教案 分数的基本性质
作为一名无私奉献的老师,就有可能用到教案,教案有助于学生理解并掌握系统的知识。那么什么样的教案才是好的呢?以下是小编为大家整理的分数的基本性质教案4篇,希望能够帮助到大家。
分数的基本性质教案 篇1教学目标:
1、理解分数的基本性质。
2、初步掌握分数的基本性质。
3、培养学生观察、比较、综合、概括的能力和初步的逻辑推理能力。
教学重点:理解与掌握分数的基本性质。教材分析:分数的基本性质是在学习了商不变性质及分数与除法的关系的基础上进行教学的。它是今后学习约分和通分的依据,是分数四则运算的重要基础知识,是学生准确进行分数加减法计算的依据。
设计意图:通过复习商不变的性质和分数与出发的关系,为学生探索新知提供了材料,作好了铺垫,也为后面沟通分数基本性质与商不变性质打下了基础。
在新知的引入,我设计了让学生动手操作的方法(折纸、涂色),调动学生的多种感观充分感知数学事实,来引导学生观察、思考,激发学生的求知欲,调动学生学习的积极性。
通过先进的电教手段,如:投影仪,电脑等多媒体辅助教学。用形象的电脑图象,以活泼的形式将抽象的数学概念转变为学生易于理解概念,激发学生的学习兴趣,结合一系列的具有针对性的提问,引导学生观察思考,共同讨论新知,自己归纳出分数变化的规律,即分于分母都乘以或除以相同的数,分数和大小不变。通过电脑出示的画象的逐步引入,使学生加深对分数基本性质的理解,逐步建立清晰的概念。这样让学生参与概念形成的整个过程,有利于学生学习的主动性,发展学生的逻辑思维。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,难度由浅入深。
第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏的形式,加深学生对分数基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。第5题,判断练习,意在使学生加深对新知识的巩固,纠正容易出错的地方。第6题是思考题,是为了满足学有余力的学生的需要,意在发展学生的智能。在联系的过程中,也采用了电脑与投影及录音机的有机结合有效地提高了课堂效率。
教学过程: 复习旧知,导入新课 被除数 除数= 根据120 30=3 填数(120 3)(40 3)=()(120 ___)(40 10)=4(复习商不变性质)验证并结实课题 学生用准备好的两张纸,进行动手操作。(感知 =)教师再演示,引导学生发现、、、三个分数的大小相等。观察什么在变,什么不变。把单位1平均分的分数和取的分数,也就是分数的分子和分母发生了变化,而分数的大小不便,为什么分数的分子、分母在变,而分数的大小不变?它们的变化规律是什么?(引导学生带着问题去思考)新授,探索新知 启发引导,揭示规律(1)= = = =
从左往右观察,探索分数的分子、分母的变化规律,引导学生去思考。讨论得出:分数的分子坟墓都乘以相同的数,分数的大小不变。,分数的分子分母有什么变化? 呢? 它们的大小又怎样呢?想一想,小姐出规律:分子、分母都除以相同的数,分数的大小不变。归纳性质 谁能把上面的分数的分子分母都乘以或除以相同的数。两句话合成一句话来说。分数的分子分母都乘以或除以相同的数,分数的大小不变。这里指的相同的数是指什么数? 指出:分母是0的分数是没有意义的。假如分子、分母都乘以或都除以0,也是没有意义的。所以0除外。相同的数可以是自然数,也可以是小数,也可以是分数。
请全班同学将结语说完整,全班读。小结:就是我们今天学习的内容:分数的基本性质。看书质疑。勾出关键词语,帮助理解掌握。(在新课的教学过程中,利用计算机,将各种图形(也就是单位1)用主动的分割形式在大屏幕上清楚地进行演示,提高学生学习的积极性,更好地理解本课的学习内容,有效地提高教学效率,使教学目标得以顺利地实施。)巩固练习在括号里填上适当的数使等式成立 几组相等分数的天空练习
(用计算机将题目演示在大屏幕上,全般一齐练习,再请个别学生说出答案,看答案是否和计算机演示的答案相同,全班同学来做小老师)
3、请找我的好朋友练习。(以游戏的形式来进行)
要求:(1)将几张写有分数的卡片发给几位同学,请 他们看清楚上面的分数。
(2)练习开始,请有卡片的同学注意观察,和老师受伤卡片上分数大小相等的同学走出来,看谁最快最好。(先将卡片上的分数用大屏幕显示出来,便于全班同学练习。)
4、判断对错(1)= =()(2)= =()(3)= =()(4)= =()
(这道题用计算机一题一题来演示,让全班学生能用所学的知识来进行判断,并能说出错在哪里,可以请个别同学来回答,如果答对了计算机回发出以示奖励的音乐;错了会告诉同学错了,再试一次。这道题的形式,充分运用了计算机的多功能作用,较生动活泼,引起学生的兴趣,提高教学效果。)
5、思考练习题 = 课堂总结 总结本课内容,复述分数的基本性质。
分数的基本性质教案 篇2教学前的思考:
一、一则Flash动画故事引入:从前有座山,山里有座庙,庙里有个老和尚和一个小和尚,哦!不对,是三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?---教师播放这则故事为学生提供“猜想”素材。“猜想、验证”不但是科学研究的方法,也是一种很好的数学学习方法。由此我联想到“性质”的学习过程是否也可以让学生在猜想、验证中主动生成。
二、学生动手操作,用事实说明,作好新知铺垫:在揭题前,我设计了让学生动手操作的方法,用三个同样大小的圆折纸、涂色,来调动学生的多种感观,充分感知数学事实,引导学生观察、思考,激发学生的求知欲,活跃课堂气氛,为“验证”“性质”作好铺垫。
三、得出结论后,渗透“形式与实质”的辩证观点:揭示“性质”后,教师让学生回顾故事内容,验证“猜想”到底哪个和尚吃的多,从形式上看矮和尚吃的多,但比较的事实说明吃的一样多。教师再一次列举生活中的事例说明“形式与实质”的辩证观点。
教学设计:
一 故事提供“猜想”素材:Flash动画故事引入.(教师出示课件)
师:今天老师很高兴和同学们在一起共同学习,同学们心情怎样?
生:高兴!
师: 老师给大家带来了一个礼物,请同学们仔细欣赏。(教师出示Flash动画故事,学生欣赏。同时教师提出欣赏要求,)
师:(欣赏后)同学们,你知道哪个和尚吃的多吗?
生1:胖和尚吃的多。
生2:矮和尚吃的多。
……
师:到底谁回答得对呢?上完这节课你们一定能得到准确的答案.(通过欣赏为学生提供素材,设悬念,留给学生独立思考的空间)
二 用事实“验证”,完整性质。
1.实际操作列等式证实分数大小相等。
师:请同学们以小组为单位,拿出三个大小相等的圆来,分别用阴影部分表示每个圆的(教师观察,学生小组合作,有平均分的,有涂色的,小组成员配合默契)
师:比较一下阴影部分的大小,结果怎样?阴影部分相等,说明这三个分数怎样?
生:阴影部分的大小相等。
师:阴影部分相等说明这三个分数怎样?
生:三个分数相等。
(随着学生的回答,老师将板书的三个分数用“=”连接。)
2.观察课件证实分数大小相等。
师:(出示课件)老师有三个同样大小的长方形,谁能用分数表示出黄色部分呢?
师:这三个分数所表示的长度怎样?这又说明了什么?
(随着学生回答老师在三个分数间用“=”连接。)
3.初步概括分数基本性质.师:仔细观察两个等式,每个等式的三个分数什么变了?什么没变?
生:第一个等式中的三个分数分子、分母都变了,但分数的大小没变。(师进行评价)
师:同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?
(教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。)
师:谁能用一句话把这个变化规律叙述出来呢?(师指名口述)
生1:从左往右看,分数的分子、分母同时扩大了,也就是分子分母都乘了一个相同的数,但三个分数的大小没有变。(生2进行了补充)
师:你们观察的真仔细!请大家给点掌声好吗?
(学生掌声起,激情高长,课堂教学充满活力。)
师:(出示课件)请看大屏幕,老师是这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。
师:同学们从左到右仔细观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?谁能用一句话把这个变化规律叙述出来?
(小组讨论后,同法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或除以”三个字。)
4、完整分数基本性质:
师:(出示课件)请同学们填空:
(教师请一位会操作鼠标的同学在课件中填空)
师:第3题()里可以填多少个数?第4题呢?
生:可以填无数个。
师:()里填任何数都行吗?哪个数不行?(学生交流后老师指名回答)
生:不能填零。
师:为什么不能填零?
生:分数的分母不能为零。
(教师对学生的回答进行评价)
师:所以我们总结的这条规律必须加上一个条件“零除外”
(教师在课件中填上“零除外”三个红色的字,以便引起学生的`注意。)
师:这个变化规律就是“分数的基本性质”。(指名照课件主读出性质)
三 深入理解分数基本性质
1.学生自学,深入理解性质。
师:请同学们把书翻到108页,自读分数的基本性质。
师归问:分数的基本性质里哪几个词比较重要?为什么“都”和“相同”很重要?为什么“分数大小不变”也很重要?为什么“零除外”也很重要?
生:因为都乘上或除以相同的数(0除外),分数的大小才不会变化。(同学评价)
2.学生独立完成做一做1。(完成后小组内互相评价)
3.找出与
相等的分数:
(教师出示课件,请一位同学在课件中连线,教师进行评价)
4.请同学们自学并完成例2、(教师巡视,个别进行辅导)
……
四 照应Flash动画故事,渗透“形式与实质”的辩证观点
教师在黑板上出示自制的三个同样大小的圆饼
师:现在谁知道三个和尚,谁吃的多呢?(学生争先恐后的想回答老师提出的问题)
生:三个和沿吃的一样多。
师:同学们以后思考问题一定要多动脑筋,了解实质后才能得出正确答案,我们不能从形式上看着事物去做出判断。
……
五 课堂小结:这节课你有什么收获?(学生板书课题)
教学后的感悟:
1.教学的整个过程是学生亲自验证的过程,通过“验证”学生感受了数学的严谨性。设计以“猜想--判断--观察--验证--概括--深化--提高”的环节,把知识的形成过程展现在学生的面前,使学生在掌握分数的基本性质的同时,感知到数学知识的形成过程,在这一过程中注意渗透学生自学方法、解决问题的策略、体会数学知识与生活的紧密联系,同时教给学生学会学习,学会思考的方法。在师生共同协作的过程中,达到课堂教学方法的最优化,提高了课堂教学效益。
2.猜想素材有利于激发学生主动学习的兴趣和热情,有利于学生思维的碰撞,开启了学生发自内心的探索学习。
3.教学中取舍教材、取舍手段,着眼于学生的学习。教学中既运用了信息技术,又把传统教学手段有机地结合,让资源充分、有效地发挥作用,优化教师的教学手段,提高课堂教学效率。
分数的基本性质教案 篇3(一)激趣引思、提出要求
同学们,你们听过阿凡提的故事吗?今天老师也带来了一则阿凡提的故事。让我们一一看!谁来读一读?(指名读)你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话呢?
有一些同学知道,还有一些同学不知道。不过没有关系,等我们学习了今天的内容之后,我相信在座的每一位同学都能够回答。你们有信心吗?恩,好,那我们就开始上课了!
(二)自主探究,发现规律
1、出示例1的四幅图。
我们先来看一道题目。分别用分数表示每个图里的涂色部分。
(1)谁来说第一个?
全部答完后问:这里的1/3谁来说说它表示什么含义呢?3/9呢?
同学们,你们比较比较这几幅图的阴影部分,想想看,你发现了什么呢?也就是说,哪3个分数是相等的呢?
(2)师:这里有个1/2,你能说一个和1/2相等的分数吗?
2/4、4/8、8/16......还有吧,是不是还可以说出好多好多啊?
那,这些分数是不是相等呢?咱们口说无凭,咱们来做个小实验证明它门是相等的,好不好?
先别急,先来看看有哪些实验要求。
咱们这个实验的目的上一什么?验证什么?
咱们实验的方法有哪些呢?
实验有什么要求?操作有序什么意思呢?要听从小组长的安排
1、实验目的:验证猜想
2、方法:折一折、分一分、画一画、算一算......3、要求:小组合作,明确分工,操作有序
我们要来比一比,哪个小组做的实验既快又好。一会儿,我们把他的作品展示一下。好,开始!
学生操作,老师巡视指导。
集体交流结果。
咱们刚才通过做实验,发现这些分数的大小怎样?也就是分数的大小不变。这些分数的大小相等,可是它们的分子、分母变了吧!怎么回事呢?这里面有什么规律呢?你发现了什么?能不能告诉老师。
把你的发现先和同桌交流交流。
生1:我发现由到,分子被扩大了2倍,分母也被扩大了2倍,所以它们是相等的。
师:还有谁想说说你的发现?
生2:我发现由到,分子被扩大了3倍,分母也被扩大了3倍,所以它们的大小相等。
师:换一组数据来说说自己的发现?
生:由到,分子、分母都被缩小了3倍,它们的大小不变。
师:刚才同学们都说了自己的发现,想想看,要使分数的大小不变分数的分子和分母应该怎样变化就能使分数的大小不变了呢?
师:为什么要0除外?
师:这就是咱们今天学习的“分数的基本性质”(板书课题)
师:谁来说说看,分数的基本性质是什么呢?
生:一个分数的分子和分母同时乘或除以一个相同的数(0除外),它们的大小不变。
我们一齐读一遍。
师:这个分数的基本性质跟咱们以前学的什么知识有点相似啊?除法中商不变的性质你还记得吗?
同学们想想看,这两个性质之间有什么关系呢?
根据分数与除法的关系,被除数相当于分数的分子,除数相当于分数的分母,在除法当中有商不变的性质,那在分数中也有它的基本性质。
师:好,那现在你知道阿凡提为什么会笑吗?他又说了哪些话呢?
师:2/6到3/9分子分母怎样变化的?分子和分母同时乘了1.5,呢也就是说这里相同的数不仅可以指整数,还可以指小数。
(三)巩固练习,强化记忆
好,那下面咱们就用今天学的知识来做几道题,好不好?
1、把书翻到61页,练一练第一题,请你涂一涂填一填。我看谁的动作最快。
集体交流。
2、下面我们来填空补缺想理由。(出示练一练第二题)
他们这样填是根据什么?
3、出示练习十一第二题
独立完成,集体订正。
(四)课堂作业,运用知识
练习十一第三题
(五)课堂,认识自己
今天这节课,你学到了什么?
分数的基本性质教案 篇4教材简析:
分数的基本性质是以分数大小相等这一概念为基础的。因为分数与整数不同,两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。教学时,可引导学生观察一组相等分数的分子、分母是按什么规律变化的,再结合分数的意义归纳出分数的基本性质。由于分数和整数除法存在着内在联系,所以分数的基本性质也可以利用整数除法中商不变的性质来说明。
设计理念:
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的基础上,建立了猜想试验分析合情推理探究创造的教学模式。
在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,再结合商不变的性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了方法比知识更重要这一新的教学价值观,构建了新的教学模式。
《数学课程标准》指出:学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。
教学目标:
1、使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题.
2、培养学生观察、分析、思考和抽象、概括的能力.
3、渗透形式与实质的辩证唯物主义观点,使学生受到思想教育.
教学重点:
使学生理解和掌握分数的基本性质,培养学生的抽象、概括的能力。
教学难点:
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教具准备:
每生三张正方形纸
教学方法:
义务教育课程标准实验教科书人教版小学数学五年级下册第四单元“分数的基本性质”。
教学目标:
1.经历探究“分数的基本性质”的过程,理解分数的基本性质。
2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3.经历观察、操作和讨论等学习活动,感受数学问题的探索性和挑战性,体验数学学习的乐趣。
教学重点:
理解与掌握分数的基本性质。
教学难点:
运用分数的基本性质解决实际问题。
教学准备:
三张一样的正方形纸、CA1课件等。
教学过程:
一、复习准备
1.根据120÷30=4在下面□里填数并回答“商不变的性质”是什么?
(120×3)÷(30×3)=□
(120÷□)÷(30÷□)=4
2.根据分数与除法的关系填空。
提问:通过刚才的复习,你们有什么联想或猜想?(分数是否也有与除法类似的性质呢?)
二、实践操作,找出相等的分数
活动与反馈要点:
1.要使你们的猜想成为科学结论,还必须加以证明。你们能用三张完全一样的正方形纸、尺子、水彩等材料(工具),通过折纸或其他方法说明自己找的分数(几个)相等吗?(可独立操作完成或与同伴协作完成。)
2.先让同桌互相说说,再展示学生的方法。
结合展示追问学生:你是怎么知道相等的呢?从这3幅图中你发现什么变了,什么没变?(平均分的份数和涂色的份数变了,但涂色部分的大小不变。)
3.教师利用多媒体演示整个验证过程。从下图中可直接看出:
三、探究交流,归纳分数的基本性质
1.归纳分数的基本性质。
观察这组相等的分数,它们的分子、分母之间有什么变化规律?先独立思考,再在小组内与同学交流。
活动与反馈要点:
(1)组织学生展开讨论时,允许学生用自己的语言进行表述。如:“我发现,分子、分母都乘4,得到的分数大小不变。”
(2)结合学生汇报,教师辅以必要的板书:
(3)根据学生的回答逐步归纳:分数的分子、分母都乘或者除以相同的数(零除外),分数的大小不变。
(4)在初步归纳得到结论后,进一步追问学生:分子、分母同时乘或者除以相同的数,相同的数是不是可以是任何数?这是老师心中的疑问,为什么要把“0”除外?在引发学生讨论与思考中,逐步完善学生的发现,并揭示分数的基本性质。
(5)通过观察、验证,我们得到这个规律。(多媒体演示得出分数的基本性质的过程。)
(6)用笔画出教科书第75页性质中的重点词,强调“0”除外。(齐读一遍。)
(7)(揭示课题)板书:分数的基本性质。
(8)质疑。(启发学生在理解“分数的基本性质”的同时,思考并提出问题,师生讨论解决。)
2.沟通“商不变的性质”和“分数的基本性质”之间的联系。
(1)你能说说“商不变的性质”和“分数的基本性质”之间的联系吗?(进一步强化分数与除法的关系。)
(2)多媒体出示小结。(略)
3.运用分数的基本性质解决问题。
教学例2 (要求学生独立完成)。和同桌说说你是怎样想的?(指名回答后教师演示帮助学生深入理解。)
四、应用拓展,深化理解
1.完成教科书第76页做一做。反馈后继续完成练习十四第1、2、3、5、8、10题。
2.讨论:李小明同学学习了“分数的基本性质”后,写了这样一道算式:,你认为他写得对吗?你是怎么想的?
五、本课小结
这节课研究了什么?你认为本节课最大的收获是什么?
教学反思:
1.整节课以学生“自主探索”为核心,由复习旧知导入,提出猜想(或联想),以验证猜想为线索,学生动手操作(独立完成或与同伴协作完成),全体学生积极参与到活动中,经历思考—操作—归纳—总结的过程。学生能用多种方法找到相等的分数,激起学生的探究兴趣。如,有的学生通过折纸验证,有的用涂色、画数轴、画线段图等方法探究,有的学生居然想到计算、,说明。整个教学重在让学生自己发现规律,提出问题并解决问题。使学生在经历观察、操作和讨论等学习活动中,感受数学问题的探索性和挑战性,体验数学学习的乐趣。
2.课前,我没有想到学生能在实际操作中想出如此多的方法验证猜想,而且对分数的基本性质理解得如此之深。我深深感到,我们应该相信学生,要与学生在同一平台上互动探究,让数学课堂再现学生与教师、学生与学生之间思维的交流与碰撞。
一、直接引入新课,一上课就课件呈现课本中例1的图片,并要求学生用分数表示出涂色部分,这对于学生来说并不难。然后要求学生把大小相等的分数填入等式。学生也很快回答出来了,就是==然后我就接着问,为什么它们是相等的,这个答案学生是从图中获得的,因为它们在图中所占的面积是一样的,所以,它们是相等的。然后我又接着追问,既然這几个分数是相等的,为什么它们的分子、分母不一样呢?这个问题把学生难住了,这就是我们今天要学习的新知识,把学生学习新知的欲望一下子激发出来。
二、注重学生的动手操作能力。事先为每个学生准备一张正方形的纸,让学生对折,并涂色表示其,要求学生继续对折,每次找出一个和相等的分数,并用等式表示出来。学生通过例1的思考与学习,通过折纸,对找一个和相等的分数已经有了一定的感知。很多学生通过动手操作,找到了几个和相等的分数。这为本节课学习分数的基本性质做好铺垫。
三、课堂练习力求紧扣重点,做到新颖、多样、层次分明,有坡度,加深了学生对分数的基本性质的认识,激发了学习的兴趣,活跃了课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效地拓宽了学生的思维空间,真正做到了学以致用。
如,=(a、b为非零的自然数)
(1)当a=1、2、3、4、5…时,b分别等于几?
(2)a与b的关系是怎样的?为什么?
同时,在这节课中也存在几个方面的不足:
1.在形成性质的过程中,对分数基本性质与分数除法的关系,商不变的规律进行了整合,只有部分学生了解,没有深入到全班。而且在学生表述自己的发现时,没有说0除外,我本意是想再进行追问,可有部分学生书本已打开,他们很快就说0除外。对该性质没有一个深入的理解,我想在后期的教学中,应多关注细节,培养学生良好的学习习惯,上课应学会思考,而不是依靠书本现成的答案。
2.在巩固练习阶段,如练一练的第2题,我只是指名让几个学生说说他们填某个数的依据,而没有在黑板上把过程再板演一遍,这对于学困生来说是很困难的,所以,在后来的练习中,有部分学生还不是很理解。
1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2、理解和掌握分数的基本性质。
3、较好的实现知识教育与思想教育的有效结合。
教学重点:
理解和掌握分数的基本性质。
教学难点:
能熟练、灵活地运用分数的基本性质。
教学过程:
一、创设情景
师:同学们,为了让你们了解到更多的科技知识,在科技周活动中,学校做了三块科普展板(投影出示教材中的三块展板)。同学们认真观察,你们能提出什么问题?
师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。
二、新授
师:同学们想了很多好的方法,哪个小组愿意汇报一下?
生1:我们组是用画图的方法来验证的。我们先画了三个大小一样的正方形表示三块展板,把它们分别平均分成2份、4份和8份,再分别去其中的1份、2份和4份涂上颜色(展示学生画的图)。通过比较我们发现,涂色部分的大小是相等的,所以
生2:我们组是用折纸的方法来验证的。我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。通过折纸我们组也发现(学生在小组中讨论、验证)
师:我们发现的这个规律,就是分数的基本性质。
同学们现在小组内总结一下,什么是分数的基本性质?
(学生认真讨论)
师:同学们汇报一下你们的讨论结果。
三、自主练习、巩固提高
课本第80页1、2、3、题。
其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。
第2题二生爬黑板板演,第3、4题学生自做。师巡视指导。
课堂小结:
教具准备 :“分数基本性质”课件,正方形纸片,彩色粉笔。
教学过程() : 一、巧设伏笔、导入新课。
1、出示课件:120÷30的商是多少?
被除数和除都扩大3倍,商是多少?
被除数和除数都缩小10倍呢?(出示后学生回答,课件显示答案)
2、在下面□里填上合适的数。
1÷2=(1×5)÷(2×□)
=(1÷□)÷(2÷4)
①想一想,你是根据什么填上面的数的?(生口答)
(课件:商不变的性质)
②商不变的性质是什么?(生口答)
③除法与分数之间有什么关系?
生答,师板书:被除数÷除数=被除数/除数
二、讨论探究,学习新知。
1、课件出示:1÷2= (怎么写)
①1/2与( )相等?你能想出哪些数?有办法怎么让它们相等吗?
让生合作探讨。
②生出示答案:1/2=2/4=4/8……
有选择填入上数。
2、引导学生证明它们相等。
①出课件:出示1个长方体,平均分成2份,得1/2,平均分成4份,得2/4……。
(课件演示)
上述演示让学生感知后,问你发现了什么?(生讨论)
②再逆向思考,观察板书和课件。
问你又发现了什么?(生讨论)
得到:(板书)分数的分子和分母同时乘上或者除以相同的数,分数的大小不变。
3、验证、补充、强调
①出示2/5=2×2/5=4/5,对吗?(验证分数的基本性质),为什么?强调“同时”(在黑板板书上用彩笔勾划强调)。
②出示3/4=3×3/4×4=9/16,对吗?为什么?强调“相同的数”。
③右边列式行吗?为什么?3/4=3×0/4×0=?补充:(0除外)板书,并出示课件补充。
④归纳出上述板书为“分数的基本性质”(课题)。
4、信息反馈、纠正、巩固。
①判断(出示课件)
A、分数的分子,分母都乘上或除以相同的数,分数的大小不变。
B、把15/20的.分子缩小5倍,分母也缩小5倍,分数的大小不变。
C、3/4的分子乘上3,分母除以3,分数的大小不变。
D、10/24=10÷2/24÷2=10×3/24×3 ( )
完成后,强调重点,加以巩固。
②完成课本108页例2(学生尝试练习)
强调运用了什么性质?课件:“分数的基本性质”醒目强调。
三、实践练习,信息综合
1、练一练
①3/5=3×( )/5×( )=9/( )
②7/8=( )/48
③4÷18=( )/( )=4×5/18×( )=2/( )
2、练习二十二1―3题。
四、课堂总结、整体感知。
(在信息综合后,重点选择性小结,形成整体),这节课我们学习了什么内容?可以应用在什么地方?这与我们学习过的什么性质有联系?
五、发散巩固、自主选择。
想一想:(选择一道你喜欢的题做)
课件:①与1/2相等的分数有多少个?想象一下,把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数。
应店中心小学 阳建林
【教学目标】
1.经历探索相等分数的分子、分母变化规律的过程,使学生理解分数的基本性质。
2.能运用分数的基本性质把一个分数化成指定分母而大小不变的分数。
3.培养学生观察、分析和抽象概括的能力。
【教学重点】理解分数的基本性质。
【教学难点】发现和归纳分数的基本性质,并能应用它解决相关的问题。
【教学过程】
一、复习引入
1.看算式快速得出结果。
÷ 3=
÷ 30=
1500÷ 300=
师:这三个算式有什么特点?谁能说说这就是我们四年级学过的什么性质?(商不变性质)
2.在除法里有商不变的性质,在分数里会不会也有类似的性质存在呢?这个性质是什么呢?
二、新授课
1.通过探索,发现规律
师:老师这里有3张同样大小的正方形纸,这里,我们将它们平均分,分别涂上不同颜色,你能用分数把它们表示出来吗?自己拿出学具(三张小正方形纸和彩笔)试一试。
学生自己完成任务。
师:看看这三个图,你发现了什么?(涂色的面积一样大)通过图上看起来,这三个分数是什么关系?(相等的)
师:我们仔细观察这一组分数,它的什么变了,什么没变?(引导学生观察分数的分子分母变化关系,让学生自己说出其中的变化。)
师:刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?
师总结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识——分数的基本性质。
2.深入理解分数的基本性质。
师:什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。(学生讨论后发言)
师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质:
师:想一想为什么要加上“零除外”?不加行不行?我们前面学过什么定律也有这个“零除外”?(让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。)
教师小结:(1)因为分数的分子、分母都乘0,则分数成为,在分数里分母不能为0,所以分数的分子、分母不能同时乘0.(2)又因为在除法里零不能作除数,所以分数的分子、分母也不能同时除以0。
三、应用
1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来练习一下。
2.学生练习课本例题2,两名学生在黑板上做。
3.学生自己小结方法。
四、总结
这节课大家有什么收获?
一、问题导入, 引发猜想
创设情境可以把生活与数学融为一体, 使学生的数学学习过程变得生动有趣。上课伊始, 笔者创设了:运动会就要到了, 幼儿园的小朋友缠着阿姨要跳绳, 于是, 阿姨拿出三根同样长的绳子, 剪下第一根的给明明, 剪下第二根的给亮亮, 剪下第三根的给盼盼, 明明看了看, 心里很不高兴, 说阿姨偏心眼, 给盼盼的最长, 给自己的最短。同学们猜猜看, 明明说得对不对?一时间, 同学们议论纷纷, 有的说对, 也有的说不对, 怎么办呢?笔者没有妄下结论, 而是拿出三根同样长的绳子, 先取第一根对折, 沿其对折处剪开, 取其中一段, 即得, 然后取第二根对折, 再对折, 取其中两段剪开, 即得, 再取第三根连续三次对折, 此时绳子被平均分成8段, 取其中4段剪开, 即得。然后引导学生把剪下的三根跳绳放在一起比较, 学生惊奇地发现三根跳绳同样长, 使学生直观地看到, 为帮助学生理解分数大小相等的算理作了铺垫。
二、深入研究, 验证结论
由于理解分数大小相等的关键在于理解为什么把分母 (分的份数) 和分子 (表示的份数) 同乘上一个不等于0的数, 分数的大小不变, 因此, 上面的实验结果仅仅只能直观地说明三个分数相等, 还不足以让学生发现并归纳出分数的基本性质, 所以, 必须先改变学生的思维角度, 让学生从不同的思维方向验证猜想, 再通过变化观察方向, 发现分数的分子和分母同时乘以或除以相同的数 (0除外) , 分数的大小不变的规律, 这样层层推进, 在学生充分获得数学活动经验的基础上, 完善、概括出结论, 才有利于学生深刻理解分数的基本性质。为此, 笔者又创设了:明明看了看三个分数, 还是不服气地说, 的分子、分母都比的分子、分母大, 怎么会相等呢?既然明明不服气, 就请大家以小组为单位, 各自设计一种验证方法说服明明吧!经过合作学习, 每个小组都找到了自己的验证方法, 有的小组用三张同样大小的长方形纸, 分别折出它的, 涂上色, 打开后再比较涂色部分的大小, 由此证明;有的小组用画线段图的办法证明三个分数的大小相等;有的小组从分数意义的角度来说明, 是2份中的1份, 表示一半;是4份中的2份, 也表示一半;是8份中的4份, 还是表示一半, 所以;还有的小组从除法与分数的关系来验证, , 结果都是0.5, 说明三个分数的确相等, 为探究分子、分母的变化规律提供了认知基础。这样, 在阅读教材的基础上让学生深入研究除式与分数的关系也就水到渠成了。除式1÷2的被除数、除数都分别乘上2 (或4) , 分数的分子、分母也都分别乘上2 (或4) , 结果不变。反过来, 除式4÷8的被除数、除数都分别除以2 (或4) , 分数的分子、分母也随之分别除以2 (或4) , 其结果也不变。通过激活学生头脑中已有的旧知, 由商不变性质推导出分数的基本性质, 学生马上得到理解。
三、巩固练习, 内化新知
为了让学生在理解中运用, 在运用中进一步升华知识, 加深对分数基本性质的理解, 笔者再次创设情境:我们帮助明明解决了问题, 另一个疑难又在等着我们解决了, 同学们看, “”这两个分数相等吗?你能把它们化成分母都是12而大小不变的分数吗?让学生利用分数的基本性质来判别分数的大小, 有利于学生进一步内化新知, 理解把化成分母是12而不改变其大小的分数, 分母3要乘上4才能变成12, 根据分数的基本性质, 分子也要乘上4, 分数的大小才不变;同理, 把化成分母是12而大小不变的分数, 应该先想分母24变成12, 要除以几?再想, 分母除以2后, 要使原分数大小不变, 分子也要除以几?根据这一思路, 学生很快填出。通过练习, 使学生能运用分数的基本性质解决简单的实际问题, 为学习约分、通分的知识奠定了基础。
[关键词]数学教学 兴趣 故事 诱因 主线
[中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2015)11-053
教学“分数的基本性质”一课,我以兴趣为诱因、以故事为主线展开教学活动,充分调动了学生学习的积极性,使学生兴趣盎然,取得了较好的教学效果。下面撷取课前、课中及课尾的三个教学片断,与大家共享。
片断一(课前):故事导入,激发兴趣
生:因为八戒以为自己多分了西瓜,所以他当然很高兴。
师:果真是这样吗?可等悟空分好西瓜递给他时,八戒却傻了眼。大家想不想知道这是为什么呢?那就让我们一起来探索吧!
思考:以故事导入新课,既能激发学生的学习兴趣,又能自然引入教学。这样不仅使学生对故事的发展充满期待,吸引他们听课的注意力,而且促使他们主动探索所学的新知,真可谓“课伊始,趣已生”。
片断二(课中):巧借故事,理解性质
师:同学们,故事的第1回讲到悟空分好西瓜递给八戒时,八戒却傻了眼,现在讲第2回。“分数国王见八戒傻了眼,就在一旁提醒道:‘八戒,难道你忘了我们分数王国里分数的基本性质?’八戒一听,可来劲儿了:‘国王,不就是分数的分子和分母乘或除以一个数,分数的大小不变吗?’话音刚落,悟空、沙僧都哈哈大笑起来。”大家知道他们为什么笑吗?
生1:八戒的话中少了“同时”一词。(师板书:同时)
师:为什么要加上“同时”一词呢?你是怎样理解的?
生1:“同时”就是指一起的意思。
生2:八戒的话中还少了“相同”一词。
师(板书:相同):为什么要加上“相同”一词呢?
生2:如果一个分数的分子乘3、分母乘5或是分子除以2、分母除以6,分数的大小就会改变。
生3:八戒的话中还少了“0除外”。(师板书:0除外)
师:分数国王给八戒指出了你们剛才所说的三点,并接着说:“八戒,现在知道你大师兄只分那么多西瓜给你的原因了吗?”同学们,你们知道是什么原因吗?
生(齐):悟空说的这几个分数其实是相等的。
师:为什么说它们是相等的?(生答略)同学们,故事暂且讲到这里,欲知后事如何,且听下回分解。
思考:在本环节中,教师巧借故事中八戒的错误让学生进行辨析,取代了平时教师出辨析题让学生辨析的枯燥做法,在教学形式上进行了一次有益的尝试。这样不仅让学生体验到学习的乐趣,而且加深了他们对分数基本性质的理解,真可谓“课进行,趣正浓”。
片断三(课尾):故事拓展,深化理解
生2:老师,要使一个分数的大小不变,分母增加的倍数是不是要和分子增加的倍数相同?
师:请大家在小组里验证一下这位同学的说法是否正确。(学生通过验证也得出了这样的规律)
师:同学们,让我们把掌声送给这位同学!
思考:在本环节中,教师利用故事对分数的基本性质进行了拓展、延伸,虽然这种拓展对学生来讲有一定的难度,但可以通过他们彼此之间的思维碰撞,获得正确答案还是可行的。由于教师创设了丰富有趣的情境,所以学生乐于探究,真可谓“课结束,趣犹存”。
教学目标:
1、知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
2、能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。
3、情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。
教学准备:长方形纸片、彩笔、各种分数卡片。
教学过程
一、创设情境,激发兴趣
1.课件示故事。同学们,今天是快乐的 ,老师祝愿同学们节日快乐!在我们欢庆自己的节日时,花果山圣地也早已是一派节日喜庆的气氛。
【六一节到了,猴山上张灯结彩, 小猴们享受着节日的快乐。猴王给小猴们做了三块他们爱吃的饼。它先把第一块饼平均切成四块,分给第一只小猴贝贝一块。第二只小猴佳佳见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给第二只小猴两块。第三只小猴丁丁急了,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给第三只小猴丁丁三块。贝贝、佳佳见了,连忙说:“猴爷爷,不公平,不公平,我们要分得和丁丁的同样多。”】
“同学们,猴王真的分得不公平吗?”
二、动手操作 、导入新课
同学们,这个故事告诉了我们什么?猜想一下猴王分得公平吗?为什么公平?我们平常怎样去做?让我们也来分分看。请每组拿出课前准备的三张长方形纸片,共同来分一分,并完成操作报告(课件出示操作报告)。请小组长分工一下,明确记录的同学。
任选一小组的同学台前展示实验报告,并汇报结论。
教师根据学生汇报 板书:14 = 28 = 312
2.组织讨论。
(1)通过操作我们发现三只猴子分得的饼同样多,表示它们分得饼的分数是相等关系。那么,这三个分数什么变了,什么没有变?让学生小组讨论后答出:它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?
学生通过观察演示得出结论 教师板书:34 = 68 = 912 。
3.引入新课:黑板上二组相等的分数有什么共同的特点?学生回答后板书:
分数的分子和分母, 分数的大小不变。
虽然他们的分子和分母变化了,但是它们的大小却不变。那么他们的分子和分母变化有规律吗?我们今天就来共同探讨这个变化规律。
三、比较归纳,揭示规律。
请每组拿出探究报告,任意选择黑板上的二组相等分数中的一组,共同讨论、探究,并完成探究报告。
1.课件出示探究报告。
2.分组汇报,归纳性质。
(1) 从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。
(根据学生回答 板书:同时乘上 相同的数)
(2)从右往左看,分数的分子和分母又是按照什么规律变化的?
(根据学生的回答 板书:除以 )
(3)有与这一组探究的分数不一样的吗?你们得出的规律是什么?
(4)综合刚才的探究,你发现什么规律?
根据学生的回答,揭示课题,
(……这叫做 板书: 分数的基本性质)
对这句话你还有什么要补充的?(补充“零除外”)
讨论:为什么性质中要规定“零除外”?
(红笔板书:零除外)
(5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。
师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。
3、智慧眼 (下列的式子是否正确?为什么?)
(1) 35 =3×25 =65 (生: 35 的分子与分母没有同时乘以2,分数的大小改变。)
(2)512 =5÷512÷6 =12 (生:512 的分子除以5,分母除以6,除数的大小不同,分数的大小也不同)
(3)112 =1×312÷3 =34 (生:112 的分子乘以3,而分母除以3,没有同时乘以或除以,分数的大小不相等。)
(4)25 =2×x5×x =2x5x (生:x在这里代表任何数,当x=0时,分数的大小改变。)
4、示课件 讨论:现在你知道猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?用分数表示为?如果要五块呢?
三、回归书本,探源获知
1、 浏览课本第107-108页的内容。
2、 看了书,你又有什么收获?还有什么疑问吗?
3、 师生答疑。
你会运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质吗?
4、自主学习并完成例2,请二名学生说出思路。
四、多层练习,巩固深化。
1、热身房。35 = 3×( )5×( ) = 9( )
824 = 8÷( )24÷( ) = ( )3
学生口答后,要求说出是怎样想的?
2、溜冰场 在下面( )内填上合适的数。
后二题采取师生对出数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。
3.智力冲浪 (选择你喜爱的一道题完成)
(1)、35 的分子加上6,要使分数的大小不变,分母应加上多少?
(2) 1/a=7/b(a、b是自然数),当a=1,2,3,4……时,b分别等于几?
讨论:a与b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?
(3)把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不变的分数。
思考:分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。
五、游戏:请找找我的好朋友。
同学们,老师对你们今天的表现很满意,很想融入你们的集体,和大家做朋友,喜欢我这个大朋友吗?不过,老师有一个小小的条件,只要达到这个小要求,很快我们就可以成为好朋友。每位同学都把教师课前准备的分数卡片拿出来,如果你持有的分数与老师出示的分数大小一样,就请起立,你就是我的好朋友。准备好了吗?
播放 “找朋友”。
出示一张12 分数卡片。
出示一张2/3分数卡片。
还有部分同学没有成为老师的好朋友,你们希望老师出示一个什么分数?
老师今天真高兴,因为在快乐的节日里认识了仓小这么多快乐的好朋友!感谢大家精彩的配合,同学们再见!
“找朋友”歌曲声中教师和学生相互道别。
附:
操 作 报 告
我们小组将三张大小 的长方形纸都看作是 ,分别作如下操作:
平均分成几 份 涂色部分表示这样的几 份 分数表示为
第一张
第二张
第三张
通过比较涂色部分的大小,我们发现这三个分数 。
汇报人:
月 日
操 作 报 告
我们小组将三张大小 的长方形纸都看作是 ,分别作如下操作:
平均分成几 份 涂色部分表示这样的几 份 分数表示为
第一张
第二张
第三张
通过比较涂色部分的大小,我们发现这三个分数 。
汇报人:
20 月 日
探 究 报 告
我们小组研究的一组分数是
(1)从左往右看, ( )( ) = ( ) ( )( ) ( ) = ( )( )
( )( ) = ( ) ( )( ) ( ) = ( )( )
我们发现的变化规律是 。
(2)从右往左看,( )( ) = ( ) ( )( ) ( ) = ( )( )
( )( ) = ( ) ( )( ) ( ) = ( )( )
我们发现的变化规律是 。
汇报人:
唐山市果园碑子院小学赵庆芳
教学基本信息
人教版五年级下册第四单元《分数的意义和性质》 第三节 分数的基本性质 第一课时分数的基本性质。
指导思想与理论依据
本课是在分数与除法的关系、同分子同分母的分数比较、真假分数互化等知识后。又为通分、约分奠定了基础。
分数的基本性质这节课不是一种静态的数学知识教学,应该让学生参与在探索和交流的过程中,所以教师要使学生真正理解掌握其规律。
教材分析
分数的基本性质是约分和通分的基础,而约分、通分又是四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。而分数与除法的关系及除法中商不变的规律是学习这部分内容的基础。
探索分数的基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。
学情分析
学生是学习的主体,是知识建构的主动者。高年级学生能运用已有知识通过顺迁移探索发现新知识的规律,并运用新知识解决实际问题。同时,从心理学角度上看,他们在小组合作的学习环境下,利用自主探索的学习方式,学习的积极性较高,他们善于探索,敢于质疑,敢于创新,同时多媒体辅助教学软件的运用,更易给他们直观的体验,反馈也更及时有效,因此这样的教学对学生真正意义上的构建将起着积极的作用。
教学目标
1、使学生经历探索分数基本性质的过程,知道分数的基本性质与整数除法中商不变的性质之间的联系,初步理解分数的基本性质。
2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象、概括的能力,体现数学学习的乐趣。
教学重点
理解和掌握分数的基本性质
教学难点
根据分数与除法的关系,用除法商不变的规律说明分数的基本性质
教学过程
(一)导入
1,、直接口答下面各题的商,说说是怎样想的?根据什么知识?
÷20 =(12O×3)÷(30 ×3)=(120 ÷10)÷(30 ÷10)=
(二)教学实施
1、教学教材第75 页的例1。
让学生拿3 张同样的正方形或长方形纸片,分别对折一次、两次、四次,平均分成2 份、4 份、8 份,涂上颜色,分别用分数表示涂色部分。
提示:你发现了什么?板书: = = 为什么相等?2 .引导学生观察它们的分子、分母
各是按照什么规律变化的?学生以小组为单位讨论,请代表发言。
随着学生汇报,老师板书。
(从左往右观察)(从右往左观察)
3、提问:你还能举出这样的例子吗?
学生举例,老师分别板书出来。
4、观察以上例子,你得出什么结论?(学生讨论,汇报。)板书:分数的分子和分母同时乘或者除以相同的数(0 除外),分数的大小不变。
提问:为什么0要除外?(学生讨论)
小结:分子和分母如果都乘上0,则分数成为,而分数的分母不能为0 ;又因为0不能作除数,所以分数的分子和分母也不能同时除以0。
5、提问:你能不能根据分数与除法的关系和商不变的性质来说明分数的基本性质?
6、完成教材第76 页“做一做”的第1 题。说一说自己是怎样想的?学生根据分数的基本性质思考并说明思路。
7、完成教材第77 页练习十四的第1 题。
学生先独立涂色,然后比较大小并说明理由。
8、完成教材第77 页练习十四的第2 题。
学生独立完成,说一说是怎样比较的?可以把 化成,也可以把 化成,再比较。
9、完成教材第77 页练习十四的第3 题。
学生两人一组,由一人说一个分数,另一个人说出一个相等的分数。
10、完成教材第77 页练习十四的第4 题。
引导学生先应用分数的基本性质,判断哪几个分数是相等的,然后在直线上把这个点画出来。
老师启发学生观察,推算出每个分数中分子与分母可以同时除以几,得到一个与原分数相等的分数。
11、完成教材第77 页练习十四的第5 题。
进行口答练习。
(四)思维训练
1、一个分数的分母不变,分子乘3,这个分数的大小有什么变化吗?如果分子不变,分母除以5 呢?、在下面的括号里填上适当的数。
9÷15 = = = 6÷()=()÷6
(五)课堂小结
通过本节的学习,知道了什么是分数的基本性质,并会应用分数的基本性质解决一些简单的数学问题。
板书设计
分数的基本性质
分数的基本性质:分数的分子和分母同时乘或除以一个相同的数(零除外),分数的大小不变。
商不变的性质:在除法里,被除数和除数同时乘或或除以一个相同的数(零除外),商不变。
教学反思
首先,在验证、交流环节学生们参与率并不高,好多学生尤其是后进生普遍是无从下手,在交流时也不主动,很多学生还停留在一知半解的状态。
【教案 分数的基本性质】推荐阅读:
分数的基本性质复习教案01-30
《分数的基本性质和小数的性质》参考教案10-26
五年级数学《分数基本性质》教案11-15
五年级数学下册第二单元第7课时分数基本性质的练习教案07-18
《分数的基本性质》的评课稿09-07
《分数基本性质》教学设计文档10-04
分数乘分数的教案03-23
分数的意义和性质复习10-23
分数的意义和性质单元教学计划11-26
分数的意义和性质知识点总结02-26