生物基复合材料

2024-07-08 版权声明 我要投稿

生物基复合材料(精选8篇)

生物基复合材料 篇1

毕 业 论 文(设计)

目:

淀粉基生物降解材料

号:

20110402310001

名:

陈广平

级:

2011

院:

材料与化工学院

业:

高分子材料与工程(塑料)

指导教师:

赵富春

完成日期: 2014 年月日

淀粉基生物降解材料

淀粉基生物降解材料

摘 要

淀粉基生物降解材料是一类很重要的可降解高分子材料。随着08年政府大力发展可降解塑料政策的出台,淀粉基生物降解材料近几年得到了飞速的发展,各类研究成果层出不穷。淀粉与高分子材料复合方法,淀粉的改性方法也多种多样。本文着重介绍淀粉基生物降解材料的一些基本知识:淀粉基生物降解材料的结构与性质、生物降解的定义及原理、降解性能的影响因素、应用与发展…等。

关键词:淀粉

生物降解

降解性能

应用与发展

合成高分子材料具有质轻、强度高、化学稳定性好以及价格低廉等优点,与钢铁、木材、水泥并列成为国民经济的四大支柱[1]。然而,在合成高分子材料给人们生活带来便利、改善生活品质的同时,其使用后的大量废弃物也与日俱增,给人类赖以生存的环境造成了不可忽视的负面影响[2]。另外,生产合成高分子材料的原料一一石油也总有用尽的一天,因而,寻找新的环境友好型材料,发展非石油基聚合物迫在眉睫,而淀粉基可生物降解材料正是解决这两方面问题的有效途径。

1、淀粉的基本性质

淀粉以葡萄糖为结构单元,分子链呈顺式结构,一般分为直链淀粉和支链淀粉两种。直链淀粉是以ɑ一1, 4-糖苷键连接D一吡喃葡萄糖单元所形成的直链高分子化合物,而支链淀粉是在淀粉链上以ɑ一1, 6-糖苷键连接侧链结构的高分子化合物,分子量通常要比直链淀粉的大很多。通常玉米淀粉中直链淀粉占28%,分子量大约为(0.3×106-3×106),占72% 的支链淀粉分子量则可以达到数亿[

3、4] 淀粉是一种多羟基化合物,每个葡萄糖单元上均含有三个羟基。分子链通过

淀粉基生物降解材料

羟基相互作用形成分子问和分子内氢键,因此淀粉具有很强的吸水性。淀粉与水分子相互结合,从而形成颗粒状结构[4],因此淀粉具有亲水性,但不溶于水,从而大量存在于植物体中。

淀粉是一种高度结晶化合物,分子问的氢键作用力很强,淀粉的糖苷键在150℃时则开始发生断裂,因此其熔融温度要高于分解温度。

2、可生物降解材料的定义及降解原理

降解材料是指在材料中加人某些能促进降解的添加剂制成的材料,合成本身具有降解性能的材料以及由生物材料制成的材料或采用可再生的原料制成的材料。其在使用和保存期内能满足原来应用性能要求,使用后在特定环境条件下,在较短时间内化学结构发生变化,从而引起性能损失的材料[5]。生物降解材料,亦称为“绿色生态材料”,指的是在土壤微生物和酶的作用下能降解的材料。具体地讲,就是指在一定条件下,能在细菌、霉菌、藻类等自然界的微生物作用下,导致生物降解的高分子材料[6]。理想的生物降解材料在微生物作用下,能完全分解为CO2和H2O。

生物降解材料的分解主要是通过微生物的作用,因而,生物降解材料的降解机理即材料被细菌、霉菌等作用消化吸收的过程。

首先,微生物向体外分泌水解酶与材料表面结合,通过水解切断表面的高分子链,生成小分子量的化合物,然后降解的生成物被微生物摄人体内,经过种种代谢路线,合成微生物体内所需要的物质或转化为微生物活动的能量,最终转化成CO2和H2O[7]。在生物可降解材料中,对降解起主要作用的是细菌、霉菌、真菌和放线菌等微生物,降解作用的形式主要有以下几种[8]:(1)生物的物理作用,由于生物细胞的增长而使材料发生机械性毁坏;(2)生物的生化作用,微生物对材料作用而产生新的物质;(3)酶的直接作用,微生物侵蚀材料制品部分成分进而导致材料分解。

3、淀粉基生物降解塑料

普通淀粉粒径为25um左右,既可作为制备降解复合材料的一种填料,又可以通过一定改性处理制备降解塑料。淀粉基生物降解塑料分为破坏性生物降解塑

淀粉基生物降解材料

料和完全生物降解塑料。前者主要是指将淀粉与不可降解树脂共混,研究开发较早,是淀粉基可降解塑料研究的第一代产品。后者则包括淀粉与可降解聚酯共混材料和全淀粉塑料两种,这两种材料在使用后均能实现彻底降解,目前是国外生物降解材料开发的主流。由于淀粉的成本比普通塑料要低很多。普通食用淀粉的价格为每吨2200元,而通用塑料的价格为每吨13000元,因此开发全淀粉降解塑料是今后淀粉基生物降解材料的大趋势[9]。

3.1破坏性生物降解塑料

破坏性生物降解塑料主要是指淀粉填充型降解塑料,将淀粉或变性淀粉作为填料,与聚烯烃等热塑性塑料共混并加入一定添加剂制备的部分降解塑料[10]。制品在使用后,淀粉部分首先降解,制品崩裂为碎片,因此又称为崩溃性生物降解塑料。材料破碎后表面积增大,有利于树脂部分的进一步降解。

这类降解塑料研究较早。早在1973年英国Griffin就以淀粉为填料,直接与聚烯烃进行共混。此后一些国家以这一方法为依据开发出淀粉填充型生物降解塑料。但是填充量一般只有5%-30%,增大淀粉含量会导致材料性能无法达到要求。这是由于天然淀粉分子内含有大量的羟基,属于强极性物质,而聚烯烃的极性较小,两者相容性较差,很容易发生相分离,难以形成连续相[11]。多年来,很多科学工作者致力于淀粉基生物降解塑料的研究,证明采用淀粉与非极性树脂进行共混,必须对淀粉进行预处理,改变其表面性质和结构特征,才能使两相界面结合很好,从而制备出具有优良性能的产品。

改性处理淀粉的方法主要分为物理改性和化学改性两种: 1)物理改性

物理改性[12]是指将淀粉进行机械化处理(气流粉碎等),并通过采用偶联剂,表面活性剂和增塑剂等助剂进行改性处理,降低淀粉的极性,在一定程度上提高了两相间的相容性。同时改性剂本身与淀粉的羟基发生作用,破坏淀粉本身的结晶性,使其刚性减弱,塑性增加,从而改善了淀粉的加工性能。该方法研究最成功的是加拿大的St.Lawarnce公司制备的Ecostar母料。

2)化学改性

化学改性是指通过在淀粉中加入一定单体,在引发剂和催化剂的作用下,单体与淀粉发生接枝反应,在淀粉分子链引入疏水化基团,在淀粉与合成树脂间起

淀粉基生物降解材料

到增容剂的作用,而且接枝淀粉也可进行填充。化学改性的方法主要有酯化,醚化,接枝共聚或交联改性等方法[13]

此外还有其他对淀粉进行改性的方法,例如等离子体法,微波辐射等方法。Ismael E.Rivero[14]等采用微波辐射的方法将淀粉与辛烯丁二酸酐以不同比例进行反应,然后将其作为淀粉和LLDPE共混体系的相容剂,通过结构和力学性能测试表明加入10%的相容剂能够明显减少淀粉相的大小,同时改进共混体系的力学性能。

淀粉/聚烯烃共混制备工艺简单,对生产条件的要求低,加工设备不需要作太大的改进,在工业化生产方面有很大的优势[15],而且对于及时缓解目前严重的废旧塑料污染问题有很重要的意义。但是由于复合材料中淀粉填充量较小,复合材料中不可降解部分仍占很大比例,难以实现完全降解,因此该方向对塑料降解的作用会受到一定的限制。

3.2完全生物降解塑料 1)淀粉/可降解聚酯共混塑料

淀粉/可降解聚酯共混塑料是将淀粉与可降解聚酯如PCL, PVA, PHB或天然高分子纤维素等共混制备,由于聚酯类化合物本身具有生物降解性,因此产品可以完全降解,更有利于环保。作为降解材料,聚酯类化合物如聚乳酸等己经广泛应用于医学等领域。然而其力学性能差,成本高的缺点限制了其进一步发展。如果在聚酯中添加一定量的淀粉,不仅可以使共混塑料的成本降低,而且淀粉的加入在一定程度上改善了聚酯的机械性能[16]。但是淀粉和聚酯类化合物都是极性化合物,具有很强的亲水性,长时间暴露会导致其性能的下降。另

外淀粉与聚酯之间也同样存在相容性的问题,因此在共混之前添加一定改性剂进行处理也十分必要的。

2)全淀粉塑料

全淀粉塑料是指以淀粉作为材料的基体,在淀粉中添加少量的助剂制备而成。淀粉本身是一种高分子聚合物,分子以顺式排列,结晶温度高,难以直接加工成型。因此必须在淀粉中加入一些增塑剂等助剂,破坏淀粉与原有的分子结构,使其物理性质和化学性质产生一定改变,从而能够应用生产生活[17]。例如淀粉在塑化状态下表现出很高的强度和韧性,但是在重新冷却结晶后,则表现为脆性

淀粉基生物降解材料

很高,难以进行实际应用。因此制备全淀粉塑料中,需要对淀粉进行一定变性处理,破坏其高度结晶的结构。另外全淀粉塑料吸水性很强,在空气中吸收大量水分后,材料难以保持很好的性能。

全淀粉塑料是淀粉基生物降解塑料发展的最新方向,实现全淀粉塑料的应用,对于缓解目前石油能源医乏,解决塑料污染具有很重要的意义。

4、淀粉基生物降解材料降解性能的自身影响因素

1)聚合物改性

为了使淀粉基生物降解材料在降解前具有一定的力学性能,需要将复合材料组分中的聚合物进行化学改性。Demirgoz等[18]研究了3种淀粉基降解复合材料:玉米淀粉/乙烯-乙烯醇共聚物(SEVA-C)、玉米淀粉/醋酸纤维素(SCA)和玉米淀粉/聚己内酯(SPCL),通过链交联对这3种复合材料中的聚合物组分进行化学改性,研究了复合材料在盐溶液中的降解行为。结果表明,复合材料经过交联改性后,共混物的失重率比未改性的聚合物共混物要小,说明交联改性延缓了共混物的降解。对于淀粉和PLA共混复合材料,将PLA进行改性比如共聚作用,产生酸性物质,使得微生物侵蚀材料,从而可加快复合材料的生物降解[19]。

2)淀粉改性

原淀粉由于亲水性太强而不能用于食品包装材料,通过淀粉改性可使淀粉的疏水性增强,这些改性必将影响到淀粉的降解性能。通过比较原淀粉和淀粉醋酸酯挤出共混物的酶降解性能[20],可知当共混物中淀粉醋酸酯的含量增加时,共混物的降解性能下降,因为淀粉醋酸酯是共混物中疏水的部分,比较难与酶解近,故降解速率在初始阶段有所下降。Kim [21]通过比较原淀粉(NS)/PE和羟丙基淀粉(HPS)/PE共混物的降解性能,发现HPS/PE共混物更易被热氧化降解,而NS/PE共混物较难被氧化,因为在加热过程中其羟基指数没有增加。并且HPS/PE较NS /PE共混物更易被微生物降解,因为HPS/PE的拨基能够进一步参与氧化降解,氧化降解协同微生物降解一起加快了HPS/PE共混物的降解。

3)增溶剂

土埋法淀粉/LDPE共混物降解性能显示[22],与未加增容剂相比,加入增容剂MA g PLDPE和AAe g PLDPE后共混物的失重随着增容剂含量的增加而呈现

淀粉基生物降解材料

无规律性的变化,表明增容剂对淀粉/LDPE的降解性能有一定的影响,随着MA g PLDPE含量的增加,共混物的降解能力下降。Bikiaris等[23]研究了增容剂PE g MA对LDPE/热塑性淀粉(PLST)共混物降解性能的影响,失重曲线表明含有增容剂共混物的失重比未含增容剂共混物的失重要略小,说明增容剂对共混物的降解起到一定的限制作用。微生物降解后力学性能显示,含有增容剂共混物的拉伸强度和断裂伸长率均比未含增容剂共混物的要大,从而也说明加入增容剂后共混物的生物降解性能略有降低。

5、应用现状与展望

淀粉基生物降解塑料已有30年的研发历史,是研发历史最久、技术最成熟、产业化规模最大、市场占有率最高的一种生物降解塑料。在工业上可以代替一般通用塑料等,可以用作包装材料,防震材料,地膜,食品容器,玩具等。淀粉与PE, PP, PVA, PCL, PLA等聚合物共混粒料已批量生产。

国外淀粉基塑料产品生产商主要有意大利的Novamont公司、美国的Warner-Lambert公司和德国的Biotec公司。我国积极研发并产业化的单位主要有中国科学院理化技术研究所、中国科学院长春应用化学研究所、江西科学院、北京理工大学、华南理工大学、天津大学比澳格(南京)环保材料有限公司、广东上九生物降解塑料有限公司、广州优宝生物科技有限公司、浙江天示生态科技有限公司、中京科林新材料(深圳)有限公司、武汉华丽科技有限公司、哈尔滨绿环降解塑料有限公司、黑龙江绥化绿环降解塑料有限公司、烟台万利达环保材料有限公司等。

国内最大的生产厂家是武汉华丽和比澳格(南京)。武汉华丽预计产销规模10万吨,比澳格(南京)现已形成数万吨淀粉基塑料规模。其他几个大型企业均达到年产万吨级生产规模,总产量占到我国生物降解塑料产量的60%以上,并出口日本、韩国、马来西亚、澳大利亚、美国欧盟等国家[24]。

淀粉基生物降解塑料具有广阔的开发圣应用前景。2008年1月11日国家发改委表示将超薄塑料购物袋列为淘汰类产品,又禁止在全国生产、销售和使用。对于一次塑料袋对环境的危害给人们敲响了警钟。在这种情况卜,开发淀粉基生物降解塑料将会具有巨大的市场效益。然而淀粉基生物降解材料在应用中仍然存

淀粉基生物降解材料

在一定的缺点和问题,例如共混型淀粉生物降解塑料比全淀粉塑料更易应用于实际生产生活当中。然而淀粉/聚烯烃降解塑料只能部分降解,对环境污染的问题未能根除,在国外已经濒临被淘汰的边缘;淀粉/可降解聚酯共混塑料由于生产技术仍存在一定问题,生产成本比普通塑料高,因此未能大范围地进行工业化生产;全淀粉塑料目前尚处于研究开发阶段。因此开发生物降解塑料任重而道远,如何开发成本更低,对环境污染更小的淀粉基生物降解塑料是一个十分重要的课题。

参考文献

[1] 俞文灿.可降解材料的应用研究现状及其发展方向[J].中山大学研究生学刊,2007, 28

(1):22-23.[2] 洪一前,盛奎川,蓝天,等.生物叮降解高分子材料的研究及进展[J].粮油加工,2008, 39(5):127-128.[3] 工佩璋,工澜,李田华.淀粉的热塑性研究, 中国塑料,2002, 16(4): 39-43.[4] 刘娅,赵国华,陈宗道.改性淀粉在降解塑料中的应用.包装与食品机械,2003, 21(2)[5] 郑治.大豆分离蛋自质构化与其可降解材料特性研究[D].郑州:河南上业大学,2006:4-5.[6] 周鹏,谭英杰,梁玉蓉,等.可降解材料的研究进展[J].山西化工,2005, 25(1):24-25.[7] 胡晓兰,梁国正.生物降解高分子材料研究进展[J].化工新型材料,2002, 30(3):7-9.[8] 孟凡磊,陈复生,姚永志.大豆蛋白可生物降解塑料的研究[J].食品工业科技,2006,27(11):196-198.[9] 任崇荣,任风梅,周正发,徐卫兵.淀粉基生物降解塑料的研究现状综述及展望[J].合肥工业大学,2008,86-89 [10] 李慧,佘万能,刘良炎等.淀粉基生物降解塑料的开发与应用现状[J].北学与生物工程,2006,23(5):3-5 [11] 丁生龙.光/生物降解塑料薄膜制备工艺及性能[D].兰州大学硕士论文,2003,5.[12] 刘娅,赵国华,陈宗道等.改性淀粉在降解塑料中的应用[J].包装与食品机械,2003,21(2):20-22 [13] 卢峰,胡小芳,邓桂兰等.淀粉基生物降解塑料的研究进展[J].广州化工,2004,32(3):1-4 [14 Ismael

E.Rivero,Vittoria

Balsamo,Alejandro

Jumbler.Microwave一assisted

modification

of

starch

for

compatibilizing

LLDPE/starch

blends[J].Carbohydrate Polymers,2009,75(2):343一350.[15] 黄强,熊键,何小维等.淀粉类生物降解材料研究进展[J].粮食与饲料工业,2000(9):51-53 [16] 邙志国,薛冬桦,迟惠等.变性淀粉用于生物降解材料的研究进展[J].长春理工大学报,2007,30(1):105-107 [17] 张可喜,付新.淀粉复合材料的研究进展[J].北学工程师,2006(5):22-24 [18] DemirgoZ D, et al.Chemical modification of starch based biodegradable polymeric blends: effects on water uptake,degradation behaviour and mechanical properties[J].Polym Degradation and Stability, 2000, 70: 161

淀粉基生物降解材料

[19] Shogren R L, Doane W M, Garlotta D, et al.Biodegradation of starch/polylactic

生物基复合材料 篇2

近几年, 随着“白色污染”的日趋严重, 给生态环境造成严重污染, 生物降解塑料技术是最为倡导的方式, 但生物降解存在的主要问题一是制造成本高, 二是制造工艺复杂以及淀粉的改性存在污水排放等问题;三是降解制品在塑料中填加光敏剂和淀粉, 采用光和生物双重降解方法, 但在技术上还未解决淀粉填加量超过60%这一难题, 因此, 在很大程度上制约降解制品的推广应用。

另外, 目前使用的一次性纸制品餐具虽在一次性使用品上替代了一部分塑料制品, 但它也存在以下五个方面问题:一是纸制品的原料需要消耗大量资源紧缺的木材, 造成浪费;二是造纸要产生废水及大气污染, 造成很大损失;三是制造成本高, 一个纸杯的制造成本是塑料杯的2.5倍以上;四是纸本身虽可降解, 但绝大多数餐具为防油防水在表面都涂有塑料或防水剂等, 使其不可降解;五是这类制品都不适宜在微波炉里加热。进而我们提供一种原料成本低、降解效果好、生产工艺简单且易于推广应用的生物降解性木薯淀粉基材料以及根据该材料制作的相应的制品。

该淀粉基材料以木薯淀粉为主要组分, 以可降解的助剂 (包括由低密度高压聚乙烯和线性低密度高压聚乙烯构成的相溶剂以及由乙烯-醋酸乙烯共聚物构成的耦联剂) 、填料 (钛白粉) 、增强剂聚烯烃 (聚乙烯或聚丙烯) 为辅料, 经现代技术科学加工而成的新的降解材料。木薯具有产量高、质地好、种植容易、价格低的特点, 以木薯淀粉为原料生产生物降解性材料及制品, 无疑将为其应用开拓新的途径。

生物降解性木薯淀粉基材料木薯淀粉、聚丙烯或聚乙烯、低密度高压聚乙烯、线性低密度高压聚乙烯和乙烯-醋酸乙烯共聚物、钛白粉六种物质组成, 各物质组分在产品中所占的重量百分比为:

木薯淀粉70%~85%, 聚丙烯或聚乙烯5%~15%1%~2%, 乙烯-醋酸乙烯共聚物3%~8%, 钛白粉1%~2%。

由于在配方及组分上使木薯淀粉物质的含量达到70%~85%, 因而可以使淀粉基材料及制品具有更好的生物降解性。由于淀粉分子的降解, 少量的聚乙烯或聚丙烯分子链也会随之断裂, 形成细小的碎粒或粉末。经常温埋土实验结果表明, 用本发明生物降解性木薯淀粉基材料制成的制品在20天开始变脆, 30天内降解60%, 8至12个月内可全部降解。与目前普遍使用的纸浆模塑、秸秆、玉米淀粉等类材料制品相比, 不仅成本低、外观颜色洁白、气味香, 而且各项性能优异。

该生物降解木薯淀粉基材料制备工艺是:将各组分物质混合搅拌均匀后, 放入高速混炼机中加温混炼成粉状料, 将混炼成的粉状料送入双螺杆挤出造粒机组中进行拉条造粒, 用注塑机对粒料进行注塑或通过压片机组将粒料压延制成片材, 然后依次通过高速成型机、发泡机和拉膜机将注塑料或片料进行吸塑、发泡、拉膜处理后, 最终形成制品。

其生产工艺简练、精化, 易规模化生产, 不需要进行预糊化或化学改性, 也不需要使用有机溶剂、水、蒸汽等, 因而, 在生产过程中不会产生任何废水、废气、废渣等“三废”, 对环境不产生污染。所形成的制品包括一次性餐饮容器和器皿、包装容器、包装膜、医用器材以及农用膜等。其降解餐盒、碗盘等耐热温度为130℃, 最适宜置于微波炉里加热食品、饮料等, 具有优异的耐油及耐水性能;其耐寒温度为-20℃, 可在冰箱内冷冻食品、冰块、饮料等。此外, 该材料的回收制品经粉碎后可用于种植蘑菇、养花或者经过发泡作为包装材料的应用。

联系人:吴同刚

生物基复合材料 篇3

据国际橡胶研究集团预测,全球对天然橡胶和合成橡胶的需求将从2011年2570万吨增长到2020年3590万吨。天然橡胶和合成橡胶的需求将大致相等。

供应紧张和高的价格使从糖类制取橡胶原材料脱颖而出。一些工业生物技术公司,如Genencor公司、Gevo公司、Amyris公司和Genomatica公司都在开拓第三途径,以糖类为原料来制取生物基橡胶组分。Gevo公司已宣布,在美国明尼苏达州Luverne的的第一套商业化装置将使用异丁醇用于生产合成橡胶。

通过微生物发酵可制取三种可再生橡胶中间体:异戊二烯,异丁烯和丁二烯。五碳异戊二烯可用于制造像橡胶树来源那样的乳胶。异丁烯和丁二烯是四碳中间体,可用于制造丁基橡胶和丁苯橡胶。

两家领先的轮胎制造商固特异公司和米其林公司与合成橡胶制造商朗盛公司一起,已与工业生物技术公司组建合作伙伴关系,推进从糖类商业化生产这些橡胶中间体。

德国朗盛公司2011年9月底表示,正在增强其从生物基原材料生产优质合成橡胶的承诺。作为德国特种化学品公司,朗盛公司目标是到2011年年底商业化从生物基乙烯生产乙丙橡胶。这将是世界上基于生物的乙丙橡胶第一种形式。乙丙橡胶传统方式是用石油基原材料乙烯和丙烯来生产的。作为替代,朗盛计划纯粹使用来自可再生资源甘蔗衍生的乙烯。这种生物基乙烯形式由来自巴西甘蔗的乙醇经脱水而生产。巴西Braskem公司将通过管道,向朗盛公司位于巴西Triunfo集团现有的乙丙橡胶装置供应生物基乙烯。朗盛公司表示,这套位于巴西的乙丙橡胶装置将是基于生物的乙丙橡胶(EPDM)的先驱。巴西Triunfo集团目前年生产4万吨常规乙丙橡胶,预计第一批生物基Keltan Eco乙丙橡胶产品将为数几百吨。该公司的其他乙丙橡胶生产基地在荷兰Geleen、德国Marl和美国得克萨斯州。所有的乙丙橡胶等级在未来将以Keltan品牌名称出售。乙丙橡胶应用于汽车行业,但也应用于塑料改性、电线电缆、建筑和石油添加剂行业。其特性包括非常低的密度、良好的耐热、抗氧化,抗化学品和耐候性,以及有良好的电气绝缘性能。朗盛公司将在其德国橡胶日首次展示Keltan Eco产品。

在巴西,投资糖类衍生的乙醇继续推进。甘蔗衍生的乙醇可与约70美元/桶的石油价格相竞争,并且这些经济性推动了“绿色”聚合物的生产。Braskem公司利用来自甘蔗衍生产的乙烯提供给朗盛公司,从2011年10月起开始生产三元乙丙橡胶。Triunfo装置中年4万吨能力的1/4专用生产基于生物的三元乙丙橡胶。

福特汽车公司和俄亥俄州立大学正从全新的角度对蒲公英展开研究,有望让蒲公英成为可持续的天然橡胶来源。从蒲公英根渗出的一种乳白色物质可用来制成具有可持续性的橡胶。这种物质有望在福特汽车的塑料件中得到用武之地,比如作为杯架、地垫和内饰的抗冲改性剂。利用蒲公英根作为橡胶替代品是福特投资研发可持续车用材料的范例之一,其他此类产品包括大豆泡沫坐垫,麦秆填充塑料内饰,以牛仔布中的再生棉制成的吸声材料,在车底系统中使用再生树脂,以及利用再生纱线制成的座椅套。蒲公英分为很多品种,并不是所有的蒲公英都适合作为可持续的橡胶来源。其中适合汽车应用的是俄罗斯蒲公英Taraxacum kok-saghyz(TKS),目前正由俄亥俄州立大学的农业研究与开发中心进行栽种。

在源自蒲公英的橡胶材料真正可投入使用之前,福特的研究人员将先对蒲公英的基本质量展开评定,看看其在各种车用塑料中发挥的性能如何,同时要确保蒲公英能达到福特严格的耐用性标准。

除蒲公英外,研究小组还在研究把银胶菊(生长在美国西南部的一种灌木)作为天然橡胶来源。目前俄亥俄州立大学的农业研究与开发中心也在种植银胶菊,这种植物同样适宜在美国本土生长。

近几年来,福特在可行的情况下全面加大了对非金属再生材料和生物基材料的利用,当把此类材料用于专门用途时对环境更为有利。住友橡胶工业公司2011年12月中旬宣布,将于2013年之前上市完全不使用石油及煤炭等化石资源的“100%非石油的天然资源轮胎”。

普利司通公司(BSJ)于2012年3月10日宣布,计划在美国开展的一项广泛研究项目,致力于开发银胶菊作为高品质天然橡胶商业上可行的可再生来源和作为橡胶树的替代。银胶菊是一种多年生的灌木,原产于美国西南部和墨西哥北部。这种植物在其树皮和树根可生产天然橡胶。来自银胶菊的天然橡胶与来自橡胶树收获的天然橡胶相比有几乎相同的质量,橡胶树是目前轮胎中使用的天然橡胶的主要来源。

该项目正在由普利司通美洲轮胎业务部(BATO)与BSJ公司合作进行。?BSJ提供融资和战略性投入,而BATO将负责寻找合适的地点和经营试点农场和工艺研究设施。BATO也将充分利用普利司通美洲研究和技术中心和其Akron技术中心的资源,以提供技术和研究经验。BATO目前正在寻求土地以便在美国西南部建立试点农场和建设橡胶过程研究中心。该公司预计将在2012年晚些时候建立研究性农场,并开始建造过程研究中心。该设施预计将在2014年全面投入运作。2015年开始将测试橡胶生产。在这个新的项目中,普利司通集团将利用其于1988年到1991年与美国农业部一起参与银胶菊的研究项目所获得的知识和经验,重点是从银胶菊生物质提取轮胎用橡胶。银胶菊的成功商业化开发将使轮胎和橡胶工业用天然橡胶的来源多元化,并可减少今天对橡胶树的严重依赖,橡胶树受限于在接近赤道的热带气候下才能种植。相比之下,银胶菊是可种植在沙漠气候下,拥有巨大的潜在生长面积。

二、生物基汽车轮胎及材料

米其林北美公司的工程师于2010年5月底宣布,在该公司新的奢华级旅游轮胎Primacy MXM4中组合加入厨房级葵花籽油。这种来自美国的油占轮胎材料量5%不到。米其林公司表示,使用这种烹饪级油可通过有助于胎面胶的散热而改进牵引性能。该公司以前已使用葵花籽油在其冬季轮胎中用来改进性能和磨损,但这是四季轮胎中使用这种成分的第一次。葵花籽油是米其林公司专利的Helio混配物技术的组成部分,该技术可使低温潮湿条件下改进牵引性能,并且也有助于在雪地里提高整体性能。

福特汽车公司的生物材料研究人员于2010年7月7日宣布,已使一种专利的配方实现了工程化,使用可再生的大豆油来改进汽车橡胶零部件,通过使用可再生的大豆油作为25%石油的替代,福特研究人员由此使橡胶的伸展性延伸了一倍以上,并且减少了它的环境影响。福特汽车公司研究人员发现大豆填充剂可望为炭黑提供低廉而环境友好的部件替代,炭黑是传统的石油基材料,用于使橡胶增强。大豆油和大豆填充剂一起使用时可望替代汽车橡胶应用中国石油基含量高达26%。

根据国际橡胶研究集团的分析,汽车部门占世界橡胶消费量超过50%,2008年世界橡胶消费量超过2200万吨。汽车橡胶使用量预计到2013年将增长超过4%。

福特汽车公司是汽车使用生物材料的先驱。福特公司是实施验证生物材料的第一家汽车制造商,该公司验证了大豆基泡沫,可使配方通过汽车应用的严格要求,2008年福特Mustang材料开始用于座垫,2010年福特Escape和Mercury Mariner材料开始用于车头衬里。2011年福特Explorer材料将成为第23款应用材料,它以大豆泡沫为特征。福特汽车公司的生物泡沫已应用于超过200万辆汽车,使每年其石油用量减少超过1360.5吨,并使其二氧化碳排放减少4989吨。

树脂基复合材料低成本技术 篇4

班号:

树脂基复合材料低成本技术

摘要:树脂基复合材料因其比强度高、比模量大而广泛的应用于航空航天等领域。然而其高昂的价格仍然是限制树脂基复合材料广泛应用的一大障碍。目前,已经有多国学者针对树脂基复合材料低成本化进行了研究,并取得了部分积极成果。本文主要介绍了几种低成本制造技术,如自动铺放技术、低温成型预浸料技术、电子束固化技术、液体成型技术以及树脂模渗透成型(RFI)技术。关键词: 树脂基

复合材料

低成本技术

前言

与传统金属材料相比,复合材料具有密度低、比强度和比模量高、可设计性强、抗疲劳性能好、耐腐蚀性能好和结构尺寸稳定性好等优点,在航空航天领域获得了广泛的应用。从20世纪70 年代开始,复合材料就首先在军用飞机上少量使用,到了80 年代已在民用飞机上进行了试用。应用基本是从非承力结构到次承力结构最后到主承力结构,从部位来说是从尾翼到机翼最后到机身。随着技术的不断成熟,复合材料在飞机上的用量越来越多,减重效果也越来越明显[1]。

长期以来,限制复合材料在飞机上扩大应用的原因主要有2个:一是技术成熟度没有金属高;二是复合材料成本太高,复合材料构件的成本远远高于铝合金构件。要想扩大复合材料在航空上的应用,就必须降低复合材料的成本。本文旨在介绍几种复合材料低成本制造技术的发展现状,如自动铺放技术、低温成型预浸料技术、电子束固化技术、液体成型技术以及树脂模渗透成型(RFI)技术。

一、自动铺放技术

用于航空航天器的先进复合材料构件主要采用热压罐成型技术制造。自动铺放是替代预浸料人工铺叠,提高质量和生产效率的重要手段。根据预浸料形态,自动铺放可分为自动铺带

[2-3]

与自动铺丝

[4-5]

两类:自动铺带(Tape laying)采用有隔离衬纸单向预浸带(25-300 mm),多轴机械臂(龙门或卧式)完成铺放位置定位,铺带头自动完成预浸带输送剪裁、加热铺叠与辊压,整个过程采用数控技术自动完成(图1a所示);自动铺丝(Fiber placement)采用多束(最多可达32根)预浸纱/分切的预浸窄带(3-25 mm),分别独立输送、切断,由铺丝头将数根预浸纱在压辊下集束成为一条宽度可变的预浸带(宽度通过控制预浸纱根数调整)后铺放

姓名:

班号:

数字化设计和自动化制造,已经成为发达国家飞机复合材料大型构件的主要成型方法:新一代大型飞机B787、A350的所有翼面采用自动铺带,而所有机身构件采用自动铺丝。复合材料的大量应用推动了自动铺放技术的快速发展,各类新技术层出不穷[6]。

二、低温成型预浸料技术

低温成型预浸料技术(Low Temperature Moulding Prepreg Technology)是一种低成本复合材料生产技术。先进复合材料公司早在70年代就开始研制开发这种技术,经过80年代和90年代的进一步开发,已经成为一种有效的低成本复合材料生产技术[7]。

用低温压制预浸料技术来生产复合材料结构件有许多特点,在原材料、工艺、生产技术、模具、适用性和成本方面有下列特色:(1)不采用热压罐固化;

(2)低温(通常在60℃左右)固化;(3)低压或真空袋固化;(4)采用无支撑后固化;(5)采用廉价材料制造的模具;(6)采用特种树脂体系;(7)预浸料存放寿命较短;(8)可以制造整体大构件;(9)适用于单件或小批量生产;(10)成本可降低50%~70%。

低温成型预浸料技术生产复合材料构件必须采用特殊的原材料——专用的树脂体系。一般树脂体系由三部分组成:基础树脂或其混合物、固化剂或其混合物和增韧剂或其他附加剂。对极大部份复合材料构件而言都采用环氧树脂体系。在过去20多年期间研究发展的环氧树脂体系,其固化剂都致力于延长存放寿命和较高固化温度,亦即树脂体系的反应性很低,预浸料的稳定性很好,较高固化温度是为了获得良好的机械性能,虽然这样的看法并不正确。为了得到可在低温下固化的树脂体系,而且可以采用无支撑后固化,先进复合材料公司研制发展了专用的LTM预浸料和树脂体系,包括: LTM10系列、LTM20系列、LTM30体系、姓名:

班号:

渍模塑成型工艺(See-mann Composites Resin Infusion Manufacturing Process,SCRIMP)、树脂膜渗透成型工艺(Resin Film Infusion,RFI)和结构反应注射模塑成型(Structural Reaction Injection Molding,SRIM)是最常见的先进LCM工艺技术。这类工艺的共同特点是将纤维预成型体放入模腔内,再将一种或多种液态树脂(通常为热固性树脂)在压力作用下注入闭合模中,液态热固性树脂浸渍纤维预成型体待树脂固化脱模后得到产品。这种作用压力可通过模腔内形成真空(真空浸渍)、重力,或者由压力泵或压力容器来提供[11-13]。与其他的纤维复合材料制造技术相比,LCM技术具有诸多优势:可生产的构件范围广,可一步浸渗成型带有夹芯、加筋、预埋件等的大型构件,可按结构要求定向铺放纤维,且具有高性能低成本制造优势。与传统的模压成型和金属成型工艺相比,LCM模具质量轻、成本低、投资小。另外,LCM为闭模成型工艺,能满足日趋严格的苯乙烯挥发控制法规的要求。

LCM工艺技术最早起源于20世纪40年代的Macro法,Macro法相当简单,对模腔抽真空以驱动浸渍过程,美国海军承包商用这种方法开发出了大型玻璃钢增强塑料船体。在20世纪50年代称为RTM工艺,该工艺可以生产双面光滑的产品,树脂的注射压力适中,比手糊工艺优越,所以得到了发展。20世纪50年代至70年代,RTM的应用很少。到了20世纪80年代,随着飞行器的承力构件及次承力构件、国防应用、汽车结构件以及高性能体育用品等的开发,RTM工艺取得了显著的进展,并且在此基础上开发了VARTM、SCRIMP、RFI、SRIM等这些先进的LCM工艺技术。

LCM工艺技术是先进复合材料低成本制备技术的主要发展方向[14]。据报道,欧美等先进工业国家在该领域开展了大量的研究工作,其研究开发耗资巨大。我国“863”计划在“九五”期间在RTM成型技术取得重要研究进展的基础上,部署了应用LCM技术制备车用大型结构件以降低高品质复合材料制造成本的研究计划。

五、树脂模渗透成型(RFI)技术

树脂膜渗透(RFI-resin film infusion)工艺是一种树脂膜熔渗和纤维预制体相结合的树脂浸渍技术。其工艺过程[15]是将预催化树脂膜或树脂块放人模腔内,然后在其上覆以缝合或三维编织等方法制成的纤维预制体等增强材料,再用真空袋封闭模腔,抽真空并加热模具使模腔内的树脂膜或树脂块融化,并在真空

姓名:

班号:

先进树脂基复合材料的现状及应用 篇5

摘要:先进树脂基复合材料以其比强度比模量高、良好的耐疲劳性能、良好的 抗腐蚀性能、成型工艺的多选择性等独特优点获得广泛应用和迅速发展。本文简要介绍了先进树脂基复合材料的特性,并结合其特性从应用的角度总结了先进树脂基复合材料的应用和前景。

关键字:树脂基复合材料现状应用前言

先进树脂基复合材料是以有机高分子材料为基体、高性能连续纤维为增强材料、通过复合工艺制备而成,具有明显优于原组分性能的一类新型材料[ 1 ]。先进树脂基复合材料具有比传统结构材料优越得多的力学性能,可设计性优良,还兼有耐化学腐蚀和耐候性优良、热性能良好、振动阻尼和吸收电磁波等功能。目前,随着复合材料工业的迅速发展,树脂基复合材料正凭借其本身固有的轻质高强、成型方便、不易腐蚀、质感美观等优点,越来越受到人们的青睐。先进树脂基复合材料的现状

据有关部门的统计,全世界树脂基复合材料制品共有4万多种,全球仅纤维增强复合材料产量目前达到750多万t,从业约45万人,年产值415亿欧元,其生产能力与市场分布情况为:北美32%、亚太地区35%、欧洲30%、其他地区3%[ 2 ]。目前,全世界高性能树脂基复合材料的产量超过300万t,高性能热塑性复合材料的产量为120多万t,其应用领域主要为:汽车行业占23%、建筑业21%、航空业17%、体育运动领域11%[ 3 ]。从全球发展趋势来看,近几年欧美复合材料生产均持续增长,亚洲的日本发展缓慢,而中国特别是中国内地的市场发展迅速。我国树脂基复合材料研究,经过多年的发展,在生产技术、产品种类、生产规模等方面迈过了由小到大的台阶,产量已经仅次于美国,居世界第2位,其市场分布为:建筑 40%、管罐24%、工业器材12%、交通6%、船艇4%、其他14%[ 4-6 ]。我国高性能树脂基复合材料发展水平不高,所采用的基体主要有环氧树脂、酚醛树脂、乙烯基酯树脂等。3 先进树脂基复合材料的应用

3.1航空、3.1航空、航天工业航空树脂基复合材料以其典型的轻量特性、卓越的比强度、比模量、独特的耐烧蚀和隐蔽性、材料性能的可设计性、制备的灵活性和易加工性等,在实现武器系统轻量化、快速反应能力、高威力、大射程、精确打击等方面起着巨大作用,使它成为航空航天工业中非常理想的材料。在航空工业中,先进树脂基复合材料在应用过程中不断积累应用经验,提高技术水平, 完善配套技术, 从非承力构件整流蒙皮逐渐发展到承力构件尾翼、机翼, 从简单结构层合壁板, 逐渐发展到整体复合材料结构尾翼和机翼。先进树脂基复合材料在飞机上的应用可以实现15% ~30%减重, 可有效降低飞机的结构重量, 提高飞机的机动性能和有效载荷等。飞机结构复合材料化已经成为趋势, 先进树脂基复合材料已经成为不可缺少的关键航空结构材料。从上世纪90 年代开始, 先进战斗机大量使用先进树脂基复合材料, 如F35 复合材料用量达到35% ,主要应用包括机翼、机身、尾翼等主要承力构件。先进树脂基复合材料在民用飞机的应用从2003 年用量得到了跨越发展, 空客公司的A380宽体客机复合材料的用量增加到24% , 波音公司的B787 飞机复合材料用量达到约50% , 空客公司在研究的A350XWB复合材料用量将达到 52%。随着国内先进树脂基复合材料性能的提高, 制造技术的不断成熟, 配套无损检测和装配等技术的完善, 国内先进树脂基复合材料在直升机、歼击机和大型飞机得到相当的应用。歼击机复合材料的用量已经达到6% ~9% , 主要包括机翼、平尾、垂尾、前机身、鸭翼、襟副翼、腹鳍等;直升机复合材料用量达到25% ~ 33% ,主要包括旋翼系统和机身结构。先进树脂基复合材料机翼、平尾、垂尾、鸭翼、直升机机身、尾段等复合材料构件已经实现批量生产[ 7 ]。在航天领域,树脂基复合材料不仅是方向舵、雷达、进气道的重要材料,而且可以制造固体火箭发动机燃烧室的绝热壳体,也可用作发动机喷管的烧蚀防热材料。先进树脂基复合材料对于导弹屏蔽或衰减雷达波或红外特征,提高自身生 [8] 存和突防能力,具有着至关重要的作用。近年来研制的新型氰酸树脂复合材料具有耐湿性强、微波介电性能佳、尺寸稳定性好等优点,广泛用于制作宇航结构件、飞机的主次承力结构件和雷达天线罩。

3.2能源工业

3.2能源工业在现今国际社会上能源短缺,各种新型能源不断涌现,风能是现在很有前景的清洁、可再生能源,风力发电正快速发展,将逐步成为电力结构的主要组成部分。风力机组叶片是大型树脂基复合材料,已经成功的在风力机组上得到应用。树脂基复合材料具有耐酸、耐碱、耐有机溶剂、耐油等优异的耐腐蚀性能,因此在煤矿生产及石油的开采、运输、储备中得到非常广泛的应用。从技术、经济、性能分析,如纤维增强塑料(F R P)/塑料复合管和玻纤增强热塑性复合材料管道十分适于天然气、煤气的输送和储存,且有利于环保,其综合经济效益好、社会效益显著。3.3建筑业[ 9 ]

建筑行业发展和使用树脂基复合材料,对减轻建筑物自重、提高建筑物的使用功能、改革建筑设计、加速施工进度、降低造价以及提高经济效益等都十分有利,是实现建筑现代化的必要条件。实践表明,树脂基复合材料应用在现代建筑中比传统建筑材料性能更加优良,综合效益更好。下面详细介绍下树脂基复合材料在建筑业的应用。由于树脂基复合材料的可设计性和良好的力学性能,其可用于建筑物的承载结构以及建筑物加固。用作承载结构的复合材料建筑制品有柱、桁架、梁、基础、承重折板、屋面板、楼板等。树脂基复合材料围护结构制品有各种玻璃钢波纹板、夹层结构板、整体式和装配式折板结构和壳体结构。用作壳体结构的板材,它既是维护结构,又是承重结构。在门窗材料上玻璃钢门窗是很好的材料。玻璃钢门窗是采用中碱玻璃纤维及其织物作为增强材料,采用不饱和树脂作为基体材料,并添加其他矿物填料制成。玻璃钢门窗既有钢窗、铝窗的坚固性,又有塑钢窗的防水、耐腐蚀、保温、节能性能,更具有自身独特的隔音、抗老化、尺寸稳定等性能。此外,玻璃钢的寿命是50年,基本与建筑物的寿命相同,因此,采用玻璃钢门窗是今后房屋建筑门窗节能保温的发展方向。树脂基复合材料在建筑中的其他用途也很多,如工业厂房、农业温室及大型公用建筑的天窗、屋顶采光,可以采用树脂基复合材料透明板、半透明夹层结构板、整体式和组装式采光罩等。高层建筑的楼顶旋转餐厅屋盖、异形尖顶装饰屋盖、球形屋盖、屋顶花园、屋顶游泳池、广告物和楼房加高等,也多采用树脂基复合材料制造。大跨度飞机库、各种尺寸的冷库、防腐车间、活动房屋、岗亭、仿古建筑、移动剧院、透微波塔楼、屏蔽房等,也都属于树脂基复合材料建筑物。另外,树脂基复合材料还可用于制作各种家具、马路上的阴井盖、公园和运动场座椅、海滨浴场活动更衣室、公园仿古凉亭等。应用于各类卫生洁具方面的产品有浴盆、洗面盆、坐便盆,各种整体式、组装式卫生间等。

3.4汽车工业[ 10 ]

先进树脂基复合材料用于汽车工业近年来发展迅速,欧美国家在汽车工业上的应用占复合材料总量的23%,高于建筑和航空工业。汽车上应用树脂基复合材料可以减轻自重、降低油耗,从而提高运载能力,用于车辆内部装饰具有舒适隔声、隔热、降低震动等优点。树脂基复合材料汽车部件制品主要有车身壳体、汽车顶蓬、引擎盖、保险扛、仪器盘、油箱、座椅、刹车片和安全气袋等,国内用树脂基复合材料制造汽车制动缸正处于研究的起步阶段。3.4.1 玻璃纤维增强塑料(GFRP)在汽车上的应用

在欧洲、美国及日本等汽车制造业发达的国家,已普遍采用玻璃钢材料制造汽车零部件。其应用范围包括内装饰件(仪表板、车门内板、座椅、发动机罩等);外装饰件(保险杠、挡泥板、导流罩等);功能与结构件(天然气气瓶、油箱、风扇叶片、油气踏板等)。与国外相比,我国生产的汽车用玻璃钢部件较少,产品主要包括保险杠、车顶盖、阻流板、太阳罩、电瓶托架等。随着原材料的发展与工艺上的改进,在汽车中大量应用玻璃钢/复合材料将是今后我国汽车工业发展的必然趋势。

3.4.2 碳纤维增强塑料(CFRP)在汽车上的应用

CFRP是汽车轻量化最理想的材料。用CFRP取代钢材制造车身和底盘构件,可减轻质量68%,油耗下降40%。但由于成本高现在还未批量生产,若解决成本问题将有大量CFRP用于汽车工业中,应用部件将包括发动机系统中的推杆、连杆、摇杆、水泵叶轮;传动系统中的传动轴、离合器片、加速装置及其罩等;底盘系统中的悬置件、弹簧片、框架、散热器等;车体上的车顶内外衬、地板、侧门等。

3.4.3 芳纶纤维增强复合材料在汽车上的应用

芳纶纤维增强复合材料由于比强度、比模量较高,由于价格高,目前在汽车上应用很少。主要用于汽车上的轮胎帘子线、高压软管、摩擦材料、高压气瓶等。芳纶纤维作为高性能防护材料还可用作汽车防弹装甲,例如汽车门及汽车外壳的防弹内衬。

3.5船舶工业[ 11 ] 先进树脂基复合材料除具有优越的力学性能外, 往往还兼有耐腐蚀、振动阻尼和吸收电磁波等功能, 但其价格昂贵, 只能用在舰船上关键性的部位, 如大型核潜艇的声纳导流罩、大深度鱼雷的壳体、深海潜水器壳体以及高性能艇的艇体结构、水面舰艇的重要甲板构件等处。例如美国“洛杉矶”级核潜艇的声纳导流罩长7.6m、最大直径8.1m,是目前世界上最大的先进树脂基复合材料制品;美国“佩里”号驱逐舰首次用芳纶纤维增强塑料制作了装甲;美国海军用石墨纤维增强环氧树脂材料成功地制造出自动无人深潜探海艇AUSSMOD2的耐压壳体;德国 A I R加工技术公司开发出一种碳纤维环氧复合材料螺旋桨,这种螺旋桨的桨叶由碳纤维和环氧树脂模制而成,据称桨叶具有很高的强度,可在恶劣的海况下工作;新型桨的另一项优点是桨叶材料的阻尼性能好,可使噪声等级相对于金属桨下降5d B,甚至在桨叶损坏的情况下振动等级仍在可接受的范围之内。

3.6其他

先进树脂基复合材料在化肥、造纸、生物工程、环境工程及金属电镀等工业中发挥了重要作用。它在机械、电子、体育、娱乐、医疗等方面也得到较好的应用和发展,如机械制造中的轴承、齿轮、叶轮等零部件,体育上的各种水上赛艇、帆板、冲浪板、雪橇、高尔夫球杆、各种球拍等体育器材。实践证明,很多体育用品改用树脂基复合材料制造,大大改善了其使用性能,有利于运动员创造更佳成绩。树脂基复合材料钓鱼竿是娱乐器材中的大宗产品,目前的玻璃钢钓鱼竿和碳纤维复合材料钓鱼竿比模量大,具有足够的强度和刚度,且重量轻、可收缩、造型美观、携带方便。用树脂基复合材料制造的扬声器、小提琴和电吉它等,其音响效果良好,很有发展前景。目前在娱乐设施中, 大多公园及各类游乐场所的设施,均已采用不同类型的树脂基复合材料取代传统的材料。在生物复合材料中,树脂基复合材料的担架、呼吸器,碳纤维/环氧结构的假肢,人造假牙和人造脑壳等早已经出现,国外也有以聚丙稀腈为原料的碳纤维材料来修补韧带[ 12-13 ]。用碳纤维复合材料制成的心脏瓣膜成功植入人体已有几十年的历史,以尼龙为增强材料的人造器官也已投入使用。实验研究表明,这些材料做成的人体器官无排异反应,与人体有很好相容性,因此有着广阔的应用前景。结束语

树脂基复合材料具有良好的成形工艺性、高的比强度、高的比模量、低的密度、抗疲劳性、减震性、耐化学腐蚀性、良好的介电性能、较低的热导率等特点,广泛应用于各个领域中,已经成为许多领域不可或缺的关键材料之一。因此,树脂基复合材料具有在未来持续发展的潜力。参考文献

生物基复合材料 篇6

采用树脂基复合材料,对发动机执架的结构进行了设计,对结构进行了材料工艺及静强度试验研究.在设计分析的基础上,对纤维和树脂基体的筛选、优化进行了研究,对复合材料的.基本力学性能和疲劳老化性能进行了研究.最后对大部件复合材料固化成型的工艺参数进行了优化,开展了机架结构连接方式和相关接头加工技术可行性研究.本文对树脂基复合材料在航天主承力结构上的应用进行了初步的探索和研究.

作 者:何昆 耿东兵 赵伟栋 王金明 He Kun Geng Dongbing Zhao Weidong Wang Jinming 作者单位:何昆,He Kun(国防科技大学航天与材料工程学院,湖南,长沙,410073)

耿东兵,赵伟栋,王金明,Geng Dongbing,Zhao Weidong,Wang Jinming(航天材料及工艺研究所,北京,100076)

生物基复合材料 篇7

关键词:钛,钛合金,阳极氧化,微弧氧化,生物活性

0 引言

钛及其合金由于具有良好的可加工性、机械力学性能、耐腐蚀性能, 以及较低的弹性模量和优于其它医用金属的生物相容性而在20世纪40年代被引入生物医学领域, 70年代中期开始在医学上获得广泛应用[1]。虽然钛及其合金被广泛用作植入材料, 但由于其自身缺乏骨诱导性能, 生物活性差, 导致植入体使用寿命受到影响, 严重影响了钛种植体的稳定性及远期成功率。因此, 迫切需要通过表面改性技术赋予钛及其合金相应的生物相容性、生物活性和抗菌性并改善其耐磨性和耐蚀性等性能。

根据材料表面改性层的形成过程机理, 钛及其合金表面改性技术一般分为机械方法、化学方法和物理方法三大类[2]。而电化学法 (阳极氧化和电泳法等) 由于其简便、快速和工艺参数控制灵活等特点而受到广泛关注。本文旨在对电化学法表面改性绝大多数的阳极氧化法进行总结和分析, 从而为以后的相关专利审查提供参考。

1 国内阳极氧化直接制备生物活性涂层

中国科学院金属研究所的陶晓杰等人在2005年的专利CN1986003A中公开了一种钛或钛合金表面生物活性涂层及其制备方法, 通过对钛及其合金在醋酸钙电解液中阳极氧化、碱处理和热处理, 在其表面生成梯度涂层, 钙元素的引入增加了膜层的生物相容性, 并且由于表面具有粗糙的多孔结构也提高了羟基磷灰石层的结合力以及细胞附着能力。

哈尔滨工业大学的王福平等人在2007年的专利CN101063221A中公开了一种应用Ni Ti合金直接进行微弧氧化处理的方法, 将医用Ni Ti合金放入酸性或碱性体系中进行双向脉冲微弧氧化, 制备得到的陶瓷层与镍钛合金的结合强度高, 生物安全性高;刘福等人在2011年的专利CN102492976A中公开了一种在Ni Ti合金表面制备富含Ca和P多孔二氧化钛氧化膜层的方法, 在由磷酸、二氧化钛溶胶、钙盐和乙二醇制备的电解液中进行微弧氧化, 制备得到富含Ca和P的多孔二氧化钛氧化膜层的Ni Ti合金, 该Ni Ti合金生物活性好且与人骨骨性结合良好;2013年, 魏大庆等人在专利CN103361703A中将经过喷砂处理的钛材料再用硫酸溶液浸泡后置于氟化铵水溶液中进行阳极氧化后制备得到具有生物活性的表面多级孔结构钛材料。

福建师范大学的肖秀峰等人在2008年的专利CN101311328A中公开了一种制备钛基羟基磷灰石/氧化钛纳米管复合涂层的方法, 首先在含HF的二甲亚砜溶液中, 通过阳极氧化, 在纯钛表面构筑一层氧化钛纳米管阵列膜, 然后将氧化钛纳米管阵列膜置于含Ca Cl2、Na H2PO4、EDTA的水溶液中, 在水热条件下诱导羟基磷灰石在纳米管阵列膜表面结晶沉积, 从而制得与基体界面具有良好结合强度的羟基磷灰石涂层。

广州南枫生物科技有限公司在2009年的专利CN101624719A中公开了一种用于钛基微弧氧化的电解质溶液及方法, 以钛片为阳极, 不锈钢为阴极, 进行分段式微弧氧化;由此制备的膜层生物活性良好;另外, 广州南枫生物科技有限公司还在2009年的专利CN101575726A中公开了采用分段微弧氧化技术在包含有磷酸根、氟离子和钙离子的电解质溶液中直接在钛及钛合金表面原位生成含Ti O2/FHA/HA的梯度生物活性膜层, 该膜层在在模拟体液中溶解度较小, 使材料植入人体后寿命有望延长。

四川大学的廖晓明和尹光福等人在2010年的专利CN101871118A中公开了一种在医用钛表面制备具有多级孔结构二氧化钛层的方法, 首先将医用钛在醋酸电解液中采用直流缓慢均速升流模式阳极氧化, 然后在硫酸或醋酸钠电解液中采用直流恒压模式二次阳极氧化, 得到具有多级孔结构的二氧化钛层, 该结构有利于新骨形成。

中国科学院上海硅酸盐研究所的胡红杰等人在2010年的专利CN102371005A中公开了一种锌掺杂多孔纳米氧化钛涂层及其制备方法, 在包含有锌元素及至少一种辅助起弧的电解质的电解液中, 采用直流脉冲电源对钛或钛合金进行微弧氧化处理, 制得的涂层呈多孔纳米结晶结构形态且其中锌元素的含量在0.01~50wt%, 该锌掺杂的多孔纳米氧化钛涂层比现有的氧化钛涂层具有更好的生物相容性;另外, 中国科学院上海硅酸盐研究所的刘宜勇等人在2014的专利CN104001207A中公开了一种医用钛表面复合涂层及其制备方法, 锰掺杂氧化钛改性层为通过微弧氧化处理钛基材表面得到的致密多孔结构, 该改性层对革兰氏阴性的大肠杆菌有较明显的抗菌效果。

厦门大博颖精医疗器械有限公司的王周成等人在2012年的专利CN102912357A中公开了一种钛种植体表面制备微纳米结构的方法, 其中将进行喷砂酸蚀处理后的医用纯钛作为阳极, 在含磷酸二氢钠的含量为1~5g/L, 氟化铵或氟化钠的含量为3~15g/L的电解液中进行阳极氧化, 制备得到表面具有多级微纳米结构钛种植体。

江苏大学的许晓静等人在2013年的专利CN103014576A中公开了一种基于组织超细化和阳极氧化的提高Ti Ni合金生物医用性能的方法, 以市购Ti Ni合金为原材料, 对其进行等通道转角大应变加工 (ECAP) 制得超细晶Ti Ni合金后在电解液中进行阳极氧化处理, 即可使Ti Ni合金表面具有高抗腐蚀性和高生物活性等优异生物医用性能。

上海交通大学的金学军等人在2014年的专利CN104404602A中提供一种表面多孔Ni Ti形状记忆合金的制备方法, 在NH4F和 (NH4) 2SO4的电解液中, 采用单步阳极氧化法获得具有独特的连通多孔结构的多孔Ni Ti形状记忆合金, 且该多孔层中Ni含量极低, 降低了植入人体后材料表面释放有毒Ni元素的风险。

2 国外阳极氧化直接制备生物改性涂层

日本尼康株式会社的石沢均在1992年的专利JPH0731 627A、1993年的专利JPH074711A和JPH0747116A中公开了先在含钙磷的溶液中进行阳极氧化, 再进行水热处理, 最终制备得到含有钙磷且与骨组织具有良好亲和力的植入体。

瑞士斯特泰克医学股份公司的V·M·弗劳奇杰等人在2003年的专利US2005019365A1中公开了一种用于医用植入体和假牙的生物活性表面层及其制备方法, 在具有钙和磷酸根加入物的电解液中采用等压或等压脉冲和时间性改变电压的火花放电而进行表面改性, 从而在钛基体表面形成一种生物活性的、多孔的、有助于骨生成含磷酸钙的表面层。

瑞士士卓曼公司的Michanl Breitenstien等人在2004年的专利US2005113834 A1中公开了一种钛植入体, 通过在钛或钛合金表面进行阳极氧化制备得到含有至少一部分为骨接触表面和至少一部分为软组织接触表面的钛植入体。

东京医科牙科大学的福岛修在2006年的专利WO2007018189A1中公开了一种在钛镍合金进行阳极氧化的方法, 其中将钛镍摩尔比为48.5∶51.5的合金放入由乙醇、乳酸和水组成的电解液中进行阳极氧化, 并通过调节电解液成分和电参数来提高钛镍合金的耐蚀性。

PLUS ORTHOPEDICS公司在2006年的专利WO2007090433A2中公开了一种微弧氧化法制备牙科用骨植入材料, 其中将Ti6A14V和Ti6A17Nb合金置于硫酸和磷酸混合电解液中进行微弧氧化, 制备得到显著区别与一般纳米/微米多孔结构的微米级氧化膜, 该氧化膜由锐钛矿、板钛矿和金红石三相混合而成, 耐磨性好且与基体结合力为34MPa。

英国等离子涂料有限公司的A·耶罗克赫因在2008年的专利EP2212453A2中公开了一种形成生物活性涂层的方法, 其中将纯钛试样置于含有Ca和P离子的电解质溶液中, 同时采用一系列交变极性的电压脉冲施加在钛试样和阴极之间, 由于交替的电流脉冲在同一过程中将阳极和阴极处理结合, 因而促进Ca和P都引入到涂层中, 形成羟基磷灰石 (HA) 和磷酸三钙 (TCP) 。

德国APP生物材料有限公司的E·丁格尔蒂恩等人在2010年的EP2437798A2中公开了含银抗菌涂层的制备方法, 将钛基材通过使用胶体分散系统进行等离子体电解氧化, 制备得到Ag-Ti O2涂层, 该涂层在抗菌效能 (甚至对抗多药抗药株) 、粘附和生物相容性方面表现出优异的性质。

韩国生物材料有限公司在2011年的专利KR20120126894A中公开了牙移植物, 将钛基体放在乙酸钙和磷酸甘油的电解液中进行阳极氧化从而制备表面含有钙-磷沉积物和氧化钛的牙移植物。另外, 在2012年的专利KR20130117899A中公开了纳米氧化钛涂层植入体, 将植入体放在混合有酸、乙酸钙、β-磷酸甘油和纳米二氧化钛颗粒的电解液中进行阳极氧化后制备得到表面含有钙-磷沉积物、氧化钛和纳米氧化钛颗粒的牙移植物。

韩国奥齿泰植入有限公司在2013年的专利WO2013109078A1中公开了钛基种植体, 通过前处理、阳极氧化和热处理制备得到宏观-微观-纳米尺寸的三维结构的、能够促进骨生长和减小康复周期的钛种植体。

俄罗斯SARATTECH大学在2 0 1 4年的专利RU2014120090A中公开了加固钛和钛合金的方法, 通过将钛或钛合金置于氢氧化钠或铝酸钠碱性溶液中恒电流微弧氧化制备得到显微硬度得到提高的钛或钛合金。

3 展望

随着人们生活水平的不断提高, 人们对植入材料的生物相容性、生物活性、抗菌性、耐磨性和耐蚀性等性能的要求越来越高, 这就使得大学、研究院、公司和个人等对这一领域投入更大的热情和精力, 相关研发活动日益活跃。另外从上述专利发展趋势来看, 虽然近些年国内申请人的专利申请数量已经显著增加, 但是占大多数的专利申请还都是高校申请, 即属于小规模的试验阶段, 远未达到大规模工业化应用水平, 而国外主要是公司申请, 对于工业化的应用相对而言较成熟, 因而我们应正视国内外技术水平差距, 在不断学习、研究和借鉴的基础上进一步与国内公司进行合作, 将高校和研究院等所具有的雄厚科研技术与公司强大的实际应用生产能力相整合, 以期早日实现生物医用钛及其合金的国产化和工业化。

参考文献

[1]詹文革.生物医用钛及钛合金的研制、生产和应用[J].钛工业进展.2007, 24 (1) :4-8.

生物基复合材料 篇8

石墨烯是迄今为止实验上发现的最坚韧、导电和导热最好的材料。为尽快使石墨烯达到工程应用状态,欧盟在2012年启动石墨烯旗舰技术项目[3],美国也大力投入,并且在石墨烯作为超强电容器等应用研究已取得了突破性进展[3]。湿化学还原法容易实现石墨烯纳米片的大批量制备,并且获得的石墨烯具有较好的亲水性和单分散性,是理想的复合材料纳米填料[4]。

由于石墨烯具有高的强度,其抗拉强度可达1060GPa,如何利用其来提高复合材料的强度成为研究热点。目前已有关于石墨烯纳米片增强高分子聚合物[5]和陶瓷材料[6]的报道。聚乙烯醇中填加0.7%质量分数的石墨烯纳米片,其抗拉强度提高76%[5];Al2O3陶瓷基体中填加0.78%体积分数的石墨烯纳米片时,其弯曲强度提高30.75%,同时断裂强度提高27.20%[6]。但未见关于石墨烯纳米片增强金属基复合材料的报道。

铝合金具有低的密度,高的强度和良好的延展性,在航空、航天等领域得到广泛应用。作为结构材料,如何提高铝合金强度一直是其研究者的主攻方向。目前来看,利用改变合金熔炼方式、调控成分、调整热处理和变形工艺等方法在进一步提高铝合金性能难有突破,铝基复合材料应运而生。在铝合金中填加石墨、碳化硅、碳化硼和碳纳米管制备铝基复合材料来提高合金强度成为学者们研究方向。但增强效果不尽人意,且材料的塑性大幅降低[7-10]。石墨烯纳米片具有高的强度,大的比表面积和较好的延伸率,将其添加到铝合金中形成铝基复合材料,或许是解决提高铝合金强度难题的不错选择。

本工作采用球磨混粉、热等静压法(HIP)和热挤压的方法,制备铝基烯合金材料,对铝基烯合金其微观组织结构和力学性能进行表征并分析石墨烯纳米片的增强增韧机制。

实验材料及方法

铝合金粉末的制备

采用紧耦合气雾化的方式制备铝合金粉末(Al-Mg-Cu),镁和铜含量分别为1.5%和3.9%。雾化介质为氮气(99.99%),雾化室压力为800Pa,温度为800℃。

石墨烯纳米片制备

以纯度为99.9%的天然石墨为原材制备石墨烯纳米片,采用改进的Hummers方法制备氧化石墨烯纳米粉末,用水合肼在95℃下还原24小时,获得几个原子层厚度的石墨烯纳米片,制备方法与文献[11]相同。

铝合金和铝基烯合金的制备过程

(1)将3克石墨烯纳米片分散到3升无水乙醇中,超声振荡1小时得到均匀黑色石墨烯溶液;

(2)将1千克Al-Mg-Cu铝合金粉末分别加入到3升石墨烯溶液(制备含0.3%石墨烯的铝基复合材料)和3升无水乙醇(制备对比铝合金)中,封装在球磨罐中球磨24小时;

(3)将球磨后的浆料倒入烧杯,移入80℃水浴锅中,在机械搅拌下进行干燥处理至浆料至半干状态后,转移到真空烘干箱中进行彻底干燥处理;

(4)将干燥的上述粉末装入圆柱形铝包套中,并抽真空至真空压强为1×10-2Pa后,加热到300~400℃,保温2小时,冷到室温后焊接封口;

(5)将封好的铝包套进行480℃/150MPa/2小时热等静压处理;

(6)将热等静压后的试块在400~480℃进行热挤压,挤压比为10:1,挤压速率为3mm/s,挤压力为300kN;

(7)对棒材进行495℃/30分钟固溶处理+96小时自然时效。

材料微观组织表征和力学性能测试

采用光学显微镜(Leica)、场发射扫描电子显微镜(FESEM,JEOL JSM-7001)和透射电子显微镜(TEM,FEI Tecnai G2 F20)观察材料的微观组织结构。利用X射线衍射仪(XRD)对材料的晶体结构进行了表征。在万能拉伸机上测试拉伸性能,测试温度为室温,加载方向与热挤压方向一致,拉伸试样工作区尺寸为φ5mm×2.5mm。

结果与讨论

微纳米粉末的组织结构

铝合金粉末为直径d<40μm的球形或椭球形颗粒。石墨烯纳米片呈羽毛状,半透明状说明厚度非常薄,径向尺寸在μm量级,且具有典型的皱褶结构特征。铝合金粉末为面心立方晶体结构,未见Al4N3或Al2O3等杂质相,说明雾化制粉过程中铝合金未与O,N元素发生反应。石墨烯纳米片XRD谱线26°附近有一个宽化的衍射峰,说明石墨烯纳米粉非常细小,这与文献[12]报道的高质量石墨烯纳米片结果相同。球磨处理后,铝合金颗粒由球形变为片状结构,片的直径最大不大于100?m,厚度为几个μm,石墨烯纳米片附着到铝合金颗粒表面,使得铝合金颗粒与石墨烯纳米片具有较大的结合界面,并且石墨烯纳米片的褶皱结构被很好地保存下来。

铝基烯合金的显微组织

铝基烯合金热处理后其显微组织均匀细小,冶金质量良好,未见明显的冶金缺陷。铝合金具有片层状组织结构,片层的厚度大约为3~8μm,片层直径大约为20~40μm,HIP+热挤压工艺没有破坏铝合金粉末的片状结构。轴向显微组织保留着挤压变形特征,组织沿变形方向被拉长到100μm以上,厚度为几个μm,成板条状,组织均匀细小。作者首次在TEM下观察到石墨烯增强金属基纳米复合材料中的石墨烯纳米片的形态。石墨烯纳米片在铝合金基体上铺展性好,两者具有较大的结合界面,清楚地看到石墨烯纳米片的二维薄膜形态和褶皱结构特征,观察区域石墨烯纳米片的尺寸超过2?m,说明石墨烯纳米片没有在铝合金烯合金基体中碎裂。经球磨、热等静压、热挤压和固溶热处理等一系列工艺后,石墨烯纳米片保留着原始组织结构特性,可以推测其仍然保持着原有高的抗拉强度。

nlc202309012250

铝合金和铝基烯合金力学性能

添加石墨烯纳米片提高了铝基烯合金的屈服强度和拉伸强度,且其伸长率也有所改善,这在第二相增强金属基复合材料的研究中是首次发现。石墨烯纳米片加入明显提高了合金的抗拉强度从364MPa提高到455MPa,增加了25%;同时合金的屈服强度也得到大幅提高,从204MPa提高到322MPa,提高幅度高达58%,其提高的幅度明显优于其它材料增强铝基复合材料的增强效果[13]。同时,可以看出填加石墨烯纳米片,并没有像SiC[7, 8]或碳纳米管[10]增强铝基复合材料的塑性显著下降,铝基烯合金的延伸率不但没有下降,还略有升高,由对比合金的11.03%提高到11.80%。填加石墨烯纳米片对铝合金的弹性模量影响不大,对比本次实验数据已有颗粒或碳纤维增强的数据来看,石墨烯纳米片对金属基体的增强机理与普通碳纤维或颗粒有所不同。

石墨烯纳米片的增强增韧机制分析

铝基烯合金棒材的拉伸断口的微观形貌为典型的韧窝断裂,韧窝和撕裂棱均匀而细小,撕裂棱的表面可以清晰观察到石墨烯纳米片。与其他增强材料相比,石墨烯纳米片对铝合金基体具有不同的增强增韧机制。首先,由TEM观察可知石墨烯纳米片与铝合金基体形成了良好的结合界面,并且石墨烯纳米片具有超大的比表面积,这有效阻止了热处理过程中铝合金晶粒的长大,同时石墨烯纳米片/铝合金结合界面可以有效阻止材料变形过程中的位错移动和裂纹扩展。其次,石墨烯厚度只有几个纳米,铝合金晶粒之间的间距非常小的,这更有利于外力从铝合金基体转移到石墨烯纳米片,因此石墨烯纳米片的超高强度能被直接利用,从而实现材料的高强度。最后,由于石墨烯纳米片大的比表面积,易与铝合金基体形成大的结合性能优良的结合界面,及石墨烯纳米片特有的褶皱结构,使得铝基烯合金受力过程中,石墨烯纳米片存在一个褶皱展平再断裂的过程,加之石墨烯纳米片本身具有良好的塑性,因此材料的塑性非常好。这赋予了铝基烯合金材料更广阔的应用前景。而石墨烯皱褶结构决定了铝基烯合金具有良好塑性。虽然石墨烯纳米片增强铝合金纳米复合材料的力学性能提高显著,但是还有很多的未知需要进一步探索,随后我们会进一步展开石墨烯纳米片的增强增韧机制的深入研究。

结论

(1)采用球磨制粉+热等静压+挤压的方法成功制备了新型铝基烯合金材料。石墨烯纳米片的引入没有影响铝合金的冶金成型。

(2)石墨烯纳米片均匀分布在铝合金基体中,并与铝合金基体形成了良好的结合界面。在铝基烯合金材料中石墨烯纳米片保留了良好的原始结构。

(3)添加0.3%的石墨烯纳米片,明显提高了铝合金的强度。屈服强度从204MPa提高到322MPa,提高幅度高达58%;抗拉强度从364MPa提高到455 MPa,增加了25%,同时塑形未见降低。

(4)基于石墨烯纳米片的二维、皱褶结构及与铝合金基体的良好结合界面特性,提出了细晶强化,超大界面强化和剪切应力转移强化方式。

(5)这些研究结果说明石墨烯纳米片是理想的金属基复合材料的纳米填料。

上一篇:在经济工作总结表彰大会结束时的讲话下一篇:血浆引流管的护理常规