倒数的认识 教学计划(人教新课标六年级上册)(精选4篇)
教学目标:
引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法;通过互助活动,培养学生与人合作、与人交流的习惯;通过自行设计方案,培养学生自主探索和创新的意识。
教学重、难点:理解倒数的含义,掌握求倒数的方法。
教学过程:
(一)导入
1.找找下面文字的构成规律
呆---杏土---干吞---吴
2.按照上面的规律填数
--()--()--()
能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数
(二)教学实施
关于倒数同学们想知道些什么呢?学习倒数的含义
1.观察教材24页的例1,归纳,总结倒数的含义,
2.举例验证:4和1/4,7和1/7,3和1/3
4乘1/4的积是1,所以4和1/4互为倒数;7可以看成分母是1的分数,把分子、分母调换位置后就是1/7,所以7和1/7互为倒数。
归纳:乘积是1的两个数互为倒数。
3.特殊数:0和1(引导学生辩论0有没有倒数,1有没有倒数,是多少?)
教师归纳板书:0没有倒数,1的倒数就是它本身。
4.学习例2--求倒数的方法
让学生根据已学知识独立解决怎样求一个数的倒数,集体订正,教师归纳,板书:求倒数的方法
5.反馈练习xkb1.com
完成教材24页的“做一做”,完成练习六的第3、4题
(二)课堂练习
找一找下列数中哪两个数互为倒数
2101/21/10
填空
1的倒数是(),()的倒数是2/3。
10的倒数是(),()没有倒数。
(三)课堂小结
学完本节课,我们知道了乘积是1的来年各个数互为倒数。1的倒数是它本身,0没有倒数。
课后反思:
整理复习
教学目标:
复习分数乘法的意义和计算法则,掌握乘法运算定律在分数乘法中的推广和分数乘法的简便计算;提高学生分析,解答分数应用题的能力;进一步培养学生认真书写及良好的审题习惯。
教学重、难点:巩固分数乘法的意义,提高灵活计算的能力,正确分析数量关系,熟练掌握求一个数的倒数的方法。
教学过程:
(一)复习分数乘法的意义
1/2×6=2/3×5=2/5×8=
以上几道题都是分数乘整数,想想,分数乘整数的意义同整数乘法的意义相同吗?能说说分数乘整数表示的意义是什么吗?
口算
75×2/15=3/2×1/3=4×3/8=36×5/9=
以上几道题有的是整数乘分数,有的是分数乘分数,都可以看成是一个数乘分数,一个数乘分数的意义是什么?分别说出以上几道题的意义。
(一)复习分数乘法的计算方法新课标第一网
让学生看教材第26页的第1题,问:为了计算简便,在分数乘法中应该先做什么?(先约分,再做乘法)在本题中,都有一个因数是整数,约分的时候要注意什么?(整数与分数的分母约分)
(二)复习乘法运算定律和简便计算
问:我们学过哪些乘法定律?它们在分数乘法中适用吗?然后独立完成第26页第2题,练习七第1、4题,再请个别学生说说自己是怎样做的,着重说说在进行简便运算时运用了什么定律。
(三)复习分数乘法的应用题
1、完成教材第26页第3题,练习七第2、3题
学生独立完成,同时请一名学生板演,并讲一讲是怎样分析数量关系的,在计算中把什么数量看着单位“1”。教师要进一步强调在解答分数乘法应用题时,一定要找准单位“1”。因为分数乘法应用题是根据分数乘法的意义计算的,求哪个数量的几分之几,就是要把哪个数量当做为单位“1”。在解答两步计算的分数应用题,要注意每一步是把什么数量关系看作单位“1”,在两步计算中的单位“1”可能是不同的。
(四)复习倒数的知识
什么是倒数?怎样求一个数的倒数?完成教材第26页第4题及27页第7题。
课堂小结:
本节课是在学生充分认识了圆的各部分的特征和掌握了园的周长的计算的基础上进行教学的。通过对圆面积的研究,使学生初步掌握研究曲线图形的基本方法,为以后学习圆柱的表面积打下基础。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。本节课设计了三次探究活动,第一次探究活动,通过折一折和剪拼把圆转化成已经学过的三角形和平行四边形,得到了解决问题的思路。第二次探究活动,围绕着“怎样使折出的图形更像三角形”、“使剪拼后的图形更像平行四边形”这些问题开展操作、想象活动,充分体验了“极限思想”。第三次探究活动,学生借助数字、字母、符号等,运用数学的思维方式进行思考,推导出圆的面积计算公式。
二、教学目标:
1. 经历圆的面积计算公式的推导过程,掌握圆的面积计算公式。
2. 能正确运用圆的面积计算公式计算圆的面积。
3. 在探究圆的面积计算公式的过程中,体会转化的数学思想方法;初步感受极限的思想。
三、教学重点和难点:
圆的面积计算公式的推导。
四、教学准备:
圆形纸片、剪刀、多媒体课件等。
五、教学过程:
教学过程 教师活动 学生活动
一、谈话引入,揭示课题
二、探究新知。
1、 第一次探究,明确思路,体会“转化”的数学思想方法
2、 第二次探究,明确方法,体验“极限思想”
3;第三次探究,深化思维,推导公式。
4、 解决问题
5、小结
三、知识应用 (出示一个圆)大家看,这是什么图形?
师:你已经掌握圆的哪些知识?
师:关于圆你还想探讨什么?
(板书课题:圆的面积。)
师: 谁能摸一摸这个圆片的面积。
师:那这个圆的面积怎么求呢?(学生沉默),请你在大脑中搜索一下,以前我们研究一个图形的面积时,用到过哪些好的方法?
师:那圆能不能转化成我们学过的图形呢?请大家利用手中的圆纸片,先想一想,再动手试一试,然后在小组内交流一下。(教师巡视[【评析】“圆”作为一种由曲线围成的图形,与学生头脑中熟悉的由直线段围成的图形(如长方形、平行四边形等)差别比较大,因此当老师提出“怎么求圆的面积呢”,学生感到很茫然。此时,学生最渴望得到老师的指点。作为教师,如何施展自己的“点金”术,取决于教师的教学理念。在这里,老师没有直截了当地讲“方法”,而是从培养学生的解题能力入手,引导学生从头脑里检索已有的知识和方法:“以前我们研究一个图形时,用到过哪些好的方法?”这样设计,既在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来了,沟通了知识之间的联系,促成了迁移。
]。)
师:好,同学们停一停。刚才老师发现有的小组已经有想法了。我看你们小组的想法就很好,谁代表小组上来说一说?大家认真听,看看他们是怎么想的。
师:噢,你想把圆转化成我们学过的三角形来求它的面积。
师:谁还有不同的方法?
师:这像我们学过的什么图形?
师:你想把圆转化成平行四边形来求它的面积,是不是?
师:刚才同学们有了两种思路,可以把圆折一折,想转化成三角形,还可以通过剪拼把圆转化成平行四边形,不论哪种方法,都是把圆转化成学过的图形来求它的面积。(板书:转化[【评析】通过第一次探究,学生产生了两种很有价值的思路。即通过折一折,把圆转化成近似的三角形;通过剪拼把圆转化成近似的平行四边形。教师设计了“你们发现这两种方法的共同点了吗”这一关键问题,旨在引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。]。)
师:同学们刚才也发现了,不管是折出的图形,还是剪拼出的图形,都不是很像三角形,怎样让它更接近这些图形呢?是不是得进一步研究。请每个小组在两种思路中选择一种继续研究。
师:各个小组都研究出结果了,谁想先来展示一下?请你们小组先说。
师:为什么要折这么多份?
师:你们同意吗?这就是把圆折成16份时其中的一份(贴在黑板上),和刚才平均分成4份中的一份相比,确实像三角形了。如果想让折出的形状更接近三角形,怎么办?
师:你继续折给大家看看。(学生折起来很费劲)看来同学们再继续折纸有困难了,老师在电脑上给大家演示一下。这是同学们刚才把圆平均分成16份的形状(课件演示“正十六边形”),这一份看起来像是三角形了。现在我们再把它平均分成32份,有什么变化?(课件演示,并突出其中一份的形状。)
师:你发现了什么?
师:如果分的份数再多呢?请大家闭上眼睛想象一下,如果把圆平均分成64份、128份……分的份数越来越多,那其中的一份会是什么形状?
师:同学们,用这个方法,成功地把求圆的面积转化成求三角形的面积,你们的方法真好。有不一样的方法吗?(一个小组迫不及待地举手想发言)请你们小组派个代表展示你们的成果。
师:这个方法还真不错,这个小组把圆剪成8份(把这个小组的作品贴在黑板上),和刚才剪成4份拼成的图形相比,有什么变化呢?
师:能让拼成的图形更接近平行四边形吗?
师:哪个小组分的份数更多?
(教师让另一组展示自己平均分成16份后拼成的图形。)
师:和前两次拼成的图形比,又有什么变化?
师:如果要让拼成的图形比它还接近平行四边形,怎么办?
师:我们让电脑来帮忙。大家看,老师在电脑上把这圆平均分了32份,看拼成新的图形,你有什么发现呢?(课件演示。)
师:把这圆平均分了64份,看拼成新的图形呢?
师:你发现了什么?
师:刚才大家通过剪拼把求圆的面积转化成求长方形的面积,大家看,把圆转化成长方形,形状变了,什么没变呢?
师:这样求出了长方形的面积,也就求出了圆的面积[【评析】学生沿着自主探究出来的思路继续研究时,一方面,从直觉上认为这样继续折下去或继续剪拼下去得到的图形一定会越来越像“三角形”或“平行四边形”,但最终能不能说就是“三角形”或“平行四边形”了呢?对处于小学阶段的学生来说,此时不免有几分困惑。在这里,老师有效利用学生探究出来的宝贵资源,围绕着“怎样更像”进行了一次又一次的追问,同时又引导学生在操作的基础上进行想象,再充分利用课件的优势,弥补操作与想象的不足,让学生真切地看到了“自己想象的过程”,充分地体验了“极限思想”。],这种方法也很好。
师:可数学学习不仅停留在动手操作上,你得还会用数字、字母和符号把它表示出来。每个小组能不能在刚才研究的基础上,推导出圆的面积计算公式呢?这可是一个很有挑战性的任务!大家有没有信心完成?
师:刚才大家利用圆纸片折的、剪拼的图形都不太标准,老师给大家准备了屏幕上呈现的这两种方法的示意图帮助你思考,大家可以对照示意图把推导的过程写在图的下面。
(教师按照每个小组选择的方法分发学具。学生讨论,教师巡视指导。)
师:谁想展示你们的想法?
师:大家听清楚了吗?谁愿意再起来说一说。
(教师再请一个同学说自己的想法。)
师:下面看电脑演示,把圆转化成长方形,面积是相等的。长方形的长相当于圆周长的一半,宽相当于半径,因为长方形的面积=长×宽,所以圆的面积=πr×r=πr2。现在要求圆的面积是不是很简单了?知道什么条件就可以求出圆的面积了?
师:你们表现得真好!我们再来听一听这个小组的想法。
师:说得真好。
师:刚才两个小组推导的结果都是πr2,真是条条大路通罗马呀。圆的面积可以用S表示,圆的面积计算公式就是:S=πr2。现在看来,求圆的面积需要什么条件就可以了?
师:知道了半径,用π乘半径的平方就求出了圆的面积[【评析】第三次探究结果的交流,教师有意识地先让学生交流将圆转化成长方形求出圆的面积公式的方法,因为这种方法学生理解起来比较容易,是要求每个学生都要掌握的方法。
]。
师:现在你能求出黑板上这个圆形纸片的面积了吧?需要什么条件?谁来和老师一起来量它的半径?
师:面积是多少呢?请大家做在练习本上。
师:这节课大家有什么收获?
师:这是知识上的收获,在解决问题的方法上有没有什么收获呢?
师:同学们不仅学会了怎样计算圆的面积,更重要的是大家运用转化的方法,把圆这个新图形转化成了已经学过的图形,从而求出了圆的面积。以后大家遇到新问题,都可以尝试一下,看看能否把它转化成已经学过的知识来解决。
书70页练习 第2题。 生:圆形。
生1:圆的周长=2πr,圆的半径是直径的一半。
生2:在同一个圆的所有的半径都相等,所有的直径都相等。
生:圆的面积。
一生上台摸圆的面积。
生:可以把新图形转化成已学过的图形,比如平行四边形可以通过剪拼转化成长方形求出面积。
(学生活动。)
生1:我们把圆纸片对折得到4个三角形,求出一个三角形的面积,再乘4就能得到圆的面积。
生1:我们想把圆沿着半径剪成4个扇形,把这些扇形重新拼一拼,拼出的图形有些像平行四边形。
生:平行四边形。
小组继续合作
生1:我们把圆对折平均分成16份,折出的形状很像是三角形。用一个三角形的面积乘三角形的个数就能得到圆的面积。
生1:因为折成4份的话,折出的形状是扇形,和三角形相差太大。折的份数越多,折出的形状越像三角形。
生2:可以继续折纸,把圆平均分的份数再多一些,分成32份。
观看课件
生:分的份数越多,其中的一份越像三角形。
生:其中的一份基本上是三角形了。
生3:我们把圆平均分成8份,剪下来是8个近似的三角形,拼在一起是个近似的平行四边形。
生:更像了。
生3:可以把圆分的份数再多一些。
生4:我们把圆剪成16份,拼成了平行四边形。(把这个小组的作品贴在黑板上。)
生4:更像平行四边形了。
生4:可以继续分下去,分成32份,64份,128份……
生:更接近于平行四边形了,有些像是长方形了。
生:拼成的图形更接近长方形。
生:分的份数越多,剪拼成的图形更接近长方形。
生:面积。
生:有!
每个小组选择的方法分发学具。学生讨论,教师巡视指导。
生1:(剪拼法)把圆剪一剪、拼一拼变成了长方形,它们的面积是相等的。长方形的长相当于圆周长的一半,用C÷2=πr表示,宽相当于半径,用r表示。长方形的面积=长×宽,圆的面积=πr×r=πr2(实物投影呈现)。
生:圆的半径。
生2:把圆平均分成32份,三角形的底是C÷32,高是半径r。圆的面积=C÷32×r÷2×32=2πr×r÷2=πr2。
生:圆的半径。
一生上台量说:半径是10厘米
生1:我会求圆的面积了,公式是S=πr2。
生2:可以把圆转化成学过的图形推导出圆的面积计算公式。
我的反思:
一、 体现“以学生发展为本”的理念,充分满足学生探究的需求
苏霍姆林斯基说过:“在人的心灵深处,总有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。”而在儿童的精神世界中,这种需要特别强烈。本堂课上,我通过“圆能否转化成我们学过的图形呢”、“怎样能让转化后的图形与三角形(平行四边形)更接近呢”、“数学学习不仅需要动手操作,更需要动脑思考。能否在刚才研究的基础上推导出圆的面积计算公式呢”三个紧密联系又层层递进的问题,激发了学生强烈的探究愿望,因此引发了学生浓厚的学习兴趣。在这一内驱力的作用下,学生们根据自己的知识经验,自主探究,交流合作,大胆尝试,用自己独特的方式去解决问题。教师没有把自己的意图强加于学生,而是充分满足学生的探究需要。整节课在充分尊重学生思维发展的过程中,教师适时地加以引导、点拨,使学生学习的方向始终清晰明确。在探究的过程中,学生思维活跃,争相交流,不断迸发出创新思维的火花,真正体会到了数学探究的魅力。学生学习数学的过程是一种“再创造”的过程,在这一过程中,学生要通过自己的操作、观察、想象和思考,自主发现,合理建构数学知识体系。本堂课上,我没有局限于传统的把圆剪拼成长方形的方法,而是根据学生在课堂上的思维生成,引导学生对圆转化成三角形和长方形两种方法进行尝试,为学生搭建了自由探究的平台,给学生充足的探索时空,引导学生从多方位去思考问题,自主发现,从而用不同的思路推导出圆的面积计算公式,既培养了学生思维的灵活性,又使学生亲身经历了数学知识的形成过程,同时也培养了学生的探索精神和创新意识,发展了学生的个性。二、 注重学生的个性差异,构建开放的、富有挑战性的课堂教学模式
学生的数学学习存在着差异,因此必须从“为少数学生的教学”转变到“为一切学生的教学”这一目标上来。为此,本堂课上,我不仅重视自己“教”的设计,更重视学生“学”的经验。根据学生学习上的个性差异设计不同层次的教学,让学生主动参与,自主探索,找到解决问题的各种途径,让不同的学生表现出不同的思维过程,让不同思维特点的学生都有机会表达出自己的探究过程,真正使不同层次的学生得到不同程度的发展,使“学”的过程成为激活思维的、开放的过程。当我把“能否把圆转化成我们学过的图形呢”这个问题抛给学生并让学生在小组内探索交流时,学生的个性差异表现得非常明显:有的学生把纸片进行对折,发现圆对折后的图形有些像是三角形,还有的同学会在此基础上把圆进行剪拼,发现剪拼后的图形有些像平行四边形。这时我并没有马上表现出明确的导向性,没有对两种方法的优与劣作出判断,而是引导学生按照自己的思路继续研究下去。这时每个小组的同学都对自己的思路充满信心,积极而投入地继续进行研究,通过几个层次的小组合作,交流展示,反思改进,验证猜想,两种方法并行前进,使课堂显得丰富多彩,自然开放。学生在充分感受极限思想,理解转化策略之后,利用教师发放的示意图推导面积公式,学生的基础差异又显现出来。有的学生能马上捕捉到有效信息,寻找转化前后图形间的关系,自主推导出公式。有的同学则显得无所适从,找不到解决问题的突破口。这时我把解决问题的主动权放给学生,引导学生在小组内交流合作,同学之间可以互相质疑补充,在不断的交流、碰撞、补充中逐渐明确思路,解决问题。
三、 倡导并努力实现“动手实践、自主探索与合作交流”的学习方式
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”遵循这一理念,我引导学生在探索圆的面积的计算方法的过程中,经历了三个阶段:
(1) 独立尝试,明确思路。学生明确“怎样把圆转化成学过的图形”的任务后,直接让小组讨论研究。在小组有了初步的思路后组织交流:第一小组的思路是把圆对折两次变成扇形,求出一个扇形就能求出整个圆形的面积。第二小组的思路是把圆对折两次,然后把它们剪开再拼成平行四边形,从而求出圆的面积。根据学生学习的差异引导学生在交流中梳理思路、比较方法,然后改进自己的探究思路,从而找到正确的解决问题的思路。
(2) 明确方法,体会“极限思想”。学生沿着自主探究出来的思路继续研究时,一方面,从直觉上认为这样继续折下去或继续剪拼下去,得到的图形一定会越来越像“三角形”或“平行四边形”,但最终能不能说就是“三角形”或“平行四边形”呢?对处于小学阶段的学生来说,此时不免有几分困惑。在这里,先让学生利用学具继续操作,发现圆平均分的份数的多少与拼成的图形之间的关系。再利用学生探究出来的宝贵资源,围绕着“怎样更像”进行了一次又一次的追问,同时又引导学生在操作的基础上进行想象,并充分利用课件的优势,弥补操作与想象的不足,让学生真切地看到了“自己想象的过程”,充分地体验了“极限思想”。在这个过程中学生思维在交流中碰撞,在想象中得以提升,分析问题和解决同题的能力得到了提高。
1.认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。
2.通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。
3.培养学生的自主探索意识,激发学生强烈的求知欲望。
导学重难点:
教学重点:掌握圆锥的特征。
教学难点:正确理解圆锥的组成。
导学准备:圆锥图片圆锥学具
导学过程:
预习学案:
1、圆柱体积的计算公式是什么?
2、圆柱的特征是什么?
导学案:
(一)小组交流汇报预习情况
(二)共同探究
1.圆锥的认识
(1)观察教科书第23页图片,它们有什么共同特点?
(2)让学生拿着圆锥模型观察,说出自己观察的结果(圆锥有一个曲面,一个顶点和一个面是圆的)
(3)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)
(4)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)
(5)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。
2.测量圆锥的高。
小组合作:(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;
(3)竖直地量出平板和底面之间的距离。
3.教学圆锥侧面的展开图xkb1.com
(1)学生猜想圆锥的侧面展开后会是什么图形呢?
(2)学生实验:得出圆锥的侧面展开后是一个扇形。
4.虚拟的圆锥
(1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将三角形制片绕着一条直角边旋转,会形成什么形状?
(2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。
5.课堂小结。新课标第一网
课堂检测:
1.用附页2的图样,做一个圆锥,量出它的底面直径和高。
2.练习四:第1、2题。
板书设计:
圆锥的认识
圆锥的特征:底面是圆,侧面是一个曲面,展开是一个扇形
一个顶点一条高
第一课时
一、学习目标:
(一)理解本课10个生字,能读写下列词语:裹着、渺小、范围、恩赐、慷慨、滥用、
枯竭、贡献、威胁、目睹、和蔼可亲、晶莹剔透、相互交错、生态灾难、生态环境。
(二)有感情的朗读课文,理解课文内容。
二、学习过程:
(一)创设学习情境,明确学习目标。(2分钟)
(二)指导独立学习,初步达成目标。(8分钟)
1、有感情地朗读课文,读准字音,读通句子,想想课文写了关于地球的哪几个方面的内容?完成自学检测。
自学检测:
2、认读词语
裹着渺小范围恩赐慷慨滥用枯竭贡献威胁
目睹和蔼可亲晶莹剔透相互交错生态灾难生态环境
3、全班展示交流:课文写了关于地球的哪几个方面的内容?
(三)引导小组学习,落实学习目标。(20分钟)
自由朗读课文,思考:文中哪些地方体现了地球的可爱?并说说用了哪些说明方法?
(四)当堂训练反馈,巩固学习目标。﹙10分钟﹚
1、我能把字写漂亮(看拼音,写词语)。
2、一锤定音(在带点字正确的读音后画“√”)。
遨游(áo ào) 扁舟(piān biǎn)枯竭(ɡū kū) 慷慨(kǎi ɡài)
3、火眼金睛(辨字组词)。
葛( ) 胁( ) 赌( ) 莹( )
蔼( ) 协( ) 睹( ) 萤( )
4、臭味相投(写近义词)。
遥望( ) 适合( ) 证明( ) 随意( )
慷慨( ) 贡献( ) 灾难( ) 节制( )
第二课时
一、学习目标:
1、默读课文,懂得“只有一个地球”的道理,增强爱护环境、保护地球的意识。
2、体会说明文用语的准确、严谨,学习说明的方法。
二、学习过程:
(一)创设学习情境,明确学习目标。(2分钟)
(二)指导独立学习,初步达成目标。(8分钟)
我们的地球母亲是那样的可爱,同时又是那样容易破碎。课文的哪些部分写出了地球母亲容易破碎?使用了哪些说明方法?
(三)引导小组学习,落实学习目标。(20分钟)
学习指导;
1、请大家读读第三、四自然段,说说这部分让你看到了怎样的地球?
2、是谁造成了地球的这些变化?请用文中的话告诉我们!
3、快速浏览课文,小组讨论:我们能移居到别的星球上去吗?
(四)当堂训练反馈,巩固学习目标。﹙10分钟﹚
1、冤家路窄(写反义词)。
破坏( ) 遥远( ) 渺小( ) 枯竭( )
慷慨( ) 奉献( ) 随意( ) 造福( )
2、择优录取(选词填空)。
后果 结果 成果
(1)不听劝告,( )自负。(2)不听劝告,不会有什么好的( )的。
(3)科学家的研究取得了丰硕的( )。
希望 指望 愿望
(1)想到月球去居住,( )是好的,但不可能。
(2)我们( )大家都能够重视环境的保护。
(3)他这件事没做好,想受表扬是没( )了。
(五)、方法辨析(指出各句的说明方法)。(填序号)
A.举例子 B.打比方 C.作比较 D.列数字
1.在群星璀灿的宇宙中,地球就像一叶扁舟。 ( )
2.地球是一个半径只有六千三百多千米的星球。 ( )
3.同茫茫宇宙相比,地球是渺小的。 ( )
4.科学家们提出了许多设想,例如,在火星或者月球上建造移民基地。( )
教学反思:
本篇文章的标题就是文章的中心思想,所以可以从课题入手,展开学习。揭题后我让学生谈谈对课题的理解,学生很快就明确了“全世界人民都是地球村的居民“这一道理。然后我追问:你同意这个观点吗?如果是你,你打算怎么来说明这个观点?学生沉默片刻后,大胆设想:可以举些有关这方面的例子,让大家从他的事例中明白“只有一个地球”;可以运用一些名言警句,从中感悟“只有一个地球”,使说理更充分。
【倒数的认识 教学计划(人教新课标六年级上册)】推荐阅读:
六年级数学倒数的认识10-26
《倒数的认识》教学反思06-03
《倒数的认识》教学课例11-11
倒数的认识练习课06-20
倒数的认识教案百度07-19
人教版一年级上册8和9的认识教学设计11-08
五年级下册数学倒数教学设计07-21