牛顿运动定律复习归纳

2025-03-13 版权声明 我要投稿

牛顿运动定律复习归纳

牛顿运动定律复习归纳 篇1

授课老师:王笑梅评课人:项仙

《牛顿运动定律的应用》是高中物理教学中的一个重点内容,它惯穿整个高中物理教学的始终,即是静力学和运动学的综合应用,也是后续物理规律应用的基础。因此在教学上应把握好本节课的教学内容,通过具体的事例分析和练习,培养学生学会应用物理规律解决有关物理问题的基本能力和要求。

王笑梅老师在本节课的教学中,整体教材处理得当,教学重点明确,在教学中注重物理方法的渗透教育,有意识地启发学生思考,并在课堂上能根据学生的实际反映情况恰如其分地控制教学程序,能体现出以学生为主的教学理念。具体体现在:

1、在教材处理方面:牛顿运动定律在会考复习中比较全面,可以说大部分学生基本能掌握牛顿运动定律的内容及相关的知识要点。因此在本节课的教学中,对于基础知识的处理言简意赅,通过与学生共同回顾方式直接指明应用牛顿运动定律解决物理问题的两种题型。已知运动求力和已知力求运动。并且直接指明在两类问题在应用中的关键物理量是加速度。

2、教学重点明确:在教学中明确告诉学生,本节课的重点内容是应用牛顿运动定律解决物理问题的重要方法-------整体法和隔离法。这样可以使学生在听课过程中目标明确,并在具体的教学过程充分体现。

3、在教学过程中注重物理方法的渗透教育:在介绍整体法和隔离时,通过引导学生阅读有关教材有关整体法和隔离法的方法介绍,使学生对整体法和隔离法有一个系统全面的认识。接着通过一个比较简单的例题(两个物体具有相同的加速度):小车从足够长的光滑斜面自由下滑,小车上吊着一个小球情况,证明悬线与天花板垂直。通过简单的分析说明应用整体分析法的简单巧妙。接着比较全面分析一个题目:重为G的链条通过等长的轻绳悬挂在等高的天花板上情况,如何确定出绳子的张力和链条在最低点的张力。在教学上渗透处理问题的基本方法从简单到复杂、从整体到个体的基本物理方法。

4、有意识地启发学生思考问题:在介绍具有相同加速度的两个物体可以采用整体法处理后,通过斜面上一个物体加速下滑情景,要求学生求出地面对斜面体的摩擦力大小和方向。从课堂反映来看,大部分学生还是比较专心投入,体现了学生的学习自主性和积极性。而后在分析过程中提出若把M和m当作整体情况处理,让学生明确:具有不同加速度的几个物体也可以采用整体法处理。下面提出本人的两点不成熟看法,让大家共同探讨。

1、在介绍牛顿运动定律的整体法处理问题时,是否可以采用另外一种方式:同样是斜面的物体加速下滑情景,通过提出两个问题:(1)地面对M的摩擦力大小和方向?(2)地面对斜面体的支持力?学生通过隔离法分析计算求出,而后引导学生分析两个答案的特点和作适当的补充f=macosα+M*0,N=(M+m)g-(masinα+M*O)得出。这样处理是否更体现出现代教学理念中的探究式?

牛顿运动定律复习归纳 篇2

1. 不能正确理解牛顿运动定律的瞬时性

例1如图1所示, 一质量为m的物体系于长度分别为L1、L2的两根细线上, L1的一端悬挂在天花板上, 与竖直方向的夹角为θ, L2水平拉直, 物体处于平衡状态.现将L2剪断, 求剪断瞬间物体的加速度.

错误解答:设L1线上拉力为T1, L2线拉力为T2, 重力为mg, 物体在三力作用下保持平衡, 则:

T1cosθ=mg (1)

T1sinθ=T2 (2)

由 (1) (2) 得:T2=mgtanθ

剪断细线L2的瞬间, T2突然消失, 物体即在T2反方向获得加速度, 因为mgtanθ=ma, 所以加速度a=gtanθ, 方向沿T2反方向.

错解分析:本题主要考查了牛顿第二定律的瞬时性, 当力发生变化时, 物体的加速度一定发生变化, 在题中细线L2被剪断后, 拉力T1马上发生了变化, 合外力的方向不沿T2反方向.

正确解答:剪断L2前, 物体在细线L1、L2的拉力T1、T2和重力mg作用下平衡, 受力如图2所示, 由平衡条件得:

由 (1) (2) 得:T2=mgtanθ

由于L1为细线, 其物理模型是不可拉伸的刚性绳, 当绳上的张力变化时, 细线的长度改变量忽略不计, 因此剪断L2的瞬间, T2突然消失, L1线上的张力发生突变, 这时物体受力如图3所示, 即:

由 (3) (4) 得:a=gsinθ

拓展:若上题中的细线L1改为长度相同、质量不计的轻弹簧, 如图4所示, 其他条件不变, 求剪断L2瞬间物体的加速度.

解析:轻弹簧这一物理模型是当受到外力拉伸时, 有明显的形变量, 在弹性限度内, 弹力不能突变.设L1线上拉力为T1, L2线上拉力为T2, 重力为mg, 物体在三力作用下保持平衡, 如图5所示, 则:

由 (1) (2) 得:T2=mgtanθ

剪断细线L2的瞬间, T2突然消失, 弹簧弹力瞬间不变, 物体即在T2反方向获得加速度, 因为mgtanθ=ma, 所以加速度a=gtanθ, 方向沿T2反方向.

2. 不能正确理解牛顿运动定律的方向性

例2如图6所示, 小车上固定一弯折硬杆ABC, AB与BC之间的夹角为α, C端固定一质量为m小球, 下列关于杆对小球的作用力大小的判断中, 正确的是 ()

(A) 小车静止时, F=方向沿BC向上

(B) 小车静止时, F=mg, 方向竖直向上

(C) 小车水平向左以加速度a运动时, 一定有F=方向沿BC向上

(D) 小车水平向左以加速度a运动时, 方向斜向左上方, 与竖直方向的夹角为tanβ=

错误解答:当小车静止时, 由图7可知, 方向沿BC向上.选 (A) .

小车水平向左以加速度a运动时, 方向沿BC向上.选 (C) .所以答案为 (A) 、 (C) .

错解分析:由于思维定势, 首先确定了杆对小球的作用力沿着BC方向, 这就使得问题必错.

正确解答:对小球受力分析, 小球受到重力mg和杆对它的作用力F (方向不一定沿杆) , 当小车静止时, 小球只受到两个力的作用而处于平衡状态, 必然杆对球的作用力竖直向上, 大小等于mg, 选 (B) .小车水平向左以加速度a运动时, 如图8所示, 因a水平, 故这两个力的合力水平, 设F与竖直方向的夹角为β, 则:tanβ=, 所以β随a变化而变化, 大小为:F=方向斜向左上方, 与竖直方向的夹角为:tanβ=所以答案为 (B) 、 (D) .

3. 不能正确理解牛顿运动定律的对应性

例3如图9所示, 物体A叠放在物体B上, B置于光滑水平面上, 质量分别mA=6kg, mB=2kg, A、B之间的动摩擦因数μ=0.2, 开始时F=10N, 此后逐渐增加, 在增大到45N的过程中, 则 ()

(A) 当拉力F<12N时, 两物体均保持静止状态

(B) 两物体开始没有相对运动, 当拉力超过12N时, 开始相对滑动

(C) 两物体间从受力开始就有相对运动

(D) 两物体间始终没有相对运动

错误解答:先把物体B看作静止不动, 然后分析物体A是否运动.因为静摩擦力的最大值近似等于滑动摩擦力, 故:Ffmax=μFN 1=μmAg=0.2×6×10N=12N, 所以, 当F>12N时, A物体就相对B物体运动, F<12N时, A相对B不运动.

错解分析:在审题时, 要注意物体在地面上的运动情况与在不固定物体上的运动情况有所不同, 实际上, 本题因为水平面光滑, 两物体无论是否相对滑动, 由于F的作用和两物体间有摩擦, 两物体都会运动.

正确解答:首先以整体A、B为研究对象, 受力如图10所示, 在水平方向只受到拉力F, 根据牛顿第二定律列方程:

再以B为研究对象, 受力如图11所示, B水平方向受摩擦力:

当Ff为最大静摩擦力时, 由 (1) (2) (3) 式解得:a=6m/s2, F=48N.

由此可以看出, 当F<48N时A、B间的摩擦力都达不到最大静摩擦力, 也就是说, A、B间不会发生相对运动, 所以答案选 (D) .

4. 不能正确理解牛顿运动定律的整体性

例4如图12所示, 在光滑的水平面上并排放着两个物体, 他们的质量分别为m1和m2, 现以水平恒力F作用在A上, 试求A对B作用力大小.

错误解答:根据液体可以大小不变的传递压强, 固体可以大小不变的传递压力, A对B作用力的大小为F.

错解分析:只有当m1=0时, 才有F=FN, 这就是所谓的“力的传递”, 它是有相当严格的限制的 (即只有当m1=0时) .在许多常规的物理情境中, 通过轻绳、轻杆或轻弹簧, 对物体施加力的作用时, 作用在轻绳、轻杆或轻弹簧上的力即为作用在物体上的力, 也正是忽略了轻绳、轻杆或轻弹簧质量的影响.

正确解答:以AB整体为研究对象, 由牛顿第二定律得:

以A为研究对象, 设B对A的作用力为FN, 有:

由以上两式可解得:

二、牛顿运动定律的应用

1. 思维定势导致错误

例5重物A和小车B的重力分别为GA、GB, 用跨过定滑轮的细线将它们连接起来, 如图13所示, 已知GA>GB, 不计一切摩擦.则细线对小车B的拉力FT的大小是 ()

(A) GA=FT;FT

(B) GA>FT>GB

(C) FT

(D) GA、GB的大小未知, FT无法确定

错误解答:由GA>GB, 且不计一切摩擦可知, A物体向下加速, 则FTGB, 所以有GA>FT>GB.选 (B) .

错解分析:遇到与以往熟悉的图形、题意等相似的问题, 不再分析条件是否发生了变化, 就盲目的解题或照搬原来的结论到新的问题中, 如:把滑轮三角形支架问题等同于没有滑轮的支架问题;竖直方向加速时, 由拉力大于重力的结论类推到水平方向上加速时拉力也大于重力.

正确解答:应用牛顿第二定律, 对A有:

对B有:FT=mBa (2)

联立解得:

所以正确答案选 (C) .

2. 整体法、隔离法应用不当

例6如图14所示, 光滑水平面上放置质量分别为2m、m、m、2m的四个木块A、B、C、D, 其中B、C间用不可伸长的细绳连接, 木块间的最大静摩擦力都是μmg.现用水平拉力F拉木块A, 使四个木块以同一加速度运动, 则轻绳对C的最大拉力为

错解解答:对四个木块的整体运用牛顿第二定律, 有:

对左边两个物体整体运用牛顿第二定律, 有:

联立 (1) (2) 式得

错解分析:对连接体问题不知道什么时候运用整体法、隔离法, 不能正确进行受力分析, 不能正确挖掘临界条件, 忘记摩擦或质量是否考虑等.如:不知道加速度不同的连接体一般不能应用整体法, 不知道物体在斜面上不滑动的临界条件是物体与斜面的加速度相同, 不知道物体不离开地面的临界条件是地面对它的支持力不为零等.

正确解答:据题意分析可知, 右边的两个物体A、B先开始滑动, 所以整体滑动的最大加速度等于木块C、D跟木块B在μmg作用下的加速度, 即μmg=4ma, 又轻绳对C的最大拉力FT=3ma, 所以FT=3ma=.正确答案为:B) .

3. 整体法、隔离法是否考虑系统内力

例3如图15所示, A为电磁铁, B为铁片, C为胶木秤盘, 整个装置用轻绳悬挂于O点, 系统静止时, 轻绳受到的拉力为F0, 给电磁铁通电时, 在磁铁被吸引而上升的过程中, 轻绳受到的拉力为F, 则F___________ F0 (填“>”、“=”或“<”)

错误解答1:系统静止时, 轻绳受到的拉力为:

在铁片被吸引而上升的过程中, B对C不再有压力, 轻绳受到的拉力为:

犯这种错误的学生是由于不能正确受力分析, 忽略了A、B之间的吸引力.

错误解答2:将A、B、C看作一个整体, A对B的吸引力属于内力, 对整个系统没有影响, F=F0, 犯这种错误的学生是由于运用整体法时没有考虑内力.

错解分析:恰当的时候正确运用整体法, 可以简化解题过程.一般地说, 若系统的各个物体具有相同的加速度, 可优先运用整体法.因为这时系统内部各物体之间的力是内力, 对整个系统的运动状态没有影响, 可以不予考虑, 只须分析外力的作用, 列动力学方程进行求解, 因而较为简单.错解2之所以出错, 是由于在B上升的过程中具有不同的加速度, 必须考虑相互之间的作用力.因为用整体法不考虑内力的前提条件是系统内各物体间具有相同的加速度!

正确解答1:系统静止时, 轻绳受到的拉力为:F0= (mA+mB+mC) g

在铁片被吸引而上升的过程中, B有向上的加速度, 由牛顿第二定律, 对B有:

对系统有:F= (mA+mC) g+F′>F0.

正确解法2:B在上升的过程中有向上的加速度, 系统处于超重状态, 轻绳拉力F>F0.

小结:一般来说, 若系统内只有一个物体具有加速度, 且只需判断力的大小变化情况 (如支持力和重力相比) , 或力的方向 (如摩擦力) , 可以认为整个系统具有加速度处理, 而不需隔离分析.若系统中有多个物体具有不同的加速度, 最好运用隔离法.

4. 不加分析, 随意判断超、失重

例如图所示, 在水平面上静止的一个装有水的容器中漂浮着一个木块, 当容器竖直向上做加速运动时, 木块将 ()

(A) 上浮一些

(B) 下沉一些

(C) 既不上浮也不下沉

(D) 无法判断

错误解答:木块静止时, mg=F浮 (1)

当容器竖直向上做加速运动时, 木块向上的加速度为a, 则对木块有:

由 (1) (2) (3) 式得, a=0

容器竖直向上做加速运动, 而木块的加速度为0, 木块相对于容器向下运动, 所以会下沉一些, 选 (B) .

错解分析:当容器竖直向上加速运动时, 木块受到的浮力已经不是ρ水gV排, 设容器的加速度为a1, 而应当是ρ水 (g+a1) V排, 导致错误.

正确解答:木块静止时, mg=F浮 (4)

当容器竖直向上做加速运动时, 设其加速度为a1, 木块向上的加速度为a2, 则木块受到的浮力为:

木块向上的加速度为:F浮′-mg=ma2 (7)

由 (4) (5) (6) (7) 式得:a1=a2, 所以木块和容器保持相对静止, 故 (C) 选项正确.

5. 不去受力分析, 凭想当然

例5一木块放在粗糙水平面上, 同时受到与水平方向夹角为α和β的两个力F1、F2的作用, 如图17所示, 木块获得的加速度为a, 若撤去其中的一个力F2, 则木块的加速度 ()

(A) 必然增大 (B) 必然减小

(C) 可能不变 (D) 可能增大

错误解答:由于两个力F1、F2的水平分力方向一致, 若撤去其中的一个力F2, 水平向右的力必然减小, 则木块的加速度必然减小, 选 (B) .

错解分析:不去受力分析, 解决问题凭经验和想当然, 导致只考虑了水平方向的受力, 忽略了由于竖直方向上的受力变化而导致水平方向的摩擦力的变化.

正确解答:以木块为研究对象, 进行受力分析如图18所示, 得:

整理得:

由 (2) 式得, 当F2cosβ=μF2sinβ时, 即μ=cotβ时, a不变;

当F2cosβ>μF2sinβ时, 即μ

当F2cosβ<μF2sinβ时, 即μ>cotβ时, a增大;

故 (C) 、 (D) 选项正确.

6. 主观臆断造成错误

例6水平桌面上放着质量m1=2kg的木板A, 木板A上放着一个装有电动机的滑块B, 滑块和电动机的总质量m2=1kg, 一根细绳一段拴在固定于桌面上的小柱子上, 另一端与电动机相连, 如图19所示.开始时, 用手抓住木板A使它不动, 开启电动机, 电动机转动时可以使得细线卷在转轴上, 从而使滑块B以恒定速度v0=0.4m/s开始滑动, 当滑块B与木块A右端相距L=1m时, 立即放开木板A, (设木板A不会与小柱子相碰) , 已知木板A与滑块B、木板A与桌面之间的动摩擦因数分别为μ1=0.05和μ2=0.01, 设最大静摩擦力等于滑动摩擦力, g=10m/s2, 则:

(1) 通过计算判断松手后木板A是否会在桌面上滑动?

(2) 求松手后5s内滑块B与木板A相互摩擦而产生的内能E.

错误解答: (1) 对木板A为研究对象, 水平方向受到滑块的摩擦力F1 (动力) 和地面的摩擦力F2 (阻力) .

F1=μ1m2g=0.05×1×10N=0.5N

F2=μ2m1g=0.01×2×10N=0.2N

F1>F2, 所以木板能够在桌面上滑动.

(2) 松手5s后, B物体做匀速直线运动, 运动的位移为:

xB=v0t=0.4×5=2.0m

A物体做初速度为零的匀加速直线运动, 加速度为:

运动的位移为:

由E=F1 (xB-xA) =μ1m2g (xB-xA) =0.05×1×10× (2-1.875) =0.625J

错解分析: (1) 问中没有正确受力分析, 致使对F2的求解错误, 虽然不影响回答“是否会在桌面上滑动”;导致了第 (2) 问中A物体的加速度的求解错误, 同时第 (2) 问中, 物体B在5s前早已经相对于A静止.

正确解答: (1) 对木板A为研究对象, 水平方向受到滑块的摩擦力F1 (动力) 和地面的摩擦力 (阻力) F2.

F1>F2, 所以木板能够在桌面上滑动.

(2) 松手5s后, B物体做匀速直线运动, A物体做初速度为零的匀加速直线运动.

A物体的加速度为:

由v0=at得:, 即滑块后即和木板相对静止

B物体运动的位移:

由E=F1 (xB-xA) =μ1m2g (xB-xA) =0.05×1×10× (1.6-0.8) =0.4J.

A物体运动的位移:

7. 摩擦力突变导致错误

例7如图20所示, 传送带以恒定的速度v=10m/s运动, 传送带与水平面的夹角θ为37°, PQ=16m, 将一小物块无初速度的放在传送带上P点, 物块与此传送带间的动摩擦因数μ=0.5, 传送带逆时针转动, 小物块由P运动到Q点的时间是多少? (g=10m/s2, sin37°=

错误解答:物体所受到的摩擦力方向向上, 受力分析如图21所示, 其加速度恒定, 则:

mgsinθ-μmgcosθ=ma (1)

由 (1) (2) 得:t=4s.

错解分析:本题错误在于当传送带逆时针转动时, 并不是物体所受到的摩擦力方向一直向上;而是在物体的速度小于传送带的速度v的过程中, 物体所受到的摩擦力方向沿斜面向下, 通过的位移是x1.在物体的瞬时速度大于传送带速度v, 物体所受到的摩擦力方向沿斜面向上, 通过的位移是x2, 而x=x1+x2.

正确解答:当传送带逆时针转动时, 且在物体的速度小于传送带速度v的过程中, 物体所受到的摩擦力方向向下, 受力分析如图22所示, 加速度恒定, 为:

向下加速滑行的时间为:v=a1t1 (4)

滑行的距离为:

由 (3) (4) (5) 得:t1=1s (6)

之后, 物体的瞬时速度大于传送带速度v, 物体所受到的摩擦力方向沿斜面向上, 加速度为a2, 通过位移x2到达Q点.

由 (7) (8) (9) 得:t2=1s (10)

由 (6) (10) 得:t=t1+t2=2s.

拓展:当传送带顺时针转动时, 小物块由P点运动到Q点的时间为多少?

解析:物体所受到的摩擦力方向向上, 受力分析如图23所示, 其加速度恒定, 则

牛顿运动定律 篇3

解力学类综合题有两大类方法:一是力和运动的方法,即用牛顿运动定律与运动学公式联立求解;二是动量和能量的方法,即用动量守恒定律(如果是系统的合外力为0,优先使用)和动量定理;往往仅用动量来处理是不够的,还必须加入动能定理或能量守恒定律等联立求解,相反亦然.动力学的方法基本只能处理某个时刻或某个位置的情况而不是整体运动情况,用动量和能量的方法就要简便得多,特别是处理变力的问题,因不需要求解中间物理量——加速度.一般的力学综合题可以同时运用这两种方法解答.不管用什么方法,先应该分析清楚物理情景(物体的运动和受力情况),学会使用图象法(受力示意图或运动情景图等)辅助处理问题.

一、重力与弹力

重力:分析物体受力,首先要考虑重力.重力是由于地球吸引而产生的力,方向竖直向下.物体所受的重力与物体的质量及在地球上的位置和纬度有关,与它所处的运动状态、速度的大小无关.在地球上,随地球自转的物体,重力只是地球对物体的万有引力的一个分力.除了在电磁场中可能由于重力与其他力相比很小而不考虑或其他特别说明之外,别的地方必须考虑重力,而且要首先分析.

弹力:发生弹性形变的物体由于要恢复原状,对与它接触的物体产生的作用力.产生条件:①物体间直接接触;②接触处发生弹性形变.只有发生了弹性形变的物体才能产生弹力(初学者往往误认为放在水平面上的物体对水平面有压力是因为重力).但大部分弹性形变由于太小而不能直接观察,这时如何判断弹力是否存在呢?

例1 如图1所示,一根弹性杆的一端固定一质量为[m]的小球,另一端固定在质量为[M]的物体上,物体[M]又放在倾角为[θ]的斜面上,则( )

A. 若斜面光滑,物体[M]沿斜面自由下滑时,弹性杆对小球[m]的弹力方向竖直向上

B. 若斜面光滑,物体[M]沿斜面自由下滑时,弹性杆对小球[m]的弹力方向垂直于斜面向上

C. 若斜面不光滑,且物体与斜面间的动摩擦因数满足[μ]>[tanθ],则弹性杆对小球[m]的弹力方向竖直向上

D. 若斜面不光滑,且物体与斜面间的动摩擦因数满足[μ]<[tanθ],则弹性杆对小球[m]的弹力方向可能沿斜面向上

解析 若斜面光滑,对小球[m]和物体[M]组成的整体,沿斜面下滑的加速度[a=gsinθ],如图2-甲所示,此时小球受杆的弹力一定垂直于斜面向上,否则,弹力与重力的合力使小球产生的加速度将会大于或小于[gsinθ],选项A错误、选项B正确.

若斜面不光滑,且[μ>tanθ],则小球[m]和物体[M]组成的整体将静止在斜面上,此时小球所受的弹力一定与重力平衡,选项C正确.

若斜面不光滑,且[μ

点拨 杆对物体的弹力方向不一定沿杆的方向,而要由物体所处的状态来决定,这就是状态法. 判断力是否存在的常用方法有,①物质法:即找施力物体.②假设法:将该力撤去,看研究对象能否保持原状态,若能,则说明此处力不存在,若不能,则说明力存在.③反证法:由已知运动状态和其他条件,利用平衡条件或牛顿运动定律分析推理.④状态法:假设接触处存在弹力,作出物体的受力图,再根据力和运动的关系判断是否存在弹力:若满足给定的运动状态,则存在弹力,若不满足,则不存在弹力.

二、摩擦力

静摩擦力中的“静”和滑动摩擦力中的“动”都是相对的,指的是与之接触、挤压的物体的相对静止或相对运动,而不一定是物体对地的运行情况.通常所说的运动是以地面为参考系的,而相对运动是以相互接触的另一个物体为参考系,所以摩擦力阻碍的是接触物体之间的相对运动或相对运动趋势,而不一定阻碍物体对地运动,因此它可以是阻力,也可以是动力.

摩擦力的方向与接触面相切,与相对运动或相对运动趋势的方向相反,但可能与物体的运动方向同向、反向或有一定夹角.对于运动趋势,一般解释为要动还未动的状态.没动是因为有静摩擦力存在,阻碍相对运动的产生,使物体间的相对运动表现为一种趋势.

例2 如图3所示,质量分别为[m]和[M]的两物体[P]和[Q]叠放在倾角为[θ]的斜面上,[P]、[Q]之间的动摩擦因数为[μ1],[Q]与斜面之间的动摩擦因数为[μ2].当两物体从静止开始沿斜面下滑时,它们保持相对静止,则物体[P]所受的摩擦力大小为( )

[A].[0] [B].[μ1mgcosθ]

[C].[μ2mgcosθ][D].[(μ1+μ2)mgcosθ]

解析 当两物体[P]和[Q]一起加速下滑时,加速度[a=g(sinθ-μ2cosθ)],因[P]和[Q]相对静止,它们之间的摩擦力为静摩擦力,不能用[Ff=μFN]求解.对物体[P],由牛顿第二定律,有 [mgsinθ-Ff=ma]

故 [Ff=μ2mgcosθ]

答案 C

点拨 静摩擦力出现在相对静止的物体间.一般相对运动能看出来,但相对静止又有运动趋势却不容易看出来.判断静摩擦力是否存在的方法有,①定义法:根据静摩擦力存在的条件判定,看物体间有没有相对运动趋势,这种情况适用于运动状态很清楚时.②假设法:假设静摩擦力不存在,判断物体将沿哪个方向产生相对运动,则该相对运动的方向就是运动趋势的方向;如果无相对运动,也就无相对运动趋势,静摩擦力就不存在.还可以假设接触面光滑,看物体是否会发生相对运动,若物体仍保持相对静止,则不受静摩擦力,反之则受静摩擦力.③状态法:假设摩擦力存在,根据力和运动的关系看是否满足给定的运动状态,若满足,则存在摩擦力;若不满足,则不存在摩擦力.

三、平行四边形定则

平行四边形定则是力、运动、加速度等所有矢量的合成与分解都遵循的矢量运算的最基本定则.在矢量的合成或分解中,合力与分力,合速度与分速度,既可以用平行四边形表示,也可以用三角形表示,这种方法称为三角形定则.所以说解合成与分解问题,实际上是解三角形问题,利用正弦、余弦定理或相似三角形的知识求解.

在三力的平衡问题中,常根据平衡条件和平行四边形定则,把物体所受的三个力集中到三角形中,求解三角形中的边角关系即得到力之间的关系. 在二力作用下的匀变速直线运动中,也可以把物体受到的两个力与合外力[ma]放到三角形中求解.

例3 如图4所示,把球夹在竖直墙[AC]和木板[BC]之间,不计摩擦. 设球对墙的压力为[FN1],球对板的压力为[FN2],则在将板[BC]逐渐放至水平的过程中( )

A. [FN1]和[FN2]都增大

B. [FN1]和[FN2]都减小

C. [FN1]增大,[FN2]减小

D. [FN1]减小,[FN2]增大

解析 虽然题目中的[FN1]和[FN2]涉及的是墙和木板的受力情况,但研究对象还是只能取球.在将板[BC]逐渐放至水平的过程中,球时刻处于动态平衡状态,[FN1]和[FN2]都是变力,可以先画开始时刻的受力图,然后再根据力的关系讨论力的变化规律.

方法一:分解法.球所受的重力[G]产生的效果有两个,一是球对墙的压力[FN1],二是球对板的压力[FN2.]根据这两个效果将其分解,则[F1=FN1],[F2=FN2],如图5所示,从动态变化图中不难看出,在板[BC]逐渐放平的过程中,[FN1]的方向保持不变而大小逐渐减小,[FN2]与[G]的夹角逐渐变小,其大小也逐渐减小.

方法二:合成法.由于球处于平衡状态,弹力[FN1]、[FN2]的合力[F]跟重力是一对平衡力,其大小、方向均不变,如图6甲所示,画出力的矢量三角形如图6乙所示,在板[BC]逐渐放平的过程中,除合力[F]恒定外,墙对球的弹力[FN1]的方向也不改变,而[FN2]绕O点为轴顺时针转动,α角逐渐减小到0,可以看出,[FN1]、[FN2]都逐渐减小,当木板水平时,有[FN1=0],[FN2=G].

方法三:三角形法.由图6乙,有

[FN1=Ftanα=Gtanα],[FN2=Fcosα=Gcosα]

由此推出,在[BC]板逐渐放平的过程中,α角减小,[FN1]、[FN2]都逐渐减小.

答案 B

点拨 动态平衡问题的处理,往往有多种方法,比如列公式或画图.公式法的局限性比较大,但是在特殊的时候可以起到突出的作用,是必须掌握的.图象法可分为合成法和分解法.如果是三个力使物体平衡,常常使用合成法,即合成其中的两个变力,它们的合力与第三个力等大反向,通过构成的平行四边形或三角形边长(表示力的大小和方向)的变化,得出力的变化.注意有的力并不是单调变化的,可从受力分析入手,抓住变量与不变量的关系,列平衡方程式,或利用矢量三角形法则求解.

四、正交分解法

正交分解法是把一个力分解成两个互相垂直的分力的分解方法,是最常见的分解方法.若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则或三角形定则求解;若研究对象在不共线的三个或三个以上的力作用下做加速运动,一般用正交分解法解题.

应用正交分解法的程序:①明确研究对象;②了解运动状态;③进行受力分析;④建立坐标系,将矢量正交分解,建立坐标系仍以方便为原则,分解的矢量越少越好,让尽可能多的矢量落到坐标轴上;⑤列方程.

按照建立坐标系的原则,如果物体受力平衡,有[∑Fx=0∑Fy=0],如果物体有加速度,有[∑Fx=max∑Fy=may].

例4 如图7所示,将质量为[m]的物体置于倾角为θ的斜面上,物体与斜面间的动摩擦因数为[μ],先用平行于斜面的推力[F1]作用于物体,使其沿斜面匀速上滑.若改用水平推力[F2]作用于物体,也能使物体沿斜面匀速上滑,求两次推力之比[F1F2].

解析 第一种情况下,有[F1=mgsinθ+μmgcosθ]

第二种情况如图8所示,采用正交分解法列出方程,有

[∑Fx=F2cosθ-Ff-mgsinθ=0∑Fy=FN-F2sinθ-mgcosθ=0Ff=μFN]

联立解得

[F2=sinθ+μcosθcosθ-μcosθmg]

则[F1F2=cosθ-μsinθ]

点拨 正交分解法多运用在力与运动的问题中,但在处理合力时也可以应用,即先分解再合成的方法.正交分解时,除了分解力,也可以分解加速度.有时为了处理方便,在连接体问题中,可以在一个题目中对不同的研究对象分别沿不同的方向建立坐标系.

五、整体法与隔离法

隔离法一般以系统(相互关联的物体的总和)里每个物体为研究对象,单独进行分析.整体法是以整体为研究对象,进行整体分析.整体法研究时,不必考虑物体之间的相互作用力,只需分析外界对系统的作用力,受力相对较少,但是要求较高;若求解物体之间的相互作用力,则必须将物体隔离出来,应用隔离法.

例5 如图9所示,用力[F]拉[A、B、C]三个物体在光滑水平面上运动,现在中间的[B]物体上加一个小物体,它和中间的物体一起运动,且原拉力[F]不变.则加上物体以后,两端绳中的拉力[FTa]和[FTb]的变化情况是( )

A. [FTA]增大B. [FTB]增大

C. [FTA]变小D. [FTB]变小

解析 取整体为研究对象,设[A、B、C]三物体的质量分别为[m1、m2、m3],所加物体的质量为[m],由牛顿第二定律得最初系统的加速度[a=Fm1+m2+m3]. 加物体之后,系统的总质量变大,其加速度[a′=Fm1+m2+m3+m],变小.

对[A],质量不变,[F]不变,加速度变小,故[FTA]变大;

对[C],质量不变,加速度变小,故[FTB]变小.

答案 AD

点拨 整体法与隔离法并不是完全绝对的,可以分别使用,也可以交替运用.

牛顿运动定律典型习题. 篇4

运动,则两小球(设车无

限长,其他阻 力不计(A.一定相碰 B.一定不相碰 C 不一定相碰 D 无法确定

2.火车在长直水平轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到车上原处,这是因为

A.人跳起后,车厢内给他以向前的力,带着他随同火车一起向前运动

B.人跳起的瞬间,车厢的地板给他一个向前的力,推动他随同火车一起向前运动 C.人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后距离太小,不明显而已

D.人跳起后直到落地,在水平方向上和车始终具有相同的速度 思考:若火车以加速度a匀加速运动,则人落到起跳点的什么位置? 若火车以加速度a匀减速运动,则人落到起跳点的什么位置? 3.如图所示,一个劈形物体A,各面均光滑,放在固定斜面上,上面成水平,水平面上放一光滑小球B,劈形物体从静止开始释放,请分析说明小球在碰到斜面前的运动轨迹

4.如图(俯视图所示,以速度v匀速行驶的列车车厢内有一水平光滑桌面,桌面上的处有一小球.若车厢中旅客突然发现小球沿图中虚线从A运动到B,则由此可判断列车(A速行驶,向南转弯

B.减速行驶,向北转弯 C.加速行驶,向南转弯 D.加速行驶,向北转弯

5.如图所示,一个劈形物体A,各面均光滑,放在固定斜面上,上面成水平,水平面上放一光滑小球B,劈形物体从静止开始释放,请分析说明小球在碰到斜面前的运动情况如图所示,重球系于线DC下端,重球下再系一根同样的线BA,下面说法中正确的是(A.在线的A端慢慢增加拉力,结果CD线拉断 B.在线的A端慢慢增加拉力,结果AB线拉断

C.在线的A端突然猛力一拉,结果AB线拉断 D.在线的A端突然猛力一拉,结果CD线拉断

6.一物体放在光滑水平面上,初速度为0,先对物体施加一向东的恒力,历时1s钟;随即把此力改为向西,大小不变,历时1s钟;接着又把此力改为向东,大小不变,历时1S钟;如此反复,只改变力的方向,共历时1分钟.在此一分钟内关于物体的运动,下列说法正确的是

“牛顿第一运动定律”教学设计 篇5

“牛顿第一运动定律”--江苏高邮市赞化学校 盛荣湖【教学内容】

高中《物理》(必修)第一册第三章“牛顿第一运动定律”。【教学媒体】

网络教室、多媒体计算机(学生2~3人组成一个学习小组)。【教学方法】

协作式自主学习方法。【教学过程】

一、引入新

演示实验:用力推一个木块在水平桌面上前进,当停止用力时,木块就停了下来。

多媒体动画模拟、局部放大:展示木块与水平桌面之间是凹凸不平的,木块受到推力的作用向前运动,同时木块还受到摩擦力的作用;撤销推力后,在摩擦力的作用下,木块慢慢地停止下来。

鼓励学生提出问题:物体不受力的作用时如何运动?

二、开展探究

鼓励学生进行大胆猜想与假设,得出如下几种观点: ①物体将运动得越来越快; ②物体保持原来的运动状态; ③物体将慢慢停下来。

按照不同的观点,将学生进行分组,指导学生设计出各自的探究方案。在小组讨论交流的基础上,学生开展科学探究活动。为了保证学生探究方案的顺利实施,教师要尽可能帮助学生准备足够的器材。

针对不同认知水平的学生,在学习资源库中链接“开展科学探究活动的一般步骤”“学会提出问题”“怎样设计科学探究方案”“开展科学探究活动的优秀案例”等内容,启发指导学生开展科学探究活动。学生也可以上网搜寻相关信息,发现有价值的内容可以通过链接、粘贴等方式补充到学习资源库里,其他学生都可以在线浏览,实现资源共享。

例如,某小组学生进行了如图2所示的科学探究实验,让一辆小车(或小球)从同一斜面的同一高度处滑下来,分别在毛巾、棉布、木板表面上以相同的速度运动,观察小车的运动情况,将实验现象填在下面的表格内。

通过实验结果的分析,得出初步的实验结论:小车在水平面上运动,受到的摩擦力越小,运动的距离就越长。接触面

小车受到摩擦力的大小(填“大”“较小”或“最小”)小车运动的距离(填“短”“较长”或“最长”)毛巾

面布

木板

如果小车受到的摩擦力减小为0,它将怎样运动呢? 学生进行推理,得出结论。不同小组得出的结论可能不一样,例如:

①小车受到的摩擦力减小为0时,小车将一直运动下去,不会停下来;

②小车受到的摩擦力减小为0时,小车将运动得越来越快; ③小车受到的摩擦力减小为0时,小车将做匀速直线运动; ④小车受到的摩擦力减小为0时,小车的运动状态保持不变。教师指导学生通过小组协作对话、人机交互和网络交互等多元化的信息交互方式,进行信息搜寻、反馈、矫正、补充、完善,得出全面、完整的结论,即牛顿第一运动定律的内容。要重视学生在研究过程中提出的新问题、新题,从而进一步激发学生对科学探究的兴趣,保持学习动力的持续性和进取性。

对开展科学探究实验有困难的学生,也可以不动手做实验,而是直接利用资源库中的多媒体资源,动画模拟实验,完成探究实验的全过程。

三、牛顿第一运动定律

动画模拟伽利略理想实验,如图3所示。

视频播放物理学史,牛顿第一运动定律发现的过程。三百多年前,著名的物理学家伽利略就是这样通过实验推理得出来运动物体不受阻力时的运动状态的。后来,又经笛卡儿的补充,牛顿的进一步研究整理,使整个理论更加全面和完整。这种建立在实验的基础上,通过逻辑推理得到的理想状态下的结论,也是物理中的一种重要的研究方法。对牛顿第一运动定律的说明:牛顿第一运动定律不能直接用实验证明,而是在实验的基础上,通过推理、归纳得出来的。这恰是科学家丰富的想像力与科学分析相结合的伟大之处。他们抓住了更本质的内容,且在分析其他现象时,都经住了实践的检验。因此,这一结论是科学的,正确的。

四、知识的应用与创新

情境1:宇航员在宇宙太空中生活和工作的场面。情境2:下雨天,雨滴从伞边滴落下来,若将伞旋转起来,雨滴的运动情况。

牛顿运动定律复习归纳 篇6

牛顿运动定律

应考指导

考纲点击

1.牛顿运动定律、牛顿定律的应用

三年11考 2.超重和失重

三年6考 3.单位制

三年1考 实验四:验证牛顿运动定律

三年4考 备考指导

1.理解牛顿第一定律、牛顿第三定律,认识惯性和作用力、反作用力的特点.2.熟练掌握牛顿第二定律,会用牛顿运动定律分析解决两类典型的动力学问题.3.综合应用匀变速直线运动的规律及运动图象、运动和力的关系、牛顿运动定律进行受力分析、运动过程分析.复习指导

一、知识特点

本章基本概念较少,如惯性、作用力和反作用力、超重和失重等,基本规律即牛顿三大定律,主要有以下特点:

1.本章是在前两章的基础上进一步研究物体运动状态变化的原因,揭示力和运动的本质关系.2.以牛顿第二定律为重点,研究其应用,如瞬时性问题、传送带问题、滑块相对滑动问题、超失重问题、两类动力学问题等.3.用整体法和隔离法结合牛顿第二定律,处理与静力学、运动学相结合的综合问题,均是高考的热点.4.对牛顿第一定律的考查经常以选择题的形式呈现,牛顿第三定律则经常融合到计算题中进行考查.二、复习方法及重点难点突破

1.复习方法

对本部分内容的复习应抓好以下几个方面:

(1)注重对基本概念和基本规律的理解

本章中有关于基本概念的理解和辨析,如惯性与惯性定律、相互作用力与平衡力等,而对三个定律的理解及应用更是高考的热点,且此内容往往与其他知识相联系,综合性较强.(2)提高应用基本规律解决实际问题的能力

以实际生活、生产和科学实验中有关问题为命题背景,突出表现物理知识在生活中的应用的命题趋势较强,故应引起高度关注.(3)加强对牛顿第二定律的熟练应用,高考命题涉及本章内容时,命题形式上有多样化特点,有选择题、综合分析计算题等,无论哪一种形式,一般情况下,综合性均较强.2.重点难点突破方法

牛顿运动定律中的“STS” 篇7

例1:惯性制导系统已广泛应用于弹道式导弹工程中, 这个系统的重要元件之一是加速度计, 加速度计的构造原理的示意图如图所示。沿导弹长度方向安装的固定光滑杆上套一质量为m的滑块, 滑块两侧分别与劲度系数为A的弹簧相连;两弹簧的另一端与固定壁相连。滑块原来静止, 弹簧处于自然长度。滑块上有指针, 可通过标尺测出滑块的位移, 然后通过控制系统进行制导, 设某段时间内滑块沿水平方向运动, 指针向左偏离点的距离为s, 则这段时间内滑块的加速度 ()

A.方向向左, 大小为ks/m

B.方向向右, 大小为ks/m

C.方向向左, 大小为2ks/m

D.方向向右, 大小为2ks/m

解析:取滑块为研究对象, 水平方向受力情况为:因滑块左移s, 左侧弹簧缩短, 右侧弹簧伸长, 形变量均为s, 两弹簧弹力大小均为F=ks, 合力大小为2ks, 向右, 由牛顿第二定律可知, 向右。

例2:在亚丁湾海域遭海盗袭击的中交集团“振华4号”货轮, 在马来西亚武装直升机协助下中国籍船员成功击退海盗。如图所示的海盗船若质量为2.5×103kg, 在海面上从静止开始启动, 当它速度达到15m/s后, 立即关闭发动机, 其运动的V-t图像如图所示。设运动过程中海盗船所受阻力不变。试结合图像简述在0~96秒的时间内海盗船的运动情况, 并求出海盗船所受的阻力大小。

解析:海盗船先由静止开始做加速度逐渐减小的加速运动, 达到最大速度后做匀减速运动, 直到静止。

由图像可先求得海盗船匀减速运动的加速度大小, 然后求出海盗船所受阻力。

牛顿运动定律单元练习题 篇8

1.如图l所示,当木板与地面倾角为30°时,放在其上的物块m刚好匀速下滑,则当木板的倾角由20°逐渐增大到40°的过程中,物块m所受的摩擦力的变化情况为()

A. 逐渐增大B. 逐渐减小

C. 先增大,后减小D. 先减小,后增大

2. 弹簧的原长为20cm,劲度为100N/m,上端固定,下端挂一个质量为0.4kg的物体.从原长处释放,当弹簧伸长到25cm时(设未超过弹性限度,g取10m/s2)。物体的加速度为()

A.2.5m/s2,方向向上

B.2.5m/s2,方向向下

C.12.5m/s2,方向向上

D.12.5m/s2.方向向下

3.在液面下有两个相同材料制成的实心球,甲球质量是乙球质量的2倍。由于浮力都比各自的重力大,两球都加速上浮。忽略水的阻力,则浮出水面前两球的加速度a甲和a乙大小关系为:()

A.a甲=a乙B.a甲=a乙/2

C.a甲=2a乙D.不能确定

4. 如图2所示,一个质量为m的人站在自动扶梯的台阶上,当此扶梯沿图示的方向加速运动时,人随同此扶梯一起加速上升。此时,关于人受到的静摩擦力f和人对扶梯台阶的压力N有()

A.f水平向右,N>mg

B.f水平向右,N

C.f水平向左,N>mg

D.f水平向左,N

5.如图3所示,质量相等的两个物体A、B叠放在光滑的水平地面上,A受水平恒力F1,B受水平恒力F2,F1与F2方向相同,且F1>F2。物体A、B保持相对静止,则物体B对物体A的摩擦力的大小和方向为()

A.F1+F22,向左

B.F1+F22,向右

C.F1-F22,向左

D.F1-F22,向右

6.如图4所示,绳子的一端系在质量为50kg的人的腰上。人手握住绳子的另一端用力拉,使自己以2m/s2的加速度下降,手的拉力为(g=10m/s2)()

A.100 NB.200 NC.300 ND.400 N

7. 如图5所示,用力F拉着3个物体在光滑的水平面上一起运动。在中间物体上加一小物体,仍让它们一起运动,且拉力F保持不变.那么中间物体两端绳的拉力Ta和Tb变化的情况是()

A.Ta、Tb都增大

B.Ta增大,Tb减小

C.Ta减小,Tb增大

D.Ta、Tb均不变



8. 如图6所示,动滑轮和重物的质量都是2kg、用竖直向上的恒力F=40N拉物体上升,则物体的加速度大小为()

A.0B.5m/s2

C.10m/s2D.20m/s2

9. 如图7所示,光滑的半圆球在水平地面上做加速运动,一小物块置于半圆球上4R/5高处,且与半圆球保持相对静止,则此半圆球的运动状态应是()

A.向右加速运动,a=3g/4

B.向右加速运动,a=4g/3

C.向左加速运动,a=3g/4

D.向左加速运动,a=4g/3

10. 一间新房即将建成时要封顶,考虑到下雨时落至房顶的雨滴能尽快地淌离房顶,要设计好房顶的坡度,设雨滴沿房顶下淌时做无初速度无摩擦的运动,那么图8中所示四种情况中符合要求的是()

11.如图9所示,质量为M的框架放在水平地面上,一个质量为m的小球通过两个轻弹簧固定在框架上处于静止状态.若将小球上下振动起来.且在此过程中,框架始终没有跳离地面.则当框架对地面压力刚好为零的瞬间,小球的位置及加速度的大小为()

A.小球在最高点处,a=M+mmg

B.小球在最高点处,a=M-mmg

C.小球在最低点处,a=M-mmg

D.小球在最低点处,a=M+mmg

二、多项选择题

12.如图10所示,物块m在皮带输送机上水平向右传送,物块与皮带之间无相对运动,则下列关于物块m所受摩擦力的说法中正确的有()

A.皮带运动的速度越大,m受到的摩擦力越大

B.皮带运动的加速度越大,m受到的摩擦力越大

C.m所受摩擦力的方向与皮带的运动方向相反

D.m所受摩擦力的方向与皮带的加速度方向相同

13.如图11所示,物体m静止于不动的升降机的斜面上,当升降机竖直向上加速上升时,下面说法正确的有()

A.物体m受到的斜面支持力增加

B.物体m受到的摩擦力增加

C.物体m受到的重力增加

D.物体m受到的合力增加

14.如图12所示,一个球从空中自由下落压缩一个松驰的弹簧,弹簧原长为OA,被压缩到最低点时长度为OB,则()

A.球在A点处速度最大

B.球在B点处加速度最大

C.球在A、B之间某点处速度最大

D.球在A、B之间某点处加速度为零

15.如图13所示,当车厢向前加速前进时,物体m静止于竖直的车厢壁上。下述有关力的分析正确的有()

A.在水平方向上,向前加速的力与物体m对壁的压力平衡

B.在竖直方向上,壁对物体m的摩擦力与物体的重力相平衡

C.车厢加速度越大,物体m对壁的正压力越大

D.车厢加速度越大,物体m受到的摩擦力越大

16.如图14所示,倾角为θ的三角形滑块上放置一个质量为m的物体,它们一起以加速度a在水平面上向左做匀加速直线运动(无相对运动)。对于m所受到的摩擦力f和支持力N,下列叙述正确的有()

A.f不可能为零

B.f的方向一定沿斜面向上

C.N不可能为零

D.N有可能为零

17.如图15所示,两个滑块A与B放在水平面上,以轻绳连接,A与B各受水平力F1和F2的作用,且F1>F2。若水平面光滑时,加速度为a1,绳的拉力为T1;若水平面粗糙且两个滑块的动摩擦因数相同,这时加速度为a2,绳的拉力为T2。则在这两种情况下,加速度a1与a2、绳的拉力T1与T2的大小关系分别是()

A.a1>a2

B.a1=a2

C.T1=T2

D.T1>T2

三、填空题

18.如图16所示,用一个与竖直方向成θ角的推力F使质量为m的滑块以加速度a沿着竖直面匀加速上滑。已知滑块与竖直面间的动摩擦因数为μ,则推力F的大小为__________。

19.一辆汽车在牵引力F的作用下做匀加速直线运动,然后关闭发动机,其速度-时间图象如图17所示。从图象分析可知,汽车所受阻力的大小为车重的_____倍。如果汽车的质量为5t,那么牵引力F为_______N。(g=10m/s2)20.如图18所示,物块P通过细绳悬挂在天棚上。P、Q之间连接一个质量忽略不计的轻弹簧,整个系统处于静止状态。已知P、Q两物体的质量相等.若剪断悬挂P的细绳,则在细绳被剪断的瞬间,物块P的加速度为_______,物块Q的加速度为_______。

21.如图19所示,用细线拴住两个相同的小球,小球的质量均为m。今以外力作用于线的中点,使球以加速度a竖直向上运动时,两段线的夹角为锐角2θ,此时两球间的作用力大小为_________。

22.一辆总质量为M的列车以匀速度V0在平直的轨道上行驶.各车厢受的阻力都是车重的K倍.某时刻列车后端质量为m的车厢脱钩,而机车牵引力未变,则当脱钩的车厢刚好停止的瞬间,前面的列车速度为________。

四,计算题

23.一热气球,包括蒙皮、内部的热空气及它下面所载的沙袋的质量为M,在空气中以加速度a匀加速下降。设浮力不变,空气阻力不计,要想使气球以同样大小的加速度上升,必须扔掉质量多大的沙袋?

24. 如图20所示,质量相等的物体A和B,用轻绳连接,置于斜面上端的定滑轮的两边。绳与滑轮的质量及绳与滑轮间的摩擦均下计,A距地面4.0m,B在斜面底端,A由静止开始经2.0s到达地面。求物体B能上升的最大距离。 (g=10m/s2)

25.总质量为M=20kg的气球,从地面以5m/s的速度匀速上升,第6s末从气球上落下一质量为m=4kg的重物,物体着地时,气球离地面的高度是多少?(g=10m/s2,不计空气阻力,气球浮力不变)

26. 如图21所示,斜面的倾角θ=37°,有两个物体A和B用细线连接起来,沿斜面下滑,它们的质量分别为mA=2kg,mB=1kg。A与斜面间的动摩擦因素μ1=0.1,B与斜面间的动摩擦因素μ2=0.4,试求细绳中的拉力是多大?(g=10m/s2)

上一篇:我的书屋我的梦作文下一篇:电力后勤工作经验汇报材料