源。人每天都要饮用一定量的水,请大家课后查阅相关资料,计算自身每天需要饮用几杯水(自身的杯子)才干保证健康,并把自身对水的想法写下来,下节课我们再交流。
《圆柱的体积》教学反思15圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。
一、让学生在现实情境中体验和理解数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?圆柱形橡皮泥的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,或是求压路机滚筒的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。
二、鼓励学生独立思考,引导学生自主探索、合作交流
数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同爱们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。
在探究的过程中,我不是安排了一整套指令让学生进行程序操作,获得一点基本技能,而是提供了相关知识背景、实验素材,使用“对我们有帮助吗?”“你有什么发现?”“你是怎么想的?”等这样一些指向探索的话语鼓励学生独立思考、动手操作、合作探究,让学生根据已有的知识经验创造性地建构自己的数学。通过实验、操作、自主探究,实现学生主体地位、学习方式的转变,有效地培养学生的创新意识。教学中通过等分、切、拼将圆柱体拼成一个近似的长方体,再运用多媒体显示由圆柱体到近似的长方体的变换过程,让学生观察、比较近似长方体与圆柱的关系,使圆柱体体积的计算公式推导过程完全展示在学生面前。使学生感悟到转化的思想在几何学习中的妙用。从而产生一种自我尝试、主动探究、乐于发现的需要、动机和能力。
三、建立切拼表象,渗透极限思想
学生进行数学探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,非常遗憾。
一、循序渐进,温故而知新
上课之初,我充分利用主题图,引导学生思考如何求圆柱形柱子的体积和圆柱形水杯的容积,开门见山地让学生明确本节课的学习任务,快速进入学习状态。接着把“知识绣球”抛给学生,让他们根据生活经验寻找解决问题的妙方。他们经过激烈的讨论,得出圆柱体积的算法可能与长方体体积的算法有关。于是,我顺水推舟,让他们回忆了长方体、正方体体积的计算方法以及圆的面积计算公式的推导过程,以便于学生猜想,从而激起学生的好奇心,萌生独立思考问题,探索问题的愿望。
二、动手操作,验证猜想,探索新知
在教学《圆柱的体积》时,虽然学校条件有限,没有现成的学具可供学生实践操作,但是我因地制宜、因材施教,利用课前准备的一个大萝卜和一把小刀作为学生道具。在推导时,我先选出两名同学轮流上前演示,把圆柱形教具的底面平分成16等份,然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;其他同学用提前准备好的圆柱形萝卜,完成切拼活动。接着,引导学生悟出这个长方体的长、宽、高相当于圆柱哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。
三、课件演示,巩固理解
为了让学生更直观、形象地理解圆柱体积计算公式的推导过程,让学生观看课件:圆转化成近似长方形的过程。引导学生想象:“如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?”通过多媒体课件演示,学生不仅对这个切拼过程一目了然,同时又加深理解了圆柱体转化成近似长方体的过程和方法。
四、分层练习,拓展延伸
为了培养学生思维的创造性和解题的灵活性,我在设计练习时多花了些心思去考虑如何让学生在最短的时间完成不同类型的题目。于是采用了分层练习策略。
小结时,提醒学生要从多方面去考虑,做到面面俱到,逐层深入。同时一定要认真读题审题,注意单位统一。
教材简析:圆柱是一种含有曲面的几何体,给体积的认识和计算增加了难度。教材将本课学习安排在圆柱的认识和圆柱的表面积之后。让学生有序地经历了探究物体与图形的形状、大小、位置关系的变换过程,掌握圆柱体积的计算方法和公式的推导过程,建立初步的空间概念,培养形象思维,还可以为学习圓锥体积打下坚实的基础,提高学生的知识迁移能力。基于以上认识,我在设计中突出了以下几点:
1.加强几何的实践操作,尽量让学生自己动手,亲身经历圆柱的体积转化过程,让学生的多种感观参与学习活动。在理解知识的基础上,发展学生思维。
2.加强几何习题的设计,设计一些实践性、开放性强的习题,引导学生灵活运用知识,可以根据不同的条件求圆柱的体积。尽可能地满足不同思维水平学生的需要,并渗透优化解题策略。
3.加强空间观念的培养,提高学生形象思维及解决问题的能力。突出知识间的联系对比,在操作、推导、对比、运用中深化学生的空间观念。
学情分析:
高年级学生发现问题、解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们已经掌握了一些几何知识,了解部分几何图形之间的转化方法。但学生的立体空间观念还不是完全成熟,形体之间的转化还有一定的困难。针对学生的实际,教学中我主要采用观察、比较、操作等方法。组织学生探索规律,归纳总结,体验知识的生成和形成。
教学目标:
1.结合实际,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2.让学生经历观察、猜想、验证等数学活动过程,培养学生探究推理能力,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式。
教学准点:掌握圆柱体积公式的推导过程。
教学设想:
1.课前互动,我们做一个吹气球的游戏,让学生来对比气球变大后所占用空间的变化。在热烈的气氛中让学生感受物体的体积就是物体所占用空间的大小。
2.教学伊始我创设学具槽做圆柱学具这一睛境,让学生感知圆柱体积的概念,再通过让学生给这4个圆柱学具排序这一问题设疑,让学生明确学习目标。
3.动手实践是学生体验的主要方式,合作交流是学生体验的有效途径。所以在教学中我为图形转化、猜想推理创设有助于学生自主探究的三步曲:第一步:选择转化的方法。第二步:体验转化的过程、第三步:验证转化的结果。引导学生开展观察、操作、猜想、交流、转化的活动,让学生在数学活动中经历数学、体验数学。
4.用字母表示公式已经是学生很熟知的几何知识,因此我为学生提供了与圆柱体积有关的字母,让他们写出相应的公式并在接下来的环节中引导学生发现公式与习题的联系,让他们对号入座。学生根据不同的公式进行计算,给4个圆柱学具排序。这样可以深入理解不同的条件、不同的方法,同样可以得到圆柱的体积,在对比算法中掌握新知。 5.体积和容积这两个概念在五年级已经学过,学生会说意义,但是通过了解,学生并不是真正理解圆柱的体积和容积。所以我在第一次探究中安排了这样的环节,让学生在学习实践中区别圆柱的容积和体积。从形象到抽象建立圆柱的体积概念,符合学生的认知规律。第二次探究则是加入表面积这一刚刚学过的内容,让学生在为3道选择问题的练习中达到区别体积、容积、表面积的目的,从而实现学习运用的最佳状态。 6.最后的思维训练是计算正方体中最大圆柱体的体积,给学生以生动、形象、直观的认识,此题算法多样,富于启发地清晰揭示了知识的内在规律,使它和教学过程有机组合,把学习延伸到实际,让知识在体验中生成。
7.由于每个学生的知识经验、生活情景、思维方式的不同,对知识的学习也有独特的理解和感受。所以我让他们用今天的知识去解决生活中的问题,并写成数学日记,让他们用自己的方式去体验、探究学习过程。
教学过程:
一、问题导入,质疑问难
师:老师这里有两个气球,(师从兜里掏出两个气球,将其中一个递给学生。)你试试把它们变大。(老师再把两个气球放回兜里。)为什么这个放不回去了?(因为其中一个的体积变大了。)看来它占据了很大的空间。教室中还有哪些物体占据空间?
师:这是一个制作学具的学具槽,想一想,它可以做出什么样的学具来?
生:圆柱学具。
师:是的。仔细观察,你有什么发现?
生:圆柱学具占据了学具槽的空间。
师:这就是圆柱学具的体积。你真善于发现!能用你的话说说,什么是圆柱的体积吗?
生:圆柱的体积就是圆柱所占空间的大小。
师:谁来试着给这4个圆柱学具按体积从大到小排排序?你来试试。
生:体积大小接近,不能确定。
师:老师听懂了,无法判断的原因是不知道圆柱体积的大小,现在我们就来研究圆柱的体积。(师板书。)
二、图形转化。猜想推理
师:想一想,你有办法得到这4个圆柱学具的体积吗?(圆柱课件再从槽中跳出。) 生:用公式计算。 生:用水或沙子转化计算。 师:你们是怎样转化的,具体说说。
生:用橡皮泥转化计算。
生:用圆形纸片叠加计算……
师:嗯,这些方法都很好,就在今天的课堂你会选择哪种方法?
生:因为没有实验学具,所以只能用公式计算。
师:其他的方法可以在课后进行。
师:想用公式计算的同学,你想怎样推导圆柱的体积公式呢?结合你们以往学习几何图形的经验,举例说明。
生:大部分图形公式的推导都是把新学的转化为学过的。例如:圆形可以转化为长方形。
师:联系旧知识,采用转化法,确实不错。 师:那现在它是一个圆柱,你想怎么办?
生:像刚才一样进行平均分。
师:你能具体说说吗?
生:沿着圆柱的底面直径平均切分成16个小扇形。
师:都说实践出真知,接下来就请同学们拿出学具,动手尝试着进行转化,并说说转化后的结果。
生:将圆柱沿底面直径平均分成16个小扇形,切分之后,可以拼成一个近似的长方体。
师:(刚才我们将圆柱沿底面直径平均分成16个小扇形,拼成一个近似的长方体。)如果想让它更近似于长方体,你想分成多少份?
(32)更近似一点。(64)你呢?(128)……
师:这是同学们刚才的转化过程。
师:打开书,自由读,用直线标记,找出关键词,依照关键词自由读读转化的过程。
师:现在再请一名同学到前面来演示转化过程,其他同学注意观察,圆柱转化为长方体后什么变了,什么没变7(圆柱转化为长方体时形状变了,但是它们底面积、高和体积都没变。)
总结文字公式:长方体体积=底面积×高
圆柱体体积=底面积×高
师:恭喜大家,我们已经成功地推导出圆柱的体积公式。(掌声鼓励一下)老师这有一些字母:d、s、r、C、h、v、π。它们与圆柱体体积的计算公式息息相关,请你们用字母表示出圆柱的体积公式。
生:V=Sh V=(d/2)2π×hV=π2×hV=(c÷π/2)2π×h
师:对比这四个公式你又有什么新发现?(彩色粉笔画线。)
生:相同之处都是底面积乘以高,不同是底面积求法不同。
师:谢谢你精彩的发现,你叫什么名字,认识一下,老师会记住你的。
三、运用公式,解决问题
师:现在我们已经知道了圆柱的体积公式,快来解决刚才的实际问题吧!这是我们要由大到小排序的4个圆柱学具,请你们拿出题卡计算出它们的体积并排序。
1号底面积50平方厘米,高2.1分米:
2号直径是10厘米,高20厘米;
3号半径是4厘米,高22厘米;
4号底面周长31.4厘米,高18厘米。
师:汇报一下你的计算和排序结果,并说说你应用了哪个公式?
师:与他答案相同的同学举手示意一下,你是怎样做的?现在你清楚了吗?
师:看来,灵活运用公式,并选择合理的算法。会使我们的学习更高效。
四、巧用公式,多重探究
师:同学们到现在为止,你都学到了哪些关于圆柱的知识?
生:表面积、体积、容积。
师:老师这里有一组习题。请你们选择合适的问题。
师:读完之后,你认为求什么就可以大声地说出来。
(生:体积、容积、表面积。)
学具厂有一个制作学具的圆柱形铁皮桶。它的底面直径是22厘米,高是25厘米,_________?从里面量底面直径是20厘米,高是25厘米______________9底面积是380平方厘米。侧面积是1727平方厘米_________________?
师:说说你选择问题的根据是什么?
生:体积是圆柱所占空间的大小。容积是圆柱能容纳物体的大小,表面积是圆柱所有面积的总和。
五、开放训练,拓展提升
师:学习很愉快,我们来庆祝一下:在一个棱长为a分米正方体盒中,放一个最大的圆柱体蛋糕,系上b分米长的丝带,(打结部分忽略不计)挖去1根直径为c厘米,高是d厘米的圆柱蜡烛空隙,这个蛋糕体积到底是多少呢?这次我们男女生比赛,列式不计算,看谁解法多并说明解题思路。
反思:
孙老师作为本次数学活动的策划者、组织者和引导者,巧妙地把纯数学的“体积问题”与生活实际联系起来,组织学生进行实践操作、构建数学模型,自主探究圆柱体积公式并推广应用。这正是我们努力探索的一种新型的数学教学模型:来源于生活——提炼为数学——应用于实际。
下面就这方面结合孙老师这节课谈谈我的看法:
(一)教师是创造开发者,为学生创造自主探究的学习环境
在教学中孙老师非常注重学生的数学思想方法和学习能力,给学生提供较充分的探索交流的空间,组织、引导学生“经历观察、实验、猜想、证明等数学活动过程”,并把培养数学推理能力有机地融合在这样的“过程”之中,改善了学生的学习方式。本节课,孙老师为学生创设了看一看、想一想、猜一猜、摆一摆等学生熟悉的、感兴趣的活动情境。如导入新课时。课件出示一个圆柱学具槽,接着演示把4个圆柱放入学具槽中,然后让学生说一说,这说明了什么?学生通过观察和根据已有的生活经验很容易明白:圆柱占据了学具槽的空间。最后,教师指出:圆柱所占空间的大小就是圆柱的体积。紧接着让学生试着给这4个圆柱学具按所占空间大小排序。学生答案不一,引起争议,从而激发了学生思考怎样才能准确的得到这些圆柱的体积呢?引出本课題“圆柱的体积”。此时已经点燃学生的学习欲望,他们渴望获得正确地结果,并愿意为此付出自己的努力。这正是这节课成功的起点,也是教师的高明之处,不仅为学生创造了一个十分宽松的学习环境,还为学生后面构建数学模型,发现圆柱体积公式奠定了基础。而一切又是那么的自然,丝毫不露痕迹,颇有“润物细无声”的味道。
(二)教师是组织引导者,让学生经历自主探究的全过程
小学生学习数学的过程不是被动吸收课本中现成结论的过程,而是一个亲自参与的、丰富生动的思維活动,一个实践和创新的过程。在教学中孙老师让学生经历了5次自主探究的过程:1.让学生回顾“圆”形转化成近似的长方形的过程。通过两次演示操作,使学生感受到平均分的份数越多转化后的图形更接近长方形。2.让学生迁移猜想:圆形摞成的圆柱体能转化成什么几何形体,学生动手演示猜想过程。3.再次让学生用学具验证圆柱转化成长方体过程,并讨论思考:这个圆柱体与转化后的长方体相比什么变了,什么没变?从而得出结论圆柱的体积等于底面积乘以高。4.教师出示一些字母,让学生用等式表示它们之间的关系,这进一步延伸了本课的知识,学生很快得出了已知底面半径、直径、底面周长、底面积和高求圆柱体积的计算公式。接着教师有引导学生进行对比、总结发现其规律,加深学生的理解。5.最后,利用体积公式计算导入新课时4个圆柱学具的体积,重新排序。我们欣喜的看到,学生始终保持着高昂的学习情绪,积极参与了每一个环节并取得了理想的成果。
(三)教师是促进者,帮助学生收获自主探究的果实
一堂课虽然只有几十分钟,但孩子们是那么积极主动,不仅创造性的建立了数学模型而且发现圆柱体的转换成长方体的规律,还找到了许多计算方法。学生能有如此的表现和收获,与教师扮演的角色是密不可分的。首先,课堂教学设计能从学生的实际出发,符合学生的认知规律和探究心理,不仅让学生自主探究解决当前问题,而且引发了下一个活动。其次,开放性的问题为学生提供了开放性的思维空间。最后,让学生设计计算蛋糕的体积,再次把学生带到新的学习环境中,使学习回归到生活。
(四)遗憾之处
1.在学生汇报圆柱转化成近似的长方体的时候,学生只说把圆柱分成16份、32份、64份等。没有说“平均分”。当学生语言不够严密的时候,教师要及时纠正。教师叙述的时候也没有加以强调,“平均分”在这里显得尤为重要。而这一部分教学用时过长,教师调控课堂教学能力还有待提高,如果紧凑些,就不会出现超时现象了。
2.面向全体,关注大多数学生做得还不够。一些学生课堂上大胆吏流的意识不强,教师应给与更多的关注,多给他们一些机会,让他们参与进来,与大家共同体验成功的乐趣。
(一)在学习情境中体验数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、猜测、操作、验证、归纳等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的价值,同时掌握必要的基础知识与基本技能。
在这节课中,我承接了上节课的内容,提问引出给水杯做布套是在求圆柱的表面积,求圆柱能装多少水是在求圆柱的容积,也就是体积,然后顺势提出“你能计算圆柱体的体积吗?”这一全课的核心问题,从而引发学生的猜测、讨论、交流等数学活动,引导学生可以用以前学过的知识将圆柱转化成近似的长方体,然后让学生在小组内利用手中的学具进行操作实验将其插拼成一个近似长方体;通过让学生观察比较,发现联系:二者之间什么变了,什么不变?接着我使用了课件-----把圆柱体沿着它的直径切成了32和64等份,拼成一个近似的长方体 ,展示切拼后的长方体,让学生更加直观的观察,从而证实自己的推测。并总结出圆柱体的体积计算公式。。
由此至终让学生经历了“做数学”的过程,并伴随着问题的.圆满解决,又使学生体验到了成功的喜悦与满足。与此同时,使学生理解与感受到了数学的魅力。
(二)在观察操作中探索新知
数学学习过程充满着观察、验证、推理等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。观察是课程实施中经常让学生进行的一种活动,观察的效果取决于观察者是否能够关注被观察的对象。操作是让学生进行感知的另一种活动,是一种内部思维的外在具体化。交流是在观察操作基础上的一种由动作上升到语言概括的过程。
在本节课的动手操作中,让全班学生以小组为单位围坐在一起,为他们提供自主探究的空间,同时尽量延长小组交流的时间,试图把学习的时间、空间还给学生,让其进行自主探究、合作交流。 “你有什么发现?”“你是怎样想的?”等这样一些指向探索的话语鼓励学生独立思考、动手操作、合作探究,让学生根据已有的知识经验创造性地建构自己的数学,而不是去模仿复制别人的数学。
(三)在练习中巩固新知,提升能力
《数学课程标准》要求以人为本,以学生发展为本。因此,教师应根据不同的教学内容精心设计练习,促进学生全面发展。我充分考虑到本班学生的实际水平及年龄特征,选择了贴近学生生活的练习题,有坡度,由易到难,循序渐进,激发了学生的学习兴趣,使各个层次的学生都能得到不同的锻炼,能力都有所提升。
(四)在本节课中的不足之处
对《圆柱的体积》一节,备课阶段,我跟冯老师讨论过,3.19下午,又全程聆听了三位教师的同课异构,领略了他们不同个性的教学风格。在我看来,尽管是同课异构,尽管是个性课堂,一些基本的原则还是要遵守的。例如,深入地理解教材,例如,尽可能地保持数学的逻辑严密性,等等。
对于这节教材的理解,最严重的分歧可能来自圆柱的体积公式。教材为什么给出的是“V=Sh”而不是“V=πrh”。我想,这里的原因大概有两个:一是要统一(柱体的)体积公式,减轻学生的记忆负担。事实上,V=Sh也确实更能体现柱体体积的本质,不同柱体体积的不同公式,只是进一步描述了它们的不同的S罢了。另一个原因,是为方便学生对公式推导过程的理解。当圆柱被分割为有限个曲面三棱柱并拼为准长方体时,半径r只是接近而并没有等于长方体的宽,只有这个分割被无限化(取极限)时,圆柱的半径才能与长方体的宽相等。因此,与其让学生去费解地或不求甚解地观察“长方体的宽与圆柱的半径的关系”,还不如只观察两者的底面积S。在我看来,这样地处理,是新教材较旧教材高明之处,而有的教师之所以走回老路,恐怕是对新教材理解不到位的缘故。
对于这节课的异构,分歧最大的地方可能是对探索或计算的侧重,以及是否需要、是否可以有多种探索方法。从教材的表述看,这节课的新授完全围绕着公式的提出(猜想)、推导(验证)展开,其第一课时的教学重点无疑应当放在公式的探索上。至于探索的途径或方法,我认为,主要有两个:一是转化,把圆柱体转化为长方体,二是验算,假设猜想的公式是正确的,利用它算出结果并设法检验。例如,可以将圆柱形固体放到较大的液体量具中,通过比较圆柱体积的猜想值与液体体积的增长量,证明体积计算的正确性。也可以将圆柱体形状的橡皮泥捏成长方体形状,如果能够在变形的过程中保持高的不变,则可以直接证明所猜想公式的正确性,否则,就要通过计算来作出间接的证明。如何理解教材中“堆硬币”的意图?我以为,这段教材的用意在于“提出猜想”而非验证猜想。之所以这样认为,原因有二,一是教材的表述,它说的是:“从‘堆硬币’来看,用‘底面积乘高’可以计算出圆柱的体积。”而不是说圆柱的体积就是底面积乘高’。二是如果作为验证方法,在逻辑上就犯了循环论证的错误,因为硬币本身实际上也是圆柱,它的体积是否等于底面积乘高,本身就是要待验证的。冯老师在教学中将其处理为“无数个圆叠加成为圆柱”,则使得它在逻辑上不再循环(虽然,这里的“积分过程”包含的极限思想要比“化圆为方”更难为小学生所理解。)。我认为,由于“堆硬币”的目的在于换一个角度提出猜想,教学中当学生能够提出猜想时,“叠圆成柱”的过程就显得不那么非要不可了。而通过多媒体课件演示圆柱的“化圆为方”的过程却是完全必要的。教师与学生一道经历了把十六等分的曲面三棱柱拼成“准长方体”之后,可以引导学生观察这个长方体的“近似性”,并启发他们想象当等分的数量增大到三十二、六十四、----的情况,在其想象之后,再用课件演示极限化的过程,大多数学生应当是可以真正理解的。
教学过程:
师:在前一阶段,我们对长方体、正方体以及圆柱体有了初步的认识,而且我们也学会了计算长方体、正方体的体积,但是,在我们的生活中,并不是所有的物体都是长方体和正方体,比如,窗户上的钢筋,桌子上的茶杯,要是求它们的体积怎么办呢?(学生摇摇头,非常困惑)
师:大家不要着急,我们先来看看这三个物体,长方体、正方体和圆柱体,它们的底面积和高都是相等的,大家猜想一下,它们的体积谁大谁小呢?
生:长方体和正方体的体积都是底面积乘以高,所以它们的体积是相等的。但是这圆柱体好像瘦一些,体积应该小一些。师:好,请坐。有没有不同的意见呢? 生:应该是相等的吧!师:为什么呢? 生:不太清楚,猜的。
师:好,请坐。现在我们有不同的意见,那到底哪种说法是对的呢?(学生片刻议论)
师:大家回想一下,我们在学习圆面积的计算时,是怎么推出公式的呢?
生:把一个圆分成许多个扇形,然后把它重新拼成一个近似的长方形,分成的扇形个数越多,它就越接近长方形。
师:很好,对以前的知识掌握得很牢固。那么,请同学们想一想,我们可不可以也同样的对圆柱体进行切分呢?(一些同学点了点头)
师:现在,这里有一个已经被切分了的圆柱体,(教师展示教具),有没有同学愿意来将它重新组合一下?
(有同学举手示意,一个同学到讲台上进行操作,重新组合,得到了一个新的物体)。
师:很好。刚刚那位同学把圆柱体改成了这样一个形状的物体。大家看一下,这个物体像我们学过的哪种物体形状啊? 生:长方体。师:是的。
(教师带着学生观察)。
师:大家请看,以前圆柱体的底面是不是成了这个长方体的底面?它的高是不是还是以前圆柱体的高啊? 生:是!
师:那么,我们现在来求这个长方体的体积怎么求? 生:底面积乘以高。
师:那我们现在求出来的体积与之前圆柱体的体积相等吗? 生:相等。
师:是的。我们将以前的圆柱体变成了现在的长方体,没有多一块,也没有少一块。我们现在可以得出圆柱体的体积公式是 师生:v=sh。
师:那我们现在知道了,底面积和高都相等的长方体,正方体和圆柱体的体积有什么关系呢?
生:相等。
师:我们应用到了数学上一种很重要的思想和方法,那就是转化,我们要推导的是圆柱体的体积,经过转化,实际上就变成了解决转化后长方体的体积。请你们想想,要求圆柱体积,需要知道哪些条件? 练习本很快列式
1)已知一个圆柱底面底面半径6分米,高为2分米,求体积 2)已知一个圆柱底面周长12.56cm,高为10cm,求体积 3)已知一个圆柱侧面积为50平方厘米,半径为4厘米,求体积 怎样?做第三题的时候有什么感觉?好像很麻烦哦 根据圆柱体的侧面积和半径能直接计算圆柱的体积吗? 生:可以,通过侧面积可以把高求出来。
师:很正确,但是如果我们不求高,能不能算出体积呢?(教师带着学生一起将公式变形)
师:所以圆柱的体积还可以用公式表示为V=πrh*r=S/2*r=S/d。我们经过认真观察和推导,发现计算圆柱体体积的方法可以是不同的,同学们课后可以自己再仔细推敲。根据提供的不同信息,选择合适的公式,这样可以减少计算难度或者步骤。
现在我们就要利用学到的知识来解决不同的问题。(例题讲解,学生练习)。
反思:
这一部分的内容与我们日常生活中的计算联系紧密。这是首次学习含有曲面的几何体的体积,不论是思考方法,还是对立体图形的认识上,都更加深入了一步,难度也加大了。所以本节的重点是:对圆柱体体积公式的理解。难点是:圆柱体体积公式的推导过程。学习本节课应具备的旧知识是:1圆面积公式的推导过程。2长方体体积的计算方法。
在教学中就是要运用圆面积公式的推导方法,将圆柱体转化为长方体,从而由长方体体积公式推导出圆柱体体积公式。因此根据本节课的特点我采用的教学方法是:
1.从生活的实际出发激起兴趣。课堂来源于生活,要从生活中的实际问题出发,引起学生对生活中存在的问题进行思考,从而激起它们对知识的渴求,使学生对待学习的态度是积极主动的,而不是被动接受,这样才会有一个好的教学效果。
2.让学生自己动手操作发现。学自己亲自动手实践,有助于学生对问题本质的认识,而且由于该节内容涉及到空间中的立体图形,在理解上有一定的难度。让学生动手操作、观察,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
3.巩固旧知识,学习新知识。将教学中的前后内容紧密练习在一起,通过巩固旧的知识与方法,联系到新知识的学习,使同学们很快的接受而且很好的掌握所学的新课内容。教师通过设疑,指明研究方向,营造探究新知识 的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。
在本节课的学习中,我力图让学生掌握一些基本的学习方法
1)学会通过观察、比较、推理能概括出圆柱体积的推导过程。
2)学会利用旧知转化成新知,解决新问题的能力。
师:课前同学们都做了一个圆柱, 你认为怎样才能做成一个圆柱?
生1:需要两个圆和一个长方形,
生2:应该是两个等圆。
师:这两个等圆叫做圆柱的底面, 长方形叫做圆柱的侧面。但长方形是一个平面图形, 而侧面却是一个曲面图形, 你们是怎么做的? (引发第一次认知冲突)
生3:我把长方形纸卷起来成为曲面, 展开来成为平面。 (学生用纸片演示)
老师顺势拿出一张长方形纸和两张等圆纸来围, 可怎么围也围不起来。学生面露疑惑。 (引发第二次认知冲突)
师:究竟怎样的长方形和两个等圆才能围成一个圆柱呢?同学们可以借助身边的侧面有包装纸的圆柱形罐子, 试着研究一下。
此时, 有的学生在把包装纸沿高剪开后展开, 再卷起来, 有的在思考, 有的在轻声讨论。
生1:我发现长方形的长和圆的周长相等 (学生边兴奋地说边演示)
生2:圆的周长就是圆柱的底面周长: (许多学生都认同)
师:假如老师现在给所有同学都发两个完全一样的等圆, 要做一个圆柱, 你打算如何确定长方形的长?
生:量出底面圆的直径 (或半径) , 算出周长, 圆柱的底面周长就是长方形的长。
学生先小组合作, 动手制作, 然后展示作品。
师:同学们手中的两个圆片完全一样, 可围成的圆柱怎么不一样呢? (引发第三次认知冲突) 。
生1:我们配的长方形的宽不一样, 宽就是圆柱的高, 所以圆柱不一样。
生2:如果长方形的宽一样, 围成的圆柱的高也就一样了。
师:如果你是老师, 布置同学们做圆柱, 而且要求每人做的完全一样, 你会给出什么条件?
生:统一圆柱的底面半径 (直径或周长) , 统一高度, 这样做成的圆柱就完全一样。
师:现在你认为应该怎样求圆柱的侧面积? (讨论并板书公式)
整个设计以冲突引发操作, 又以操作深化探究。第一次冲突, 促使学生感悟到曲面与平面之间的相互转化;第二次冲突, 促使学生将探究重点聚焦到长方形的长与底面圆的关系上;第三次冲突, 促使学生发现长方形的宽与圆柱高的关系。随着探究的不断深入, 学生的思维也逐步深化。
总之, 要使操作更有探究味, 就要让操作与明确的目的同在, 与仔细的观察同在, 与理性的思考同在, 与准确的表达同在。
课例:
师:请同学们拿出事先准备好的圆柱形椰子汁饮料罐。谁能以饮料罐为例,说说圆柱有哪些特征?
生1:圆柱有两个底面,都是圆形,而且一样大。(边说边指出两个底面)
生2:圆柱的侧面展开是长方形。(一边说一边摸了摸饮料罐的侧面)
师:你们能画出这个饮料罐侧面的商标纸的展开图吗?
生:能!
师:请大家量出相关数据,再画出侧面商标纸的展开图。
(生纷纷动手测量、画图)
师:谁来说说自己画的是什么样的图形?
生1:画的是长方形。
生2:所画长方形长15.7㎝,宽14㎝。
师:为什么这样画呢?
生3:因为我量出饮料罐的底面直径是5㎝,它的底面周长就是15.7㎝,也就是所画的长方形的长。而饮料罐的高是14㎝,所以长方形宽就14㎝。
师:你们知道所画的长方形面积是多少吗?
生齐答:219.8cm2
师:219.8 cm2是饮料罐哪部分的面积?用手摸一摸。
生1:是商标纸的面积。
生2:是饮料罐的侧面积。(用手摸给老师看)
师:现在你们知道圆柱侧面积怎么计算了吗?
(学生相互交流归纳)
生:圆柱侧面积用底面周长乘以高。
师:饮料罐是用什么材料制成的?
生:铁皮!
师:你们能算出制造这个饮料罐一共需要多少铁皮吗?
(同桌讨论,计算)
生:我先计算出一个底面的面积,再用刚才算出的侧面积加上两个底面积,就得到一共用铁皮259.05 cm2。
师:这就是饮料罐的表面积。如果保留整数是多少?
生1:259 cm2。因为0.05 cm2可以忽略不计。
生2:260 cm2。因为实际制造饮料罐时需要的材料要比计算结果多一些。不信大家看饮料罐的接头。(边讲边指给大家看)
师:你真是善于观察的小机灵鬼。这是又一种取进似值的方法,叫“进一法”。请举例说说实际生活中哪些地方用到“进一法”。
…………
师:(出示一个无盖铁皮茶缸)制造这个茶缸要多少铁皮?怎么算?
(生交头接耳、议论纷纷)
生1:计算时应注意茶缸只有一个底面用了铁皮。
生2:还应该告诉我们一些有用的数据。
师:你们需要哪些数据?
生3:底面直径和高。
师:底面直径10㎝,高12㎝。(计算结果保留整数)
(生纷纷动笔计算)
………
师:举例说说生活中还遇到过哪些无底、无盖的圆柱形物体?
………
师:今天我们学习了哪些知识?
………
师:这些知识在日常生活中经常用到,希望大家能应用所学知识解决生活中的实际问题。
(学生自学教材,并提出不懂的问题互相交流。)
………
师:(课外实践)量一量家中水桶或茶叶罐的直径和高,计算需要多少材料,写一篇数学作文。
反思:
一、使用教材要有创造性
传统教学论认为教材是规范性的教学内容,教师无权更动。而《基础教育课程改革纲要》明确指出“教材不是唯一的课程资源”,不能把教材看成“知识点”的代名词,教学也不在是简单
的“知识移植”过程,而是师生共同探求新知的过程,课堂不在限于教科书。所以,教师是课程开发的重要力量,教学设计时既要深入教材,又要跳出教材,不能把教学看作复制与实践教材,而应在课程目标的导向下,因时、因地、因生、因己灵活地处理教材,创生出有利于学生主动學习、和谐发展的教学方案。面对这节课内容,教者没有就教材教教材,而是把这节课内容看成是学生学习与发展的载体,把学生参与学习的过程加工成一个学生亲身参与与体悟的活动。课中所用教具、学具都是学生非常熟悉的,所选例题都是教者根据教学目标的需要、学生的学习兴趣和已有的经验而设计的,可谓恰到好处。
二、教学内容要有情境性
要保障主体性的学习活动,就得使学生直面应答性的学习情境,这样,学生就会直接地作用于这种应答性情境,解决自己的学习课题。这是一种尊重学生个性的、参与型教学情境。本节课从学生已有的生活经验和认知水平出发,精心设计了一系列的生活情境,充分利用直观教具、学具,让数学知识生活化,引导学生围绕生活情境思考问题,学生在生活需要所生发出的问题中积极主动地探究、讨论、交流、合作,不知不觉的经历了将实际问题抽象成数学模型,并进行解释与运用的过程。制作茶缸要多少铁皮、“进一法”的认识都体现了“人人学有价值的数学”、“人人获得必需的数学”这一课程理念。最后教者安排一篇数学作文,能使学生充分感受到数学源于生活,又服务于生活。这样将学习内容与生活联系起来能有效地调动学生学习兴趣。
三、学习方式多样性
【圆柱的体积教学反思】推荐阅读:
圆柱的体积习题09-07
“圆柱体体积的计算”教学设计及思考07-13
圆柱的体积(人教新课标六年级教案设计)09-14
圆锥体积的教学反思10-25
《组合体的体积》的教学反思07-15
《圆柱体的表面积》教学反思11-11
《气体摩尔体积》教学反思10-10
《复习圆柱和圆锥》教学反思11-14
新人教版小学六年级数学下册《圆柱的表面积》教学反思一09-30
圆柱的教学设计11-28